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Chapter 1.

The elementary Gaussian processes

l.S Definition and properties of elementary Gaussian

processes.

A Ic dimensional stochastic process ~(t) is called ele

mentary Gaussian process if it is Gaussian, stationary and

Markov. In continuous time case we suppose that it is a dif

fusion process /see Part I. Ch.1/.

In the following we shall examine first the connection

between the elementary Gaussian processes and the stochastic

difference resp • stochastic differential equations. In the

sequel we shall suppose that the process is not degenerated

and it is linearly regular /see I. Oh. 2/. By the phrase

~ (t) is not degenerated we mean that its components are

pointwise linearly independent.

In the discrete time case the connection between the

elementary Gaussian processes and the stochastic difference

equations is characterized by the following two theorems • Let

Ejt) be normally and identically distributed independent k-.

dimensional, random variables, with

EE(n)=01 E(E(n)) a*(h)) B~)

where Rank Ba ~ 1. Let Q denote a Ic ~cjc matrix with eigenvalu

es ‚ wherej?’i cC 1, i=l,2,...k. Then the equation
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(1.1) B(Q) =

has nonsingular positive definite solution B (0) /see

Gantmaher [i~ / • Let (O be normally distributed k—dimensi.

one]. random vector variable with the parameters .

E ~(O)=O, E(~O ~O)) = ~(O)

and independent of jn) .

Under these conditions there holds the following.

Theorem 1.1 Let ~(n) be defined recursively by the

equation

(1.2) ~(n) = G ~(n-1) ÷

where the eigenvalues of Q are in the inside the unit circle,

E(n) is independent of C(~(O)3.~, ~(n-i)), ~(O)

is normally distributed with E ~(O) = Q and covariance

B (0) satisfying (1.1) . Then ~(n) is an elementary

Gaussian process with E~(n~Q and covariance matrix .

(1.5) B(L) = E(~n tL) rn)) = ~ B(Q).

Proof’ The normality follows directly from the linearity of

(1.2) by induction.

By repeated application of (1.2)
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n) =

from where (using the independence of the variables E(n)

and (1.1))

E(~n, = ~[~B~+.. . QlB*fl~]

(.

end by induction ( in L)

E(~n), fl~-~) =

which proves the stationarity. The Markov property will be

proved after lemma 1.

Lemma 1.

If is a Gaussian process /n=Q,1,...,/ with the

properties

E(~n ~n)~n4) and

fl-1 it fl—iE(( ~n))E(~jfl)~ ~ ~v) )~% ~v)=
where C(n) and B(n~ are deterministic matrix functions,

then mjn) is a Markov—process. . .

The proof is trivial, as a Gaussian distribution is

determined by the first two moments. ‚ .

The proof of the Markov property. As

where ~(n) is independent of 7~ 4~)
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E~n)\C~) =A~(n-{)
and

- E(~n~fl( ~(n) - E( ~~ )t ~i ~

so the conditons of lemma 1. are satisfied.

In the precedings we examined the one side process /a> 0/

but it is interesting to consider a stationary process from

—00• .

Remark 1. Let ~(n) be a sequence of independent identically

distributed /in the sequel i.i.d./ k—dimensional Gaussian

random vectors with nondegenerated covariance matrix ~& and

Q a It x It matrix, such that its ei€pnvalues are all either

inside the unit circle or outside the unit circle. Then the

equation ‘

(l.l~ ~(n) =~(n-~ ~&(n) (n.=O~hk...)

has a unique stationary solution with finite second moments.

This solution is a regular Gaussian Markov process. .

For the proof we need the following.

Lemma 2. The series
00

(1.4) ~ Q a(n)
h~o .

is convergent if and only if I K { ‚ where ~ are the

eigenvalues of th@ matrix Q.
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Proof. The convergence of (1.4) holds if and only if the

series ~0P~BG*fl of the variance matrices is con

vergent, /Kolmogorov’s 3 series theorem is true also for

vector variables!. The above series of variance matrices is

convergent if and. only if i~I~ ‘L for every i.

Proof of remark 1. By lemma 2. the series

!(n)=Y~ E(fl_i):/~(fl) ~G’anti)/ is convergent
if the eigenvalues of Q are inside /outside! the unit circle.

We can see directly that ~(fl~ ! ~‘(fl)! is a regular

stationary Gaussian Markov process and satisfies the equation

(1.1’) . Let ‘iz,(n) /~(n)! an another solution, then

~~ satisfies the equation

i.e. ~(n)=G~(~) for every fl)~C~fl’~.

Therefore there exists a real number c~’>{ (9~k)_ the m1n1m’~

(maximum) of the eigenvalues of the matrix Q (Q’) such that

~ ~E(~(o).i~o)) for n >Q

(E (~‘(n)) ~n)) ~ ~ E(~Oh ~0)~ for ~ ~ )

i.e. the uniqueness of the solution is proved.

Remark 2. From the proof we can see that — depending on the

eigenvalues of Q — the best forward /backward! extrapolation

of ~~45 is GL(~) and the covarianci matrix of the error

is BE, .

Remark 3. The random vector !(n) “t(n)! is

‚“ T~(Ei / measurable and therefore Ejn-t-4) /a(n—41! is
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independent of • The proof shows

that ‘F~(~) ~~(~-) . The a(n) process is called

innovation process.

Theorem 1.2 Let be ak—dimensional

stationary Gaussian Markov process with O mean and

covariance matrix function B (t) . Then there exists a k x k

matrix Q with eigenvalues inside the unit circle and a sequ

ence of i.i.d. Gaussian vectors ~(n) such that the equation

(1.1’) with Q and Ejn) holds for

Proof. As in the case of random variables with joint Gaussian

distribution the regression is always linear, it follows from

the Markovity that with some Q

~ (ri) may be written in the fort 0j(ri-) ~- ~jn) ‚ where

a(n)= ~(n)—G~(n-~-) ‚E(r) is independent of
‚ therefore the random vecíors E(n) are

independent. It follows from the stationarity that the matrix

Q and the distribution of do not depend on n.

Remark 4. This representation of elementary Gaussian proces

ses shows that the process in remark 1. satisfies

another difference equation

~(n) =~(n-~

From the explicit fon of the solution of equation (1.1’) it
—4-

is easy to see, that QtQ. and
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Q~I

It is well known that the reversed process of a

Markov process is also Markov. Therefore, on the basis

of theorem 1.2 satisfies the equation

=

where is a sequence of i.i.d. Gaussian rand,om vectors

with covariance matrix Ba ‚ and ~( n) is indepeygent of

ÉT~ (~) . lore about. reversed processes see in AMe1’s

paper[2] .

Remark 5. The parameter matrices Q.. and Bg can be

calculated from the matrices Q~ and Bg of equation (i.i)

by solving the system of equations .

H BaQk+G2aQ~+ ~. ±

~(B~÷aH) =k,

=

S~ ~Bg÷Bg. . .

Proof. The proof is straightforward using the representation

~(~) =‚JJ n-k.
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Aithought the observations of a. real process give a

discrete time process, it is useful to consider continuous

time processes, because some phenomena can be described more

adequately in that way, and also the results have simpler

fon. In theorem 1.5 — on the basis of Doob’s results we shall

formulate the exact correspondence between the two caées.

The analogon of the sequence of i.i .d. Gaussian vectors

is the multidimensional white noise: the non—existing “deriva

tive” of the multidimensional Wiener process • ~2o stochastic

difference equation corresponds the stochastic differential

equation, which was introduced in Part I.

Let (vÁ~) be a k-dimensional $rownian motion

process, possibly degenerated, with the local parameters

Ew(t)=O ‚E(dvÁU ‚ dw))B~c~ ‚ andlet the

Ic a Ic matrix A have eigenvalues only with negative real.

art. Let us consider the stochastic differential equation

(1.5) d~(t) =A!(t)dt ÷ .

. and let B (0) the unique solution of the matrix equation A

matrix equation of the type /~‘)KXB C •is uniquafly solvab

le if and only if A and B have no common eigenvalues (see

Gantmakher [11).

(1.6) AB(0)±B(0)K =-R’~,
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Theorem 1.3 The only stationary solution with

continuous sample paths of (1.5) is an elementary Gaussian

process. Its covariance matrix function has the form

= B(O) e~

Remark 5. The solution of (1.5) has the integral representa

tion (see example ~. too)

(1.7) ~ .

where the existence of integral (1.7) is equivalent to the

finiteness of the integralj0~;A\ s • The exis—

tence of the integral is equivalent to the condition

hm ~-sA ~ = O This representation is analogous to the sum
5-3~oc

in remark 1., and shows that ~(t) is Jj~ measurable.

is the innovation process of • It is well known from
°—As -A~

the matrix theory that Je B~e ós exists, and.

gives the unique solution of equation (1.6) if and only if

the real parts of the eigenvalues of A are all negative.

The existence of integral (1.7) follows from the definition

of the stochastic integral of a deterministic function on a

finite interval.

Proof of theorem 3. and remark 5. First let us notice that

. if is

defined by( 1.7) . As the second term on the right hand side
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is independent of ~ ) so e1~’t~Lb) is the best
( ‚—t: ‚\extrapolation~~(t±-t)J±(~)) of the process ~(t) ‚

From this representation aM

~ tt) -E( t~)I~!~ ~ E(~ ÷t)I(~)))*~ ~Z~i =
= AtJW A Dwe_Á*tdv

the markovity of the process ~(t) and the formula for B(t)
is straightforward.

By a direct computation we may convince that the integral

( 1.7) satisfies the equation (1.5) :

A ft~(t)dt~

~Af~w(~dt J (NtS) Bá U Jíb) =

= «t) - ~(O) w(t)
where I denotes the unit matrix.

The stationarity and the continuity with probability 1 of

‚~ (b) is obvious from the representation (1.7) . The unique

ness follows from general theorems for the stochastic diffe

rential equations /see Part I.!, but it can be verified sizi—

laxly to the discrete time case. .

Remark 6. Sn analogous statement is true for matrices with

eigenvalues having only positive real parts. Then f (t)
A(t—S) —

= f e w (s) will be the desired solution.*

. ~ «L) does not solve the equation (1.5) in strict sense,

because is not measurable. ‘
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The converse of theorem 1.3 is also valid:

Theorem 1.4 If the k—dimensional process with O mean

and continuous sample paths is a stationary Gaussian Markov

one, then there exists a matrix A with eigenvalues in the

left halfplane and a Wiener process ‚ such that

Proof. From Gauss—Markov property we get the existence of a

matrix function . two variables, satisfying the

relation .

(l.S)E(~(t2) [ G(t2t1) ~(~) for’ ~ .

Applying (1.8) succesively we can deduce the functional

equation for ~1 ~ :

(1.9) ~ d~1~ x

This relation is valid for non—stationary processes too. If

moreoverf(t) is stationary: Qjt2~1) Qt12 t1).
Ás the process is continuous with probability 1,

and therefore — being Gaussian — it is continuous in mean

square too, the matrix function Q’fb2 t1) is continuous • The

unique continuous solution of ( 1.8) under the initial condi—
A(tz—ti)

tionüjU) I is the matrix function e with some
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constant matrix A • For ~> Q let us take the sun
[tJcf}1

= ~) -~O)-~ ~(i~g~)~

which almost surely tends ~o ~h ~s 5+0.
As, by (1.8) the terms on the left hand side are i.i.d..

Gaussian random vectors, the limit process will be a multidi—

mensiona). Gaussian process with independent, stationary

increments, Le. a multidimensional Wiener process. So we

have proved that ~(t) satisfies the equation (1.5) . Theorem

1.3 involves the condition on eigenvalues of matrix A .

Remark 7. It turns out from the above proof that a Gaussian

process is elementary if and only if its covariance matrix
( AItj—~2i

function has the form R”Oi E’ ‚ where eigen

values of A are all in the left halfplane.

On the basis of 1.8 and 1.9 a stationary Gaussian

process is Markov if and only if for t2 >

. A(tz~t1)
e

For non—stationary Gaussian processes the necessary and

sufficient condition of markovity is the relation

E(~~1 !~2~ = E(~(~), ~it1)). J(~2i ~ .

where G(t2t1 ) satisfies the equation (1.9) .
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The following theorem explains the connection between the

discrete and continuous time elementary Gaussian processes.

Theorem 1.5 /Doob’s paper 1~ / The continuous time process

! (1c)7 ~ c t c ocj with continuous sample paths is
an elementary Gaussian one if and only if for each S~7 Q
the discrete time process ~ (n cv’) is elementary Gaussian.

Proof. Necessity is trivial, For the proof of sufficiency

let us first notice that the joint distribution of random

vectors for every and

every finite sequence . .. kn3 of integers is Gaussian.

Rence, by the continuity of sample paths the process t(~) is

Gaussian. Stationarity is obvious • There remni n~ to prove

markovity. For this purpose — on the basis of remark 7. — it

is sufficient to prove that for t1 > t1 E(~t1) I ~(ti))
A(tz _ti)e . By Gaussity there exists a matrix :fu.nction

for which E(~(t1)l ~(t1) z0jt1t1) ~).
Ás the process is Markov for every 6’> Q’
G (m6’)_G(n6)G((m~)6)3ecause of the continuity of sample

paths G(tzti) is also continuous, and so — satisfying

the equation (l.9~ and the initial condition Q,,(Q) I —

has the disired form.

Theorem 3.2 of Part I. asserts that two k—dimensional
(4) (L)

Wiener process w (t) and W (t) can be distincted with

probability 1 observins them on an arbitrary small interval

[01T] because . . ‘ .
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urn (T(i~))(w~)~(T(~1)))*= B~ T
~ i~1

We may ask now if distinction on. this way is possible

with probability 1 for a~ two elementary Gaussian proces

ses. By theorem 1.6, see e.g. Baxter [11, answer is no; if
(1)

their matrices of diffusion and are the same.

Moreover, later we shall see that there is no possibility to

distinct them almost surely on a finite interval.

Theorem 1.6 Let ~jt) be a k—dimensional elementary

Gaussian process with parameters A and B~ Then with pro

bability 1~(j)_~(tjl))*zBwt)
~ 1=1 — —

.‚.

where L~~i_’Ln .

Proof. On the basis of (1.10) we can write that
. nfl

fi 2.

~ (~~) -~~))(~~) _~(t )* (w-w~1u)(wt.~-w€~4)) +

S JA~ r~)A~dt
=4 ti—i

r’ .

J; A~1dtJ r(uAd~ .

~=1 t~~i

As for almost all sample path the vector functions fA~(S)dS
4t

and f ~ (s) A ds have bounded variation the last three

. terms tend to O with probability 1 if n -* ~O

In the sequel we give some examples for non—stationary
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Gaussian processes, defined by stochastic differential equa

tions.

Example 1. if and DEE) are deterministic vector resp.

matrix functions, then the process ‘~z,(~) with stochastic dit—

ferentiald#) ~AEE)db ÷DEE)~wEE)
is a Gaussian one with independent increments, where

E(n~) ~(°)) = f A(s)ds~ j(~) -t~)h JD(s)Dis)Hs
— — 0

Example 2. The solution of the homogeneous linear stochastic

equation/if ~b)tGv’d~B(~k(t)tD(~k(Udw(t)
has the following form .

(~)~(Q) exp{f[B( D~s)i ds~JD(s)dw

!Phe proof follows immediately from the Ito formula for

the process ‚ widc~ states that

~

andso .

÷ D~)dw(t),

± J[B(U- ~J(~)1 fD(t)dw~)

exp



— 20 —

The last formula is true until i~(i) does not become zero. But

the right side does not do it in case flZ(O)2 0 . And, so each

solution may be written in this form. In case o the

situation is the same for

Example 3. The solution of the inhomogenous linear stochastLc

equation .

~ (t) = ~) ~(t)d~ + H~) dw~

may be written in the form

= exp {f~B(s~ ds~[~(O) +jexp BHÓn} p~s)dw~;]

To prove this let

~) =~(t)~),

where
%~)XP {J B~dS}

It is easy to calculate that

d~(~ =-@)~)db

d~(t) = ~(b) d;(~)

From here we get .

= ~) 4 H ~s~dw(s) = ~(Q) 4
and finally .

= =~ { ~ ~i~} (~expH f B(u)d~d~
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Specially the one dimensional elementary Gaussian process
/ D(~-~ __~‚ A\where U\’— = const. and~ : has the fon (see

remark 5.))
t

te ~(O)÷Je~~dw(s)~

Exercises

1. Compute the correlation function of a one dimensional

Gaussian Markov process starting from the origin. .

( Hint: use the representation ~(t) J’~dw(s) .)

2. Prove that if ~b) is a one dimensional stationary Gaussi

an Markov process with parameters a ‘ 0 ‚ and 0 ‚ then

the process _______ .

(L \/-2at EH I t

is a standard Wiener process. .

(Hint: compute the correlation function of wt) .)

3. In the same way as in examples 2 — 3 prove that the stoc

hastic differential equation

d~) (~hDt)1(t)iát ~H(t) ~D(t) ~(t)1dwW

has the solution

~exp JR 4D1ds÷4r~)dw(4~b)j~~ LS[SL)

~D2(u)~du - fDUáw(uJ [A~ -F~)D(sH ás je~ ~- fl b (u) -

4D~u)]du -fD~)dw(u)~ F~)dw~)i. .
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4. For the multidimensional case prove that the process ~ (t)

with differential

d~W) ~t) (b)Ht Hw(t)

has the explicit form

~ ~f BHd5}[~Ú)~JexP {JB(u)du~áw(~)1.

5. Let ~b) be — non necessarily stationary solution of (1.5)

Prove that its mean value vector function tnt) satisfies the

equation

and its variance—matrix functionRt) satisfies the equation

R1~ A~R~÷ R~A~Bw

6. Prove that the only homogeneous probability density functi

on which describeá a continuous Gaussian Itarkovian process

hasthefoxm,fort)5 ‚

1 f (y-m-~x-m~~
X’3)v2&~JxP r ~ J~

where &‘~ in, A, are constants. This means that the process

~ (t) is the solution of the differential equation

d_A~(t)tAmát td\~ (see Kránli[l])

7. Prove relation (1.6) assuming is a continuous solu

tion of (1.5).

(hint: Multiplying (1.5) by ((t) and taking the expectation
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we get

(~ 3(dt) = ~(O) ÷A B(O)db.

Using the fact that E~GHáb)dw*Tb) =B~c1t
multiplying the transposition of (1.5) by and

taking the eipectation we get

(*~) B(O)~ BH~) = B(dt)~ BWdb,

Lx) and k *1 prove the statement.)

8. Prove Theorem 1.3 by the differentia]. equation (1.5)
and the integral representation:

~) ±.AJ ~(s)á~± w(t) ‘

where is measurable. (Hint: Stationarity

follows from

B(tt) = E (~b~ nt)) =B(tt) tAf b(s)t)ás)

with the only continuous solution

=

Markovity is the consequence of

with the solution

E(~)I~) = (t))
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9. Prove theorem 1.4 using Len’s theorem( Part I. Oh.8.)

lo.Prove theorem 1.5 by the martingal convergence theorem

see JDoob’s paper 1~ ) .

11.Prove directly that the solution of 1.5 is a diffusion

type process ( see exercise 3 in I Oh. 12.).
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2.6 Radon-Nikodym derivatives with respect to Wiener

measure.

In the statistics of elementary Gaussian processes — sixni—

laxly to the statistics of independent observations — the

maximum—likelihood principle has an important role • For this

purpose it is desirable to determine the Radon—Nikod,3’n deri

vative of the measure generated by this process with respect

to some standard measure. Theorem 1.6 suggests that the ele

mentary Gaussian processes with common matrix of diffusion

generate equivalent measures, and these measures are equiva

lent to the Wiener—measure with the same local variance mat

rix. Theorem 2.1 expresses our heuristic argument in an exact

form. Before this we introduce some notations.

Let be the metric space of k—dimensional vector—

valued continuous functions on the interval [O,T] with the ~mi

form metric~ LEt will be convenient to assume Xk as a

direct product of the space Ck[QTl of k—dimensional con

tinuous functions ~ ~(t),O~~t~T} with the initial condition

~o) =0 and the k—dimensional Euclidean space

For the sake of generality we shall consider a Gaussian

Markov process ~ (i) satisfying the stochastic differential

equation (1.5) and having f(x(O)) as initial probability

density function. Let be the probability measure on

generated by the above process ~(t’) and )) be the “conditio

nal” product of the k—dimensional Lebesque—measure and the

measure generated by the Wiener process on the right hand

side of (1.5) .
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Theorem 2.1 The measures & and ~) are equivalent and their

Radon-Nikodym derivative has the fon

::
The value of stochastic inte&ral J(~t)c1xt))

can be determined for almost every wiPener sasi~le path ~„ (t’)

The symbol f (Cx~c1in) means this value; so formula

(2.1) gives0 i2 —almost everywhere the Radon—Nikodym derivative.

Proof. The proof is based on a variant of the invariance

principle due to Prohorov [i], which will be cited in the

course of the proof (see Arató [5] or Krámli—Pergel [2]).

First let us notice that the conditional measures

and ‘~) generated by processes ~(t) and w(t) on the space
Cx)

Ck (Q,T ) under the conditions ~(O)= ~. ‚ w(c) =.

may be treated in a simpler way. Our theorem will follow from

the statement about these conditional measures:

The measures CL’ and ~) are equivalent, and

(2.2) ~ (~t)) = exp

Let bea sequence of

of the intervalEOTi .. Let us suppose that for n ~ m

refines dm . Introduce now the new stochastic process

recursively as f~1lows:
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~(O) =~ (0),
2.3) = flt~) t~~Xt ~ ~(~) if

t~a t
The process the so called Euler approximation of

the process .. The sequence . 5ri(~)) (nr-’lZ...)

has two basic properties.

Li) Let ~ ‘,9;’, be a finite set of time points. The

‚joint conditional distribution of random vectors

under the condition ~‘(0) = X.

tends to the corresponding distribution of ~ ~(02 .

(ii) The formula (2.3) can be understood as a transformation

EJ) of the space C~E0T ] into itself: for every

Wiener sample path corresponds a sample path of the process

~(b) . If K is a compactum of 0[oj] ‚ then

(J)K) is a compactum too.

Proof. As the processes are Gaussian, for the proof of pro

perty Li) it is sufficient to show, that the conditionaj. mean

value vector and covariance matrix functions of the processes

~ under the conditions ~‘(0ht ~ tend to the

corresponding functions of ~‚ 13) • This can be obtained by

direct calculations. ‚

For the proof of property (ii) we have to show — on the

basis of the theorem of Arzela — the uniform boundedness and

the equicontinuity of functions defined by (2.3) under the

condition that the functions on the right hand side of (2,3)

have these properties. The uniform bounde&uess follows from
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~ (Tt ~x(t)~)
the inequality ~ XLbU~ -t-e .

into account this the equicontinuity follows from the equi—

continuity of functions ~ (t) & K.

From Len’s theorem on the modulus of continuity of the

Wiener process (see exercise 6 in Part I Oh. 5) and from

property (ii) we can derive the fundamental property.

(‚iii) For every 2>0 there exists a compactwu K~ of the

space Ck ~I0~T~ such that ‚~~~(V6)> 18 ‚ where ‚7L~

is the condati.onal measure generated by the process . ( )

under the condition ~ (0) .

Proof. From Lefl’S theorem follows the existence of such

for the Wiener process. Set — ~7J (K~).

The properties (i) and (iii) give by a variant of

Prohorov’s theorem (see Gikbman—Skorokhod ~i] ch. IX. ~ 1.) a

necessary and sufficient condition for the weak convergence

of the measures jLn to . In other terms these properties

provide that for every bounded continuous functional f(xch)

on c~{0j1 Jf(~)) ~ ~J f(x(t))’d&.
C~JOT~ CkEOJJ

As we have collected all the necessary preliminaries to

the proof of theorem ?.L, we can begin the proper calculation

of the Radon—Nikodym derivative of measure 7L~ with respect

to ~) • The first step for this purpose is the following

lemma.

Lemma 2.1 The measure ~ is absolutely continuous with res

pectto~5and .
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9n(~±~? =exP~(Cxj~4, ~

where A~ ~ -~(t~ ) and =t_t~D~

-)

Proof. Let be a refinement of I i.e.:

Q = t~n ~t~&t~c. Ltt=t~flc. Lt~ t~ ~T.

By a direct calculation we get

(~ t) =exp4j {_~ ~
‘ 31 I’’j—1 At1

(2.5) ÷~ A~ t1~=t’-t~,A x~x(t~h-x(t~))

=4 X~ X~tt)
for the ratio of joint density functions of random vectors

c{n~
o~p w(~i )~-)W ~ .

Letting n’ tend to oo (2.5) turns into ~2.4) for almost every

x(t) . As p~(~it)) is the ratio of density functions of ran~m
dn ~cIn

vectors ~(t1 )‚.;-;~(um) a~ wt~ )J...)W( rn).

Therefore we can apply the martingale convergence theorem

(theorem 7 of Part I.Cb. 10.) to the sequence p
which completes the proof of lemma 2.1 .

As the terms in the exponent of formula 2.4) tend to the

integrals f(C~b ~x~t))
O O

in mean square norm, we can choose a subsequence U of

sequence in such a way that the limit pk(t)k&m p(~it)
L=o’ ~‚

exists for a.e. ~ (t).

Let us consider the compactwn Kg, such that
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~2.6) ~n(Ka) =fp~k cb))d~ ~ 1

for every n. As the elements of K~ are uniformly bounded

functions 4I~(Axj1Cx~1) ~ ~ I~A~ ~
(where N~ id~ the common u~per bound, for the norms of xít)S K6).

[ .Ir\1~’ 1NaIAPC! (2)j .j_ ‘~ .

So we have Lp~\~(U)U —e p for every
(2,)

x (‘b’) G K~ (p~ means the probability density function

obtained in the same way for the process ~ 3’) with parameters

2,4 and B~). From this inequality (and theorem 3 of Part

I. Oh le.) we can deduce the uniform integrability of the

sequence p~Hb) on the conipactum k~ with respect to the

measure . fle notice that the uniform integrabiJ.ity is

valid on the whole space C~[O )T ‘} but its verification

is not so simple as on the compact subsets of bkLO 1T Ii
this is the advantage of the application of Prohorov’s theorem.

From (2.6) on the ‘basis of Fatou’s theorem we get

f p(x~) d~ H -S
Let f be a non—negative bounded continuous functional on

C~[OT 1 . Also by Fatou’s theorem we get

(2.7) 1 tkW)p(~b) H ~ ~m ffkW)p~Ht) dt.
C~JO1TJ J~,.~3~oCkD(’l] t

Using (2.6) and (2.7) and the uniform integrability of the

sequence p (x~b) on K8 we obtain
. hlJ
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t~ J +(~p~(~b) c~ ~ ~ f t)p~ ~x(h)d~ ÷ a’ =

L-~oOC~T] B

(2.8)

= f ~Lt) p(kt) d~ a’~=f ~(~t) p(~ (t)) c~ ~
KB . C~’[Or]

where a’ is maxHF(~Jt))I.
x(t)~ KB

Analogous considerations are valid for negative functionals

too. So relations (2.7) and (2.8) involve

2 ~_ L +(~) p (~b)) d~=f H~b) p(~c\~

for arbitrary continuous, bounded functional «~it)) i.e.

the measure ‚w()f p(~W)d~ is the weak limit of
(•)

measures „w~,. On the other haM — as we have mentioned —

from properties (i) and (iii) follows that the sequence ~

has the weak limit. ‚E. But a sequence of measures has no two

different weak limits, so the measure generated by the

density function p(~t) coincides with ‚LZ~. The equiva

lence of measures and ) follows from the fact that thé

stochastic integral f’~nt’) CI~((b) is finite with proba

bility 1.

Remark 1. In real applications we observe a trajectory of the

process ~tt) . But, by the just proved equivalence of measu

res ‚E aDd ~ thevalueof fCx(t)d~3) forji.H5)

almost every trajectory does not depend on the regarded

measure on )Ck ‚ as it is defined as an a.e. limit of a

sequence of measurable functions on )Ck. In the literature
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there is often used the following formula for

___ d~ ~

c’JL „ ch5 “

~ (~) = exp

correctness of which is garanteed by the above remark.

Remark 2. The proof of theorem 2.1. may be carried out in the

case when = ~ is a diffusion type process,

i.e.

. :
where C~’(t) ~) is a measurable vector functional not

depending on the future and

. PtJktj)Icw ~)~i

(see Lipcer — Shiryayev’s book Li] or Benczór — Szeidi

The concrete formulas — suitable for computational

purposes are given in the following exercises.

Exercises.

1. Prove that in the one dimensional stationary case, when

d~3)=~ ~t)db~dw(t)

= 0, L(dw~ «c’t
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~‘ ~x)=~ ~exp {-S~

Obtain this formula from the ratio of probability density
. ffk’~ j ~Lfunctions oj’ Gaussian vectors

n letting n tend to infinity. This ratio can be

calculated using the re3ation

(D~a(k)=1)

following from theorem 1.5. ( See Árat6 [5] or Striebel [33)

2. Let ~(t) be as above, and

~m (b) = • Let and ‚amthe probability
measures generated by processes ~) and ~m(t) on

respectively. Prove that (see Grenander [33)

d&rn~~~_ ~[x(o)~~~ ~Jx(t)dttm(i~~)]}

(Hint: Let ~ be the direct .

product of the Lebesque measure and the measure generated by

the Wiener—process w(t)-i-m. Notice that Vrn and

coincide on. )C1. (be. d:; ‚ anti use the “chain—rule”

d&m = ___ d9m dv.)
~rn .

5 • Prove that in the two—dimensional case, when
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—x
A ( (H12)

_ ‚

then

X j’ 7’l X a
(x (rn) = exp ~

and .

~Jh. Xpexp~ ~ T1
dv ~ ~a J[~(t)txt)]db_h[x~(Y)~4(T)t

T°

4(O)]± U ÷J[ t)dx1t)-
O

4. In the previous example let we take the complex valued

process ~)1lo(t) where X(t)=X4(i)-i-ix2jt)
2. i

[x(t)l = x~(b)tx~(~). Prove that
1~

f[x1dx,(b) — X2~t) dx1(t)] =f~ x(b)j2 do
o T O T(~2.. __

and Á X-i-w (r~ r~’~ ~ ~ j x(t)I’ dt t ~ fIx(~U1 do ÷ —

0

7’
~ [I ~T)t~ + lx

(Hint. Use the relations -

F[x(tj) x(t~ ~) - x (t~4) x ~tj)]
i

and

x ~t~)! x -i )f[e’~° ~tj) - o(ts~4)) eG(thl) -e (tj))] =

~ix(t~(tj-1)í2i Slfl(o(tJ)~O(tj~4))~2IX(tJ11(0(ti)_0(tH)
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For further details see Arató [51 ‚ Arató — Kolmogorov —

Siney [JI . The following exercises aré concerned to the

calculation and the asymptotic behaviour of the maximum-.

likelihood estimator for the matrix Q of the k—dimensional

discrete time autoregressive process.

5. Assume that the components 81(n), E1(n), of the

right hand side process of equation (1.1) are independent with

dispersion (j=l, ... ‚ k).

~%. Prove that the joint conditional probatility density

function of random vectors ~(4)~ — under the condition

~(o) = ~(O) has the following form .

(2.lo) ~(i...~NI~o) =~(o)) (ZY?~(H~)N exp{-~

~ [x~jt1_~.o x0(j) ~ ~i11 x1(j) ~ k-I

I=olJo .

(3. The conditional likelihood equations for parameters q

has the fon:

(2.11 ~ [~. (~ ÷i )- ~ ~j)÷.. ~ ~ ~k-4~J~U ~0(j) = 0

~4[~(j~i) _(~.° ~(j)t. ~ ~i’k-4 ~k-I~j~)] ~k-Ái)° 1

where =0 ..
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6. Denote by the solution of equation 2.11). Calculate

the elements of k1x ~ covariance matrix of the random

variables .

(Hint: Define the random variables

v~ UN) as follows

~.jN) =~ (4~~ - ~

Express them by ~~ ‚ and prove that their co—

variance matrix has the form

~‘B(O) O E~l)tl(~l(LLfl. «1b

( .

Q E~(N))al (N)Q for~j

whereB(Q) satisfy the equation (1.2).

Remark. .

Prom the ergodicity of the process ~fl) follows the asymp

totic efficiency of the conditional maximum—likelihood esti

mator. The strong mixing property, provide its asymptotic

normality. This theorem was proved first by Mann—Wald [11.

7. On the basis (2.2) it is possible to get estimate for the

~mknown matrix A(BW is k~idwn). The method of least spuares

minimizes the functional

T T

. f~(s)1d~)) -4~A~(5), 3~A!~~)) ds =
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ds +PBA~ (S)’) dw (5)).

Prove that the solution( ) of the linear system of

equations .

~J(~A5A)d5*J~~dw(5))) o
~~=O)4,~.~k-11 (üt =

gives the minimum, and

(M) tJy~~~ ~oji) ~ (s) ds

=~J ~(s)~ k~ d~ (S) - ~~T)1 (p19 ~q. .‚

where ‘ . .

E (T) =0, ~~i)~m 4 r~~) dL

As the elementary Gaussian process is ergodic

if T ~

and ~1Z93,(T) is asymptotically (if T—~oo) normally distri

buted (see J. Rozarjov’s book ~ Taraskin Di). Prove that

the random variables \T(~pc*—Qpcv) are asymptotically

normally distributed with Q mean and covariance matrix

B4= ~b4 4~ (see Arató [41, Pisarenko
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3.~ Autoregressive—moving average processes.

Definition 1. We call a stationary Gaussian process ~ (11)

with discrete time an autoregréssive moving average lÁRMA!

process if it satisfies the equation

p q’ .

(3.i) ~n) =~~i n-~)~: ~ a(n-~)÷ a(nl
i=4 j~4

where is a sequence of i.i.d. Gaussian random variab

les, and EÁn) is independent of to ~)

In case b1o (~~4) the process is an autoregressive one

and in case ~=Q (i~’4) the process is a moving average

one.

Theorem 3.1. Equation (1) has a unique stationary solution if

and only if no one of the, roots of the characteristic poly

nomial .

n P -‚

R(z) ~ °i lies outside the unit circle (IZR1).

In this case ~n) is the first component of a k=max

dimensional stationary Gaussian Markoy process. .

..‚~ (t)~. ‚

~‚4) .

Proof.Let us assume tiiat ~(h) = ~ (n) and consider the

system of equations

(I) (~+4) .

(n) = ~ (n-4)t C~ a(n) if ‘ ~ 1 c p

(p) ci)
(fl) ~ ap~4H ~ (~-~)~Z

i=1
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(~4 ‘i)
(n)

(3.2)
(p÷i) (p4-i--I) .

(n) =~ (n—I) ±± 4÷pcc, ~

/Naturally in the case of ~f’~ the suitable terms and

equations are omitted./

If the constants C~ Ij =0.. .. (p—I)) satisfy the equations

. c0~t .

(3.3) Ű1a1. c0b1 .

cp_Q1cp~2 Qp_4Co - .

then the system (2~ is equivalent to the equation (1) . It is

easy to see that the characteristic polynomial P~k~) of

~2) is equal to P1(z) if 9cp, and Z~t~(Z)otherwise. So

the system (2) of stochastic difference equations has a

unique stationary solution, which is a k—dimensional Gaussian

Markov process and its first component will be the unique

stationary solution of the equation (1).

Q.E.D. .

Remark 1. The solution of the equation (1) can be obtained in

a constructive way similarly’to the first order autoregressi

ve process (see remark i~ 1 and exercise 5. in this~).

(3.4) ~(n)~ Ck E(n-k)
k =0
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Proof Indeed, if the coefficients Ck satisfy the infinite

recu±sive system of equations

. ‘

~i ~ c0 =.b1

~ if k ~p

/notice that the first p equations coincide with system (3) !‚

and ~I ckl’ ~ cc then the process ~4) is a correctly

defined stationary Gaussian process satisfying U).

As bkQ for k > ~‘ and the roots of characteristic

polynomial P1(z) are inside the unit circle system (5) has a

unique solution of desired property.

Remember that a multidimensional k—dimensional Gaussian

Markov process ~(n) has the representation ~(n)~Q~ B(n—i). ‘

As the matrix Q satisfies its own characteristic equation:

Q’~ = 0 ‚ all the elements

f nof ~Q satisfy a recursive system of equations similar to

(5) therefore the components of ~ (n) are sums of ARMA pro
(k)

cesses. Notice that if ~(fl)~ dk ~ (n) ‚ where

~ ~~(k)~ ~ . . . .

(k)
and is a sequence of i.i.d. Gaussian vectors,

then ~(n) is ARMA process. So we get the converse of

theorem 1: .
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Theorem 3.2. Any component of a multidimensional stationary

Gaussian Markov process is ARJL& procesá.

In the continuous time case the equation

P ( —i)(31~)~P (t) = ~ t b1w~ t

would correspond to equation (1) . Before giving an exact

meaning to (%l) we try to solve it formally. For this purpose

we need. the following

Lemma 1. If function f(t) is differentiable and

+ jf1(t)12)dt ~ then

(3.6) jt~hj ~

The proof can be carried out by changing the order of integ

ration. The relation (6) formally can is considered as a

“~le of differentiation”:

(3.7) (t s) dw(s)] .= d~(s) ~f(C) w’(~):

We are looking for a solution of (1’) in the form

~ (t) f -ftb-5) dw(s), suggested by the first order case. If

‘p, then there exists a unique function -~ LE’)
satisfying the homogeneous differential equation ‚
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(p) P (p—i)
(3.6) + (tHY a~f (t)O, .

and the initial conditions .

~(Q) =1
(‚3.9) .

f’(Qh°1 4(Q) =

: p—4 ( —4—i)

f (Q)=b~ (if ~ b~=O).
Using the forma], differentiation rule (7) we may convinced

that

(‚3.lo) ~) f~(t-s) dw(s) .

is a formal solution of (1’).

If the roots of the characteristic polynomial P1 (2») =

= ‘ ‘ has negative real parts, then

dt.’ ~ for every i=Q,l,... . In this case the

process ~(‘L) given by 3°) is a correctly defined stationary

Gaussian process. We may assu~ (ló) as the definition of

continuous time ARMA process. /We notice that for cpz~p (i’)

has only generalized solution.! For continuous time ARMA’

processes theorems corresponding to theorems (1) and (2) are

valid too: .

Theorem 3.3. A continuous time process ~(t) is .ARMA if and

only if it is a component of a multidimensional stationary.

Gaussian process ~ Ct). .
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Proof. The first part of the proof is ?bvious.

The p-dimensional process }{J”~’kt~) dw~S)~

J=c,... p—4 / satisfies the system of equations

= ~ c~d~(t)
(3.11) 4) ~

d~ ~~pi (~)~t÷ Cp4 ~W(~))

where c~

The converse assertion can be obtained similarly to the

discrete time case, using the integral representation (1.5)

of a multidimensional Gaussian Markov process, and the fact

that the matrix function At satisfies the differential

equation (2At~~ (At)~~ where the coefficients a± Co

incide with the coefficients of the characteristic polynom

of A.

Remark 1. If we suppose that cp~p we would have to add

further equations to system (11) among them the equation

= dw(&), which hasno stationary solution. This is

the reason of the additional condition ~ p.

Remark 2 • The system of equation (11) has the following

visual meaning; an sma process ~(t) is not differentiable

in genera]. — but by the addition of a suitable Wiener process

it becomes differentiable. This procedure can be continued up

to the (p—1)—th derivative of ~ (t) .

Remark 3. Combining theorems 1., 2. and 3. with Doob’s

theorem (see Doob’s paper C1J) we get that the discrete time
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sample process ~(n6) of a continuous time ÁRKA process ~(t)

is also SEMi. But, the sample process ~ (n3) of a pure auto

regressive process isn’t generally a discrete time pure auto

regressive process, because if a matrix A has the form
01». 0 .

•01

• O O»1

a4. . Qp

its exponent has not the same one.

In this work ie have avoided the spectral approach to

stationary processes because of the necessity of deep analy

tic tools. But in some technical applications the spectral

density function has a simple visual meaning and it can be

easily measured. For this reason we breefly summarize

without proofs the basic facts concerning to the ABlAk

processes. A regular discrete (continuous) time stationary

Gaussian process has the representation (see Rozanov’s book [1])
23V

(3.12.) ~(n) =f ~ dw(Y)~ .

(3~13.) ~t) L e~k(~)dwW .

where wk~),wU») are standard wiener processes “random

measurest’ ‚ and functions 9(Y) resp. k(X) can be analitically

continued to the open unit circle reap. upper halfplane. The

sequence of i.i.d. Gaussian random variables (resp. the white

noise process) corresponds to the identically constant

function on the interval (o,21r) (resp. (—co co’) . Using

this fact we can easily find the connection between the
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“moving—average’t representations (4) and (10) and the

spectral representations (12) and (13)i

( %‚ ~~L9
c~e ‚

h(X) f°~H~)~ds.
Using the formal correspondences•

~n) (~)e’~,

‚

w~) Át we get for ARMA. process the correspondencees

Zb~e Y
p . P

L
fl r~Q

In continuous time case we can see from the form of

that in the case ~ p the integral of the spectra]. density

function would be infinite. By physical reasons such

a system can’t exist. .

Exercises.

1. Prove Theorem 2 in another way:

Writing the sequence of equations

n) =O~ L(n-U H)

= ~ tC H-I)

-k~1) =



(2~(‘1) (2) (a)
for the mik-nowns ~ (n) ~ (n), ~ (n—1)1

) ~
we have L2 equations. Show that they can be solved

uniqually if det (Q),~’O If Bet (G)=O ‚ then the dimen

sion ot the. elementary Gaussian process ~(n) can be reduced.

det (~I2PtZ A~z~~)
j=1

the unit circle.

( Hint: prove that the above

characteristic roots of the
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2. We 557 that a k—dimensional process ~L&) with discrete

time—parameter is generalized autoregressive one if the

equation .

. P
~(fl) = E A~ ~(n-~j) -‚- aw) holds

with i.i.d sequence of nondegenera~ed.Gaussian

vectors (see Andel [II). Prove that equation (3.14.)

has a unique solution ~(n) which does not depend on

for i’n if axid only if the zeros of the polynomial

are inside

zeros are the same as the

pk x’ pk matrix

~OI .

‚00.

1~ ~~I\
‘~1 tH~

I
. .
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3. Calculate the inverse of the covariance matrix

R~[~(~n-~) j(h-j))l fora

p —order discrete time parameter autoregressive process, if

e Ni and . (Hint: consider ~n) as a component of

a p dimensional elementary Gaussian process and solve the
-4

equation for the left upper PP minor R of R

~4Q ~1RaR~ (where ~

(O. Q
and. B~ . derived from equation (1.1).

following result by direct calculation

—4 5 ~-U1
= ~ 5 where

(-1) JO ‚if
=

j ~m’n(1’pj 1-

) ~t ~t~jI ~
and r . ~-H) ~-~1); ‘i N—~’N—j ~ L

(See e.g. Siddiqui. Eli, Arató Li].)

U_il >pt I

4. Calculate é4(o) for continuous time parameter autoregres

sive process too, where B(o) =~E ~‘?~ ~~O))}

= 1i1riP (See e.g. Hájek [11, Arat6 [51.)

(Hint: check the following result: ~ “(a) =

.O1».O

. .

Check the

where
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4 ~mod~)

5. Let ~(n) be an autoregressive stationary process with

p
~ ~n) = Z a~ ~ (n-I) a~n)

‘=4
where afl the roots of

= Z~-~ Q1Z~

axe inside of the unit circle • Prove the WoId’s expansion

(ia)
00

~n) =~ c~ E(n-~)
‘(-=0

and calculate the C~~- coefficients. [ Hint: There are

‚ then ( z~ = 4/xi

00

~ c~2t
2=0 ‘ t-zo

p

converses absolutely. From this for the coefficients

we obtain the equations (a0= 4)

‘1 = QoCc3 = C0

(~) P = Q0C1 Q4C0 =

(Iv)
O Qo Cp_C Q4 Cp_i .. Qp-’ C~

Jo~ if

1± 0i-t Qj±4~t
Ő,

(mod 2)

and a~=O for i )‘ p .)

discrete tine

roots, say X1~.3 Xp

I 1

of equation (*) ‚ with

and Iii ‘~ min ki )

4 1
p p

4-~ QjZ~ TT(4—-4)
i=4 i=4

O = QoCt_OjCt_4.QpCt_pi t = H
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If the roots (*) are different the general solution of the

homogeneous difference equation (‚IV) is
P

r V 9~’. t
‘—1-- L tu

1=1 .

The &~ coefficients are determined from the boundary

conditions (~i’~) of Cr.]

6. Prove the Wold’s expansion in the case of multiple roots

in exercise 5.

7. In exercise 5. if pH we get . If p=Z and X»~

and x1 are different prove

- X4 -~

~j— ~L C1 x1— ~

and

‘
— X1

ig
In this case if the roots are complex, x1=a~ and

IG
c~e then

-Ig
O= C- C = — .

°1 ~ ‚ e’9— e~

and

Cr =~ 4 a1 x~ = ~ s~n (~~~)O

8. Let ~t) be a 2—order moving average process

= B(t)t b1 a~t-1),

where E~(t7h EaLiJ) =0 and EE~(t) = 1 then



= = ~1 tb~) ~

Prove that the density function of random variables

. has the form

—N —N/Z —1/z 4 N—
(~) 9~1) .‚ = 9 (IT) exp ~ x~x3 j;

where !BNI=det BN and ~ {b~33=~7~s . The

elements .

. = Hi ~~ )

and . 4-1 . .

. U1 —U2.

where

~ i.e. ~1 = 4~\f4 ~92 UL=

The determinant IBNI fulfils the difference equatíon

= LRw_iI ~ B~-~I.
From (*) we get that the sufficient.statistics for

parameters (b1~) is the only ( ~(1), . . (see

Arat6 [jj ‚ Shaman [i] ‚ L2]). . .

9. Let ~b) be a second order autoregressive process satis

fying the equation

= Q0~L~)) d~ ÷

It was proved (see theoren33) that is the first com

ponent of a two dimensional elementary Gaussian process
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~ with matrices

‚0
‘ &~= (

- 1
We suppose that the matrix A has complex eigenvalues

X~íw, Á1 —i&J~ where

Then from equation A Bk) ±-B(o) A* = we get

the following explicit form .

‚‘ -1

7 4Á(~2÷w1)

B(O) =(
4

O —~

In ~1. we proved that (~4(hő), ~~(nő)), the discrete

time process, is also an elementary Gaussian one. Prove

that the matrices Q and Ba has the following form:

~ 7.c~ C05 s~n ‚~

( p
w. \ (Áztwz) sin WJ o co~ ~~÷Xsin~J’

AcT .

Ba~ B(o)2 ÷b(o).
Applications of this description the reader may find in

papers Gy. Németh, ~ and Mehra, R. K.(2).

~1~Gy.Németh, T.: On estimates of parameters of the second
order autoregressive process with continuous time
SzTAKI Közlemények, 10 (1973): 33—43 (in HungarianL

(2)Mehra, R. K.: Optimal input signals for parsmet~r estima— .

tion in d~mamic systems — Survey and new results,
IEEE Trans. Automatic Control, AC—19 (1974) No.6, 753—
768.
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4.~. Parametrization of the discrete tine

autoregressive process by partial correlations

The most natural parameters for autoregressive processes

are the coefficients C1~ figuring in equation (3.1) and the

dispersion 6~ of the right hand side sequence of i.i.d.

Gaussian variables • But the domain ct- L of admissible

parameters is very complicated, although in cases p 4 ‘13
it is possible to give rather simple criteria which are

expressed directly in the coefficients Q~ (see exercise 3,)

For this reason in the literature ( see e.g. Ramsey’s

paper El] or Box—Jenkins El]) there is often assumed another

natural parametrization of the autoregressive processes,

namely the partial autocorrelation. .

Let denote the j —th partial autocorrelation (~ ‚ 0 )‚
i.e. the conditional correlation between ~(fl) and ~(n-j)
with respect to the Őt~algebra ~j+4 generated by ~(‚n-4)1

n~)1~ ~n-j÷4). . . .

i.e. .

T
EI~~- Ent~~~4)I

. It follows from the p—order Markov property, that for
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This parametrization has the advantage that the variation

domain ‘?? of ‘T= {~iTl,...) .~) is the simple product

set H4,i)x.. .

p—times .

The mapping I) ‚ which transforms Ql) I to

. . . ‚ can be easily given by a system of linear

equations, analogous to the lule—Walker equations.

Let us introduce the notations . .

1 E(~n. ~(~—i)L .E~nf =~ ) ‘

(E ~n) = O Y By the no~ality of the process

we can write

n-I

(4.1) E (~ (~)1 ) = OH ~ (n—D

~jiIt is easy to calculate that Jij = .

Multiplying (1) by ~(n-h for Í=l,...,j and taking

expectation we get the desired system:

~ ~ 9~-i ~(jJ ‚

(4.1’) .

. 9~ °(j4 + ~... ~ Sj—~ °HJ =

~_zD~jL~~ t~j’j .

: 1, ... ‚ p
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Especially — by the Yule—Walker equations O(.pi = CU

If the coefficients

Q0,... 0p are admissible

(the roots of polynomial ~ Q111° —•~ are an
inside the unit circle),

then there exists a unique stationary process satisfying

(1). From this fact follows the existence and unicity of

the solution of system (1) especially the existence of

‚ moreover ~ 4. (If for some j = 4 the

process ~n) would be deteninistic.) .

We can prove the converse of this assertion.

Theorem 1. The mapping ~ ‚ which transfo&ms

a = H1,..., aH to ~= (~) . . .

one—to—one and onto to (—1,1))<. ...K(—l,1). Furthermore,

both FE and its invetse are continuously

differentiable. .

Before the proof we recite a criterion for the

polynomial having zeros only inside the unit circle

(see Duffin [l~). . .

Criterion 1.

Let f(z) be the polynomial .

~ (Z~ Q0t 01Z ± . . . a~zn
where ~~O’ ~ O and fl ~ O.

Let +(Z) the reduced polynomial
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V n-4
~ - (5~a1- a0 ~_~)÷ (öna2-~~n~z)L~..

of degree ri—1 • Then has zeros only inside the unit

circle if and only if ‚ and do so.

Proof. Consider the polynomial

= Q11 . . . aPip

It is easily seen that if and only if

= has zeros only inside the unit circle and,

according to Criterion 1, this is equivalent to the oonditions

lapl 1
‚1 Q p—Z p—I

. ~ ±Z )

has zeros only inside the unit circle, where

= ~p~4—i~ Qi~i Qp7~~) Ill.. .IP—l.

Next it will be proved that

~4.2) ~ = ~_i p—I—i ‚ ‚ ~ ‘.

The equations

(4.3) ~J . °t~ ~i ~r ~ ~ ~-i~ 3 =

determine, for 0’pp fixed, a transformation of

) OLp~ p—I) ~O ~Kp4 ~‚. ~ p—I’ p_i)

with the Jacobian matrix
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~1 QQ.~.Q~\
7 0 1 0. ..-~ 0

. ..

: .

0-~0 1 0
-. 001

(recall that 1~ = where the central element is

if p is even. Since the value of IJ~j-~1 is

t

which is ~ O if and only if ≠ it suffices to prove

that the (3—s satisfy (3) . .

Thus (.2) is established. .

Observing that

a repetitive use of Criterion 1 immediately shows that

has zeros only inside the unit circle if and only if

~ ~ ~4 t.... ~ 1

and thus

= (-131) ~ (-1,1).

p- times

From the definition of partial correlations it follows that

‘ are uniqually determined by the coefficients and

dispersion 6~’.

On the other hand from recursive formulas due to Durbin (see

Exercise 2) we get
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- = ~ ~-i ~-i -

. ~~ ~p—2~—4 —j =

(.4.4) .

.. = •j+4j+4j~.~ ~pp~p—4p~j ‘

The right hand side of ~4) contains ‘JT~S and

with rn cl c p and we can continue using ~4), ending up

with a polynomial in the 17j 8 • So we get that the inverse

c~ of the mapping ~ can be correctly defined, and there

fore ~ is one—to—one. .

Since (()‚ defined by (4), is a polynomial in

continuosly differentiable, it is therefore, by the inverse

function theorem, sufficient to show that

(4.5) ~

(A* denotes the transposed of A). As was pointed out by

Daniels [1], the Jacobian (5) can be found by repetitive use

of the transformation (3) ‚ yielding

(4 ~.)[J/l] (1

Exercises .

1. Prove that

[flint: use the relation .

=~ ~(n-lI~~)].



—58—

2. Prove the recursive formulas

D(j ~‚ = i ~ ~4, j 4

~ •~~ °~ g~±i _V(1t4~~~ ~

which are due to Durbin. [U

[Hint: use the geon~trical picture expressed by equation

3 • Prove that in the 3—dimensional case the domain ‚2- of

admissible parameters is determined by the inequalities

01 ~- 01 t 03 ~ 4
. — -~ — c 1 . ‘

~ 4 . .

I~31 <

4 • Prove the following statement: the wide sense stationazy

process ~(h) (n=Q,t4, t2,...) with partial autocor—

relation ±‘u.nction 1~7 (~ > 0) is regular if and only

it ‚

(*) ~ forall ho.
Furthermore the autocorrelation function R j) in regu2ar

case is strictly positive definite. SC ~*) is fulfilled if

and only if R (3) is strictly positive definite (see Ramsey

[ii).

5. Prove that the stationary process is singular if and only

if (Ramsey [1]) ‘
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= 00

6. Prove that ~h) is a p—order autoregressive process if

ardozayif ~O when 3~D.

7. Prove theorem 1 by the help of exercises 4. and 6.(Ramsey

[U).

8. Let ~(n) a. stationary Gaussian process with

E ~ (n) = ‚ E(n_&)z

Prove that .

&~
j=1

E ([~ k~1H~
where o( are siven in (‚4.1’).
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