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Abstract 

Neutron diffraction experiment with isotopically substituted substances is a 

powerful approach claiming to yield unambiguous information about the local atomic 

structure in disordered materials. This information is expressed in the partial structure 

factors, and extracting them from a series of measurements requires solution of a set 

of linear equations that is affected by experimental errors. In this article, we suggest a 

method for the determination of the optimal set of H/D compositions with or without 

taking into account the experimental error. For the case of water, our investigations 

show that the selection of the isotope concentrations and the distribution of 

measurement time among the various samples have critical role if one wants to utilize 

the limited neutron beam time efficiently. 

It is well known that measurements of pure H2O introduce fairly large errors in the 

partial structure factors due to its very strong incoherent scattering. On water and 

methanol as examples, we investigated the propagation of random errors to the partial 

structure factors using partial pair-correlation functions from molecular dynamics 
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simulation. It is shown on the example of water that it is not worthwhile measuring 

pure H2O. 



3 

 

1. Introduction 

 

In a disordered material containing n distinguishable elements, the n×(n+1)/2 

independent structure factors can be determined in principle from the same number of 

scattering experiments through the inversion of a set of linear equations. Sets of 

independent scattering intensities can be obtained by isotopic substitution in the case 

of neutron scattering. The general principles of the isotopic substitution technique are 

rather simple. Samples with different isotopic compositions (isotopes with markedly 

different coherent scattering lengths) yield different diffraction patterns while the 

underlying structural features remain unchanged. The neutron diffraction isotopic 

substitution (NDIS) method has been described in several articles [1]; it has been 

applied successfully for many years to a wide range of liquids, e.g., water [2], ethanol 

[3], aqueous glycine solution [4], formic acid [5], ethanediol [6], aqueous liquid 

mixtures [7], aqueous solutions [8], and polymer electrolytes [9], as well as to glassy 

materials. However, some important unresolved issues remain. In particular, the 

sensitivity of the final results (partial structure or correlation functions) [10] to the 

details of the sample preparation and handling as well as to the data treatment 

(normalization, correction term) remains an open question. 

The technique has been applied successfully for many years as a method of 

obtaining the partial structure factors of systems of type RXn, where R denotes a 

central part of this system without substitution and Xn denotes the isotope to be 

substituted. For example, in the case of water or methanol, the oxygen atom or the 

CD3O group can be denoted as R and X means hydrogen or deuterium. 

Matrix formalism can be used to describe the relation between experimental total 

and partial structure factors or radial distribution functions 

F=W×Y      (1) 

where a column vector yj = (RR,RXn,XnXn)
T
 of matrix Y contains the partial structure 

factors (psf) or partial pair-correlation functions (ppcf) RR, RXn, and XnXn to be 

obtained at the j-th s or r value (inverse or direct space variables), W is the neutron 

scattering weighting matrix. The column vectors of matrix F are fj = (f1,f2,f3)
T
 for the 

independent experimental total structure functions at the j-th s or r variable. For the 

sake of simplicity we use the notation fj for the j-th column vector of F and we use fi , 

if the i-th element of one of the vectors is concerned. f1, f2, and f3 mean for example 
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results on samples with different isotopic composition, e.g., for water D2O, H2O, and 

0.64H2O+0.36H2O, where the latter is called “null mixture”. 

The rows of the matrix W, WRR,i, WHH,i, WRH,i are the corresponding elements of 

the neutron scattering weight matrix, and they can be given in the following form. 

  

  

2
RR,i RR

2

HH,i H,i H H,i D

RH,i RR H,i H H,i D

W b

W x b 1x b

W 2b x b 1x b



   

    

    (2) 

 where xH,i is the mole fraction of H, and bRR, bH and bD are the scattering lengths of 

the R group, hydrogen (-0.376 fm) and deuterium (0.664 fm), respectively. 

Obviously, the elements of the W matrix only depend on the mole fraction of 

hydrogen. 

There are several methods to solve equation 1. Throughout this work, we used 

the singular value decomposition (SVD) method to solve the sets of linear equations. 

This is a standard method to characterize how the experimental and systematic errors 

propagate into the results. According to this method, the inverse of W is  

 
1 (1/ ) T

idiag  W V U      (3) 

 

where V and U are orthogonal matrices and diag(1/σi) is a diagonal matrix formed 

from the σi singular values of the W matrix. In this case, if the right side of the Eq. 1 

has a certain error, then 


i i

ij

j





uf
y       (4) 

where the ui and vi are the orthonormal column vectors of U and V. This equation 

shows that yj will be most sensitive to the error associated with the smallest singular 

value. The components of vj are the projections to the RR, RXn and XnXn directions, 

respectively. 

In a previous paper [11], we studied how an inequality known from linear 

algebra can be used for the determination of the inherent uncertainties of the psf-s or 

ppcf-s determined from neutron diffraction isotopic substitution experiments. This 

inequality establishes a relationship between the relative uncertainties of the partial 

pair-correlation functions or partial structure factors, the norm of the neutron 
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scattering weighting matrix and the relative error of the experiments, as given by Eq. 

4 of [11]: 

j

j

j

j

f

f
WW

y

y 
1  (5) 

The quantity W×W
–1
, denoted as  hereafter, is known as the condition number, 

and it is a measure of the error amplification due to the employed inversion. A set of 

linear equations is termed ‘‘well conditioned’’ when the conditional number is small 

[10c,12]. The theoretical smallest value is =1. If the solution is very sensitive to the 

values of the coefficients, the problem is ‘‘ill conditioned.’’ It is expected in the cases, 

if the matrix is nearly singular, i.e., some of its rows are almost linearly dependent. 

The second term of the right hand side of Eq. 5, || δfj ||/|| fj ||, is related to the relative 

uncertainties in the experiment. During our work, there is an underlying assumption 

that all the errors are confined to the experimental vector fj. Unfortunately, this 

assumption may be unrealistic; errors in scattering lengths and mole fractions may 

incorporate into the inequality an additional term, which would be proportional to 

||δW ||/|| W ||, where δW is the uncertainty of the W matrix.  

  We used in our test cases the Euclidean vector and matrix norms [12] 
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In the case of the Euclidean matrix norm, || ||2, the condition number can be 

expressed as 

min

max




    (8) 

where max and min are the largest and smallest singular values of the weighting 

matrix. We chose the SVD algorithm to solve the sets of linear equations, because it 

provides the singular values to calculate condition number, as well. 

The relative experimental error (sampling errors, absolutisation error, 

modelling errors, and instrumental errors, coming mainly from the H atom due to its 

large inelastic scattering power) is defined as 
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 (9) 

where bi is the neutron scattering length of atom i; Iscat denotes the scattering power 

and Itot,j is the total scattering (coherent, incoherent) intensity of the j-th experiment. 

This error mainly depends on the inelasticity of the scattering centre. The scattering 

lengths for the investigated systems are given in Table 1. 

 

Table 1. The neutron scattering lengths of the investigated systems [13] 

 water methanol ethanol ethane-diol 

bR (10
-14

 m) 0.583 3.248 5.246 3.828 

bH (10
-14

 m) -0.748 -0.374 -0.374 -0.748 

bD (10
-14

 m) 1.334 0.667 0.667 1.334 

 

With the above mentioned equation, it should be possible to minimize the 

upper limit of the solution error, i.e., the resulting psf-s or ppcf-s, by determining the 

set of xH,I mole fractions for which the conditional number of the neutron scattering 

weighting matrix has a minimal value. 

In our previous study [11] we applied our numerical estimations of the 

optimum set of xH for several systems investigated earlier by isotope substitution 

experiments. An additional constraint was used there, namely, that the condition 

number should be minimal when one of the measurements is made on a completely 

deuterated solution. We showed also that if the presented method is applied to an 

over-determined set of equations (i.e., containing more equations than unknowns), the 

condition number is significantly reduced in all cases. 

 

2. Uncertainty analyses in NDIS experiments using optimization  

 

In the first part of the present work, we applied a full optimization process 

(using the simplex algorithm) without any constraint for any concentration. We 

investigated the extreme values of the condition number (first part of the right side in 



7 

 

Eq. 5) as a function of compositions and we obtained the optimum set of hydrogen 

concentrations for which the condition numbers are minima for both the uniquely 

determined and the over-determined equations.  

The variation of the condition number with respect to the increasing number of 

experiments is shown in Fig. 1 in the case of water. The corresponding compositions 

are collected in Table 2. We apply a notation [m,n] where the first number in brackets 

denotes the number of partial functions and the second number is the number of 

experiments (i.e., the number of unknowns to be calculated and the number of 

equations). 
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Fig. 1. Euclidean condition number  as a function of the number n of independent 

experiments on water (3 partial functions and n different compositions denoted by 

[3,n])  

 

The condition number can be lowered significantly (from 4.2 to 1.6) by 

increasing the number of experiments (Figure 1). By considering the optimum 

compositions in Table 2, it is apparent that there are three basically different 

compositions at each number of experiments; e.g., in case of 19 experiments these are 

~0.16, ~0.62 and ~1.0. The optimum H/D compositions in the over-determined cases 

(more than three water experiments) are found within these three distinct narrow 

ranges of xH mole fraction, close to the three optimum compositions in the basic 

three-experiment NDIS case. 
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The multiple occurrences of these compositions (e.g., for the 19 experiment 

case 1, 16, and 2 times) can be interpreted mathematically that the weights for the 

three individual compositions should be proportional to their frequency in Table 2. If 

the rows of linear equations are multiplied by a constant value, the solution does not 

change, if all values are determined with zero uncertainty. On contrary, if the data 

contain uncertainty, the values having smaller error obtain larger weights and these 

ones have the largest effect on the results. The simplest way to reduce the error of a 

measurement (increase its weight) is the increase of the measurement time. Provided 

that the duration of each experiment is the same in Table 2, this idea can be 

interpreted as measuring at 3 points of compositions and adjusting the relative 

measurement times according to the frequency of the compositions in the over-

determined cases. We can thus introduce 3 more variables as weights (tH1, tH2, tH3) to 

determine the actual time needed for each measurement. In this way, the total number 

of variables is 6 (three concentrations and three measurement times), where the lowest 

condition number is searched. For methanol, ethanol and ethanediol, the results are 

shown in Table 3. 

 

Table 2. Optimum isotope compositions for three partial functions and n 

measurements, [3,n]. Each number in the columns is the mole fraction of the 

hydrogen (xH) in one experiment, and the whole columns describe the optimum 

compositions for the series of experiments. 

 
 [3,3] [3,6] [3,10] [3,19] 

x1 0.3308 0.2776 0.2628 0.1612 

x2 0.6407 0.6403 0.6426 0.6293 

x3 0.9506 0.6403 0.6426 0.6314 

x4  0.6403 0.6426 0.6316 

x5  0.6403 0.6426 0.6318 

x6  1.000 0.6426 0.6319 

x7   0.6427 0.6320 

x8   0.6427 0.6320 

x9   0.6427 0.6321 

x10   1.000 0.6322 

x11    0.6322 

x12    0.6323 

x13    0.6323 

x14    0.6324 

x15    0.6326 

x16    0.6328 

x17    0.6331 

x18    1.000 

x19    1.000 
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Table 3. Optimum isotope compositions and relative measurement times for water, 

methanol, ethanol and ethanediol with and without  taking into account the 

experimental errors according to Eq. 1 (comp.: H-isotopic composition, tr: relative 

time,  is the conditional number), vRR,vRXn,vXnXn are the components of the vi vector 

corresponding to the smallest singular value.) 

 

  water methanol ethanol ethane-diol 

 comp. tr comp. tr comp. tr comp. tr 

xH,1 without 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 

xH,2 without 0.62 6.66 0.51 1.44 0.50 1.42 0.52 1.50 

xH,3 without 1.00 2.22 1.00 1.05 1.00 1.02 1.00 1.12 

vRR 

vRXn 

vXnXn 

-0.7000 

0.0000 

0.70000 

0.015 

0.045 

-0.998 

0.005 

0.028 

-0.999 

0.043 

0.077 

-0.996 

 4.20  83.07  215.99  29.25  

xH,1 with 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 

xH,2 with 0.43 3.68 0.47 1.36 0.48 1.37 0.46 1.38 

xH,3 with 0.63 5.17 1.00 1.00 1.00 1.00 1.00 1.12 

 

The experimental error was taken into account in the last three rows of Table 3 

through the relative uncertainties of the experiments in Eq. 5 and they were calculated 

via Eq. 9. Taking into account or neglecting the experimental error does not have 

large influence on the optimum isotope compositions for methanol, ethanol and 

ethanediol. They are always around 0.0, 0.5 and 1.0. This set of compositions was 

usually adopted in earlier measurements as rule of thumb [5-8]. The xh=0.5 samples 

should always be given the longest measurement time. It is also clear from this table 

that the conditional numbers are at least one order of magnitude larger in the case of 

methanol, ethanol and ethanediol than for water. We can conclude using the 

eigenvectors of the smallest singular values that the absolute error in the XnXn (HH) 

partials is significantly larger than in the RR and RXn cases and are in opposite 

direction. 

In contrast, for water, the optimum sets of H contents are different when the 

experimental error is taken into account and when it is omitted. The different 

behaviour can be explained by considering the ratio of the total scattering to the 

intermolecular coherent scattering, to which the relative experimental error as defined 

by Eqn. 9 is proportional. This ratio exhibits a singularity around xH = 0.92 (bscat=0.0) 
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for water while it varies weakly and monotonously for methanol, see Fig. 2. The 

behaviour of ethanol and ethanediol is similar to that of methanol, it is thus not shown 

here. 

 

Fig 2. The ratio of total intensity and scattering power as a function of H-isotope mole 

fraction for water and methanol 

 

In the case of water, without taking care on the experimental error the 

condition number is the smallest when using samples of pure D2O (xH = 0.0), and „0” 

(xH = ~0.63) mixture, where the scattering length of hydrogen is 0.0, and H2O 

(xH = 1.0), as it was done in earlier experiments [5]. Our results indicate the optimal 

partition of the measurement time corresponding to their weight during the solution of 

the linear equations. The longest measurement is required for the „0” mixture, 

namely, 6.6 times more than for D2O. The optimal compositions and experimental 

times are different, if the experimental error is taken into account. Here, the pure H2O 

system cannot be found within the compositions. It seems to be against the canonical 

practice of isotopic substitution on water in neutron diffraction experiments. The || 

δW ||/|| W || term for all investigated cases is on the order of 10
-4

 for optimum 

concentration if we assume that the error in the mole fraction is about 0.01 percent. 

 



11 

 

3. Uncertainty analyses in NDIS experiments using simulation data 

 

In order to test the reliability of Eq. 5 as a pragmatic limit of error we 

investigated the propagation of a given random error of the total structure factor to the 

partial structure factors using the NDIS conditions on simulation data according to 

Eq. 1. This approach provides an estimation of the sensitivity of the NDIS technique 

to small random perturbations. We note that systematic errors coming from the data 

analysis (background subtraction, absorption and multiple scattering corrections and 

normalization) are not taken into account here. It is not easy to incorporate these 

systematic errors in a study, because they strongly depend on the experimental 

architecture and details. Such a study should be customized for a given type of 

measurement, architecture and system, and can be performed only by experts familiar 

to the experimental place. 

The experimental total structure factor can be interpreted as a weighted sum of 

the partial structure factors. The partial and total structure factors were evaluated in 

molecular simulations from the Fourier transforms of the computed partial pair-

correlation functions and the total radial distribution functions (trdf-s). The 

simulations were performed using the SPC/E [10] and the OPLS all-atom potentials 

[11] for water and methanol at ambient conditions. The total neutron weighted 

structure factors of water and methanol for the optimum compositions are shown in 

Figures 3a-b. The inter- and intramolecular contributions are shown separately for 

comparison. The trdf-s calculated from these structure functions are available in the 

supplementary material; we neglect an analysis of the effects of the Fourier 

transformation and of the resulting truncation ripples. 
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Fig. 3 Intra- and intermolecular contributions to the total structure factors a ) for water 

at the optimized isotopic compositions: (xH = 0.0, 0.62, 1.0) b) for methanol at the 

optimized isotopic compositions: (xH = 0.0, 0.50, 1.0). 
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Model calculations were carried out to study the effect of random errors (ε) of 

the total structure factor to the partial ones. We modified the calculated total structure 

factors (f) as follows: 

 

f’ = f × (1 ± ε),     (10) 

 

where ε is the magnitude of the error. From this point, we limit our analysis to the 

intermolecular part of the total structure factors. We applied this approximation due to 

the overlap of intermolecular and intramolecular part of the total radial distribution 

functions at short distances, which may result a source of error. For the calculations 

obtained from the total structure factor, see the supplementary material. 

There are large differences between the total radial distribution functions 

obtained for water, while the differences are significantly smaller for methanol. This 

is a consequence of replacing only one hydrogen in methanol and of the fact that the 

scattering length of the R group is significantly higher for methanol than for water. 

The calculated partial structure factors of water (O-O, O-H and H-H) from the 

optimised set of D2O/H2O mixtures at xH = 0.0, 0.62, 1.0 with random error applied to 

the total structure factors are shown in Fig. 4. The magnitude of the random error for 

D2O was chosen to be ε=0.01, while for (D/H)2O (xH = 0.62) and for H2O, it was 

ε=0.1 due to the significantly larger incoherent scattering contribution of H for the 

latter two cases. 
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Figure 4. The OO, OH and HH partial structure factors of water determined from the 

optimal set of (xH = 0.0, 0.62 and 1.0) isotopic mixtures without random errors and 

with them (0.01 for D2O, 0.1 for (D/H)2O (xH = 0.62) and for H2O). 

 

The calculations show that all partial structure factors are acceptable even with 

the highest value of error used in this study. The largest uncertainty can be observed 

in the low s range. However, when isotope compositions are selected from a narrow 

range (low contrast), e.g., xH = 0.00, xH = 0.05, xH = 0.1, then the partial structure 

factors become unreliable, as it is demonstrated in Fig. 5. 
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Fig. 5 The OO, OH and HH partial structure factors of water, determined from the  

xH = 0.0, 0.05 and 0.1 isotopic mixtures with random errors of magnitude 0.01 for 

each sample. 

 

If these were real experimental results, we would deem them unreliable and 

hardly usable for data analysis. This observation is in agreement with our previous 

conclusion that the relative error of the partials is significantly larger for this narrow 

range of isotope compositions than that for the optimum composition set. This is the 

direct consequence of the small differences between the total radial distribution 

functions for the narrow range, as shown in Fig. 6. 

Our calculations were also extended to methanol, three partial structure 

factors were determined, namely RR, RH and HH, where R represents the CD3O 

group of the molecule. In Fig. 7, they are shown with the same magnitude of errors as 

in the water case in Fig. 4. 
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Fig. 6. The total radial distribution function of water with the investigated isotopic 

compositions (xH = 0.0, 0.05, 0.1) 

 

 
Fig. 7 The RR, RH and HH partial structure factors of methanol, determined from the 

optimal set of (xH = 0.0, 0.5 and 1.0) isotopic mixtures with random errors. The 

magnitude of the random error was 0.01 for CD3OD, and 0.1 for CD3O(D/H)  

(xH = 0.5) and CD3OH. 

 

For RR and RH, the curves are hardly affected by the assumed errors except in 

the low s range. However, the H-H partial structure factor is very sensitive to the 
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magnitude of the error. An increase of statistical error results in a quick deterioration 

of the computed structural parameters. 

 

4. Conclusion 

In order to obtain the best possible results from neutron scattering 

experiments, it is advisable to study the propagation of errors beforehand and select 

conditions where the data processing can be carried out with the introduction of the 

smallest possible error. The condition numbers are suitable parameters to determine 

how we can perform NDIS experiments with respect to minimizing the statistical 

error during the solution of sets of linear equations. With the help of the proposed 

analysis design of the experiments can be performed to achieve optimum beam time 

division and optimum isotope ratios in order to minimize the statistical error. It has 

been shown on the example of water that it is not worthwhile measuring pure H2O 

due to its very strong incoherent scattering, if we take into account both the isotopic 

compositions and the experimental error. This is not a canonical statement due to the 

fact that one of the samples has been H2O in mainly all NDIS experiments [2] 

performed up to now. 

For water, the solution of the set of linear equations has low sensitivity to the 

statistical error, if optimal compositions are used. For more complex cases, such as 

methanol, the determination of the H-H partial structure factor is always ill-defined 

even though the other structural parameters (RR and RH partials) can be determined 

with reasonable accuracy and experimental effort. 

 

Acknowledgments 

This work was supported by the Hungarian OTKA grant K83889, K108721.  

 

References 

1. a. H. E.Fischer, A. C. Barnes, and P. S. Salmon, Rep. Prog. Phys. 69, 233 (2006), 

b. A. K. Soper and P. A. Egelstaff, Mol. Phys. 42, 399 (1981), c. J. Z. Turner, A. 

K. Soper, and J. L. Finney, Mol. Phys. 70, 679 (1990). 

2. a. A. K. Soper, J. Phys.: Condens. Matter 19, 335206 (2007) , b. A. K. Soper, 

Chem. Phys. 258, 121 (2000),  c. L. Pusztai, Phys. Rev. B 60, 11851 (1999), d. A. 

K. Soper and M. G. Phillips, Chem. Phys. 107, 47 (1986). 

3. K. S. Sidhu, J. M. Goodfellow, and J. Z. Turner, J. Chem. Phys. 110, 7943 (1999). 



18 

 

4. Y. Kameda, H. Ebata, T. Usuki, O. Uemura, M. Misawa, Bull. Chem. Soc. Jpn. 67, 

3159 (1994). 

5. I. Bakó, G. Schubert, T. Megyes , G. Pálinkas, G. I. Swan, J. Dore, and M. C. 

Bellisent-Funel, Chem. Phys. 306, 241 (2004). 

6. I. Bakó, T. Grósz, G. Pálinkás, and M. C.  Bellisent-Funel, J. Chem, Phys. 118, 

3215 (2003). 

7. a. P. E. Mason, G. W. Neilson, C. E. Dempsey, D. L. Price, M.L. Saboungi, and J. 

W. Brady, J. Phys. Chem. B 114, 5412 (2010), b.  I. Bakó, G. Pálinkás, J. C.Dore, 

and H. Fisher, Chem. Phys. Letter 303, 315 (1999) c. S. Dixit, J. Crain , W. C. K. 

Poon, J. L. Finney, and A. K. Soper, Nature 416, 829  (2002). 

8. G. W. Neilson and J. E. Enderby J. Phys. Chem. 100, 1317 (1996). 

9. a. G. M. Mao, M. L. Saboungi, D. L. Price, M. B. Armand, and W.S. Howells 

Phys. Rev. Lett. 84, 5536 (2000), b. G. M. Mao, M. L Saboungi, D. L. Price, Y. S. 

Badyal, and H. E. Fischer. Europhys. Lett. 54, 347 (2001). 

10. a. K. F. Ludwig , W. K. Warburton, L. Wilson, A. I. Bienenstock, J. Chem. Phys. 

87, 604 (1987), b. R. G. Munro, Phys. Rev. B 25, 5037 (1982), c. A. Zeidler, P. S. 

Salmon, R. D. A. Martin, T. I Usuki, P. E. Mason, G. J. Cuello, S. Kohara, and H. 

E. Fischer, Phys. Rev. B 82, 104208 (2010), d. J. C. de Lima, D. Raoux, Y. 

Charriere, and M. Maurer, J. Phys.: Condens. Matter 20, 115103 (2008), e. J. P. 

Simon, O. Lyon, O. De Fontaine, J. Appl. Cryst. 18, 230 (1985), f. G. Goerigk, K. 

Huber, N. Mattern, and D. L. Williamson, Eur. Phys. J. Special Topics 208, 259 

(2012), g. R. L. McGreevy and L. Pusztai, J. Neutron Research. 3, 125 (1996). 

11 I. Bakó, T. Grósz, S. Bálint, G. Pálinkás, Z. Naturforsch, 68a ,85,(2013). 

12 a. J. J. Ducroz and N. J. Higham, IMA Journal of Numerical Analysis 12, 1, 

(1992), b. L. El Ghaoui, Linear Algebra and its Applications 171, 343 (2002), c. 

W. W. Hager, SIAM J.Sci.Stat.Comput. 31, 5 (1984), d. G. Strang, “Linear 

Algebra and Its Applications”, Academic Press, New York 1980. 

13 V. F. Sears, Neutron News 3, 26, (1992). 

14 H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 

(1987). 

15 W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 

11225 (1996). 



19 

 

TABLE OF CONTENT GRAPH 

 

 

 


