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Abstract

The error threshold of replication limits the selectively maintainable genome size against recurrent deleterious mutations for
most fitness landscapes. In the context of RNA replication a distinction between the genotypic and the phenotypic error
threshold has been made; where the latter concerns the maintenance of secondary structure rather than sequence. RNA
secondary structure is treated as a proxy for function. The phenotypic error threshold allows higher per digit mutation rates
than its genotypic counterpart, and is known to increase with the frequency of neutral mutations in sequence space. Here
we show that the degree of neutrality, i.e. the frequency of nearest-neighbour (one-step) neutral mutants is a remarkably
accurate proxy for the overall frequency of such mutants in an experimentally verifiable formula for the phenotypic error
threshold; this we achieve by the full numerical solution for the concentration of all sequences in mutation-selection
balance up to length 16. We reinforce our previous result that currently known ribozymes could be selectively maintained
by the accuracy known from the best available polymerase ribozymes. Furthermore, we show that in silico stabilizing
selection can increase the mutational robustness of ribozymes due to the fact that they were produced by artificial
directional selection in the first place. Our finding offers a better understanding of the error threshold and provides further
insight into the plausibility of an ancient RNA world.
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Introduction

Ever since the insight of Manfred Eigen [1], researchers have

been puzzled by the question how the adverse effect of high

mutation rate on the selectively maintainable genome size could

be alleviated. The classical, sequence-based error threshold looks

like this: imagine a population of wild-type (also called master in

this context) and mutant templates of uniform length replicating

with a finite accuracy. We further assume that wild-type sequences

have high fitness and all the mutant copies have (identical) low

fitness. This is obviously a simple fitness landscape. Whereas

Eigen’s [1] formalism can handle arbitrary fitness landscapes, the

derivation of the error threshold is much more straightforward for

this simple case. If we further adopt the simplification of no back

mutations then a very simple result follows [2] for the critical error

rate, q�:

q�~1{ ln s=L, ð1Þ

where L is the length of the sequence and s is the selective

superiority of the wild-type sequence. An error rate of 1%, which

is already quite an optimistic assumption, allows a sequence not

longer than 100 nucleotides to be maintained. Four decades ago

this problem looked rather paralyzing: what could a peptide

enzymatically do that consisted of a mere 33 amino acids? And

even if short peptides could be sufficiently enzymatic, does one

gene make a genome?

In an RNA world [3–8], in which RNAs act both as information

storage molecules and enzymes, things are likely to have been

different. There are ample examples of ribozymes that are less

than a 100 nucleotides long [4,9] (see also Table S1). Actually, the

smallest ribozyme is 5 nucleotides long [10]. On the other hand,

while a ribozyme can be less than 100 nucleotides long, a single

gene still does not make a genome. However, recent investigations

have somewhat alleviated the error threshold problem. First, it

seems that intragenomic recombination may have shifted the

threshold by about 30% [11]. Second, the processivity of

replication (i.e. the constraint that during enzymatic template

replication nucleotides have to be inserted one by one into the

growing copy, and this must happen repeatedly) could have
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worked against erroneous insertions that slowed down replication:

erroneous copies would have thus suffered from a built-in fitness

disadvantage [12]. Although this effect was shown to be

considerably smaller for RNA than DNA, nevertheless it may

also have alleviated the error threshold by about one-third. Third,

as we have shown by the analysis of two existing ribozymes (the

Neurospora VS [13] and the hairpin ribozyme [14]), the fact that

the maintenance of structure is more important for function than

that of sequence significantly shifts the error threshold to longer

sequences (the genotypic and phenotypic error thresholds are

0.033 versus 0.053 and 0.042 versus 0.144 for the two ribozymes,

respectively), in support of the investigations of Takeuchi et al.
[15] and Reidys et al. [16]. They proposed that neutral mutations,

by keeping the same phenotype, should modify the error

threshold:

q�~(s{1=L{l)=(1{l), ð2Þ

where the critical parameter l is the degree of neutrality, i.e. the

fraction of neutral mutants among the mutants one step away from

the master phenotype (the formula is from [15]).

This phenotypic error threshold suggested two important

considerations: (1) known ribozymes by the virtue of their small

sizes could be replicated by replicases whose accuracy would not

have surpassed those of experimentally produced, available

polymerase ribozymes (working with error rates in the range

0.04–0.01 per digit per replication [17,18]), and (2) a replicase

working at an error rate one magnitude lower than the currently

known polymerase ribozymes could have replicated a small

genome of a complete ribo-organims [19,20].

In this paper, we broaden the investigation of the error

threshold into important directions. The questions are:

(1) What structural characteristic of RNAs determines the

position of the phenotypic error threshold? More specifically, can

the degree of neutrality (l) be employed to estimate the error

threshold as proposed in [15,16]. Please note, that the formula in

Eq. 2 was derived by assuming that the effect of mutations are

independent, and thus if there is two mutations that are

independently neutral, then a sequence having both of them

together will still be neutral. This is not necessary true.

Furthermore the degree of neutrality is assumed to be the same

for every sequences of the master type. We know that there places

of different degree of neutrality along neutral paths (series of

sequences having the same phenotype) [21]. Moreover, note that

this formula is obtained at zero concentration of the master

phenotype, which condition cannot occur when there is back

mutation, especially in case of short sequences; it therefore gives an

overestimate of the error threshold. In our analysis we start from

Eigen’s quasispecies model [1] and based on fitness landscapes of

folded RNA we analytically calculate the error threshold, and

correlate it with structural characteristic, thereby checking Eq. 2.

(2) How general is our previous finding [19] that even low-

accuracy replicases could replicate the known ribozymes if only

the former were processive enough (i.e. if they could replicate

adequately long templates irrespective of the accuracy problem)?

Note that the best experimentally verified polymerase ribozyme,

while being 198 nt long, can copy sequences up to 95 nt [17] or

can copy a very specific template up to 206 nt [22]. If Eq. 2 can be

used to estimate the error threshold, then we can make a rough

estimate for known ribozyme sequences from the literature, and

strengthen (or disprove) our previous claim.

We consider the above raised questions in turn. Finally, we look

at the world of putative ribo-organisms in the light of our findings.

Results

The position of the error threshold for an arbitrary fitness

landscape and in the presence of back mutations is a matter of

definition in the quasispecies model of Eigen [1,23,24]. We have

calculated the error threshold for binary (GC) sequences (and the

phenotypic error threshold for associated secondary structures) up

to length 16. Sequences comprising of only GC nucleotides have

similar structural diversity as those composed of all four bases (see

below), and thus our results are representative for them as well.

Note that even at this length, sequence space is vast (there are

216 = 65536 possible sequences) and exhaustive calculations for

longer sequences or sequences with four bases are technically not

feasible at the moment. Since the sequences are relatively short in

this exhaustive analysis, the error threshold is not as sharp as for

longer ones [25], and other types of diagnostics (such as the

avoided crossing of the first and second largest eigenvalues [26]) do

not work either, we define the error threshold as the error rate

where the total concentration of master templates equals that of

the non-master.

We employ a simple fitness landscape in which sequences

belonging to the same secondary structure class (SSC) defined as

the set of sequences of identical length sharing the same secondary

structure, have high fitness (Amaster~10) and all other sequences

have base fitness (Amutant~1). The selective superiority is thus

s~Amaster=Amutant~10. The minimum free energy structures of

the sequences are obtained with the ViennaRNA Package ver. 1.8

[27]. For a given SSC, we set the so called value matrix (cf. Eq. 6)

of the system (cf. Eq. 5), which contains the replication and

degradation rate constants of the sequences, according to the

secondary structure corresponding to the SSC. By computing the

leading eigenvector at a given per digit replication accuracy q, we

get the equilibrium densities of master and mutant sequences. The

value of q at which the densities of master and mutant sequences

equal defines our error threshold. (Note that in case of L = 16, the

value matrix has 232<4.3N109 entries; memory consumption and

computation time for longer sequences is enormous). The error

threshold for major SSCs (SSCs covering at least 0.1% of the

sequence space) is calculated.

We find that the error threshold of sequences whose structures

belong to the same SSC scales inversely with the relative frequency

of the SSC genotypes in sequence space (Fig. 1): more common

secondary structures are more robust. SSCs consisting of more

sequences have a lower critical per digit replication accuracy,

hence a more permissive error threshold. This can be understood

as a higher number of members translate to a larger neutral

network in the sequence space [28]. However, it is not just the

mere number of sequences belonging to the class which makes

them more robust against errors: Fig. 2 clearly shows that sets of

random sequences, even if they have the same size as a SSC, suffer

from a remarkably stricter error threshold.

A way to extend the investigation of robustness towards more

frequent structures is to merge structurally similar SSCs forming a

super-SSC. Super-SSC is defined as structures that only differ in

the number of leading and trailing single stranded nucleotides (a

complete list of super-SSC is found in Table S3).With super-SSCs,

the number of sequences belonging to a class can be increased

while the main feature of the secondary structure (i.e. the lengths

of stem and loop but not their positions in the chain) still remains

the same. The above finding still holds for super-SSCs (see Fig. 1,

red dots), with super-SSCs having a higher error threshold than

any of the error thresholds of their SSCs. Thus if only the major

structural features are selected for, the error threshold is even more

permissive.

Neutral Neighbours and the Error Threshold
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Next, we show that the phenotypic error threshold can be estimated

by calculating the fraction of neutral 1-mutant neighbours. (It was

previously hinted that it might be sufficient to consider the neutral

mutants being just one mutation step away from the master [29]). We

have found that for short sequences, the error threshold scales almost
linearly with the average number of 1-mutant neighbours in the SSC

(Fig. 3), which supports the insight provided by the Takeuchi-Hogeweg

formula (Eq. 2). If we introduce the simple assumption that the

frequency of back mutations is proportional to the number of 1-step

neutral mutants there is a strong correlation between empirical

calculations and the corrected Takeuchi-Hogeweg formula for error

threshold (cf. Eq. 18 in Methods and the Discussion):

q�corr:~

sz1

2s

� �1=L

{
N1HD

L

1{
N1HD

L

{a:N1HD, ð3Þ

where s is the selective superiority of the focal phenotype, N1HD is

the number of neutral 1-Hamming distance neighbours and a is

the proportionality factor of back mutation. This correction

includes the fifty-fifty definition of the error threshold given above

and a heuristic account of the effect of back mutations.

We conclude thus that there is an ordering of robustness for two

(or more) sequences of identical lengths: the one having more

neighbours a single mutation step away with the same phenotype

tends to have a higher error threshold.

In order to apply the formula (Eq. 2) to calculate the error

threshold, we need the length L of the sequence, the frequency l of

one-step neutral mutants among all one-step mutants and the

selective advantage s of the master phenotype. The length is

naturally given, and l can be calculated exhaustively by folding all

possible such mutants and comparing their minimum free energy

structures to the secondary structure of the original sequence (this

neglects mutations that are harmful even though the secondary

structure remains unchanged) as l~N1HD=L (there are L such

mutant sequences for sequences comprising of only two bases,

Figure 1. Error thresholds of secondary structure classes (SSCs). The graphs depict the critical per digit replication accuracies (error
thresholds) as a function of the frequency of sequences belonging to an SSC among all possible structures of L~15 (left) and L~16 (right). Open
circles represent individual SSCs, solid circles represent super-SSCs (SSSC) that merge structures that only differ in the flanking single-stranded
regions. Only SSCs are included that cover at least 0.1% of the total sequence space.
doi:10.1371/journal.pone.0109987.g001

Figure 2. Error threshold for random sequences. The green circles represent SSCs based on secondary structures (as in Fig. 1), blue triangles
represent the error threshold of classes of random sequences of the same size as the corresponding SSC. Results are for L~15 (left) and L~16
(right).
doi:10.1371/journal.pone.0109987.g002

Neutral Neighbours and the Error Threshold
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while there are 3L such sequences if all four bases are considered)

(see Methods for the detailed explanation of the determination of

l). For the selective advantage, we apply our previous estimate of

s~352 obtained for two fitness landscapes sampled more

exhaustively [19].

Now we turn to the case of real ribozymes and aptamers from

the Aptamer Database [30] and from the review of Chen and

coworkers [9], providing 305 sequences altogether [31–113]

(Table S1). This set of sequences represents a considerable

fraction of all known aptamers and ribozymes whose functions

have prebiotic significance. The ribozymes in particular were

selected on the basis of their metabolic importance which suggests

their prebiotic significance. It turns out that all of these ribozymes

and aptamers have lower critical copying fidelity than the 99%

fidelity of the most recent polymerase [17] and most have a critical

copying fidelity lower than the average 96.5% fidelity reported for

the first putative polymerase [18] (Fig. 4). Thus moderately sized,

metabolically important ribozymes can be replicated despite

rather low fidelities (high error rates).

Another appreciation of the calculated error thresholds is

possible as follows. For every length of aptamers or ribozymes in

Table S1, we have folded 1000 randomly chosen RNA sequences

of the given length. Of course, this is a small sample, but with good

chance we mainly obtain structures that are common in phenotype

space [114]. Enzymes are likely to belong to one of these common

structures [115,116]. We have collected l for all of the 1000

sequences which tells us how the degree of neutrality (l) of

aptamers/ribozymes relates to that of the common structure. Real

ribozymes (similarly to SSCs measured above) have rather low

degree of neutrality (l) because these molecules have been

produced by artificial directional selection [117,118]. Such a

decrease in robustness was shown. However, only 48.2% of the

considered 305 real sequences (ribozymes and aptamers) have

lower l than the median for the random sequences. And 9.1% of

the real sequences fall into the upmost decile, i.e. they have a

higher l than 90% of random sequences; and 2.2% of the real

sequences have higher l than 95% of the random sequences. All in

all the distribution of neutralities is not different from the

distribution obtained for the random sequences (see Methods).

This is remarkable considering the fact that these ribozymes had

been subject to intense directional selection for the required

functionality. Although robustness and evolvability are not

necessarily in conflict [119,120], it is legitimate to ask whether

stabilizing selection could increase the robustness of these

populations further, as demonstrated in the theory of neutral

networks [120]. We have thus exerted stabilizing selection on

different molecules that already had a rather high l with

population size 500 through 5000 generations (the only constraint

was to maintain the phenotype). We show the highest degree of

neutrality (l) for structure-preserving variants (Fig. 5). It is

apparent that stabilizing selection can guide robustness to the

top 25% or even 5% of the distribution obtained for random

sequences. Thus, we can expect that ribozymes in primordial ribo-

organisms were even more error-resistant than ribozymes evolved

in vitro, as they were subject to many generations of stabilizing

selection.

Figure 3. Correlation of the error threshold with average number of 1–Hamming distance neighbours. Critical per digit replication
accuracy of SSCs as a function of the average number of 1–Hamming distance neighbours for sequences in the SSC. Red curves show fit of Eq. 3 to
the data points, while the dark gray curve show fit to Eq. 3 with no back-mutations (a~0). Results are for L~15 (left) and L~16 (right). The average
number of 1HD neighbours can be transformed to l by dividing it by the length of the sequence.
doi:10.1371/journal.pone.0109987.g003

Figure 4. Error threshold of real ribozymes and aptamers.
Critical per digit replication accuracy required to replicate real
ribozymes and aptamers, calculates using Eq. (2). Each point represents
a ribozyme or an aptamer (see Table S1). The two dotted lines mark the
zone of replication accuracy of putative RNA-dependent RNA polymer-
ases (0.96 ,q ,0.99).
doi:10.1371/journal.pone.0109987.g004

Neutral Neighbours and the Error Threshold

PLOS ONE | www.plosone.org 4 October 2014 | Volume 9 | Issue 10 | e109987



Discussion

We have found that the number of 1-step neutral mutants, for

short sequences, is an excellent predictor of the error threshold

(Fig. 2). Other characteristics of structure (see for example in

[121]) are not as highly correlated with the error threshold.

Maintenance of RNA secondary structure is a good predictor of

maintenance of enzymatic activity [122], but especially around the

active site the actual nucleotides presents are also important. In

this investigation we have not considered critical sites in our fitness

landscape, which would lower the degree of neutrality of

sequences. Considering critical sites would most probably not

affect the correlation of error threshold with the degree of

neutrality.

The possibility of estimating the error threshold by available

and easily computable characteristic of RNA sequences allows us

to assess the replicability of aptamers and ribozymes. We have

shown that functional phenotypes are mutationally robust above

chance level and that, in effect, most known ribozymes could be

replicated by a replicase working at the accuracy of the currently

best RNA-dependent RNA polymerase ribozyme [17] (Fig. 4).

Stabilizing selection, after the acquisition of function, can guide

these molecular replicators to regions of sequence space which

further increase robustness (Fig. 5).

It is important to discuss how our approach relates to the

approach of Takeuchi et al. [15]. Their formula Eq. (2) was

derived from heuristic considerations. We have explicitly numer-

ically computed the error threshold for lengths up to 16 using the

criterion of master phenoype to all others being 1:1 in equilibrium

concentrations. Note that since we calculate explicitly, back

mutations naturally are accounted for and are thus are not

neglected. One of the results of the present paper is that the ‘‘top-

down’’ formula of Takeuchi et al. is in qualitative agreement with

our bottom-up quantitative results. The relation between their

critical parameter and ours is l~N1HD=L. Using our 50%

criterion for the error threshold we obtain the modified form of the

Takeuchi-Hogeweg error threshold (Eq. (2)):

q�~

sz1

2s

� �1=L

{l

1{l
, ð4Þ

which does not agree quantitatively with our data (Fig. 3). This

is why we have introduced the correction factor a accounting for

back mutations in Eq. (3) under the assumption that back

mutations from multiple deleterious mutants can be ignored.

Note that the formula in Eq. (3) is non-linear but gives good fit for

short sequences. With longer sequences the linear relationship

between the error threshold and N1HD slowly deteriorates, and as

shown in Fig. 3, there is increasing scatter around the nonlinear

curve as well.

It is good news that individually all known ribozymes (genes)

could be replicated in a realistic RNA world, but we must return to

the important question as to how small genomes could have come

into being. If we adopt the view that unlinked, naked genes

preceded protocells and chromosomes [123] we should be happy

with the current finding. There are mechanisms of dynamical

coexistence of naked, unlinked replicators spreading on surfaces

[124,125]. In such a case, each sequence is competing with its own

mutated copies (mutants can occasionally evolve into something

new and useful [126]). We concur that such surface-bound

dynamics was a stepping stone to ‘‘serious’’ forms of compart-

mentation, such as protocells [127]. Protocells can harbour a fair

number of different, competing genes [128], but only if the error

rate is low enough. It is plausible that error rates did evolve during

the pre-cellular era of surface dynamics: more efficient (more

accurate and faster) model replicases have been shown to spread

on surfaces by kin selection [129]. We confirm the previous result

in [19] that the transition from surface to protocell dynamics

required only an order of magnitude increase in replication

accuracy!

Methods

Derivation and analytical computation of the error
threshold

The computation of the error threshold is based on the original

quasispecies model of Eigen [1,23,24]:

d

dt
xk(t)~

Xn

i~0

Wkixi(t){xk(t)E(t), ð5Þ

where xk(t) is density of sequence k at time t; the coefficients Wki

are elements of a value matrix W which contains replication and

degradation rate constants (Aiand Di, respectively) and mutation

frequencies (Qki) (the value matrix is filled according to the fitness

landscape employed (see Results)):

Wki~AiQki{Dkdki, ð6Þ

and �EE(t)is the mean excess production:

�EE(t)~
Xn

k~0

Ak{Dkð Þxk(t), ð7Þ

Figure 5. Stabilizing selection increases robustness of se-
quences. The percentage of the random sequences having lower
fraction of 1-step neutral mutants among all 1-step mutants (l) than the
original sequence (green bars) and the best sequence after 5000
generations of stabilizing selection (orange bars). Sequences are
ordered according to their length. Exact l are given in Table S1.
doi:10.1371/journal.pone.0109987.g005

Neutral Neighbours and the Error Threshold
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which can be removed by a non-linear transformation [23,130–

132] resulting an essentially linear equation. The model assumes

that the only source of sequences is the correct or erroneous copies

of present sequences; the substrates for replication are always

present in sufficient quantity and excess molecules are washed out

by a flux that keeps the total concentration constant.

As independent point mutations are assumed, mutation

probability depends only on the Hamming distance of the initial

(i) and final (k) binary sequences of length L:

Qki~qL{d(i;k)(1{q)d(i;k)~qLed(i;k), ð8Þ

where d(i; k) stands for the Hamming distance between the two

sequences, q is the (constant) per digit replication accuracy,

e~(1{q)q{1.

The dynamics of the system is governed by the leading

eigenvalue and the corresponding eigenvector of W. We assume

that there is no degradation (D~0), which does not affect the

eigenvectors. Let Wik~Aiq
Led(i;k){D define the value matrix of

the system and thus the modified equation without degradation is

W
0

ik~Aiq
Led(i;k). wi and li are eigenvectors and eigenvalues of the

original matrix:

Wwi~liwi: ð9Þ

Consequently:

W0wi~(W{D1)wi~(li{D)wi, ð10Þ

thus W0 has the same eigenvectors and this type of transforma-

tion does not affect the rank of the eigenvalues.

The analytical solution of the system is the following, see e.g.

[24,132]:

xi(t)~
Xn

i~1

wki exp (lit)
Xn

j~1

vijxj(0)

" #
exp {

ðt

0

E(t)dt

� �
: ð11Þ

We are interested in the t?? limit only. In this case:

xk~ lim
t??

xk(t)~
wk1P

j wj1
, ð12Þ

where �xxk is the equilibrium mutant distribution, the ‘‘quasis-

pecies’’ which consists of mutants distributed around the most

efficient variant, called the master sequence.

Equation (3) can be solved either by integrating this ordinary

differential equation numerically e.g. via Runge–Kutta method or

computing the leading eigenvalue l1 and the corresponding right

eigenvector (w). We use the latter, simpler method because of its

smoother behavior.

To compute the leading eigenvalue and the corresponding right

eigenvector we used the Krylov-Schur method implemented in the

SLEPc library [133] using the PETSc matrix routines [134].

We have computed the error threshold of a system in the

following way: (1) The value matrix of Eq. (5) was filled according

to the fitness landscape (high fitness A~10, base fitness A~1),

using D~0. (2) The leading eigenvector w was computed at two

per-digit replication accuracy values: q~1 and q~0:8 (in our

systems, the error threshold always lies in this interval). From w it

is easy to compute the total density of the master and mutant

sequences. (3) The value of q at which the densities of the master

and mutant sequences are the same is the error threshold (by our

definition), thus we applied a secant algorithm to find the

intersection point of the densities as a function of q (at a relative

precision of 1026). (4) The resulting q� is the error threshold. The

computation of an error threshold (with an arbitrary fitness

landscape) using this algorithm – with a slight modification of the

SLEPc code to reduce memory consumption – took about

12 hours and needed 4 GB of RAM on a 2.6 GHz Intel Xeon

CPU.

Analytical formulation of the phenotypic error threshold
Using the phenotypic dynamics described by Takeuchi et al.

[15], the starting point is the following pair of differential

equations:

dx

dt
~sQxzsL(1{Q)x{Dx{Wx

dy

dt
~yzs(1{L)(1{Q)x{Dy{Wy,

ð13Þ

where x and y denote the focal phenotype and mutants,

respectively; Q is the replication accuracy of x; L is the fraction of

neutral mutants of x; D is the constant degradation rate;

W~(s{D)xz(1{D)y is the excess production; and s is the

replication rate of the focal phenotype, while the mutants’

replication rates are normalized to 1. We keep the concentration

constant, i.e. xzy~1. Computing the steady state solution for y

yields:

y�~
s

s{1
(1{Qe), ð14Þ

where

Qe~QzL(1{Q) ð15Þ

is the effective replication accuracy. Assuming that the number

of neutral substitutions follows the binomial distribution (q denotes

the correct per-digit replication probability):

Qe~ qz(1{q)l½ �L: ð16Þ

Our criterion for error threshold implies y* = 1/2. Combining

these results, the critical per-digit replication accuracy (our error

threshold) is

q�~

sz1

2s

� �1=L

{l

1{l
: ð17Þ

Neutral Neighbours and the Error Threshold
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This calculation ignores back mutations. With the simple

assumption that the frequency of back mutations is proportional

(by a factor of a) to the number of 1-step mutants (N1HD), we get

the following corrected critical per-digit replication accuracy:

q�corr:~

sz1

2s

� �1=L

{
N1HD

L

1{
N1HD

L

{a:N1HD: ð18Þ

Structural diversity of GC and GCAU sequences
Due to technical limitations, we have calculated the error

threshold using sequences composed only of G and C, i.e. only two

letters from the canonical four letter alphabet. Our question was:

Would structural diversity, measured as the number of distinct

structures and their relative frequencies, differ substantially for two

and four letters?

We have enumerated all sequences of length 14 using only GC

nucleotides and using all four (GCAU). There are 16,384 unique

GC sequences folding into 107 distinct structures (Table S2),

whereas there are 268,435,456 unique GCAU sequences folding

into 230 distinct structures (Table S2). In the case of the four-letter

sequences, the most common structure (72.2%) is the one without

any internal base-pair, in the binary sequences this structure has a

much lower frequency (4.3%) due to the higher probability of

having possible base-pairings in the sequence. If we leave out this

structure, the relative frequencies of the remaining structures

correlate in the two-base and four-base sequences. Correlation

between frequencies is relatively high (0.79) (Fig. 6). A detailed

investigation of RNA sequences of various alphabets can be found

in [135].

Calculation of the fraction of neutral 1-step mutants
For each sequence, the minimum free-energy structures of all 1-

step mutants (differing only in one position from the original) are

obtained. The number of 1-step mutants having the same

structure as the original sequence is divided by the number of

all possible 1-step mutants (3L) is the fraction of neutral one-

mutants, l.

Populations consisting of N~500 ribozymes were allowed to

evolve for 5000N replications. At each replication each nucleotide

of a sequence has a 2=L chance to mutate. This error rate is below

the error threshold for all considered sequences. Sequences are

chosen randomly for replication, with probability proportional to

their structural similarity compared to the wild-type sequence.

Thus we apply stabilizing selection on the structure of the wild-

type sequence. After the 5000N th replication, l is calculated for

each sequence folding to the original structure. The highest value

among these is recorded.

Statistical analysis
In order to statistically assess how the number of 1HD mutants

of real ribozymes and aptamers before and after stabilizing

selection relate to the distribution of number of 1HD mutants of

random sequences, we calculated the percentile rank of data points

in the random ensemble. Rank here means the average percentage

ranking of the number of 1HD mutants. In case of multiple

matches, average the percentage rankings of all matching scores.

Percentiles are then divided into 10 bins of equal size between 0%

and 100%. If the bins are equally populated then the distribution

of the number of 1HD mutants for the real data is not different

from that obtained for random sequences. Similarity of the

distribution is assesses by x2 test. Multiple sequences come from

the same study in our dataset, and thus the independency of the

data point does not hold. Thus, we only use the sequences that are

used in our analysis for further evolution, as we have only picked

one from each study of similar length sequences. The distribution

of the number of 1 HD mutants is not different from the

distribution for random sequences (P~0:48). (Please note that for

the whole set it would be P~0:54, so the same.) After stabilizing

selection is applied the distribution is markedly different from the

one obtained for random sequences (Pv10{66).

Supporting Information

Table S1 Error threshold of real ribozymes and apta-
mers. RNA sequences of ribozymes and aptamers from the

literature is listed alongside their length, number of 1-neighbour

neutral mutants, frequency of nearest-neighbour (one-step) neutral

mutants (l), the estimated error threshold and the citation for the

sequence. Stabilizing selection was applied to selected sequences,

and the highest number of 1-neighbour neutral mutants is

reported here.

(XLSX)

Table S2 Structural diversity of RNA sequences of
length 14 with two letter (GC) and four letter (GCAU)
alphabet. Secondary structures in bracket notation are reported

with the number of unique sequences folding to this structure.

Frequencies of structures among all possible structures of length 14

are reported. The unstructured structure has the highest frequency

among the sequences built from four letters. We also report the

frequencies of structures if we omit these sequences from the total

count.

(XLSX)

Table S3 Secondary structure classes and Super sec-
ondary structure classes of GC sequences of length 16.
Secondary structures in bracket notation are reported with the

number of unique sequences folding to this structure. The first

column show the super secondary structure class (SSSC) without

leading and trailing single stranded nucleotides. The second

Figure 6. Correlation of structure frequencies of GC (two-letter)
and GCAU (four-letter) sequences of length 14.
doi:10.1371/journal.pone.0109987.g006
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column gives the total number of unique sequences folding into

the SSSC. Then in column 3 the individual structures are reported

as well as their total unique sequence count (column 4).

(XLSX)
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