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In the first part of the paper (in hungarian) we gave a brief account of our experiments
on CDC — 3300. In this part we give the mathematical description of a diffusion approxima
tion of the operating systems.

First we try to indicate the intuitive reasons of the diffusion approximation. It is well
known that the Brownina — motion process w(t) (0 ~ t < °°) may be obtained as the limit
of the following process (see e.g. Feller [6]). Let N(t) denote a Poisson process, with para
meter X, i.e. the distribution of the time interval between two events be exponential and the

random variables are independent.

After an event the particle moves up ör down with the value a, with probability 1/2. Let

‚a (t) denote the displacement of a Brownian particle at time t, then
NW~

Wxa(t) = n~o n~

I. INTRODUCTION

where

I
a, P(i7~ = a) = 1/2

nfl =

~-a, P(n —a)= 1/2

The following diagram indicates a possible realization:
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r. denotes the i-Ui jump time of the particle, where

P(r. < t) = I — M

With standard methods it can be proved that

• (t)’s
logE e~’~” = I!2s2a2t-f aEUsl3a2t .

where a2 = a2X, ei~ 1. Assuming that X ~‚ a — 0 and a2’ X = a2 = const we obtain

iw (t)s
logEe X,a

L This means (heuristically) that the limit process w(t) = Hm w~’ ~(t) is a Brownian motion.
The exact interpretation and proofs of such type of theorems are found in Gihman—Skoro

hod’s [10] (*~ ch. 9) or Borovkov’s [4] books (*24). In the latter the “heavy traffic” condi

tions of queuing theory are investigated.

H 1. The CPU utilization problem. .

First let us assume that there are one CPU and two DTU-s and there are 2 jobs in the

‚: :~ computer. For the first job, the CPU and DTU service times t~11 (resp. ~jj) have the dis
‘ tribution .

P(n~. <t)=F(~1’< t)= 1 —e1 .

‘ and they are independent. For the second job, the distributions are

. —x‚ P(n21 < t) = P(E21 < t) = 1 — e 2 ‚

It seems that one of the most interesting utilization problems is connected with the absolute

priority rule. This means that if job 1 has absolute priority then, upon an I/O interrupt, the
CPU is assigned to job 1 if it wants to take it* and~ the second job is waiting or it is in the
DTU. As the system has two DTU-s, there is no queue before them. If, however, job 2 had

absolute priority then it would no wait for the CPU. The first priority rule will be denoted

by v(1,2) and the seconed by u(2,l).

In the sequel we assume that the mean service time of job 1 is much less than of job

‘ 2. This requirement is usually satisfied in practice and, for this case, we prove the following

. ‚ I ~‚ statement. . .

L
[ * The so cafled pre-emptive prtonty for CPU
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which is asymptotically normally distributed with parameters.
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Proof. The random variable N(t) (resp. N (t)) has Poisson distribution with parameter

Á1 3!
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Theorem 1. We assume that l/X1 « l/X2 « 1,
the Cpu utilization time at absolute time t as

(1.1) 7, +
‘it

N(t’)

2

then the priority rule v( 1,2) gives

. ~U)
t” t .21 ?71(Kt,

1.2)

( 1.3)

(1.4)

‚.

Further, the priority rule v(2,1) gives the CPU utilization time

N (t) N( t”)
~.v(2,1) = 2 9~2i + 2 ~11~

where

N(t)
= t— 2 7721< t,

which asymptotically has also Gaussian distribution, wich parameters

(1.5)

(1.6)

x~ (t)

First we prove that the logarithm of the characteristic function of the

N(t)

=2
izi

has the from

17~ ~

(1.7) log Ee ~ (:) = ist 4 _ ~ +

This follows from the relations
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N(1) n
is E,-~1~ tsZ

= Ee k=1 = EE~e k=1 ‘11k INU) = n] =

xl
is?]11

=eT ~Ee —11

N(t)

x2(t) = .2 272!
i~ 1

122 = X2 = 2X2

x1 X1

-Tt YtJ

“1 (~l ~

iSkElTllk . eTt~Thj
Ee ii!

isx’ (()

=2
n =0

=2(Ee ) e
n0 ii!

and (using the moments of the exponential distribution and the expected value)

E(e’S’2h1 1) = isEi~1 — ~ + @lsj3E~11 ~ =

= is-’-- — ~- s2— + ei~i~ ~‚X, 2
1 1

~~_t;~ 1± ®Is~t

where

: .‚~ L

• L’ .

H:

‚‚

where IGI’ 1.

In the same way

isX2(.t)

(1.8) logEe

In the second step, there is a great difference between the priority rules v (1,2)
as the sums

N(t’) N(t)

2 ~2i and 2
i=1 i=1

behave in different ways. See Fig.2.

In case z~< 1,2) the variables ~ remain further exponentially

~‘2~ but on the CPU time axis the DTU periods ~2j run quicker and are exponentially
distributed with parameter

(the reason is that the compute time of the first job overlaps with the DTU time of the second

job).

and v (2,1)

distributed with parameter
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With a similar argument as used to prove (7), one can also prove that for process
N(t”)

y1 (t) = E ~2i (note that t” is also a random variable)

isy (t)
(1.9) logEe 1 = ist—

2

i 2a.
121 2

__2st2p2±X2 x2 ~ ~

.1 1221 3t3
=zst~—rst~x-+G~ ~--~

2 2

(7) and (9) prove (2) and (3). In case of v(2,1), i~ is further exponentially distributed
with parameter X1. The DTU periods r11 remain the same during a DTU period of job 2
(here are only end effects), and during the CPU period of the second job both the CPU and
DTU periods of job 1 are staying (waiting). Only end effects may be at the beginning of the
CPU period. This means that with a similar argument as in proof (7) we obtain for process

N(tn) .

y2(t) = .2 x~11 (note again r’ is a random variable)

(1.10) log Ee’~’2fl = ist~’- . ~-—~+ eisi~4—~-

Relations (8) and (10) prove (5) and (6). The Theorem is proved.

Heuristically Theorem 1 involves that process ~.~(1,2) and ~~2,1) converge (weakly)
to Brownian motion processes and have different ‚ocal parameters.

REMARK 1. Let the CPU and DTU periods for job 1 be ekponentially distributed with
parameters X1 and •and let they be for the sebond job X2, p2. With a similar argument

as in Theorem 1 we may prove that, if ~‘ p2 priority p (2,1) leads to the CPU utiliza
tion time ~v (1,2) ‚ which has an appaoximate normal distribution with parameters

(I 11) ~ ~ ~‘~1 ±± ~ — . p2
. t p1+X1X1 j p~+X1 p1+X2’

(1.12) D2~~1’2~ p1±X1X~ t[l_~1 ~1X1 3M2±X2 X2

where .

. -~ 1i1+X1 .

1~2b12 .

When priority rule v(2,1) is in force we havesecond
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(1.13) M2X2 1 ( /22 ‚~

EEv(2~t) = t — ± tj i —

g2+)’2 X2 „

and

(1 14) D2t~2”~ ~ 2~ ~± ~ _____ 2M~ 1
‘ ~ /2~±X~ 2/21+X1 )‘~

H It is remarkable that, with ~ the priority rule ~-‘(1,2) is always better then v(2,1),
as (with the notation)

(z 1,2),

PilL

PM ±X
(1.15) p ± (1 1 2 ± x2 >~2 ± (1 —p2)p1 = Pi ±P2 P1P2

2

: ‚ REMARK 2. Theorem 1 suggests that there should be an analogue of it for more general
service distributions Suppose, for example, that the independent, not necessarily indentically

„ ~ distributed random variables and ~‘ Ic = 1,2 1 = 1,2 have finite second moments

then it is possible to deduce the statement of Theorem 1 assummg only that
~C EE2’ (for all is)

In case = EE~= b2 there are examples, with non exponental distributions,

when priority rule v(2,1) is better then v(1,2) and < fulfils (see Tomko [21])

“ REMARK 3. It is possible to deduce the Brownian motion approx~ation for more than

2 DTU-s Here we shall not give the results

: ~ Theorem I above is a useful aid for giving the time interval where the Brownian motion
approximation holds In order to use the result for exponential service times, we need to as
sume t~ X2.

The major result of Theorem 1 is in the relation between the priority rules The theorem
estimates “how much” time the CPU must spend in service for the different priority rules

‘ Using these estimates for instants < < < < ‚ where
— t,_ c Á2 (with c ) 1) it is possible to construct a stochastic control model with

: Gaussian random variables, as it was proposed in our paper [3].

A further approximation is the following. The discrate time process ~ . . .

may be handled as a continuqus process, if n is large enough In this case the statistical

mvestigation of the CPU utilization process ~ means the following Let denote the CPU

[ utilization time in absolute time t, then it satisfies the equation

(1.16) d~ mdt + cdw(t)

where m and a depend on the pnority rule v(z1, ‘ik) To estimate these parameters,

one has to know the number of interrupts for every job and their own CPU utilization time,
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which depends on the priority rule. To guarantee CPU service, for every job, the computer
has a cyclic service with quantum lenght (with round—robin service rule). The round—robin
rule ensures the short turn around of short jobs and, in our description, the possibility to meas
ure the CPU utilization time for every job.

2. An approximation of the cyclic queue model

By using the cyclic queue model for one CPU and one DTU (see Figi. in part I.), Gayer
and Shedler [8], [9] and independently Kobayashi [13], [14] examined the distribution of the

number of programs NJ.t) present at the CPU at time t, including those queued in addition
to the program currently being serviced. Throughout this section it will be assumed that we

have one CPU and one DTU.

Let AU) represent the number of arrivals at the CPU in (O,t) and D(t) the number
of CPU departures in (0,:). We assume that N~(0) = O and

N~(t) = AU) — D(t) .

The AU) and DU) processes are approximately normally distributed with means
E(A(t)) = t/E(~1), E(DU)) = t/ECrz1) and variances D2(AU)) = tD2(E1)/[E(~1)J3

D2(.D(t)) = tD2(771)/[E(771)]3. Here ~‚ means the service time in DTU, i~. the same in the
CPU. We assume that EE. > Er~. and that the ~‚-s are identically distributed independent
random variables and the same is supposed for 77’, I = 1,2 The AU) and DU)

processes are not independent: for the speciál case 1 (“heavy traffic” condition) it

can be proved by the method of Borkovov [4] (*24) that A~U) is approximately a Brownian—
motion process and satisfies the equation

(2.1) dN(’t)= gdt+ a2dwU)

where wU) is the standard Brownian—motion process with drift

(2.2) u = 1/E(~) — 1/E(77) .

and infinitesimal variance .

a2= D2(~)/[E(~)]3 ± D2(~)/[E(77)]3

The «‚U) process (neglecting the boundary effects at O and K which cause the dependence

of AU) and DU) too) has to be in the interval [O,K}, 0 < NCU) < K, i.e. O and K
are reflecting barriers. This means

(2.3) P(NU) < 0) = O and P(NU) < K) = 1.

If the number K of programs is unlimited, the behaviour of a cyclic queue model is well
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sigle—server system, in which there is no restriction upon the

Gaver—Shedler [9]), we use the well

known formulas of sequential hypothesis testing for the Browpian motion process. Let w(t)
denote the standard Brownian motion process with
and two barriers A K x < B. Let

(2.6) ?~(t)= x ±j-(aw(t)— it), r> O a> O
a

be a process, and let ?~ ‚B be the first time point (Markov—point) where XX (t) goes out from
[A,B] i.e.

(23) TA,B = mnf{( ~ O

Then (see Shiryayev [19] p. 182)

(2.8) P{xx(rx )=B’=É_? .A,B ‚

From this formula we obtain, if A

(2.9)

and further, if x = 0,

(2.10)

Using the Brownian—motion approximation for and M we obtain that, for n —~

approximated with an ordinary

number of waiting customers (see Feller [5], 194—198)

(14) Mn = max(O,S1,S2,

where

D2(ii~ — ~ =

xi = i~. — — ~ = — 8 < 0 ‚

Now, and this is new in our treatment (not used by

w(0) = x, Ew(t) = 0, Ew2(t) = 1.t,

(using theorem 2.ch.IX. ~ 3 in Gihman—SkorohOd’s book [10])
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í (ő,+iö I öl BV7
=Plmax~ v~r~j>60~űj~

SB~P~supw >t—±—
( ( t a0 a0

Ó B
=

T Q0 Q0• 25

(15 ( ~ -‚ ~ B

[Q~r a) 2j .
O O

Further the proof is the same as in the cited paper (‘7]. The number Q of customers in the
queue is the number that arrive during the waitting time of an arbitrary customer. We investi
gate the stationary distributions of both W,~ and Q . If 0(x) is the distribution of E
and represents Stieltjes convolution, then -

(2.11) P{Q~.kIJv=x}Gk4(~ .

and

(2.12) P{q ~ k} = S G~x) e~~cdx = C[á(c)jk

where Ő(c) is the Laplace—Stielties transform of G, evaluated at c. Relation (12) includes

the following theorem: .

Theorem 2. The number Q of jobs in the CPU queue has asymptot/cal exponential
distribution;

(2i3) P{Q ~ x}

where

- .

This means that, under heavy traffic conditions (p = E(E)/E(n) — 1), the stationary distri
bution of the number of costumers in the system is exponential. This result is quite the same
as in Gaver—Shedler’s [8] diffusion approximation where they obtained

(2.14) . P{Q>x} =

where g,a are given by (2).
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When a — 0 then with the Taylor series expasion, we can easily prove that (12) and

(1 4) give the same approximation. In this case — 5 p and a~ -~

The reader may find numerical results in Gayer and Shedler’s cited papers.

In our paper ~ we have used diffusion type processes (first and second order autoregres

sive processes) for the approximation of the number of l/O interrupst over a long time period

of the CPU. The above model shows the legality of such heuristic approximations.

The same first order, Gaussian, autoregressive model with discrete time parameter may

be used for the working set size w(t,T) introduced by Denning 5~. This means that w(t,T)

is normally distributed and it satisfies the stochastic difference equation

w(t ± 1,T) = p w(t,T) + e(,t ± 1)

where cU) is an independent, normal random sequence. T is the window and it is fixed. In

the sequence rt r±i r’ the number of different page numbers (where r, means the
number of page at time i) is denoted by w(t,T). The working set principle for memory
management means a dynamical page treatment in the main memory. Here we do not elaborate

on this problem. .
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B CTaTLHX ~aéTca odiiwe OHWCaHM6 OFIBiTa cTancTw~ecKwx

MaMepeH~ Ha uaw~u’e GPO 3300 B IIIHCTIITYTC BNrn4cJIMTeJILH0~ Tex—
HZICVI M~ BAH. floIcaSbIBaeTCH, qTo npMŐJ13~CHMe pa—
ÖQTN onepauMoHH0~ CMCTO}&I C noM0R~B1O 1~W~flM0HHHX npoii~ecco3
aBJIHCTCH eCT6CTB8HHUM B ~JIHHH0M nepPIo7~e padOTLI MaU1I~HH. TaKoc
npI~I&nI)~eHMe MCFIOJIL3OBWIOCL pain~uie B cTanHx Gaver—Shedler

iIi Kobayashi ~pin Mo~e~IeÍ~ TCOpHkÍ o’lepe~4M
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