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I. INTRODUCTION

In the first part of the paper (in hungarian) we gave a brief account of our experiments
on CDC — 3300. In this part we give the mathematical description of a diffusion approxima-
tion of the operating systems.

First we try to indicate the intuitive reasons of the diffusion approximation. It is well
known that the Brownina — motion prdcess w(f) (0 < t < =) may be obtained as the limit
of the following process (see e.g. Feller [6]). Let N(#) denote a Poisson process, with para-
meter A, i.e. the distribution of the time interval between two events be exponential and the
random variables are independent.

After an event the particle moves up or down with the value a, with probability 1/2. Let
w, , (#) denote the displacement of a Brownian particle at time ¢, then
N

w?\,a(t) = Z 77,,

n =0,

where
a, P(n,=a)=1/2

—a, P(n,=—a)= 1/2

The following diagram indicates a possible realization:
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T; denotes the i-th jump time of the particle, where

P(r,—7, _, <D= 1 —e™ M,

With standard methods it can be proved that
(r)"s

1ogEew)"a =1/2s20%t+ a@ P ot

where 02 = g’} 1©1< 1. Assuming that A~ <, a > 0 and @*+ A= ¢® = const we obtain

iwk,a(r)‘s . 1

log Fe —*iszozr

This means (heuristically) that the limit process w() = lim "‘J;\,a(t) is a Brownian motion.
The exact interpretation and proofs of such type of theorems are found in Gihman—Skoro-
hod’s [10] (§3 ch. 9) or Borovkov’s [4] books (§24). In the latter the “heavy traffic” condi-
tions of queuing theory are investigated.

1. The CPU utilization problem.

First let us assume that there are one CPU and two DTU-s and there are 2 jobs in the

‘ computer, For the first job, the CPU and DTU service times Ny (resp. ’g'”) have the dis--

tribution

]\li‘

P, <H=PE,<D=1-¢
and they are independent. For the second job, the distributions are

ALt

Py, < =P, <n=1-¢ 7.
1t seems that one of the most interesting utilization problems is connected with the absolute
priority rule, This means that if job 1 has absolute priority then, upon an 1/0 interrupt, the
CPU is assigned to job 1 if it wants to take it* and the second job is waiting or it is in the
DTU. As the system has two DTU-s, there is no queue before them. If, however, job 2 had
absolute priority then it would no wait for the CPU. The first priority rule will be denoted

by v(1,2) and the seconed by u(2,1).

In the sequel we assume that the mean service time of job 1 is much less than of job
2. This requirement is usually satisfied in practice and, for this case, we prove the following

statement.

* The so-called pre-emptive prierity for CPU
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Theorem 1, We assume that 1/?\1 << 1/?\2 <<'1, then the priority rule v(1,2) gives
the CPU utilization time §, al absolute time t as

N(t) Nty
R T

where
. N(t)
o=t 2oy <t
ain F=0
 which is asymptotically normally distributed with parameters.
w1,y L, L 2 5
(1.2) E ~ ot 5 3=zt
13 prer(1) 1 2 1
| (1.3) iy 5|
i- 1 2
Further, the priority rule #(2,1) gives the CPU utilization time
a1 M N
2,1) _
(1.4) D= g+ 2 g,
where
fgr).
= f— < f,
7Sy M
which asymptotically has also Gaussian distribution, wich parameters
o 1, 101, 3
(1.5) E; St 5 2t 7t
(16 ' prpen gL L1
' t A, 2 }\'2
Proof. The 'fandom variable N(f) (resp. N (#)) has Poisson distribution with parameter
€ A A . ' .
i 5t (resp. 5 t). First we prove that the logarithm of the characteristic function of the

stochastic process

(1.2) N(t)
= ¥ ' —
(O == i=21 M
3 : ‘ has the from
B «_-:57 . . A :
LG PR S 5 § 3,0 3!
(1.7 log Ee T=istr =58 rk1+ Olsl” ¢ 3 ?\f .

This follows from the relations




— 37 —

Ng) %
isx, () fs & nyp is L Mg
g L pe BV = EEfe F1TIN(G = n) =
)
o is, & n -2 2
= e * —
7=0 n!
Ay [2\1 ]n
— ==t
= s n 2 2
~7 11 .
= 2 (Fe y e =
n=0 nl
A
1 isnn
=e¢? [Ee -1

and (using the moments of the exponential distribution and the expected value)

ism 1

Be ™M= 1)= isBn, — 5 s*Endy + O’ Einy =

) 1 5 3 3!
= s~ — = §—+ 0lsI°
A 2 2 3’
i ?\1 i
where 101 < 1.
In the same way
isxz(t) B 5 1 3 1
(1.8) log Ee =it = — =5t — + OIS\t =
2 2 ]\2 )\g
where
N(1)
x,(0) = 21’ LY
I=

In the second step, there is a great difference between the priority rules » (1,2) and v (2,1)

as the sums
N N™
n,; and M
231 i=1

behave in different ways. See Fig.2.
In case »(1,2) the variables 7,; remain further exponentially distributed with parameter

A,, buton the CPU time axis the DTU periods £,; run quicker and are exponentially
distributed with parameter

(the reason is that the compute time of the first job overlaps with the DTU time of the second
job). : '
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With a similar argument as used to prove (7), one can also prove that for process

_N(f”) -
y, (O = > n,; (note that t” is also a random variable)

i=

isy ; (£) H
(1.9)  log Ee =is,1§._2__
p2+7\2
o
1 o1 Hy 1 3¢ 3
- gty —— 5— + Bls° = =
2 2#24—)\2 )\.2 2A§
P SN N T 3t 3
= ist 5 3S1‘37\2+®¥S| 25

2

(7) and (9) prove (2) and (3). In case of »(2,1), n, is further exponentially distributed
with parameter )\1 . The DTU periods {,; remain the same during a DTU period of job 2
(here are only end effects), and during the CPU period of the second job both the CPU and
DTU periods of job 1 are staying {waiting). Only end effects may be at the beginning of the
CPU period. This means that with a similar argument as in broof (7) we obtain for process

N(tn)
yo() =2 n,; (note again % is a random variable)
51
syt 1 1 1 511 3t 3
(1.10)  log Ee =ity 558 tirl+®lsl -—2-7\—%

Relations (8) and (10) prove (5) and (6). The Theorem is proved.

Heuristically Theorem 1 involves that process §";(1'2) and yg(z’” converge (weakly)
to Brownian motion processes and have different local parameters.

REMARK 1. Let the CPU and DTU periods for job 1 be ekxponentially distributed with
parameters 7\1 and p, and let they be for the second job 7\2, H,. With a similar argument
as in Theorem 1 we may prove that, if u; » u, priority p (2.1 leads to the CPU utiliza-

tion time 'g;’ (.2 , which has an appaoximate normal distribution with parameters
1™ 1 My Hy
(1.11) E{”(l'z)mt——+t[l— ] . ,
t pl-[—}\l)\l _ ul'*'?\l ‘u1+)\2
Ll iy 2, g
(1.12) DD ~ ¢ +— + r[l— -
! Mt A A IR IR TS W W
where
~ T
My = H g

When priority rule b(2,1) is in force we have
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(1]3) EEV(Z,.[)=1¢“2—?\2_1_+1 ]_ ”2 ] Jul
f Hy ¥ A A dy + A Juy A
and 5
2u; 1 Ky Hy 1
(1.14) D2§"(2’1)=r———+t[1— ] C—
! A+, A By + A, 20, + AN

It is remarkable that, with p, < g the priority rule »(1,2) is always better then 1¥(2,1),
as (with the notation)
H;

pfzhl.-l-ui (i= 1:2),
plii
Py + A

(1.15)  p, +(1—p)) 2> p, + (1—p,)p, =p, +p, — PP,
, .

Diky A

REMARK 2. Theorem 1 suggests that there should be an analopue of it for more general
service distributions. Suppose, for example, that the independent, not necessarily indentically

distributed random variables =n,, and ., k= 1,2 i=1,2,... have finite second moments
then it is possible to deduce the statement of Theorem 1 assuming only that
Et, < Ef,; (for all is).

In case EE, = by ~ Et,= b, there are examples, with non exponental distributions,
when priority rule »(2,1) is better then »(1,2) and b, < b, fulfils (see Tomké [21]).

REMARK 3. It is possible to deduce the Brownian motion approximation for more than
2 DTU-s. Here we shall not give the results.

Theorem 1 above is a useful aid for giving the time interval where the Brownian motion 9
approximation holds. In order to use the result for exponential service times, we need to as-
sume ¢ 2> A,.

- The major result of Theorem 1 is in the relation between the priority rules, The theorem
estimates ’how much” time the CPU must spend in service for the different priority rules.
Using these estimates for instants ¢, < ¢, <<t < ., where ) -

t, —f_ ~c¢ A, (with e > 1) it is possible to construct a stochastic control model with ‘
Gaussian random variables, as it was proposed in our paper [3]. 1

A further approximation is the following. The discrate time process [PETE YT PRI O
may be handled as a contir_lu(__;us process, if n is large enough. In this case the statistical

investigation of the CPU utilization process {, means the following. Let § , denote the CPU

utilization time in absolute time ¢, then it satisfies the equation ,

(1.16) 4§, = mdt + odw(?)

where m and ¢ depend on the priority rule v(i,; - . . 0 ). To estimate these parameters,
one has to know the number of interrupts for every job and their own CPU utilization time, -
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which depends on the priority rule. To guarantee CPU service, for every job, the computer

has a cyclic service with quantum lenght (with round—robin service rule). The round—robin
rule ensures the short turn around of short jobs and, in our description, the possibility to meas-
ure the CPU utilization time for every job.

2. An approximation of the cyclic queue model

By using the cyclic queue model for one CPU and one DTU (see Fig.1. in part 1), Gaver
and Shedler [8], {9] and independently Kobayashi {13], [14] examined the distribution of the .
number of programs N (r) present at the CPU at time ¢, including those queued in addition
to the program currently being serviced. Throughout this section it will be assumed that we
have one CPU and one DTU.

Let A(f) represent the number of arrivals at the CPU in {0,y and D(#) the number
of CPU departures in (0,f). We assume that N.(0)=0 and

g N(#) = 4() — D)
s 3 The A(f) and D(f) processes are approximately normally distributed with means
E(A(D) = t/E(EI) E(D(n) = t/E(n ) and variances D?(A(r)) = rDz(gl)/[E(g] )}3
D(D(p)) = tD2(n1)/ [£(n,)] )1°. Here £, means the service time in DTU, n; the same in the
CPU. We assume that EE > En; and that the ¢,-s are identically distributed independent
random variables and the same is supposed for n, i=1,2,.... The A(¢#) and D(»)
processes are not mdependent for the special case E(E)/E(n) 1 (“heavy traffic” condition) it
can be proved by the method of Borkovov [4] (§24) that N.(f) is approximately a Brownian—
motion process and satisfies the equation
1 (2.1)  aN(®) = pdt + > do(t)
where w(f) is the standard Brownian—motion process with drift
m _
(2.2) p= 1E®) — I/E('n).
and infinitesimal variance
o*= DX®NE®T + DX WIE@T
The N(#) process (neglecting the boundary effects at 0 and X which cause the dependence
] of A(¢f) and D(#) too) has to be in the interval [0,K], O0< N() <K, ie. 0 and X

are reflecting barriers. This means

(2.3) PN(1)<0)=0 and  P(N(H) < K)

i
—

[f the number K of programs is unlimited, the behaviour of a cyclic queue model is well
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approximated with an ordinary sigle—server system, in which there is no restriction upon the
number of waiting customers (see Feller [5], 194—198) '

—_
E\J
Z
=
I

max(0,5,,5,, - - - Sy)

n

S =X 4. tX, X=n-fk Bm-g=-8<0,
DX, — ) = o} » "

Now, and this is new in our treatment (not used by Gaver—Shedler [91), we use the well
known formulas of sequential hypothesis testing for the Browpian motion process. Let w(?)
denote the standard Brownian motion process with w(0) = x, E(jj(t) = Q, Ew(H) = 1.4,
and two barriers 4 < x < B. Let

(26) N=x+ —’;{aw(r) - —2”—r), r>0, >0
a

be a process, and let 7{1 B be the first time point (Markov—point) where 2 (#) goes out from

[4.B] ie.
@n %y =infli>0:¥MEAD}

Then (see Shiryayev [19] p. 182)

g
& —

(28)  P{N(r% 5)=B}=
FI:OII‘I this formula we obtain, if 4 — .
(.9)  P{N¥@*_p)=B)= &8
and further, if x = 0,

(2.10)

P{?\('r_u,Ba = B} =¢ 5,

Using the Brownian—motion approximafion for §, and M, we obtain that, for n — o
(using theorem 2.ch.IX.§3 in Gihman—S8korohod’s book [10]).
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P{W, >y7 B} = P(M, > y7B) =

ﬁoo ‘[n_ 60 Ooﬁ

=P{ max [
1<isn

H 00 00
%P{cu —T£=£}=
T Oy Oq- 25
. -2,
i femit) o)
UO T 0'0 05 .

Further the proof is the same as in the cited paper [7]. The number @ of customers in the
queue is the number that arrive during the waitting time of an arbitrary customer. We investi-
gate the stationary distributions of both W 'and & . If G(x) is the distribution of &
and'represents Stieltjes convolution, then

210 Ple>tw=1x) =¥
and

(212)  P{Q>k) = g GE ) gmex oy o CIG(e)}F

where é(c) is the Laplace—Stieltjes transform of G, evaluated at c. Relation (12) includes
the following theorem:

Theorem 2. The number Q of jobs in the CPU queue has asympftotical exponential
distribution;
(2.13) P{Q>= x} =~ Ce*lnG(c) |

where

This means that, under heavy traffic condijtions (p = EB/Em) ~ 1}, the stationary distri-
bution of the number of costumers in the system is exponential. This result is quite the same
as in Gaver—Shedler’s [8] diffusion approximation, where they obtained

2
A X
214 - P{Qex}=Ce

where .0 are given by (2).
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When o ~ 0 then with the Taylor series expasion, we can easily prove that (12) and

(14) give the same approximation. In this case — & ~ ¢ and o% ~ 0%,

The reader may find numerical results in Gaver and Shedler’s cited papers.

In our paper [3] we have used diffusion type processes (first and second order autoregres-
sive processes) for the approximation of the number of 1/0 interrupst over a long time period
of the CPU. The above model shows the legality of such heuristic approximations.

The same first order, Gaussian, autoregressive model with discrete time parameter may
be used for the working set size w(£,7) introduced by Denning [5]. This means that w(¢,T)
is normally distributed and it satisfies the stochastic difference equation

wit+ 1,7 =p w(t,T) + et + D

where e(t) is an independent, normal random sequence. T is the window and it is fixed. In

the sequence r, _ _yy,---57 the number of different page numbers (where r, means the

L 4
number of page at time i) is denoted by w(£,T). The working set principle for memory
management means a dynamical page treatment in the main memory. Here we do not elaborate

on this problem.

References

[1] M. Araté, On computing technolgy for mathematical statistics and stochastic processes
and its application for evaluating computer system performance, Proceedings of the Com-

puter Scienceé Conference, Székesfehérvar, Hungary 231—-237 (1973).

[2] M. Arat6, Diffusion approximation for multiprogrammed computer systems. Computer
and Math. with Applications (in print)

‘[3] A.A. Borovkov, Stochastic processes in queuing theory (in Russian), Nauka, Moskwa (1972).

[4] M. Aratd, E. Knuth, P. Téke, On Stochastic Control of a Multiprogrammed Computer
based on a Probabilistic Model, IFAC Symposium on Stochastic Control Budapest,
305311 (1974).

[5] P.Denning, On modeling program behavior, AFIPS, Conf.Proc.Vol. 40, 937-944, (1972).

[6] W. Feller, An Introduction to probability theory and its applications, VolII, Wiley,
New York (1966).

{7] W. Freiberger, Statistical computer performence evaluation, Academic Press (1972).

[S]D.P.‘Gaver and G.S.Shedler, Processor Utilization in Multiprogramming systems via Diffusion
Approximations, Oper. Research, 21 No. 2, 569576 (1973)

o e e e s g




—~39 _

[9] D,P. Gaver and G.S. Shedler, Approximate Models for Processor Utilization in Multiprog-
rammed Computer Systems, SIAM J. Comp.2, No.3, 183—-192 (1973).

[10} J.1. Githman and A.V, Skorohod, Infroduction to the theory of stochastic processes (in
Russian), Nauka, Moskwa (1965).

[11] R.Haji, G.F. Newell, A relation between stationary queue and waiting time distributions,
J.Appl. Probability 8, 617—620 (1971).

[12] L. Kleinrock Resuorce allocation in computer systems and computer—communication
networks IFIP Congress 74, Inf. Processing 1, 11—-18.

[13] H. Kobayashy, Applications of the diffusion approximation to queuing networks I.
Equilibrium Oueue Distributions, Journal ACM 21, No. 2, 316-328 (1974).

{14] H.Kobayashi, Applications of the diffusion approximation to queueng networks II. Nonequi-
; librium distributions and applications to computer modeling, Journ. ACM, 21,
) 459469 (1974).

[15] E.Knuth, Multiprogramozésa szamitogép rendszerek, (iri Hungarian), Mérés és Automatika

(1974) 5, 208—211.

t : )
© f16] E.Knuth, A structured computer system model (in print, Computers and Mathematics

with applications, this volume).

[17] M.Reiser and H.Kobayashi, The Effects of Service Time Distributions on System Perfor-
mance, Information Processing IFIP, 230—234 (1974).

18] R.J. Rodriguez and J.O. Dupuy The evalution of a time—sharing page demand system
AFIPS, Vol 40,, 759-765. '
{19] A.N. Shiryayev, Statistical sequential analysis (in Russian} Nauka, Moskwa (1969},

- e [20] P.T8ke, Some remarks concerning the simulation of main ‘parts of the master operating
- system, and about the queuing models of the I/0 system, Proceedings of the Computer
Science Conference Székesfehérvar, Hungary, 121—123 (1973).

(21] J.Tomko, Processor utilization study (in print, Computer and Mathematics with applicati-

ons, this volume). .
972). ‘ e -
[22] B.T6th and P. Téke, A scratch—pool kihasznaltsdganak mérése

2).

fusion

3
3

i
-1
-
B




_ 40 —
PeswMe

0O zu@pOY3UOHEOM NpUOIMKEHUI 016 PALNOHHEX
cucremM I-1II

MaTean ApaTo

B craThax Jaérca ollle¢ ONUCAHUS OIETA CTATUCTHUECKNX
naMeperuii Ha uaunHge CDC 3300 B Mreturyre BuuucnureneHofl Tex—
auey ¥ ABroMaTnsauuu BAH. [lOKa3HBAGTCH, yro NpAGIMEEHAE Da-
GOTH OHEpPANHUoHHON CuCTEMH ¢ moMomsl Zu(PysMOHHHX NPOLECCOB
ABAACTCH ECTECTBEHHHM B AMAHHOM nepuoze paCOTH MaMMHH. Taxoe
NpUOAMEEHME UCTOIB30BAN0CE pagbile B CTATHAX Gaver-Shedler
1 Kobayashi naa Mozenefl Teopu#t 0UGDPEAH.
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