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Chapter 12

Bagic concepts and definitions

In this book we shall be concerned primarily with the
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. .y B S - T S S —— —

cages, will mean time.

In the first part of the book we begin with some preli-
minery materiels on stochastic processes. The standard refe-
rence will be Gikhman-Skorokhod’s book [1] where the reader
may find the proofs which are not given here and which are
far from the aims of this book.

A stochastic process is a parametrized family of random
variables, where the range of random variables is a finite -
dimensional Fuclidean space, denoted by Rk in the k-dimensi-
onal caase,

Let be given the parameter or index apgce’?ﬁand teT
denoting the parameter, where in most cases t means the time.
The vector random variables ;§Y£)=(§1fl...,§mﬂﬂﬂ)

. depending on parameter t, where™ means the "transpose" of a
vector (matrix), form a stochastic process if for any values
tys toseees b (6;€T, i=1,2,...,n) there is given the
common probability distribution function ofﬁﬁql..qg(tn).
That is, for anylseta Ejyeees B of the k-dimensional Eucli-

¥
dean space’R

P, ... E)=Plsk)eE,, ... &t ek |
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is given. §ﬂf)(j=Qi,...,k-d) are called the components of
vector process _§_(t) .

The probabilistic properties of the paremetrized set of
random variables are uniquely determined by the corresponding
finite - dimensional distributions. That this is so is a con-
sequence of the extension theorem of Kolmogorov (see [i] s O
Gikhman-Skorokhod [1]). This theorem of Kolmogorov may be
applied when ['is an inferval (in the continuous case) s, but
the situation is more complicated than in the discrete case.

Generally we say, that on the probability space(Iljgff))
there is given the stochastic process.§(t,co) (the space is
N and w€ () denoting the elements, ¥ is a © - algebra with
elements AcF, P is the probability measure), if for every
teT ﬁ(f) is a random vector variable.

Note that if we have a directly defined stochastic pro-
cess we can determine the basic probability space in several
way.

Supposing a family of random vector variables whose fi-
nite dimensional distributions coincide with the given dist-
ributions (see Gikhman-Skorokhod [1]), if we take simply
the function - value at each + then we get the sample apace
as the function space X and the prqcessgagco) ig a function
space process, where the mappingco—agkﬁp)muat be a geasurable
mapping of {1 into X .

In the whole book, when T" is the real line or an inter-

val of it, for simplicity we assume that_rl, or the sample
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spaceX y congiste of the componentwise cont'inuous vecior
functions. Sq we eLviod the question of seperability.

We say that E(Jc) is continuous with probability one
when £t o) is continuous in + for almost all w . In the
book we shall be concerned with processes continuous with
probability one. In such a case it is naturasl that we confi-
ne ourselfes to a smaller space, the space of continuous
functions.

We say that the process E_(t, ) is geparable if we can
find a countable dense set {t;] in [ and a set NE F with
measure O such that for any open set G in T and any

arbitrary closed set FeR" , the set
{oo; g(t,w) ek for all
differs from the set |
{C.J:g(’:.,w)EE for all t,€ 5}

by a subset of N . Doob has shown ( see Gikhman-Skorohod [:1])
that for any process (with range in a locally compact spa.ce)
there exists an equivalent separable process.

We say that two processes g_(ilco) and §_‘({,w) are

VP'lé(t,w)-—-é’(t,w) =1 , for eﬁery tel’.

Iater we shall see examples where we choose that process from
the class of equivalent processes, which has Ehe best quali-

ties, for example continuity, differentiability etc.(see €l
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the § on stochastic integrals).

In most cases we do not exhibit the variable ¢d in g(t}c.o)
even if an integration is according to P(dw).

If gt) is given in the interval [a,b] we say that the-
re is given a realization on Ea,tﬂ of the process, the "samp-
le function", the "trajectory" or "history" of the process.
The process is given directly if the space consists of the
realizations X .

In the case when | consists of the integer numbers we
speak on a stochastic process with discrete time /or a "time
series", or a "random sequence"/. The process g_({) is conti-
nuous parameter stochastic processg when | 'is the real line,
ﬁr a part of it.

The first moment, or expectation, of the process 5(’: )is

denoted by
EE)= m)=(my(&) .. m, (1))

and it is called the expected /or mean/ value function. By
definition Eg(’c)‘-’_{{ E({:Jw) Pldeo) . We always assume, that

the second moments
E(%({:) - mj(t)) (gL(S) - mL(S)) = GLJ ({:,5)

exist. If we arrange them into a matrix B s) &(6‘,,:[({‘5)) =
. 3¢
“E(§(t)-m(t))(§(s)—~m(s)) which is symmetrical, than we

refer to it as the covariance matrix.
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We say that the sequence of random variables §, tends
to the random variable _§_ in mean square, which will be deno-

ted by l.i.m. § =8, if

1,5 = E(5 - 06— ) — O,

The stochastic process 5({) is a called stationary in

the wide sense /or second-order stationary/ when
m{t)=E §(t) = const,
Bt s) =Bt -s)

that is, the covariance matrix depends only on the difference
t-s.

By a strictly stationary vector process 5_({:) we mean one

for which, for all n, ty, Syse+., %, and h the distributions
of §(’c4), cee g(’tn) and _é_(t,“‘h)} . .,§(£n+h) are the same. If

process _s('b) hag finite mean square, this means that

ECE(6) = mn(e)) (§(5) = mls W =E(§(t ~5)-m ) (§0)-m) =
=B ‘”SIO) =R -~9)

i.e. it is stationary in the wide sense.
By a Markov vector process §(t)we mean one for which,
for all n t;<t,<...<t, J'E >ty and arbitrery Borel set
h
and Ki, "')_)_(h ER

PUERICEI) =xy, ... &) = x) -PEt)eE

6t o) =X, }
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holds with probability 1.

A Markov process can be given by the transition proba-

bilities
PEIEE] o) =x) =Ply, sE)

and for them the Kolmogorov-Chapman equation

(1.1) P(g,s,E,t):_I Ply,© £ $)P(x, s, dyv)

is valid often ?)is given by the probability density function
Plx s, E,t)=EJ Plx,s,yt)dy

The Markov process £(i ) is a diffusion type one, when the

following conditions are satiasfied:

a/ for any&E>0 and t2Q —oo <} < on

(1.2) Lim _‘é— / P({Ix'£+ﬁld8)=61

FACTY))

fx—5/>8
b/ there exist functions altx) bt x) such that for any
E20, £20 —>=<x<ee  the relations
in A (y-x) Pl -
1.3 1 X xt+A dy) =alt
( )A e 2 (X*&Pga Xt+a, dy)=alt,x)

(1.4) 1im L ¢ xF Plext+a 4 =b(t
)A—:»o A (x—g)%g s, dy) )
hold.
The functions Q(t,x) and b(hx) are called the coef-
ficients of transition resp. diffusion /or local mean and

local dispersion, see later ch.9. the definition of stochastic
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differential/.

The name "diffusion process™ correspondse the fact that
the move of a particle in liquor or in gas cen be described
by this process under very general agsumptions. The function
a. (£ X) describes the trend of the particle in the sense that
during a time period of length /A the particle moves with the
distance altx)ad§+0(A) whered § is a random variable
with mean A and dispersion b(t x)A+0(A)

Conditions a/ and b/ ere hardly varificable. We give
below stricter, but easier conditioms for a diffusion process.

For £(£) to be a diffusion Markov process it is sufficient to
have the properties

a®*/ for some d>0

) +d |
15 im A (o Pl ke dy)=0,

b*®/ there exist functionscx(tix) and.b(tix) such,
that for all +t X

1.6) pin & [0 Pl tra dg)=alt )
and

(1.7) Al_i_;n0 % f(g._x)lp(i,x,ﬂaj dy)=b(t x).

Indeed in this case

< A 2+d.
s iz ~ =3\o
Ig‘llzpa(fjxjjc*&' d,\j) §773 fhj x| P(t,x,tm, clg) 3(0)
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and

j(sj WP xt+a dg]) [!5 “l P(% xt+4, dy)=H0)
ly-Xi>¢

f(g WPl xtea d3)=—~ff5 Pl xea dy) =30,
ly=xI>¢

It cen be proved /see e.g. Gikhman-Skorokhod [2] p. 65/ that
if f(’r_) is a diffusion process and g(t, x) two times conti-
nuously differentiable function of X and a continucus func-
tion of t then g(f, §(t)) is also a diffusion process with
the coefficients alt,x) Bt x) where

0.9 afed=Z ol g ) o.(ag ) 2 gk, g0+

41 660 25 g6, 5 0)

2

(1.9 Ble)=blt, 60 [ B gle, g x»]

The reader may compare (1.8) - (1.9) with the Ito formulas

(see § 9.).

Let there be given a stochastic process §(Jc)) £ = 0, end
a family of [ -algebras JO:;: with the property qﬂzi = %c if
%, =¥} and such that §(+ ) is measurable with respect %o ?i .
We say that the paire (5( )) ,t) forms a martingale if

E5(k) <= £20, ana EEDIE)=E6), 02524, wien

bility 1. We say that the random variable § is normally

0£s =t with proba-

)

digtributed if the characteristic function of it equals
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i ium &+ 2

= 1
e e )

where m=E§) 61=E(§—E§)1 . In the case 6+ the random

variable § has density function

( -y
:-—-—-—-—- 82'
800 g e 2

The random vector 5 =(§13...> §n) is normally
distributed when the characteristic function has the form

n

(1.10) Ee “’g)“axp {L(_Li,l _m_*)*%g(R g*} 5¢xp{1;ujmj -
-4
2 J[;' Bi Yy ij },

where ] “E gj, Ejk‘“‘E(gj ‘mj)(gk-mk). and ’R=(6Jk) isg a
gymmetric pozitiv semidefinite matrix. If’R hag rank n the

n-dimensional demsity function of _.{ is

-1

(1) f0-2T) R o l-4a-m)R (x-f ).

It is well known that if §{ is a Gaussian random vector and

A=(G,-Lj)(i=i,2,...Jn‘, i=1.2,. ..,m) is a matrix then
n-AS _

is normelly distributed with parameters m=Am R=ARA,

If the joint distribution of §{ and 7 1is normal and they

are uncorrelated(Egi, i =0 for i=4,...n; j=i,...)m)

then they are independent.
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We apsume that the reader is acquainted with the elemen-
tary facts with respect to the normel distribution /the con-
ditional distribution, expected value e.t.c/.

We remind some fact /see e.g. Rao [1] /
1. If '§i)§1=g3;§h are normally distributed (E§L=4]) then

1.12) EE § 8 E=EE 6 ELETEE GRS RS LESS,.

2

2. 1£ E(§,-f) — 0 and §,, are normslly distributed then {
hag also normal distribution.

3. A necessary and sufficient condition for normally distri-

buted random vectors to converge in distribution is that

Egﬁzmn*—)m and E(gn" Tn)(gh_mn)%'__ﬁR-

4. The random vector 5 in @n in normally distributed if and
only if when(g) g)/the acalar product of wo vectors/ is a
random variable with normal distribution for every}L£5$? .

The process i (%) is a Gaussian one /or normal process/
if its 811 finite dimensional distributions are Gaussisan.

The measurei?g generated by the variables g_(t) is
called a Gaussian /or normal/ measure.

A Gaussian process § (£) is determined by the wmean value

function r_n_(t)‘*'"E §_(,c) and by the covariance function

Blst) =E(E(s)~m(s) EG)—mE).  m () is an

arbitrary function but B(s+t) must be nonnegative definite,
i.e. for arbitrary real numbers Cy. and integer n
L

(BQ,Q)'Z C, G %(Sl{:)?‘zo .

i3
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Exercisesn

1. Prove that the process f(t) is Gausgian if and only if
every linear combination
C,J%E(t&)‘F g §t,)
(n<ee i &y, ... by arbitrary,
Ct'._ real arbitrary numbers ,) is & Gaussian random variable.
2. On the bagis of Kolmogorov’s theorem prove that for every

m{t )function and positive definite function B(Sﬂ:) (i.e.

e Cy. Cy, B(-tL,tj)é 0 » where n is an integer, CJC,L, C’Lj
1

are arbitrary real) there exist a probability space(ﬂfsﬁ?)
and stochastic process § (t) that E §&)=m{t) and cov
(£(s), §(t)) =B(st).

3. Let £, &, ...,§,  Dbe a Gaussian system with E5=0 and
covariance matrix B where rank of B isr &n . It is
known that there exists an orthogonal transformation
C (Cc*=l_) for which CR C has diagonal form. Prove
that there exist  independent Gaussian random variables
N4y + =+ My such that €. (for every t) is a linear combi-
nation of thewm. Further, if r<n prove that there exist
exactly n—-r linear relations between the variables
£, ... ¢ .

4. Let §,l, 22,.--be a Ga.u:sian independent sequence with
E£=0. prove that 1, §?;<C>° with probability one if and

oo 2 1
only if ;E?L <oo,

5. Let §4] §1,- .. finite or infinite sequence of random
variables with & §-L=O} ng <%=, We suppose that they are
linearly independent. If (§-L) §k)=E§.L §k and
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gl g'l.—'l R §4

5. - <§L,§Q) (6.8 (66

(§L, §L—1) (§L—¢, gi-a)- . .(é-t_ 1, §,1)

then ;= %/Eif form an orthonormal sequence of
=i,

L#j.

Let ©=190,,...,0,} and §={§, ... £} be two random

random variables, i.e,. qui 7; = { /01

vectors, and the common distribution of © and §{ be

normal; if, moreover, the matrix cov (g,g) has an inverse
(cov"d(gjg)) then

Elel§)=Fo+cov (o,§) cov (§8(E~ES)

cov(@[€)=cov(e, 0)~cov(e,§ ) covt (£ £) cov’(0,2)

7. Prove that the definition of the Markov processes may be

replaced by anyone of the following
a/ There are families of © -algebras (J:t and gﬁ—. such that:
a)F ek, G G 4 t<s;
6)§(JE) is measurable with respect to both fﬁ and Qt

‘bp) the sets of ?t and C({t are independent under the
condition of ?t N 94: with probability 1., i.e. if

(x) P(AnB|ENG)=P(A|%ng)PBE nG,).
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(The 6-algebras 6(§(5)=5 st) and 6(E(r):T2t) mnay
“be chosen for St; resp. %’c)

b/ For any t and any bounded, gt_ measurable randowm va-

riable n We have

@) E(pIE)=E(51%n Gy a.s.

¢/ for $ 2 t and any bounded ¢ =)Q(X) (xeR™)

(o) E(?@(S))l £)= E(‘@(ﬁ(s))lﬁﬂ (Z}JL) . 5.

(Hint: a./ It is enough to prove (®) for any finite
dimensional A and B .
b./ Prove {#x) first for characteristic functi-

ons of sets from (.

c./ Obviously b.) =>c.). Prove (¥x) from (zex)

uging the hint for b.

8. Prove that for any diffusion process §(Jc) with continuous
coefficient of {transition a (t, x) ;and coefficient of
2
digpersion b ({:) X) and any continuous bounded function

‘P(X) such that the function

u,(s,x)=E[)°(§(t))|§(s)] ) (s2¢)
§(9)=x
has bounded derivatives of first and second order with

respect to X the function LL(S,X) hag the derivative

_S_Lg__(é,)(_) and the equation
)

du - 3 4 2 Y
(1) = gr=alm s + (s
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is satisfied in the region SGE(O){:)) XER) and the bounda-

ry condition
2im uls,x) = p(x)
s7t
holds.
' (Hin'[:: The boundary condition is a direct consequence
of the boundedness and continuity of ~P(X). To prove (5{)

show first that for any 0<5, <5, <t

LL(SMX): f u-(Sl.Z)(P(Si,X; sy, dz).

Then expanding u(shx} into Taylor series with respect

to X fake the limit 52*51——90 in

u'(s'l’ X) — U..(Sl,.)()

S2 =Sy

Prove that if for a diffusion process §(+_) the conditions
a/ and b/ are satisfied uniformly in X and the partial

derivatives

dplexst,u) B ’ 3 .
8{__ ) 85 (O'(tlg) P(SJXJJCJH)) E (b(t,B)P(S,X} ‘t)'j)))

exist, then 'P(slec}\:]) satisfies the equation

Qpn. D L 8 2
5P =LAty 5a bol

/Hint: prove that for any twice continuously differentiab-
le function 8’(%) dipappearing outside a finite interval

we have

[ pls,xt,9)9(y)dy =
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-5 [oe )plsx; byl 4 g [ pbstu] | g4)dy,

for this prove first that

lim —h'l- U 9(3)p(s,x;s+h)5)dgﬂ%(x)] =

h—0

=afs,x)glx)+4 tf'(s,x)%”(x) J

then use the Markov equation
pls,x;th, y)=Splsx;t,z) plt,z t+h y) dz

and integrate by parts in the expression for

9% U Pls,x5 ) %(%)dtj] :

A random élement § in a Hilbert spacel4 is called
(taugsian if for every W & F{ the scalar product (f,tx) is a
normally distributed random varisble /see remark 4. for
randon vectors/. |

Let us consider a set of random variables { £} and
assume that for every { (for simplicity P1§==Q) P4|§J2<_OQ_
The linear sgpace generated by the scalar p;bduct /the "innerr
product" (g @,) M § % can be extended to a Hilbert space.
This Hilbert space is generated by {g} and we denote it Fk.
In our case the Hilbert space is called a vector Hilbert
gpace.

1r {§} C (%) then ch Ho .+ Let §(t) be a sta-
tionary process then for the Hilbert space F4§ generated by

4

the random variables i(s)) 5==t, F4§ = L4§ .
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Chapter 2:
Regularity and gingularity

t
Let us denote by F4§ the subgpace generated by EGJl5§{,
and let

He s 0 H, H - U H
t 0§

i.e.P—% is the Hilbert space genefated by the process é(%).
If l—({“’ consists only of the element O we say thet the
process is linearly regular /purely non deterministic/.

When F$;==F4§°° we say that the process is linearly
gingular /purely deterministic/.

Regularity means, that the future always contains new
information which is uncorrelated with the past.

When £(4)is linearly regular there exists a sequence
C, such that gGJ==E% C, £(t-k) with uncorrelated E( ).

. This is the so called Wold expansion.,
Example 1. For | S| € 4 the process

e.)  E)=1 8" E(-n),

where E(r\) is a sequence of independent indentically distri-
2
buted random variables(hﬂE(t)=(%f“]€(n)*ﬂJJis gtationary and

regular,

Ezample 2. If | S|>1 the process
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is stationary and regular, where & (Jc) is the same asg in
Example 1.
It is remarkable that the processes of examples 1 and 2

satisfy the equation /a stochastic difference eguation/
(2.2) §(t)=¢8(-1)+e(t

In example 1 the procese is a Markov one depending on the
past, but in example 2 it has the Markov property depending
on the future. In example 2. £(t)and £(t-1) are not inde-
pendent as in example 1.

It is a well known fact that if. we have a series of
Hilbert spaces with the property H

++4
element £ € H—D then the projection of § to H,_ tends to O

2 H, and for any

in norm if t — -°° then AH, reduces to the element O.
Using this fact we can show the regularity of both pro-
cesses. In example 1 the pro.]ectlon of g(O) to Ht 1S
Z g £n) and this ”ZSE(” JI—0 i t—> ——cm,
In example 2 it follows from /x/ that M £(t) §(0)-_-—g++‘
M€ (D) (£ <0). From this fact we get that if g(o) is the
projection of §(0) on Hy(t <0) then M]g(ﬂ)lzé c, st 59

when t —> —°o,

Example 3., Let Eo, §,l be independent random varisbles
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2
(ME =0, D =1). &t)=Fsint+§, cost
is stationary and singular. In this case it is trivial that

++4

§

+ s P
H = = =

g H I—I§ Hg .
Example 4. Pinsker gave an interesting example for a two

%
dimensional process g(t) =(§4(+.), éz(t)) which is regular,
but the process 7(t) =§(-t) ie singular. /It may be proved
that in the one dimensional case if §(~t) is regular than
n(k)=£€(~¢) has the same property./
Let £,(+) be an independent stationary process with
2 [="2%

_M&;O, ™%, = S oand fz(f)‘gockgi(tw) (Zc‘z <°‘=)J

_§_z (t) is obviously regular.

if
(2.3) lim 5 = —0

then the process 7(t)=F£ (1) is singular. It is sufficient
- = -1
to prove 7)€ Hf?, because of stationarity. Indeed |—|,,2

contains the elements gi(i)] §4(2)) “ e

and §,(1)= i c, §,(4-%), §2)= :2:0 ¢, 5,2k, . ..
T cy §,(n-K)

k=n

-4
Hence H”Z contains the elements C—Z/J;n

n= . Further
(h=1,2,...)

k>n

leo-4 3 e, £ -0l =& T o

which tends to O by (2.3).
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Let we denote by A, the 6 -algebra generated by the

random variables S_(u))éékb ét) i.e. by the sets of type

o gki(ta)EEdr ...)Ekn(fh)eEh . where St=t, £t for every
k=412, ...,n and let
- %
A =0m A e
£ >=oe )
A+= Lim AT .

oo

We say that the stationary process g(-\;)is regular, if the
¢ -algebra A is a trivial one, t]::is means that it contains
only sets of probability 1 or O.

From the (0—-1 law of Kolmogorov it follows that an
independent sequence is always regular.

Let denote |4

the Hilbert space generated by the
random variables rzz(EnfD)J which are measurable with respect
to A: and integrable with their square. Regularity means

that

(2.4) QH“““=0 .

That the regularity follows from /x/ can be easily seen,
because XA EH(S'B when ANeAE . On the other hand for any
ne H(s,ﬂ there exists ; C, ?(Ak for which ”)N;lck'XAk—qZII<€
and A, EAJZ (k= H\l) and from regularity followe (2.4).
Let T denote the shift operator {(Tt)= §(1:+4.)J then
from gtationarity follows that the operator W §(t)=§(Tt)
is isometric and it can be proved that W may be extended to
a unitary operator on . /see Rozanov [17] p.72./
From /%/ it follows, that if {(t) is reguler then for
every r}zeHg the stationary process oa(t)=uf2 is linearly

regular,
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Theorem 1. For Gaussian processes regularity and linear regu-

larity are equivalent.

Proof. From the Wold decomposition it follows that for the
Gaussian processes f(t)there exists a sequence of :Lnd.ependent.
Gaussian sequence of random variables S(Jc) 80 that A (5)

‘A (€) . But for S(Jc) the zero-ae law is true and hence

it is true for {(Lf) too.

Theorem 2. Sufficient and necessary condition for regularity

is the following

(2.5) sup P(AB) - PR PRI —0

Be A

when t — —oe  , for any A €A
Proof. Sufficiency. Let AeA and B=A , then from (2.5)

follows that T(A) P(A) ice. P(AY=0 or 1.

Necessltx. If §(£) is regular, then it is llnearly regular
(&)

and for every OZEHg the projection of % on H_E n o,

hag the property “02(1‘:)“ — 0.
if §€.H then for any QEHE

(2.6) (9,8)=(nt) §) ana (n O)] < lp@ISH.

Let A€ ATM and BEAfc’c then from (2.6) follows for
n=RPA), §= % -P(B) thas I(n, OIPUR)-PAPE) <@l
when t — —°° which does not depend on B.

A stronger condition than (2.5) is the uniform mixing con-

dition which we define in the following way. If

|
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sup |P(AB)-P(R)PBRI —0
(2.7) AeA’_ | ‘

BeA, . :
when 7 —»> oo then §{ ({) ie said to satisfy the uniform

mixing condition., It was introduced by M. Rosenblatt,

Exercises

For the process f (t) let us denote by P((t)) the Hilbert-sace
ted by polinomials 1, C LB LRy

generate ¥y polinomials SPRRLS TR 19 PRI YR n mean

square norm, and by M(g({:)) the Hilbert-space of random

variables with finite second moment and measurable with

respect to the § -field A:,

1. prove, that P(§(+))=M({(t)) under the following
condition: there exists a C(t)>0 ‘such, that
E ec(t)i&(t)l = &= /Notice, that this condition is
sufficient for the solvability of the problem of moments
for the individual distributions/ F (x)=P(§(t)<x).)
(Hint: It is sufficient to prove, that finite, bounded,
continuous functions of n variables $({(t,) ..., §t,)) = may
be approximated by polinomials in Ll norm. For this pur-
pose prove, that finite, bounded, continuous functions of
one variable g(i(f )) may be approximated by polinomi-
alg in LG norm. Approximate then at first by periodic
functions, then use the second Weierstrésa approximation
theorem, and the power series expansion of trigonometric

functions.)
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Suppose, that E(Jc):l.s 8 Gaussgian process, and {fQ } is a
oo

complete orthonormal system in H g - Denote by hn(x) the

N -th Hermite polinomial. The polinomiale

’ kH’i) “')?k3 A1t A =hp (Aa): o ')hp(?‘k)
(Pat, - >+Pe=n, Ay .., are different) from a couplete
orthonormal system in the space 'P E ® 'Ph 1 Where P is
the span of the polinomials of degree at most .
(Hint Recall, that the Hermite polinomials are orth.onor-—
mal with respect to the weight function -2 e % ) -

V21T
Congequence: any n e M (§(+, )) has the representation

Myeen) A
=, + D ( R k) |
'Q {n) (%P) n . Py -0y Py \PPU"'!’PR) }\11"'\7“‘

7\4, voey A
where the coefficients a

Pry--) Py
mined by the formulas '

Mooy A
1 ( Pave -y Py )—EQKEJ?U"')H(S Ay eeey Ay

/Cameron-Martin expansion/.

) are uniquelly deter-

Let the sequence {7, gi, .+« §,,-..}of random variables
have jointly normal distribution. The optimal approxima-
tion /in | norm/ of the random variable 'Qn by elements
from M(§(+)) belongs to P.({)

(Hint: Use the uniqueness of the Cameron-Martin expanaion.)

Prove the Wold expansion.
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Chapter 2".
The Brownian motion process [Wiener Process[

The process w (+) (for +2 0) 4is called a Brownian
motion process /or Wiener Process/ if it is
a/ Homogeneous, i.e. the distribution of w (t +h)—w(t)
does not depend on t. |
b/ A process with independent increments, i.e. fof every
t, < t, <...<t, and n the random variables are
= wte)=wlt, ), .., = (ty)-w(t,), n, = w(t,)
independent.
¢/ A Gaussian process, for which W(O)—z— 0, Mw(t)= O)
Mw*(t)=6"¢,
We shall investigate only continuous Brownian motion
processes,

From the definition it follows that

b
2

-
2k

Plawl)<b) P (aculeri-whlh)= gy [oF o

a.
and the characteristic function of w (h) is given by

2
Lz (1) —Zk
Me = 2

It is trivial that a sufficient and necessary condition for
the proceas w‘(t) to be a Browhian motion process is the
following: for every 0 =ty <t; <. ..¢fty nand Z,, 2,,.. *y Zn

the relation

Ea.xp{'l. éﬁ Z, [w(tk) "W(tk-4ﬂ+l Zow’(*-o)} =exp {34.‘ EZQL (. “‘tk-i)}



-~ 28 —
holds. This formula will be used to verify is a process a

Brownian motion one or not.
We shall prove some theorems concerning Brownian motion

processes.

Theorem 1. If m(t) is a differentiable function with
T 1
[ ImE)ldt <o  and oz(t)=m(+:) + o (4) then the variab-
(7]
le

§ _ 'F"Z(tm---)tn)
n 10“'('&'-4,)‘ . ‘)']:n)

tends, with probability 1 /when max/t; —ti-,/— 0 /)to a

random variable

‘ : .
(3.0 §=exp |- %] [(e)] dt + [ me)dn) .
0

0

Proof. It is easy to calculate

-n n ..,yz " : 5
F"g(ﬁ, contg)=(2TT) : I[L(ti"%-i)ﬁxp {‘ % LEi E}t—w('fzr?zi-fm(’q)*m(h-i))}

-2 . _% n N
fwlt, ... to)=(2TT) 211({1“*:1-1) { ‘%E Tty (e —w iy }

v=1

where QL=Q(*:L) wL=w(tL) . Here we get

fo=fottasatol (o)) =arp (-4 £ A [lme)-meiaf -

=4

o

plate): oltiad) (g, -, )]} =
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n

Q’XP g’ Ei m(’c-\,‘). Tf*—;—-!‘):l (*:L“‘)CL..,;) +

N }n: (m(£1) = mEi-4)

1, - ti-4 (qZ(J“L) -ty ) } .
Under the assumptions of the theorem the first sum tends to
“Ai‘f[m%*cﬂzdjc and the second tends in mean square %o
[ m() dn(t) . We may choose such a subsequence for which the

second sum is convergent with probebility l.

Theorem 2. If max(t,—ti_)— 0, (O={:0<Jr,d_<j ... <N =‘C))

then

2" 9 .
(3.9 §o=L(ele)-wlt,) — 67T
with probability. 1.

Proof. The random variable

gn = 1. (urey) — oty —4))1

2
has a X digtribution with 2" degrees of freedom, and we

have
E in- 61 Liji(tl_'h—fl)z GZ 'T‘
E Si = LZE E(w(ﬁ)“W(’tL ,1))2(ur(+,j)—*ur(tj__4))z =

=L>7_:'j E(ur{t) - w(£L _4))2(ux(+.3)—ur(tjﬂ4))2 +2 Li E(W({:L)— “"(*—L_i)):
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= 6\/“[172—*- _.ght—
So we get

2 2 2 g7

D §n=E §n —(E §n) - an-1

for the wvariance

/Here we used the relation (1.12)/
From the Chebishev-inequality

PUIS, ~ETle) < S0T,
ir;md we get at once that §n tends to giTstocha.stically. As
;; é%‘ is convergent, we deduce from the Borel-Cantelli
lemma the convergence with probability 1.

Brownian motions are often considered together with a
family of G -algebras {% )}  for which (33;15 (d};l (2 A) wit)
is measurable with respect to ¥, and wit+h)-wr(t) is
independent of ?5{ (i.e. of the events D E f&) . It is
possible that 3i==,A§, and always Az c % .

Theorem 3. /The Markov property of the Brownian motion
process./ The process n(£)=w(T+t)—w(T)with fixed I , is a

S
Brownian motion process, independent of AD .

Broof. The Brownian motion character of the process 7 (t)
follows directly from the fact, that = (t) is Gaussian, with
independent increments with the same mean and correlation
functions as the Brownian motion précess. On the other hand

for every O=t 2t st,£ ... ¢4, =T
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Blurleo), wity), .. o wrltn)) = 6 wlt) w(g,)-wlt,) .. wlt)- wit,)

end 7 (4 ) is independent of the variables on the right hand
gide.

The question is, that if we replace | by a random vari-
able will this theorem remain true? It turns out that this is

the cape for a wide class of random variables.

Definition 1. The random variable T{co) is called a Markov
moment (Markov point, or stopping time) with reapect ic the
family of & -algebras {7F, | if for every

{w:t(w)<t} e %

For example T=T, /constant/ is a Markov moment. It is easy
to see that the first upcrossing time of the level a that is
the random variable ‘To={mint: w (t)2a}is a Markov moment.
Indeed from the continuity of w(t)

{1 <t)= rQ | .-‘ff {w(r,co)>a - 4} /r is rational/.
The random iariable g which denotes the last moment of
crosging the J level before reaching the level a is not a
Markov moment, as it depends on the evente occuring in the

“Fature",

Definition 2. Iet T be a Markov moment with respect the & -

algebras .  then we say that Ac ¥ if for every+ =0
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o~
th ed, .

IIn

An{T

It may be proved that 3:; ig a 6 ~algebra.

As we shall see w (T )is measurable with respect to ¥
for any stopping time T ., Indeed if {u;} = {—gﬂ“—} is the set
of the rational numbers then, using the fact that w(t) is
continuous with probability one, the set {co:w(v)<c N{r £t}

can be written in the form

nuy u u {ur(ﬁ‘-,_)<c*":£*}
N N 0 [ Tgl<by
‘ et

So it is measurable with respect to ¥, .

Theorem 4., /The strong Markov property./ Let T (co) be with
probability 1 finite Markov moment., The process ”ZG:):
= W(’c+'t’)—w(’t) is a Brownian motion process, independent of (:EC .

The attached family of & '-algebras is 3., ..

Proof, We introduce the sequence of random variables tn(w)=%-:

’C'(C;J) c k £n4

moment. Let us consider some event Be 9‘::: and we shall

) "g-ﬁ . Obviously T, Y T and is a Markov

prove that it is independent of 7(t,), ..., 7 {tm) where
0<%y <, voy< by, and  7(t;) = w(r+t ) - w(T) is enough
to verify that

E Xy 8lpk) .., na))=PBIEHk), ..., nltw)
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for a femily of functions $ y wide enough., For exsmple we

suppose $E€EC.m and [[§ ll=gup 1§11 <
Let

€= fur(@rt)-wr (), ()= (B b)),
and

£ 0, r )05 oo, (T b 0 ).

As .{l and ‘w‘-(t)a:ce continuous §n-—>§ with probability 1.
From Lebesgue theorem and the fact that i §n”§|[£”<

E %, §=tim EXE, .

n—>oe

But

E’XB gn‘f‘ E kzi .IXB‘X{'{:I‘: §n= ZE(‘XBX{’E’,‘,=%} ) gn =

I
o)

- B0,

.
nf;_'ﬁ}

$.) -

Now using the Markov property BN {T,= 31 € A;’% . and
E Don {m= 53§ (s +4,) -0 @), oo wlls +o,y) -

- w (5 +tm_i))] -

=E[’XBO {r;ng%}] Efwlert,)-wl) ... ol i) -wlr b)) -

PN T A1) EUG ), .. 5 (b))
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Where r')\é({i), - . aﬁi({:m) is a Brownian motion process. We

get
EXB gn“‘g(p(%ﬂ{’fn’=*})E$("z(ti) ,;i(tm))=

PRIELEED, ., 7 () = PBIEL (), ..yl

i.e. the proéess 92(1:) is independent of 3{ . Replacing

B = (L and using again the Lebesgue theorem 'iz(t)is a
Brownian motion process, as n ({:) is measurable with respect
to gtf{_ﬁ . By using the strong Markov property of the Brownian
motion process we can prove the go called reflection princip-

le /Desire André/.

Thecrem 5. For o >0

(3.9 Pl swp w(t) >a}=2P(w(t)>a) -V & f T 4.

O+ T

Proof. Let To the moment of reaching the level CL(> O).We

congider

[ ¥=9

e Plu()>a) db-E j X () di -

0 1 0o

=k _/ - r)((a'%)( w‘('b)) dt=F f e_?@('i:a,-e-s) X(Q’M)(W(toﬁ- s)) ds =

Lo
Oy

—Egtte j e Xie, ooy (W (a8} = wr(te) + w(s) ds =

Q
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= Ee-—}\'tda,f e-'--'f‘\S ?((a‘oo) (W(S)+0~') ds

o

where we used the strong Markov property of w’(t)and that

w{Ta)= o. Further

Lty

-E g f & X (o, om0 (s)) ds= Ee—q%Efe-}s X(O,m)(ﬁr(s)) ds =

o

~ATa ~As 4 : 1 ATa
-E ¢ fe % ds'= i_i-E e .

In such a way we get

o o ot
[&™P (wt)>a) dt=AE™™ -[ &5 Pitedt) =

-5 [ €M P (st d,

- 0
and from the uniqueness of Laplace transform

i
(3.4) Plu(s)>a= 7 Pirg <),
The last equation is equivalent to the reflexion principle

and our theorem is proved.

Remark 1. The distribution of T, is called the Wald distri-

bution and we get for it



(3.9 Plrce) V& [ au-|Z [ ¢ ¥ an.

SAES
The density function
2
(3.9 Pra(t)= 5= e;f
It is interesting to note that
pra(t) ~ 5 , as t —>ee,

+
and go

ETo o2,

though it is well known /the reader may prove/, that

Plrg<e=)=1

Remark 2, The proof of the theorem may be done in the follo-
wing intiutive way. Let T, denote the first upcrossing moment
of level a, where ur(’i“q,)=a,. From this moment let us reflect

the trajectories for the line Y=Q. It is obvious that

?{stﬂ_wﬁﬂ>a,wf@>@}=P{wKT)éaJ.
0=t &

On the other hand from strong Markov property the behaviour
of the process w‘(«‘:)—uf(’l‘f) for + > T is independent of
T

Ao

neans

and UJ’(JC) ~w{7) is symmetrically distributed, this
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P{OEEETWG’))% W(T)<®}=P{ swpwl)>a w2 a)=PluT2za}.

From this two equations we get the desired equality.
Multidimensional Brownian Motion., A procesgs §(4: ) , taking

values from 'Rm is called an m - dimensional Brownian motion,

if £ (4 )is homogeneous, §(0)=0 continuous with probabili-

ty ?L, having independent increments, for which the mcalar

process (_Z_) 5 (Jc )) ig a Brownian motion process for each

Z er"” with |z =1 , and there is a family of & -algeb-

ras {¥,) in () for waich ¥, €& (sA)), if f,5t,

and g(t) is measurable with respect to (ZEC . For such a

process we have the relations E(gjg(f))='01 Dl(glg(’c)) =t.

The distribution of __f_ (t)is determined by the density function

2

(1) pt(§)=(2‘[\f£-) ¢xp {“ i%{lxll} )

so that for any Borel set Ae’Rm

(2) PU®)EA) (M) * Jaxo |- ﬁ-""_l} Ha(de)

A
where M, 1is the Lebesgue measure in 7,

Obviously if |l is an orthonormal transformation of ‘Rm
and §(t) is a Brownian motion in R™  then U,g(Jc )is a
Brownian motion in 'Rm too. ‘

It easily follows now that if Sg is & ball with radius
Q with its center in the beginning of the system of coordi-
nates, and Ty the firat exit time of § (t) from S¢ then
_{(’t’g) is uniformly distributed on the surface of S¢.Strong

‘Markovity for multivariate Brownian motion follows easily
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from the fact that ite coordinates are independent one dimen-

gional Brownian motions.

Theorem 1. For any C>0,T>0 the Brownian motion §£(t) has
the property

P svp_I§0)1>0) % 2805(T)1 >0).
Proof. Let T be the firat exit time from the ball S, . Then
the process £(t+t)— f(T) 1is an m~dimensional Brownian

wmotion too, Hence

PUKTI= 0= Plr<T, [ §(T) - )l >c) =

T

= [PUEM - 5) + Eei>clv=t) Plreds) =

(=]

f (IET)-§(t)+z1>c)Plre d)c)

(o}

where Z is any vektor for which lZl = C ., But

PULT) - i) + 2>} 2PUHT) -§(1), 202 0) = %,

80 that

POs(m)zc)2

N[p.

f’P(redt%—P{ s _I§(t)]>c)
proving the theorem.
Exercises

1. /The Wiener-Representation of the Brownian motion process./

Let {H, (t)} (0sts4) be the Haar’s system, i.e.
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Ho(t)_mi
and if 2" £k < .2“”‘ than
2t g KR koZu

2"+ 4
Ho(e)-1-2F @ FgFap< it

0 other wise

Furthermore let 7 be independent standard Gaussian
random variables. The series n): Dn f H, () 4t
uniformly converges and represents the Brownian motion
process.

(Hint: At first prove, that for deterministic coeffici-
ents Q, the series r’?c_:‘o a, th H@)- () uniformly
converges under the condition la,lc0(uf) (0<€<7%)

Then verify, that this condition fullfills with probabi-
lity 1 for the random coefficients N n « The characte-
rigtic functions of the desired distributions can be com-

puted directly,)

/The interated logarithm theorem./ If w (t) is the

standard Brownian motion process, then

W,
Pl Voo = 1) =1
(Hint: Use the iterated logarithm theorem for the sequence
of i.i.d. raﬁdom variables w’(n) —ur(n -—1) and jJrove - by
means of André’s reflection principle and Borel-Cantelli’g

lemma - that the defect up (W) ~uw(n~1)) has order
n-igt<n

OVZnintnm ) with probability 1.)
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Prove the local iterated logarithm theorem: If w(+)is the

standard Brownian motion process, then

— wt)  _ .12
@{Mo \/2E On|Tnt] 4} 1

(Hint: Introduce the new.processiﬁ(£)=*tur(%J , show
that it is also a standard Brownian motion process, and

apply to it the global iterated logarithm theorem.)

The local iterated logarithm theorem remains valid for the

elementary Gaussian processes f(f too.

(Hint: The difference §(t)-W(t)=a j £(t ) patisfies
the relation 13 (EE;B~§§Qi££1§ < i) -4 for every-0<¢L<4)
+ =

With probability 1 the trajectories of the Wiener process
w(t )are nowhere differentiable.

Hint: Suppose that the trajectory w(+4)has a derivative
leas than ! at a point s.

mhen [w(d-)- w(@)< B for U=frsltd, t=jan+s

and sufficiently large n . Therefore the event " w{t)
anywhere differentiable™ involves the event

B-y u 0 U N (el wh)< 2L

{24 w24 nam oO=L +4 L<Jﬁl.+3

Prove that

PB)-=0

“Prove, that'for every E>0 there exists a compact subset

3of Wlener trajeéctories on the interval [0 1] of probablll-

ty A~ £ (in the sense of the uniform topology)
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(Hint. Recall, that the compact subsets of the space of

continuous functions are exactly the subsets of uniformly
bounded equicontinuous functions. Using the iterated loga-
rithm theorem prove, that for a suitable choose of the

constants Pqn and Op

PU_ N U (e 9nfies) #uee)> 00

k=1 £
(fer)< i< &
Remark: A theorem of Lévy gives the exact estimation of

the modulus of the continuity of Wiener trajectories.

@ Pj:“ IW("'—Q'—WG:Z)I _ =i

'|:= .E'J-_.L'l ‘LD

The proof of this tehorem is comﬁlicated and we need only

the above rougher assertion.)

Let W *(£)= ¢ W, (k) .. wa(t)) " an n-dimensional
Brownian motion process E'L_l_x_f('t)=0, Ewlt)w () =Rort
where D, is the local covariance matrix (it is positiv
semidefinite ) . We say that w(t)is an n -dimensional
Brownian motion process if it-is homogeneous, with inde-
pendent increments, Gaussian and continuous with probabi-
lity 1.

 Prove that if w(t)is an n -dimensional Brownian motion

process then there exist a matrix C such that

Cw(t) =w(t)

and «'(t )is & Brownian motion process with independent

components.
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Chapter 4.

Differentiation and integration

In the sequel we shall need the following.

Lemma 1. The random variables §, tend to the random
variable { in mean square when h—> 0 if and only if the
limit

»*
h, %ro : §h §o” h,ax;b'rlo(gh- ) o
exists, independently of the choice of h h.

Proof. Necessity follows from the inequality

(6, £, 1=1C6, 8- (6, 546, -, <

é](§h ) gh‘“§)|+l(§h_§] g)‘ S—'”gh” ” gh‘ “§h|l+” g” th_f ’-

Sufficiency is a consequence of the relation
a1) IS -G8 6-8) =
= (&, 8- 205, 80 + (6 60)

As the right-hand side of (4.1) tends to 0 ae h!H -0 s=o
Cauchy’s convergence criterion is satiefied. As the Hilbert
gpace of the square-integrable functions is complete, so0
there exists { such, that [ Lm. § =£. A consequence

. * *
of this lemma is that if §, =%, o —>n thenEf g, =Efs .
Another consequence is that a necessary and sufficient condi-
tion for the process { (£ ) to be continuous at the point i,

is the continuity of the trace of the covariance function
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Bls)-EE)E (s) et the point (ko +,) and if §(to)—> §(i,)
(t — t,) then

Elg(eo )l = . %’itm_ﬁo Bt s)

0,

The proof of the sufficiency follows directly from the reia-

tion
E1 64— 6kl " =Bt ) - 2B 1o ) +Blto, to)

while the necessity is a consequence of the lemma 1, if we
put §h==§(t0+¥1). We say that the process g(%:)is differen-
tiable at the point to if the limit

Lim SEth)-80) )
exists. h |

AE(%&M~mmG@M%ﬁMJ=

h K

= fw_% {T—))('l:o+h1 -to+h‘) _CB("\:D;-\:O-FH) "(B(t0+h|t0) —B(‘\:o,to)}

it follows that a necessary and sufficient condition for the
differentiability of the process is the existence of the

2,
derivative 2B(i5) . It is easy to show that the

ot as t =5 =+1¢
expectation of {'(t) exists and

EE(e)= S EE).

1f £(+) is differentiable at every point t of (0, T ), then
g’(t) is a process of finite variance $too. We shall show

that
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e Ef() fy- Spls)

4.3 EfE) (s = oB(es) )

2
ot t,s
if for every tE€ (O)T) the derivative 88%(85 ) ’Sl__f

exists. Namely the existence of the limits

EP ) = iy £ SEsE) ¢y

o BEtmelBls

I =

£ 0 () - b RN glonkl) ()

h\

Ble+h, s+h) B, sth) -Rlr+h,s)-B(t,s)

- !
hj\neo h h

follows from the differentiability and the lemma. (So from
the differentiability of D(t,s) along the line t=3 its
differentiability follows for every t,s E(OJ T)). o

As a consequence we get that the stationary proéess g(’c)
ig differentiable if and only if its covariance function B(’C’)
ig twice differentiable at the point T=-0 . Then BT

dr?
exligts for any T and

E P f(eeny - £BE

E §)f (eae) - 4BEL
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Similar relations are true for derivatives of higher order.

By the integral
b

(4.4) | /m) dt

Q.
of the process £ (t) over the interval (a,b) we mean the

limit in mean square of the sum

Z §(":n’u)(tnk“"ﬂnk _4), Q =.\:no< lfni< v <-}ZnN= bl %:'fj\k e(-'tnk_d ) 1an)

where max (tnk—t )—0 as n —> ==, By the lemma the

n, .4

-integral exists if and only if the liwit of the sum

EX )t —tn, ) T8 (by=tn) -

“ 5T Bl £ (bt )l 1)

exists, that is, the function ‘B(i,s) is Riemenn integrable

over the region a4 =t S£bh,

Remark 1. The integral of the process £ (t) can be defined
also in another way. Let us suppose that the process E(tlaﬂ

- a3 the function of the two wariables £)QJ is measurable and

b
(4.5) /E|§(t)li&t<°o

Then as we know from the theorem of Fubini, the function

2
18(t, o)l is integrable over the space ila blXx (L
rB)<A, }LXPE , where B is the G -algebra of Borel sets of

the interval [a,b] and M the Lebesgue measure, and we have
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Ed/'l HOIE =[Q.£]Xﬂl €k, o) d(poP) -

b
= EIE® ax,
So the integral / fﬁt)lz dt . exists with probability 1
together with 'thgec integral [g(ic) dt « If the functions
§i (t) are square Lebesgue m.integrable on the interval [a,b]
then the integrals [ . (£) §(¢) db also exist and using

again the theorem of Fubini we get

(4.6) E M«A_(Jt) §(t) de ( [ gl@) §(JE)CU;)*=

B[] 4@ 0 0@ d av -

b b

[ [ 0,0 86,0) 1) &t av.

a. a.

As

atT atT
A

[ B(t—\s)d*cds:"rl_[ [ Blt-s)at as-

T+ T
E [ BWdu a =4[ %) d.

That is if+T§ (t) is stationary then the limit
[«W

o) & — m =5

is true if and only if
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(4.7) % ]%um My 4, —> Q.

(4,7) will ve satisfied if

Q,LT_/ Bluw) du —0

Remark 2. Let f{ (+) be a measurable process for which
E]g(t)12<°<=(-w<t <eos ) and condition (4.6) is satisfied
for every finite a,b., We may ask when the limit in mean
square exigts

a+T

(+.8) Lim. += [ Ee)dk

a

From Lemms 1 i't' follows that for the existence of the limit

in wmean square (4.8) a necegsary and sufficient condition i=s

the eximgtence

a+T a+T

=GR OF CY B OGP

TIT—> o

a+T a+T

= g-&rm_}'m -T—'%-l_—,» [ fjcr /B(’t‘fl:’)d,‘c dr.

Moreover, for the limit
a+T

Lim. {‘% [ §(£)dt~-/ Eg(f)dt}

[« 7

it is necessary and sufflclent that

a T a+T

tim ] ftr%(t,fr) dt dr =0,

T—>oo
a. Q.
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For processes stationary in wide sense we have g(t,”l:’):’f_‘w(t —N)?

E ¢+)=0.
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Chapter o

Stochastic meagures and integrals

We often need integrals according to a process £(t)

b
(5.1 | &) 4()

Such functionals can not be understand as Stieltjes /for
Lebesgue-Stieltjes/ integrals as the realisation of the
process { (£) has infinite variation in most cases. In spite
of this we can define the integrale (5.1) so that it will be
very useful in the sequel and is suitable for the practical
purposes too. A complex of random variables CID(AJ w>)  where
A is any meassurable set of the intérval [é,b] and coe () is
called a stochastic measure of the probability space(ﬂ, fat/,(P)
if the following conditiongs are satigfied
1./ 8(A) igs additive with probability 1, i.e. if
AN D,=F then 3 (A, U A,) =2 (8)+ 2(4,),
2./ Elo (M) = Fla)<==,
3./E0(a)e(0,)=0 i a,08=¢.
From this property it follows that
F(&AU Az) =F{A4)+ F(Az) L{l AVEARAY g
4./ @{A) ig 6 -additive in mean square, i.e.
if A=-§¢ AL ANA=@  if L=k, then @(L'::J A =
=%<I> (Ay) — @®{A) in mean square. From this property it
follows that F is @ -additive, i.e it is a measure.
Tt can be shown that if a random set function determined

on a semiring satisfies the axious 1./-4./ then it can be
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extended to a random measure on the © ~-algebra generated by

the memiring.

Example, We can determine a stochastic measure on the Borel
sets of the intervall /0,1/ with the help of a Brownian moti-
on w(+t) as follows. If A=l t,) is an interval closed
from the left hand side and open from the right-hand gide,
then let @ (A)=co(ty)—w(t,) . The intervals of such type
form a semiring and we see at once that & (A) satisfies
the axioms l./-4./, so it can be extended to a random measure
on the Borel sets. [(A) will be the Lebesgue measure multip-
lied by a constant,

Let us define the integral according to the random
measure ¢:(£3) first for simple functions. Let the integral
of the function

n
g{t}=§;ckXAJ£), M NA=B W L],

be by definition

(5.2) [ H®)e(db)=2lc, & ()
If
SIOMPY d~7{ (), AN -F g L4,

then we get by simple transformations that

(5.3 B . . :
£ / Y(#) @ (th)(./ g(s) ¢ (ds))=E ;Ck‘b(ﬁ)(Zd,jtﬁ(Aj)) _

-2 o4, “Ela(a,nay) I—f{i(t)%({) F(dt)
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and

b
(5.39 E|f¥(‘t)¢)(d+,)| =E(ch¢ (Ak))(z C’kcp(Ak))*'"‘"‘

- lef Flay)- /l{i(tlfz(d’c)

The integral of limits of simple functions exigts if and only
if |
b
2 >= 2
[ Fla)=3 le, | Fla,)<==.
. =
Q.

For gimple functions it is true that

f [t Pe)+Bg )] ¢ ()= f Le)e (@b) R f 5 ()8 (a8).

If.ﬂ(t) is a limit in mean square of the functions 8. (t)
i.e
b
2
[ho-260 Fa) =0 4 n —e

O
then by (5.3)

E'f%(t)é(dt)mf ?m(’c)<1>(d’c)|2=f”lh(ic)—ﬁm({)le(dt)—éO, W nm —>oe

consequently the random variables j~$n@)*ﬁ(di) will
a
have a limit in mean square and this random wvariables will be

called the stochastic integral of\ﬁ(t)

b b
f ) e(dt)=Ltim. Hn(t)@(cu).
[« P
The value of this integral will not depend on the choise of

the sequence J,(t) . It can be defined for every function

satisfying the condition
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o 2
(5. [ 19GN Flay <=

and thg relation(5.3)will be satisfied too.

Let us examine now some properties of the stochastic
integral. Let ®(A) a stochastic measure E®(A)o ()=F(A)
where F(A) is a totally additive positive definite matrix
function. Let %({:)ELQ_(F)

i.e b
[ 19 Flap <o
a

A random set function \1'1(&) will be defined as follows

P(a)= / AAE)gx) 2 (dt) .

kP(A) ig obvigusly a random measure and on the bagis of the

property (3 )

BV (A - f o) Fldd) = Gla)

while on the bas:.s of (3)
(5.5) EYB)P@L) = [ % (8) X, (B)g ) Flat) =
-/ I%(Jc)f2 F{dt) . |

Theorea L.- If (t)€L,{G)  then J(t) gt} €L, {F) and

]w%m [ Be) 9o ().
Proof. For s:l.tnple functions (§{t)= Z SN (t)) the

statement ig obvious

]g(‘t W(dt)= Z C \'I') (A)= [Z Ck’)( (JC)%(‘E)Q)(dJc)~
] ?/(f)g« ()@ (dt).
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Let J,(%)be a fundamental sequence of simple functions in

Lz (G) then
El [ e #e0- [ ) YOI = [ 10~ pral® Glat) -
- [l 4 Flat)

iees Pn(t) g (t) ig fundamental in L ,(F) end the state-

ment of the theorem is obvious.

meoren 2. Ir Y(8)= [ A (t) g)odt), git)eL,(F)
then
2(8)=[ 55 X&) ¥(db),
Proof. The function %('1:) can be equal to o only on a set of

measure o (mod G) 80 é—zi;) %‘x’ . Moreover

b : .
J |9,?L>|1 X&) G(dt) = / ' ;%—{Lmz g (8)]* Fldt)=F (a) < o=

and so by Theorem 1.

[ 565 a0 D) = [ 565 X o) 8 (ar)-e(a).

Example. Let E(A) be a random measure over the interval
o Oy <.I; <l OO

E §(/_\.) = OJ
E §A) §(a) =B0) - lal,

where B(0) is a positiv definite matrix., If c(+) is square

integrable i.e.

2
Fle(E)1 dt <==,
then for any t the integral

(5:6)  nt) = [ oft-s) §(d9
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exists and

(5.7) =7 () =0 o
E () n(s) - B0O) [ clt-s+u) c(u)du.

i.e. the process 7(+)is stationary.
Let we have now a function with two variables { (%, 1)
(a€2<b, c£t -d) measurable with respect to the two var-

iables t, A and ®(d A) a stochastic measure such, that

b 2
JTEE T a(dn) oo
for almost every t (F{an) =Ea(da)e (d ).
For these t the integral
b
()= {2 e(dn)
exisis and the process §(4:)has finite variance. If g(i,w)

is measurable as a function of two variables and
d b 4/
[T e Fan)]” as <
J L[ el flan)]” de<
C a,
then the integral of g(t) exists and

4b

fbi(t) dt =f_M{t,.?\) & {dn) dt.
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Chapter 6.

Integrasl representation of stochastic procesgses

With the help of stochastic integrals we can get differ-
ent representations of stochastic processes. If & process

t (£)cen be represented in the form
(6.1)  §(t) =/ 4(£,%) &(dn), (Ee(dn) @ (@n) = F(dn),

then its covariance function has the form

(6.2 EEMIE) = £ )80 FAN),

on the basis of the property (5.3).

Let L, {§{t)] denote the set of the linear combina-
tions of the functioms {(t,2) . and their limit in mean
square according to the measure F(d)\) . If Lﬁl:‘a(k)}
coincides with | ,(F)  the system {(t, %) will bve called

coumplete.

Theorem 1. If the covariance matrix of the process £(+)can
be represented in the form (6.2) where ﬁ(tf))éil_l(F)

then there exists a stochastic measure @ (d ) such that
Ee(dn) edN)* =F(d)) ana the relation (6.1) is satisfied

with probability 1.

Proof, Let us bring the linear combinations of the functions
g(x,%)

(6.3)  gA)=2 oy Llk,N)

n
k=1
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into correspondence with the random variables

(6.4)  m -3 o §(8)

Let ({{}] wresp. [f] denote the mainfold of the func-
tions of the form (6.3) resp. (6.4) . Let us define the scal-

ar product with the integral
(6‘5) (%fu%z) = f %4(?\) %2 (7“) tr F(CD\)'

On the basis of the relation (7, 022)=Eozﬂf=(%“%1)

this correspondence is isometric. This correspondence can be
extended to the Hilbert space L, f,ﬂ(’t)} resp. |, |§) keeping
igometricity. Nawely let ca(a,u)ef_z (2() ) then we can
find 9n(t,2) €M (§] such that lg.(t,N)-o(t,N)I>0 i n—=e-
If the functions §,(t, ) correspond to the random variables

Mo 0 €™M {§1,  then from the isometrical correspondence

”’Qn—rq,mllﬂu%h“%m” —> 0 y If nm —oe

that is there exists a limit g . €[, (§] . To prove
uniqueness let %]ff — g9 . For the variables "Qf, corre-—
ponding to g+ we have ln; —nJl-—> 0 . Let moreover
§2n=gﬁ, §2n_1=gnthen we have ﬂ%n ~gl— 0, and for some
7o, 1Mo —Moll—> 0, 8o we must have Do =18 =70 with
probability 1. So we have a one to one correspondence between
the spaces |, [{(t)] and l_z {£] . which preserves the
séalar product (6.3).
Let us suppose that the system J{t A) is complete in

LZ(F) . Let A be a Borel measurable set, then 'XA’(?\)G

eL,(F)=L, i} and let ® (A) denote the random
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variable corresponding to XA(?\)‘ ¢ (D) is a stochastic

meagure for which

Eola)e(a,) =71 XA4(7\) ?(Az(’A)F(d,?\)= Fla,na,).
The process n, (Jc) defined by the stochastic integral

() =7 §r ) @ (d)
coincides with £(t) as

E 5() () = ES®S 8t R) ¢ (dA)) - 7§, 2 F(da),

namely

E§(6) @ () =(2(6, %), %a(2) =128, 2) X\ (N) £rF(d ),

- and from this we get

E L (8) - 6P = (6 - () E) — ()

-EI§()" - E&&) () -En(t)+ Elo®I* -0.

If the system J(t,%) is not complete in L,(F) then et
us chose h{t ) ({:(—L:l:1 TnNT = ¢) to be complete over
the Hilbert space L, (F)0 L, RICDY . Let the Gasussian
process ?({:), £ €T be independent of §(t) end let Eg(’c)=0

E §k) 560" =1 h(ka) n(e,2) FdN).
We may apply the previous considerations to the process
n(t)= §t) if t€T end qt) = g(t) ¢ te %,
and complete the proof of the theorenm.
If the system | :?,(Jc,'}\) } is complete in | ,(F) then
the stochastic measure & (A) is an element of the Hilbert
space l—z {§} i.e. it can be determined from the realiza-

tions of the process §(“1:) . In guch cases we say that ¢ is



subordinated to £ (t) .

Exercises

1.

3.

Let f({:)be a continuous stochastic process on [@,ﬁ[ with

mean zero and covariance function 1?(5&) « The mapping

LQ(—F) into LQ(-TU, defined by

Ri g(6)~ T R E)ds te T

)
hag positive eigenvalues %n and the corresponding eigen
functions ¢,(t) . Prove the Karhunen-ILoeve expansion
theorem:

Lim. (56) = 38, 0,(0)=0,

N —oe
where
-

§o= J 8(%)e,(t)dt.
0
If, in addition, the process {(t) is Gaussian prove by

virtue of the Kolmogorov inequality, that the series

2285, (%)

converges algo with probability one.

Let u:(t) the Brownien-motion process with mean zero and
covariance

R (S,Jc)= min{st),

and | =1 . The corresponding eigenvalues

and eigenfunctions are well-known:

¢k(+:)=l/§ sin (2k+1)ITt/2

.
ES, = (k47T
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S0 we have
O
W)= 5§, 0,0),
where the series converges in the mean square and with

probability one.,
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Chapter T

Stochastic integrals

In this section we define the stochastic integral for a

gstochastic process

(7.1) OfT Dt co)wr(dt) - Of Ut,c) dw(s)

wheretp(*:}is the standard Brownian motion process.

In the case whene { (+) was a function /and not a process/
we saw that the integral cannot be defined as a Stieltjes or
Lebesgue-Stieltjes one.

On the basis of the fact that g(w(tk)—w(tk_i))zu—:»"l_
/see theorem 3.2 for Brownian motion process, where for
simplicity Mw(t)l=£ / we see that the definition of the
integral /1/ is not an obvious one from the following exam~

ples:
5 [urltn) -] o) = ATV -T),

2 [wr(bg) - wit)] wity,,) — S(w(T)+T),

> [“"(Jckﬂ)_w(’ckj_l W(tk+d)£l.u"('l':k) . _% UJ"(T)Q;

where the convergence is ftrue with probability 1 and in mean

gquare too.

To prove 1, we lknow

N .
g [W(*’kn)“ Uf(.tk )]2"_'9 T
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and from there

3 Lurlens) = eI = B Luoltns) - wl] o () -

- Vlwlt) ~wiwt) = w(TY -2 3L ta) - whtlwt,),
which proves the statement,. |
The way as we defined the stochastic integral in the preced-
ing paragraph for a deterministic function :E(JC), proposed in
the thirties by Paley, cannot be 'extended to the case of raxi;-
dom function /stochasgtic process/. It was K. Ito who proposed
a much more general way of constructing stochastic integrals,
applicable in the case of a wide class of random functions.
In the following let ‘EE;(C /—\) denote G—algebras for
which (};1 S % 'ir t, Stand ¥, be independent of the future
of Brownian motion process w{t) , that is the events
’Beﬁ and {w(t+h)*w‘(t)<x} mugt be independent for every
Band h>0, X . In this case we say that {w{t) F }

forms a Brownian motion process. It may happen_ that SC.E is
the G-algebra A, generated by o(s), 2551,
Definition 1. Let {w'(Jc)) ) be a Browanian motion proc-

ess on the probability space ( (L A P) . We shall say
that the stochastic process Q(JC, «) does not depend on the
future if it is measurable in (t,w) (with respect to
BEO.T] x &) and for amy t=0 {Z(Jc,co) is tEea.surable
according to 3—; . The class of such processes will be
denoted by M .

Let us denocote E the clasg of the functione

OXEQTI
¢ (+, w)  for which
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(7.2) C{Tf(tw dtPld o) -F f;a(ic dtee= <[t w)e mmﬂ

and

m=m N L_(LXEOT]

. ¢ 2
Obviously 1s a. ¢cloged subsgpace of [‘£1XEDT3

2
Definition 2. £(£7C°)€J—jlx[bT] is a gimple funetion if

ﬁ(hco)=&(oﬂ) i@ telt,, t)) k=0, 4, -..,n-1,
where (O=1%,<t, <. ..<%,=T) is a decomposition of the
interval [0,T].
The stochastic integral of a simple function §(t, o)
is defined by the formula

m: £m+i£‘-l:

w(s SEOE NGO CHRHER AN ORI
The basic properties of the stochastic integral of simple

functions are:
o/ j(o(,i(s)+f5<3(s))d,w(s)=oéf£(s)d,w(s)+653(5)d.ur(s),
b/ f{l(s)d,w(.s% ;.E(s)d,w(sﬁfl(s)dw(s), 04, $4

¢/ the integral is a continuous function of the upper
boufd; .

a/ ECLHS) duro)f B) = [ () duols), for 0< w<t
w1th probability 1, especially

E( f{f(s ) dur(s)) =
e/ E( f 0(s) & w(s))( f%(s\ dwl(s)=E f£(5 g(s)ds.
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Properties a/ and b/ are obvious. Property c/ follows from

the continuity of Brownian motion process. To prove property

d/ it is enough to note that if +,>u

E(3(co)lurlt,, ) oot Y 7)) -E(E®, I:ur(tw)—w(kk)]/%k)/%) -
¢ E (Ll w5 F)=0

In the same way can be proved e/. Indeed, without restriction
of generality we may suppose that {(t) and 8(%) are piece-

wise constant on the same intervals. Let t,2 t,,, then

E gk(w’('tkﬂ) w‘( z)) %h(w({:nm ('t ))“

=E P‘k k+1 W('l:k)) %n E[(w({n+i) “VW(tn))/ (-En] = O:
and |

E ?/k(w(tk-}i L—U’({:k)) o0 (W“\Jf—km) W({: -k %« G (chri )1

and from here we get e/.

The properties d/ and e/ wean that the transformation of

a stochastic simple process ﬁ@;co) E.mez determined by
. 2
gtic i 1 f i is i .

the stochastic integral j”¥d,ur into LILX[QT] i isometric

For the definition of the stochastic integral [ [dur

2
of any process ﬁ(tﬁxﬁe m it remains to prove that the
2

set of simple processes is everywhere dense in WM . The

proof of this fact is the following.

Let $(t,c0)E >

, 1£(t,c0)l € C and continuous with

provability 1 according to t. Then for simple functions
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\En(tlw):ig(jﬁt); 4y te Sl (L%)l)l

2 . s
we have { € m and \Rn——>£ with probability 1, and

-
E/(tf e =0, 4 as e
Further now we assume that lE(’c,ca)|< C +» The functions
+ .
$n(t,00) =n S (s, ) ds
{max(t - %) 0}
are continuous and are contained in m > . The gseguence
In(t, o) converges to {(t, ) with probability one and as

I{,] < ¢ in mean squere too, i.e.

T 2
Eof(i—,@h)dt—e-o, onesoe .
Pinally let ?(Jc,co) arbitrary in 9112 . It may be approxima-

ted in mean square by the bounded functions

Po(t,00) = 2,00) Xz, 5 (&)

So we have defined the stochastic infegral all over gnz .
Norw we shall prove that the properties a/-e/ are valid for
any process ‘ﬁ(t;oa)e imz .

To prove a/ let us choose two sequences of simple func-
“tioms §n(tc0), 9n (£, w) converging in mean square %o

g({:,oo) resp. %(Jc,c,o) .

Then a/ is true for \@n and g, and it remains true for
the limit too.

In the same way we can prove b/. But we can prove it

using a/ for arbitrary £(b, w)E m . Indeed
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b +
f\B({:)d,w(’c) = f {(s) XD ](5) dw(t).
3 4.
It is well known and may be easily proved, that if E(§.- )-'9’0
(n — =) end ¥ ig a © -algebra, then

FIEG./F)-E(/FN =0, & n o=

Using this fact we shall prove property d/. ILet EnGJEEﬁnz
T 2
a simple process such, that Eof@'n(f) —P,(Jc)) dt —0 if

n_;cao A.S

ELT 0 dul)f]- 106 dol®

and

!

E(f!@n(t) durlt) - OJT’X rra (8 §(¢) duw(E) >0 @ n—>os,

E(J B duw (- [ MO dw®F =0, @ n — o,

we get the required result.
Property e/ is a trivial consequence of the definition of
stochastic integral, where there exists an isometry between

t <o) and its integral
ACENY

Do) =2 T Lseo) duls).

Let us turn to property ¢/, which states that the stochastic
integral is a continuous function of its upper bound. Here

we prove the following theorem.

Theorem 1. The process §(‘c)= @(5,&3) d,w(s) is egquivalent to

a. process with continuous trajectories.
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First we shall prove the Kolmogorov inequality for

martingales with continuous time parameter.
Lemma 1, If (§(¢), %) is a martingale, where §(t) is

continuous with probability 1, then

(7.3)  Plsap IEE)zc) giﬁgﬁ

ost&T
The proof of this lemma may be carried out in two steps.
Pirst the Kolmogorov inequality can be proved for the discre-

te time martingale

7y = 355, k=0,42)--+yn

}
in the same way as in the casge of sums of independent random
variables /with zero mean/.
In the second step we should take the limit from the martin-
gales

)¢ t) a5 n—s>ee

7o to §(t) -

let

. ' kt _
B.={c =l02j|40,1=i,2]...,k—4_, Inl2c) € @:'n_—r_ﬁ]
where%kﬂ@w:g u l&%ﬂ} and
= . 2 1=-

B {oo.ﬂng,é 172k|—C, até)n B. .
The following inequality proves the theorem in the discrete

time cage:

E 02: 2 E(‘Qi Ky =2k ('Qf "P(Bk) =

kZn

=2, ED% B2 5 E( (E(n,I50)] -
=3 EL%, nil2c TE[X =< PE®),

k&hn
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where we used the Jensen inequality and the martingal equal-
ity.

In continuous time case we have the equality for contin-
uous processes:
{s%p E)zcl={ 51}\p $(r)2 c ) where (I} is the set of ration-
als. Moreover

kT

{ sup §( )bc‘ = lim ‘max §< )_ C}, with integer k,n.
r

N—>eo
From here using the Kolmogorov inequality in discrete time

cage we get

2
Ptosup TER)2c) = Lim Plmax . §(5)2c)g XD

2
ost £7 n-see k20 ¢

Proof of the theorem. For simple processges £n(£1w) the paire
+ : .

[ ﬂz(m(t) =[§.(s) dw(s), % } forms a continuous martingale.
(4]

Frowm the Kolmogorov inequality we get

. } < ELJ(09)-2.(Ndwl]]

CZ

’P{f;_pr |/ £n(s) dus(s) —f@m(s) dur(s)>

-4 Eofwn(s) 0.6 ds.
If §, tends to { so quickly, that
E T (0f) ~ b (6] s & 2o

then / lduw is the sum of continuous functione so that the
[
convergence is uniform with probsbility 1, and this meang that

b
J {dw is also continuous. Indeed

[P dw= 1), d,w+f({az—$i) dort ...
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where the convergence is in mean square. The members of this

gum are continuous /with probability 1/, and the uniform

convergence With probability 1 follows from the inequality

+
= e
2 4 n?
Y‘Z:OP{SEPII(£n+1_£n)dS/ >:§}éh=1§'—‘ < &=
0
and from the Borel-Cantelli lemma.
If the processes a, b € o [ 0Tl and §(t) is

defined by the equation

(1.4) E2)=E0)* falt,c0) db+ £ bt o) dur(s)

we say that the process {(t)has a stochastic differential

(7.4 dE() = alt,w) dt + b w) dawle)

The last expression has not meaning in itself, it is
only a short writing of the integral expression.

It is possible to extend the definition of. the stochas-~
tic integral to the case where $-J(t w)em, i.e. it is

meagurable with respect to B X A ® is the

o, T3 o, 7]
G -algebra of Borel sets/ , and I, w) is & measurable
for every fixed + where (w({:), ) is a Brownian motion

process, and finally we suppose only that

(7.5) ’P{Ofg"(t,w) db <o} =1,

.
The last condition is weaker than E [ ﬁz(t,w) dt <eo=,

0
The definition of the stochastic integral for simple functions

is the same ag in the discussed case.
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It is obvious that for simple functions the integral has
the properties a/-c/.
Before studying further properties of stochastic integ-

rals we prove the following lemma.

Lemma 2. If £ 7t )€ W is a simple function then for

the process
t +
(7.6)  Yt)=wp | [I(s,00) duwls) 7 [ d(500) ds |
. o )

(§t) ) is a martingale, for which

ELSG&/85(s]] =1, sgt
i.e.
L

(7.7)  E exp! _f Pa(s)duls)-7 /4

n
5

itA

(s)cisf=i for every 0£s&+ £ T,

Proof. We have that

5 5 + +
(7.8) E(&+ )/‘}; )=axp b [ ofu) dwiws- 7 [ Hiujdu) Ef exp[f, dur %.I',‘;L:’d,u]/ T, |
0 ) 5

0

Let for simplicity

AN b <t -
gﬂ(-}:l CD,—TVJk\OD:" LP/ tk é T =~ tk"'i? K = i‘ 2‘, _)m
S =t t=1i;.
w } o
Then

tj-1 -1

Ei a,xpEf Sodw—4 02 d,;J/?‘g} ~E | "‘”P[gr Iy dea - g-g‘ :ﬁnzd,u,] :

i e g <
E[c&xp[ J fn dur 2 b du_j/(il_i_i/?:; (.

‘L"I*"l -L:! -4
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As the conditional distribution of Ju(t;,)(w(t;)—w(ty,)) -
= Cj4{w(t)-wlt;_,)) under the condition ?{ci_i' is normal
with parameters (0, ¢, (& —t;_,) we have

i . Y _
Elexp [;in Cjq duwr- z{f,i -4 d«U]/ hij =1.
Applying this relation repeatedly we get (7.7) and from (7.8)
that §(+)is a martingale.

Here we ghall not give the extengion of the gtochastic
integral for arbitrary L€ ™ and 'P(of Pl)dt<o=) = 4 , the
reader can find it in Gikhman-Skorokhod [)J , or in
Shiryayev [1].

The definition of stochastic integral can be extended to

the cage [ =o= if
P o) db<o=) = 1.

The definition may be given so, that

P {1@%21 DJT]E({, ) dut) =O.T£(4:, ) dw(t) ) =1

The generalized stochastic integrals have the properties

a/-¢c/ and

. i oo
a? ]¥ E[Jﬁz(S,@)dgj <ee Lhen E!Q(S)w)d,w(S):O,
e 1 EfP(s0)ds <= then

EL T o) dowrls=E T P2(5.09) .
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Let be T a Markov moment with respect ?:c » and

Plr===)=1. Further f 1?,(s w)dw(s) = f@(s w)dw(s) on

{co:T(w)=t}. Then

[8s,05) drl)= T (7 25) U51) dov)

g ) If for d>0 E exp{(d+”lz)of$2’(s,oa) ds ) <o then

(), F is a martingale with the property

ES(+)=1

where

{(£)=exp { | Q,(s)co) dw"(s)— iy f{iz(s}co) ds |

0
Remark 1. Recently A. Novikov | 1 _|has shown that cj) ig true
under the assumption

L exp {4/2 f 132(5,00) ds | <o= |
0

Remark 2. For stopping time /Markov-moment/ of a Brownian

motion process w (L) we have

E w(T)=-0, Ew(t)=ET
(if Ewf(+)=t) , which is known as the Wald indentity for
Brownian motion process.

Remark 3. (7.7) 4is the generalization of the so-called

" fundametal identity"™ of sequential procedure.
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Chapter 8% !

4 theorem of Levy

Theorem. Let there be given the continuous process g(%)]
t=20, §(D)=D , and for every t2 0 there are given the

6 -algebras ¥, , with the property =, < %

[T H P
_ti “ia ; Nhel’l 'ti ={; .

If for process £ {t  the conditions

a/ for all t20 the random varieble £t

;

is ?i measgu-—
rable
b/ for every tZ 0 and h>0 with probability 1
E(C§le+h) - t@[%) =0

¢/ for every + 20 and h>0 with probsbility 1

FOE(rni— % =h

: SN . . - M
are fulfilled, then £+ ; is a Brownian motion process. The
theorem is due to P. lLevy.

Proof. We want to prove that for any decomposition

t=t,<t;<...<t,=t+nh  of the time interval [tt+h] we have
[« n . 4 N 2y “
Eoexpit ézk[&*‘:k) §by )i =axpl- RZ;Z P SIS

i.e, the increments are independent and normally distributed.
We first compute the conditional characteristic funection of

- { . \, 3 ‘\ + » 'l/-i_‘
the increment §++n)—§ + under the condition 74

SRICICRIIERIC ;
El_et(gk ¥ i )Z!E]-



Let ‘QZ ) y then
o n- T &
exp al iE+h)-§E)]=exp Q(Z m)= Z_D [e azimpt Tan ha _

S0 we have for the conditional expectation

E{czxpLz[i(ﬂh)-?’,({ﬂf? }-e_Tz Z {Clxp[‘uzéﬂ:](etzﬁﬂ B
e F)g f e,

We want to estimate the sum on the right hand side. As
. n he r
. = n quzrﬂ — = 2,_ } — - n .
E{czxp liz 2 'Qk:](ﬁ_% IR -E _axP[LZE”Zk]

IE e )R] -

2
Z

=

. E(ELZ?Z:M _ e—

“‘I

= E{ c.nqs[i.zél1 Q:] E(eizqzr“ ~4-izg?,, 1t —%f(ﬂztﬂ)zlﬁ*_%h)]ﬁ } +

E{expliz 2} 9 )(1-Z b &)%)

=X -
and using the relation € —1-x= o x*7%)

, Wwhere 0<£-<1 ,
we get

i~

(6.1)  |Elexp izl serm)-£)1I5 -6 %]

—£
cy(:i*&h) *
n-4

L ni : n n Y T
i zo E{lE(e Zps _/J-_LZqZHi+ %(Qr+i ,}'-l: } .
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To estimate the second term on the right hand side we have to

d
estimate the sum of the form ZZE]Q:J s, where d > 2,

i) " a2
From condition ¢/ we get that E.};(Qk) = h sy l.e. the
n 2, k=
sun 2 (7)) is bounded in probability, (this follows

from Markov inequality) . From here and from continuity of

§(t) we get that

3 n g < n d-2 o n 2
k;(’zk) = mox ('Qk) ;4(021‘) -0 ) Jd>2,
in probability.

From b/-c/ by repeated applications of conditionsl

expectation we get

1 O kAR = (= CH (L CH (I CHECH LIS |

n

?%H)ﬁ%%)/%nn}/i)%, L<£, O<ré?,.éj_£_k

and
with at least one definite inequality awong r,1,j,k.

Further we have the following limit relation in probability

) -6 = iy (5 0) +3 54510 5 2]

S0 by the Fatou lemma and from the above relations
R —
ELCkn)-560 %] = by E(D )"+ 3207 ) -

— 4 %'(722)5 %"ZE]/EE) =0 ‘@)%E(E(Q:)z(@z)z’%) _
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-6 fi_ ELZ (] ) E(Y 1% Tovict, W] -6km 252 1 2 5,

Now we are able to estimate CUE Jt‘fh)"g('t)l % 5

indeed

EUS(een)- S )PIE) 2

£ CE(S ) - S0P IR EU e m)-50) 15 B s van ™

Applying this to 02:

3 L7
Bl [ 1%, ean) 0. (5)”
As Iewx‘—i - izx — z_’;f! < 1725—“3 we have the estimate for

the second term in (8.1)

T (] 2% o+ 2o VT < h
ZEt e "i_bZ?lH_i"' 'Z—("Zru) I&g1=CZnh.(7n-

r=0

- o(Jaee).

36 we showed that

Elexp L 2(E(s ) - E] - 5

From this and the definition of conditional expectation for

every decomposition O=t,<t, < ... <t,=t it follows that

Eaxp (13 2,6) - 8600 -Eop (8 (85085,
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: E[C’-XP Lz‘h(g({n)_g(}th—i))}in_i}=E€‘XP { Lz Zk(g({:k)_g(tk—i)) i

Z%l(-th_th—i) ]
2 -

o]

By induction the desired result follows and the theorem is
proved}

The statment of the theorem may be deduced from the following
generel lemma,

Lemma, Let (f(t) %) satisfy the conditions of the theorem
end {(x) be a bounded twice continuously differentiable

function where { and {' are bounded, then

ELKE)YE] U - 4 S LG Eldu, +2s.

We shall not prove this lemma but we show how can we
get the theorem from ift.

let B(x)==etl* and we can apply the lemma; so we get

. H t .
(MO 90+ 2 L, b
.5

or

DA - §(9) 2t O (Ew- '
EL7O IR ] -1 F T L) g,

using the notation

¥ (’t,S) _ E l:ei.?\(g(’c)“_g(s))/?:s]

we have

xb(ils)— f=- -:’\;j L/ (u,,s)d,u.
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By differentiation

M=—% HU(‘{:,S)) '{:gs) \U(S,S)=i-

It is well known that the only continuous solution of the

above equation with the given boundary condition is

v(ts)=¢e F(t-s)
which proves the theoren.
Remark 1, In other words the theorem states that if §(t) is
a continuous martingale and §?'( t)-t is a wartingale too

then E(JC) is a Brownian wmotion process /see e.g. Doob

theorem 11.9/.

Remark 2, The statement of the theorem remains true under a
bit weaker condition. Namely if the following conditions are
satisfied: §(t)is continuous with probability 1, §0)=0,

there exist such random variables 7, ,7,> 0 with Moy, < c-a)'

(i1 - 1]2)) that

AELGGE+n)=E6)E] 2 9, 2 E[Ien) -5 1R] £ 0y,
and with probability 1 the following limits exist

i LE[H(ea)-5()%] -0,

. 4 X
Lim AE[G(R)- §(6)/%] -1,
A->0
then the process {(t) is a Brownian motion process.
Proof of the latest statementyLet us denote in the case

t>5
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PE)-E[(E®)-86)/%] -

Then from our conditions, using the lLebesgue theorem,

S YAV R {C SN -5 (N

- S EE (R B)5)-o,

Exercise. Generalize the theorem of Levy to the multidimensi-
onal case, that is prove the following statement: If the
process £ (t) is continuous with probability 1, £(0)=0
and |
a/ g (t) is 3{ measurable for all tz0,
b/ E(ﬁ(t+h)*£0ﬂ/qi) =0 for everyt2 0 and h>0
with probability 1,

¢/ there exists a positiv semidefinite matrix B such that

(DR OIGENE HOMEARIS:

for every t 2 and h>0with probability 1

then ;§(£) is @ multidimensional Brownian wmotion process.

The same statement is true under the weaker conditions of
remark 2 /p.6l/.

It may be easily proved that ?(%) is continuous with proba-
bility 1 and so {(t) must be conmstant. As f(5)=0, §(+)=0 for
£ 2 S . So we have proved that condition b/ in the theorem is

satisfied, Similar argument shows that for the function



- 79 -
OREICORIONEA

ALO A
80 t,b(f)= t-s . Which proves the statement.

is patisfied, if t2 s  , and
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Chapter 9.

Stochagtic differentialg and a theorem of Ito

If the process {(+) may be represented in the form

(9.1) | §(t)=§(0)+ f.aGc]co) cH:-Ffb(Jc,oo)d,w(t)

where the processes a(t, co) , b(t w) belong to w* [0 T]
then we say that it satisfies the stochasgtic differential

equation for it has the stochastic differential/

di(t)= alt,c)dt + bt w)dw(t).

We have to reﬁark that the termin stochastic differential has
Aonly meaning in the sense of 9.1 , but we shall use this
termin for brevity. a(’c, w) and b(+,w) we ghall call
the stream coefficient /local expectation/ resp. diffusion
coefficient /local variance/ of the process §{(t).

In the general case we suppose that a‘C%ta) and b(&(ﬂ)

are measurable with respect to ?g for every fixed s and

@{jl als,w)ds=o=}- {

P{Jrg(gw)ds49°}=i,

where {U(t))?:;,P} form a martingal in 0£+2T(T may be o= ).
In the sequel when we say {(t ) has stochastic differen-
tial /or satisfies stochastic differential equation/ we mean

that a, b sgatisfy the above conditions.
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Theorem (Ito). Let w=ult x,, ..., %,) a function on
[Q°°]x?n , where the functions

Uy = QW wp = 2 u,---_-__.azu'

ot M TEan MIT ey

are continuous, Let us suppose that the processes §1Oﬂ

L=1W2J...)n gsatisfy the stochasgtic differential equations

d §-L(t) = Cl.,;(’r.,co) dt + bl(t,w) dw({:) .
Then the process n(t)=u(t §(t), ..., §.(¢)) has the

stochasgtic differential
S [uolby o 844 2, by de + 5w dgi(4)-

= [uot 45 b, Ui ] cLJc+Z W [ o dt+by deo(t)]

L]_
Before the proof of this theorem let us consider some examp—~

les, In the case n=4 Ito’s formula is the following
8wl 8 (f ) 42 Su 8
d.ffz({:)— [T + Q,(Jc ) = ]dﬂ:“‘ Tba" o dtr +

b 24RO g ().

The difference between the ordinary and ptochasgtic differen-
tials is expressed by the term 2t§ dt . Its
appearance may be explained by the known properties of the

Brownian motion process, for which

db- duw (k) =0, (dw(e)) = dt
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2 2
at the same time (dt)~0 . The formuls (dw)=dt is an
equivalent form of the relation

r;[T (dwle)) -

Let w(t,x) = x*  and ) = w{) . In this case a=0 b=4.

From Ito’s formula we get for

(9.2) da(e)=dt + 2uw(t) duwt).
This result is nothing else as the differential form of the

known relation for Brownian motion processes

+

[w(t)dw®)= 5[ (T)- T].

o]

Heuristically (9.2) may have the following explanation:
8] = WP +8)-uH(E) =(ur (5+2) - (0)) (4 4A)+ w(a)) -
=(wrlt+ A) - w(E) (wlt+a) ~ur(e)+ 2 wie) =

“(AwE)) +2uwt)aw),

where (A w*(t))z ~ At. |

This gives (9.2) .

As a next examgle lef g@ﬂ= g(tﬁo) measurable with respect
to K, P{J P dt <) -y

(&)= zxp { {t{l(s]co) duw(s)- ({tjﬂz(s,co) ds )

that is

§(t)=ap { &)}

where

d§(t)=— 71 (t, ) dt+0{t,0) duwr(t).
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From Ito’g formula we get
d§(+)=§(t) () dw(t),

5l Co) i
(sfy)" 0 dr = 5y dwls)

This means that the process §(t)is the solution of the follo-

wing stochastic integral equation

(843 p(e) = 4+S 9s) §(s) dus(s),

We prove with the help of Ito’s formula that the only contin-

ous solution of (9.3) is given by

t +
§(8) = exp{ J () duw(s) -/ #(s)dls } .
Let n(t) a continuous solution of (9.3) . As we have seen §(t)
is a golution too. Applying Ito’s formula to the process

,Q(,h) . .gi'—ﬂ we get if we put U'(Jclx{,xz)= Xy* XZ)

L)
d(gm) T dy(e)+ Qz(f)d(g(tD (a fq(i){i(t)d)c

= %g[ﬂg(i),@(’t)d,w(ﬂ] ﬂ” QTG (JC)J

ok HO
$2(t —
- '@% n{t)dt= 0
this means that 7(t)=§{(f) with probability 1.

Proof of the theorem. It is enough to prove the theorem for

the case when ai(t, «) and b (t, w) are simple functions,
that is they are constanison gome intervals of t. This means

that
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gt(t)= a;t *‘bL(W‘(J"—) - W(tk)), en {"k <b <y,

where Qi and b; are constants. In this case there exists a

gmooth function Vv such that

hL('l;)gi, .. .,gn)“-‘ O (£, ur(t))

So we prove Ito’s formula for functions of the form

§()- (b w(t), 0st=1.
Let 1= [2"-t] and A wy=w{(k.2)-w((k-1)27"); k=12,..,%
then

ot w(8) =v(0,0) = 2, {u(k 2" w2 )-o((k-1)2" wk.2"))

k=l
*3 {0027 w2 N0 (027, w((x-1)2) } +

+ {U‘(-’r_, \_u'(i:)) —U‘( P,.Z-n, w(EZ—n)) } ,

from our assumptions of differentiability we have, with the

notations
D [ BZU“
_ o - ov -
YTRE 0 MiTax - VT Baaxg

(k2 (2™ - o(k-027" wk.Z")1=

=Y :

2 ()2 wl(k2™). 27+ o (27 )

LoD, wlZ- (-0, ()2 =

i

=
i
=
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=l§l { Ui(('k‘i)z—h, W((k“i)z—n DA w'k”"% v((k ‘1)2‘."} w((k-1)27"))

(aw) + o(aw))
and
vt wE)- (227 w(t2™) = o(4).

From the definition of stochastic integrals we get

kgl { UB((L( ;i)z—ni w(k.?f”)). 2,‘"-1- 0’(2:") ) __.of tfo(s\w(s))d,s-l-g('j_))

3 (002", w02 At £ (DI w(@0)a o

foauf - § s wls) dwls) + Fuuls wls)) ds +

1
+ — ¥
k....""t t

(x-1)27" w((x-1)Z2") [(aw)=2" ]+ ().

From the last relations we see that to complete the proof

for the gpecial case iffhow(f)) it is enough to show that

2203, ()2, (D27 [(aw F-27"] =0
in probability if n —es.
Let
& =[(aw)-2"],
and for fixed N

N
(X;k-_“l)(, {mo,x lw,-__z—hlé N } .
tsk
We have

P w027 wl((e-02" )6 [4-%,]1+0) =
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"P{swp |w(£)|>N} —> 0, i§ N-—=e==,

0<tsd
On the other hand
E Eeqi((k—i)f", w((k-1)27")) £,=0,
and (using F EE=Z.2~Z") ‘

EE, w027, w28, XL

iIN

AT w(-1) 2™ )AL, - €

< - Z 3 - - 2 “n L N
E—E ‘Uju(-lzjx) :%;lt E N 202\{21 {‘ru(lc])()k%t( 2 ) —0
|Z N ) Ix[= N

if n —se, So the proof is completed.

Exerciges

1. Prove that for natural m3z 2
™ m-4 {m - -2
dlw(t)) = mlw®)  duwl)+ mTil(wG:)) d.
2. Prove, if J(%) is twice differentiable and {'(x) is

continuous then

dl(wr () = Plwr(®)dw®) + 4 Plw()) dt.
3. Let bi(t,c0) (i=4,2) measurable with respect %,
PUB (R)dr <=} =1 JEbi(%) dt < > , then

E Tb(8)dur() f bufe) der(t) JE 8(6)5,(6) .

4. Let b(£, w) has the properties of the preceding exercise

and fEbzm(Jt)d =e= (m - natural) , then

E[fb(t)dw(i] " e[ m(2am-1]] e ifEb”"“(t
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Chapter 10;

Mar'bingales, gemi martinga.le's

Let {ﬂ_]'—&:, P} ve.a probability space, ek, ... -
algebras /n=1 2.../.

Definition We call the sequence {§n, = } . a martingale, if
a/ §,, is T, measurable, |
b/ Elfl<e=,
C/ E(En-&{]q’;):gn.l
If we have the inequality
c?/ E(Emi]?:n)é fh Te8D.
e/ EG.I%) 2§, instead of
the equality c/ we call the sequence a super- /resp. sub-/
martingale,
Examples
l./ Let E|H<°° and §n=E(§ff3:n) ; then {§n,f0[:n} is a
martingale,
2./ Let §,,§,, ... be a sequence of independent identically

distributed random variables ( E§=0) . 1r %-67(f,... )
and 9=~ §,*.. .t §, then {7, F,] is a martingale.

3./ Let P < Q be two measures on F P, and Q, the re-

}
strictions of P and Q to F (< Fois) . Then obvious-
1y Py < Q,. Let £, - —1% the Radon-Nikodym derivati-
T

ve, i.e. for any AEF, P (A)=[ € Q.(deo) .

Then {§, %, ,6 Q] is a martingale. Indeed, {, is a



4./

5./

6./
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martingale if and only if for any A e%, , m<n

Af§m(w) Q(dw) =Af§n(w) Ad c).

Let §,, §,, ... be independent, identically distributed

random variables.

= Gl(glp Ez, ") gn))

=6’(§“§z,..... )
Let us have two hypotheses for the distribution of §n

He: the probability density function is (%)

HC,(: the probability density function is q(x)
Let P and Q1 be the corresponding two measures generated
by (5,8, --) on ({1, %.) . If for any Borel measur-

able A from J q(x)dx=0 follows fp(x) dx~0 , then
A

Qa.e.— A

4P, PlEe)
T s

The sequence {§,,, Tn, @) is a martingale,
Let- §,,§ ... be random variables Elg]< o .
Let ?‘;={¢,Q_}
F=6{f, ..., &}
and '

2.2 (-E (G, %)

The sequence [m, W %] is a martingale.

Let {§,, '5:“ ] be a submartingale /[n=42,.../.
Let §,=0,..., §,=§,-5._, » fornzi,

Then

he 583 [ EQIED SEGIRL),

k=4

r———— e e e

N
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where

E(8)E )-EG-5. L, IF. ) 20.

So we get §,=m,*+ol, , where

20-2 [§-EGIFL]

is a martingale and o, - iE(gklfﬂ-a) is a non decreas-
ing sequence.

In the sequel we recite some well known theorems from
Lebesgue’s integral theory.

Theoremi{monotone convergence/. If ¥n -—-‘=>$, with probability 1,
then from J, Te and | §, <== [resp. £ ¥ § and

E@: < == [follows E{’/n 7 E.P / resp. E@n\'f E,Q/

Definition. The sequence {‘P" | of integrable functions is

uniformly integrable if

lim sup J 1§l dP=0.

a —» oo n {I;n‘I}Q.

This condition is equivalent to the following two conditions:

(1) sup £]f,| ===,
(i1) 1im sup J [LnldP=0.
PA70 0 A -

Theorem 2.(Fatou’s lemma):
¥
If the sequence {{,] is uniformly integrable and

E 1in}1¢55p 9 I === then E (.‘Lirr\n_}silp Jln) = lim sup Eﬁn

Theorem 3, If {ln =0 ’ {in—>$ a.e, and E{in <e= o then
the convergence E\En > E\Q is equivalent to the uniform

integrability of the sequence {{ln b
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Theoreu 4.(majorated convergence). If ¥n—> ¢ a.e. and there
exists a function § , for which |[J,[= 9 and £g <°=,
then Elgﬂnhgl—)O-

TheoremB (Levy) Let F, be a non decresmng gequence of © -
subalgebras of ¥ , and denote U Fn vy . . For any F
measurable random variable _f with E|§]< ®= , the following

relstion holds a.e.:

e ECEF,) -EEIER).

i

Proof.

Without loss of generality we may assgsume that g—;,“? . We
_shall use the following lemma:

Let (_(_7_, ¥ P) & probability space and G an algebra, which
generates the GJ-—algebra ¥ . For arbitrary £>0 and AEF
there exists a BEG , such that

(109 PR+ PBNA) < £

(Hint for the proof. Let W be the class of the sets of the
above property. W > G and vt is a 6 -algebra, so W = (3:.).
Obviously (4 ) means, that |

) EI,— l<tE.
From (2) and the F.. measurability of § follows that for
any given & >0 there exist a natural no=h°(6) and an 9:,10

measurable random variable §_ , of pronerty

ElE-1,1< 2.
Let g =1]§ - § I and
T =inf {nzn, : E(q|F)>E]
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(if there igs no such n , then 't’-°°) « As for every n
[T'=n} €F, S0

! !
PIEC %) > € for gsome nh2n,) =

v
=
@

0l
L
O
q

]
jn §
I
M$
Lﬁ
=
o
—D
1A
1M8
e[
—
m
Sl
S
o
-O
It

Furthermore for every n Zng

[EGHIF) - §I-1EC-6 %) + (¢, - DI B, |F)]+

n

+ 18, - 8 =E(n|F) v .

Hence |
PUEGIR) - &l> 2¢ for some n&n, | <
P E(’Q|E)>€ ~ for some nzn, } *

Plog=€ls &+t Ens b+ eh=¢.
This proves Lévy’s theoren.

The following theorem includes the theorems of Lebeégue and

Lévy too.
Theorem 6, If § — § a.e., lﬁ]‘ , Efg<°" (% «F
is a non—decreas:.ng sequence of 6-algebras and ¥+ = 6(UF,
then a.e. lim E(§,| %)= E(§|F).
n,m

Proof. Let oL = lim sup (5. F )

N-»oa naN

oL = lim :Lnf E(snl T
N->oe na N
maN

We shall prove, that with probability 1

£ =EGIR)EL
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We get for fixed K
.

na K

Then gzor‘ nzK :
K;§ni and

Sup E(vgkl F.)

mzN

—_ . T .
ot = bim sup B %) = tim
m=N
It is clear, that

EIQK]=E[|5§E £ ] sk <o,

by Lévy’s theorem

1lim sup E(ﬂzk]?m) = 1im E(‘QKIE)“E(%]?%)-

N o m2N N o=
So for any K we get £ SE(9,|%) and as 7, | Lim sup §
1ia §,-%, furthermore Elsupf,[2Eg< e by the monoto-

ne convergence-theorem (which is valid for conditional ex-

pectations too) :
oL £ Lim E(n,|Fe) = EGIRL).

Similarly we can prove, that

ECEIFL) =« .

oL , we get the desired rela.tio:c;
1m F( %) - EGIRY).

n, mM-aon

As o

v

Semi martingale convergence

"Theorem 7. If §n} ?:n ig a submartingale and sup E§;<°°

then there exists /the limit/ lim §, (=f..) with probabilityl .

n—> oo



- 93 -

Theorem 8. If [§,,6 T,/ is a supermartingale and sup Ef, <
<> then there exists /the limit/ Lim 5 (- 5)

Obviougly it is sufficient to prove theorem 7. For this

purpose we recite an inequality of Doob:

Let Y, Ya,- -+, Yn be a sequence of real numbers, and

a<hb.

Set y,t, =0,

t, =minik;4isksn, y=a
t, =minlk:itskEn y2b |

t, =min{kit,m ,<kEn yc=al

ty = win [kitym <kSn, y,2b |

If one of above sets is empty, then the corresponding t is
equal toeoe .,

Let us denote max {m:t,,=<°°} i.e. the number of
intersections from below by ( (a,b) and the number of inter-
sections from above by ol (a,b).

If we replace Y, ,...,u, by random variables 9,,...,9 then
t

2y -ty ol{a,b) and (b(a,b) also become random varia-

bles. Doob’s lemma assgserts the following:

Let |§, , ¥ ) be s submartingale and n £N , Then
\l +
Et.-a) _ E(fa+lal)
(103) = Alap)s BT S T |
+ +
= 1 n+ b
E o b) s Egjf) = E(@b_lq )
Proof: ZLet first |f,, %,! be a nonnegative submartingale

and a=0; we show that
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Epob) = B

Let £,=0, u,=1 and

A

g <t =t,,,, (m is odd)

O 4 &.<it2t,,,, (m is even)

We suppose that t, =N (instead of +,=°) if the corresponding
set is empty.

It is easgy to see that
N
Gi(‘f‘i) u‘a §O+Lz=:i LL;'(E'L - gl —1)£bp(olb)

and so

bEP(OD)EE

N

Zé wi [ § -ty -

i=

As
{uu=i}=mL£dd'1'Em<‘—=£m+il
- Pltn<i) —{tn,<il) e
maddll ! I mid i L=4
denoting §; — ., by M, we get

('405) E§0+E ZL:LLL(&_&-L)"E%‘*'EZLLL?ZL“

=E{,+E iji wE( T )sELTE i; Ell®i) -
=E§, + E$Q1=E§N

e {§, T ig a nonnegative submartingale then from

the relations (4) and (5) we get
Eplop) = %L
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To complete the proof of the lemma it is sufficient to show
that the number of intersections (& (a.,b) is equal to the
number of intersections ( (0, b-a) for the submartingale

{(gi—o‘)t i

Remark. If for the nonnegativ submartingale {§, %) w

denotes the indicator function of the set {_mzau!\cJ § >b ] then
=

we get

P max §,2b!s

L=

Proof. Wi 2w , 8o in (5) we have
EE+E 3 wElnlF)2E St B ElF,)-

= B, +E uz '72'L=EU-§N(= JlNd—'P )
-t {ﬂilxgﬁb}

The proof of Theorem 7,

Let

g%
s

lim stp n,

lim inf §,,

and suppose that {P §*> §*} >0 .

From the identity

{§*>§*} = { U §*>Q,>b>§*}

o,,éb

a,b rationals

we get then, that there are rationals a,b such that
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Ple>sasp>5,1>0

From this if follows that

(10.6) P{ﬁ(a,b)=°‘°}>0 .

‘But according to the inequality e we have

E p(a,b)é M < oo

b~a )

contradicting (6).

50 the first statement of Theoremn 7. is proved. The
second statement is a consequence of the first.

Two examples for the use of the supermartingale conver-
gence theorem.

1. Let

L= BT, Elfl<e

be a martingale. On the bagis of the supermartingale conver-

b

gence theoreu there exists the limit §._ =limF (§|F) and
it ig Fo. weasurable.
Show, that 1im EGIT) - E(gF.).
2. The Kolmogorov’s 0 -4 law.
Let m, 7, ... be independent random variables, and
=6 (g . ey ) . Suppose that A€6(y ., ...)
for every n. (E.g. the sets of the form {sgp 7, <o= |} or
| there exists Eiﬁi 2.1 ).

The fields %, and 69(%,,,, 2 ,,,,---) are independent,
and if A€ 6'(q,,,,...) then P(AlF-P(n).
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On the other hand, from 1.

@(AJ?,‘)FE(?L,JE) —=E(IED) =%,

therefore
P(AY=X,, ie P(A)=0 or1.

Martingal Inequalities

From Doob’s Lemma it follows that if [, 4%} is a

submartingal then

Lo.7) P tmax Enic}é%ﬁ— .
k=n

This is the so called Kolmogorov®’s inequelity. We can easgily

see that even the stronger inequality

Pluax énéc}é% )
k £n m
k

holds.
Leter for stochastic integrals we want to prove the inequali-

ty

£ awp ([is,) dul9) & 4E Of,a“(s, ) de.

o=t

In order to do this we need the following inequality.

Lemma 1. Let o =1 and the random variables §,,..., %,

o
satisfy the conditions: E]&[ < o= and for each k

ECE,-5. /5, ..., 8)-0.



- 98 -
Then denofting S =sup(0, 8, }En)
we have

?

§: =sﬁp(0, gn)
E§ () BGD.

Let a>0 and %, (a)=1 if § <o
else %, (a)=0 . is kZ_i')Lk(CL) =1

Proof

) Bt © o, £z o

if a & §
=0 if §< a we have for

- and L X, (a)=

§ - St S v () da.

k=1

From the definition of 'Xkﬂa) we may deduce the inequality a
xk(o") = fk xk(@)

S0 we have

O,Zi %(a) 2 Zi £ (o)

and

n

ﬁ?—i > X%(ajié "

oA, —~2
) gk Q ’X'k(o") .

X (a) aré measurable functions of the variables 5, ..., %,
consequently '

and

E(E-£) (o) =F 2 (a)E(E, -85, .., 8) -0

E &7 S (o) sE D a a2 E R d ™y, L

[

k=1 Ton
Taking the integral of both sides of this relation with

respect to a from O to infinity we get
A
F 4

2

“eE AT
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Uging Holder’s inequality we shall have

1A}

o1
& o Lot gt o ol "oz 2
ES = B s [EST]  [E(s)]
which is equivalent with the statement of the lemwa.

Remark 1., Let us notice that

’_P{§>m=ggxk(a>

and so from the:relation

SISV NP ENES ( =1,2)

we get the inequalities

+ 1-2’
P(§>a)zbie, Pi5-a;s B
' .Corollary, Applying the lemma to the variables—EiFEZ-ém...rgm
we ge?b
oL < ¢ R\
£ 57 «(S5) G
where § =max(0;§ir..,—§h)) §;=max(0}—§h). Hence, using
oL oL —\el
equalities max f§k[=mﬁX(§, ﬁf), ]En! =(§:) 'f(§n) we

gcet

IIA

(2 Ele)” .

E( m‘c(mxfik] )

Theorem 9. Let i<¢x,<°°and.(§n,’;%) a non-negative

gsubmartingal for which

oL
sup EﬁEh = Ge
n
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Then

(10.9 E (smot) <= N .
(109) E (sip & <<0-;‘—i-) sip §, .

Proof. The submartingal convergence theorem ensures the

existence of lim §n= £ . By PFatou’s lemma
E§=1in B§, <o

Let 7 = suﬁ §, . For any A= 0 we get from Kolmogorov’s
ns

inequality

Winzris 1§,
set F(A\)=Pl9,>2) . Then

ELsap ] =E g T aFO)-T F() () -

- L [XFON, = [ FO) 462 7405, 4R)a(0) -
TN o .

- _({_gN(Df cl(;\ ))dpzo{%EgN ?ZNDL—-L -

Using HOlder’s inequality
ol=4 ot (A (ot -1) e
Ef7, =(E§) " (Ep, ") -

“(EEY(E)Y (4= 25).

ot
Now if E'QN‘< o= , then the statement follows easily.

Otherwise let f@ﬁﬂ =ain |9 0 ' ; then the inegquality




holds, and applying the above result we get

Elg)e ¢ EEY .

- As OZ(N“\ i DN it followa by Fatou’s lemme that

ol . ol
F(p Vs U E( O 2 #EE
which proves the theorem.

Remark. Lemma 1 is a special case of theorem 1.

Corollary 1. Let (§,, ¥,) & martingal,ol>4, sip Elg*<oe
P n

then, as lllgni, '3:“} is a submartingal
E(Saplénl)w<°°) |
(sl 5,117 =(r )T W El

Corollary 2. Let the martingsl (§,, F,) be square integ-

2
rable, for which sup E§ <o . Then
- 2 P
E (sup gh )'= }
- 2 — - 2
E(sip )= 4 slip EE, .

Remark. If o =1, the theorem is not true, so the following

@ theorem is useful.

Theoremlo. Let ( §,,F,) ©be a martingal, for which

sup ECIE, 1og+l§h,><°°

!
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then

E(si}plgnl) < 555 (44 5%@EU§JQ0§I§J)<°‘° :

Proof. Let a,b > 0 then

n o

3 log 'h = =& 1og+a+
/This can be seen asg follows:
b
log bg 2
from where

a log

A

a

ale

b LA _ b
Q e e )
bs aloga+L = alogiq+ L

a log & o

and
a 10g+b = = log+o,+g,)

Integrating the above mentioned inequality

Pieinls |za) =4 [fs [dp

{sup It ]l>a}
men

according to a in (4 o) we get

(2029 if P(s&plgm(> a)da = T%%— i [§ ]4P -

= E(}gn’ P'O(;(f,ga ’ gnl) £ E(! gn“o%-]- §n)+ _é" E( i.%?; Em) -

Furthermore

i

(o) Esip 60 =S P sipl5/>a ) da

£ 4+ ?P { g&g!§ml> o} da
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consequently from ( lo)

{P{S\EEHM]} a}da éé +E[/§nm0(§]§n’]+ éif fID{ sﬁ.pfg,,_ﬁf:**o, j da.

Supposing that F [ supl%m[] < we get
m=n

(14)TPtsuplt =0 Vda = 4+ EJ5, ] togs.]
and from (11)

IA

Elsuplsal] =1+ =1 [4+E[[8./ g /L[]

< 557 [1+ sip ELIE,tog" [8]] .

To see that F [sup | §[]< = is always true we can use the
T mEN .
"fruncating" method, and get the above inequality from where

the theorem follows directy.

artingales and semi martingales with random time.

Theoremll, Let {Eh‘?% }  be a non-negative supermartingale
[that ie E(§,,,/%)=§,.) T and 6 two stopping times/
according to {1} ) .
Then §. and §. are integrable and on the set T > & the
relation

.2 E(£./E)

holds with probability 1.

Proof. The limit §_ =lim {, exists and by Fatou’s lemua
n—>ee

E€ <Elim§ slimE§, =EE <.
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Similarly, if P(r<=)-1

EfrElin Sy, =lim Ef,,2E6 <.

h > co

30 we have for any

E§T=‘E 'X-{T—,o,:} §OQ+E'X{T<M} §'T_'< &e,
That is §. is integrable /and £, too/.
{Senn ,’:E\ } is a supermatingale, as

St ign £ Yprmmmy Yir>n)
s0 §r,, is %, measurable, and

El gt‘dnlg:n‘i } :\2*,1 Em %{'E'=m}+ E(gh]?:h-‘l) X{’E"én} £
'Ernc:n_i fr=m} ¥ §n-4 ’X{TJ’n-‘l} * g““i%{féﬂ} - g't'i (n-1)

Let now £ |@|< = , Then the equality E(GI'FG‘FE(@]?,‘)
will be satisfied on the set {6'=n} . To see this let us
define = (w) on the set {6'=n} by

f)z(w)= E(elgtn)-

As
(wig()ac} N{E=n} = (e E@IF)=c) {6 -n}EF,

furthermore for any A€ %

Jp)dP=3J E(E|F)dp-S e dP -

D AN{G =~} "an{e=n}

= [edP-[E(e|F,)dP.
A A
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That is 7 1is qﬂ-e“ measurable,

Now on the set {G'~n} we have E{Ef/r&:g}f-E{ﬁf/?—n}

and it is enough to show that

(40'42‘) £.2E {g'r:] Fal

| \ . : .
As 6, T is a super-martingale, we get, using

Patou’s lemms

grm\n>E(§mM‘q: ) = E(§ [F.).

So we have (41) on the set {T 2 end the theoreu is

proved.

Theoreml2. Let §h=E(92['E,) , where E,aa’<°° . Then for
any two stopping times ©, T withP{'L"cw =1}we have (6" £ T°)

- n_
Proof. We get, as above that §f= §n on the set {’t’=n}

and

Ely|F) -EGIR)

on the same set. That means
§o= E(gl%Fe).
Furthermore T < % as we can easily see end
E(51%) - E(EGIBIE) ~E(pl5) -

Theoreml3. Let {En) 9:'“} be a super-martingzal, such that
g, 2E(n|%,) , where Elg|<e°= . Then for any T, 6 with T2¢
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£.2 E(§:1%).
Proof., TFollows from the theorems 1 and 2 and from the

identity

§om E(o/E) +(8,-E(2]%)

using the fact that §~E(n[%, ) is a non negative super-
martingale.

Applying Theorem 2 with €=l we get the very useful
(1013) EE.=EFE,

relation. (13) is true under different sufficient conditions

too.

Theoreml4. Let {§, % ! be a martingale, T stopping
time with P(’C’ <°=-)=i, Elgfl<°’° and 1im {f £, 4P =0
n - oo 1-_—,.“}

then £ - =

Proof. For any n> 0O we can have the formulae

S Zi E( )t =0)P(r-1)+E(te)e>n)P(T=n) -

I_\/_l:s

ECECE )l =0P(c )+ E(lr>h)P(r>h) -

k=

e s

- 2L EE v )Pe-k)+EE o >n)Plran) -

-E(8, ] 2)P(ren)+ E(tcr > n)Plr>n)
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Ef.=E(f/ten)Plcen)+E(s/C>n)Pr>n) -

-E§ - E(t o> n)Plr>n)+E(Sc[T>n)P(T>n).
As Ef,=EEf, and the second and third terms in the right
hand side of the above equation tend to O ag n-se-, we have

the statement of the theorem.

Corollary. If E(gn)?? K==, then E§.=FE§, . Indeed
E(t)"=K<e°> , and

|J§ apl=f]5,laP=( ] 5 aP)* (Pr=m)* =

{r>n} {r> n}

1
K™ (@P(r>n)) " >0.
Example. Let Dot Moy o ¢ be a gequence of i.i.d random vari-
ables with P(ozl=i)=P(m=*i) = 4/ , and

En= 724+ vt Yy

T=inf{n:§,=M, orfa=-N}, (i, ¥ naturals)
Let p=P(§-M), or=P(§t-= -N).
{Obviously P(E.L- <o) =4 ) . Then :P+q,=4.,
Elfel2 max(M, N)<e ., Moreover }ﬁhlé max (M N) on the

get {T>n) and

f[fn] dP = max(M,N)P(’t‘;-n)—eO ) (n—>oo).

{v>n}

So according to Theoreml4

0-Ef=Ebe=pM+ g N =pM+(L-p)(N) Sp -y,  q=of .
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Based on Theoremld we can prove the so called Wald’s identity.

Theoreml5. Let Dar Qay = v - be i.i.d random variables,
E'”Zild‘}a) T- @stopping time for q:;,=6”{o2“...,02n},
then with ET ==

E(’721+" .t 721,)-=E?ZE’E‘.
Proof. Let Ty =ain(T)N), N==

hﬂ(qzi'l—""" 'Zn)_nth _
{§,, %} is a martingale. According to Theorem{4 /or
Theoreml?/
E g"[‘_’N = Egi = O .
applying this result to /9, / we get
E g+ .+l [} = Ey-Ely,la EvEly lo=

N .
and 'L“N’P’L’) LZ-J?ZL’T‘EIQLI , 80 by Fatou’s lemma whence

Elsc|=ExEly,[+Elyle. . slaclis 2EvER,l<=.

Now we show that lim [ [§,./dP=0.
n-soe{T>n}

Obviously

]gnléi’?z&—Efr“,i-. . .+[Qn-EQn!-§!qJ+,,.+’in+nE92“

{T =n}

and on the set
IS 2lg, o v g d+T Elgl.
So g 1aPe iy, dr. . +lplevElnl} dP =0

{T>n) {T>n}
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as {E In,]+...+lnel+ TElp)} === anda P{w <=}-1 ., That

is the conditions of Theoreml4. are satisfied.

. 2
Exercise 1. Prove that if _E (@{) <ee agnd ET <° then

2 2
D (‘?21‘" . .+'Q,t,)='D 7 Er
Exercige 2. Prove .that in the example after Theorem 4 .

Eo=M.N.
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Chapter 1i:

Some properties of the stochaptic integrals as

Tunctions of the upper bound

Theorem 1. If [(t )€ W and JEP()dt === then
—— L D
the continuous process §(t)=/f(s)d w(s) satisfies the
0

following inequalities

ERE)

0

P{oan‘PTlolt~£(5)d-w(5)]> ol = é

E Oglllgj_fojiﬁ(s) dw‘(s)lz = erE ﬂz(’c) dt.

Proof of the theorem, Let us first suppose that { (t) is a
piecewise constant function from w . Let [\, -1%, } =
sequence of decompositions of the intervall [0,T] such that
AN AN EA“ is a set everywhere dense in (0,T) and
¢ (t) is constant on (t,, +ni+t) . Then

{ —sup ’F\ﬂ(s)dw(s)] = lim §_

o<t<T ¢ n > o

with probability 1 where
n,
f -sup I I ﬂ(t)dw(t){
tn, 0

t
As the variables /| = {(t)dw(t) are measurable with
0

respect to ?:%hk we have

LY

E(f T dwle)- f"fa(t) dor(®)] 1 1) durls), --)IE&) dfe)) =0
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and the conditions of Lemma 1l. are satisfied for the variables

i
.f?(f)dAU(t) . Uging Remark 1 and Corollary 1 we can write
o}
4 B 2
Pif>at= G IEL (A,

E§ = lngE Pe(£)as.

Taking the limits in these relationa we get the proof of the
theorem in the case of piecewise constant functions.

Let us now consider the general case i.s. when #({)Esm
and JIEg?(i)dt‘<°° . Then we can choose a sgsquence of

stepwise constant functions §,(t) so that
T o ’
lin | ECL&) -, (+)) dt=0.
n->oce ¢

Let us choose §,(t) so, that

O.I‘E(g(t)-gn(f))z <4

zn
be gatisfied. Then‘

I

S EQ -4 a

gzofT ()20 e+ 2 F(8,00) - () e = 5 -

The function $n+fﬂ - Qn‘“ is piecewise constant so

Ia

Pl sap_ 16}”3””(5) deols)- [05) dw(s)]2 )

T

WS E ()~ 00 ax = 37

(K}
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— 4
As the series 522 is convergent we can use the lemma of

Borel-Cantelli, and see that there exists a /random/ integer

n, , £inite with probability one, so that if n > n, then

o | S §osi(s) dur(s)- M) duls)l= &

0E =T

Hence the series

ofth(s) du(s)+ nif{( fgm(s) duw(s)- f bn(s) daols))

converges uniformly with probability one. So their sum will
be continuous with probability one.
We can complete the proof of the theorem in the same way

ag we did in the case of piecewise constant functions.

+
Theorem 2. If [E&w the process [J(s)dw(s) continuous
4}

with probability 1 and

Dleup |[1(s) dulo)l>c )P {6F$Z(t)d£>N e

0S+ET ©
Let S,H §2 be two stopping times with respect to the
G’ -algebras L (0£+=T) such that
?(OS“§1§ £.2 T)=-14

—
and 5“51 the 6 -algebra belonging to {, as defined in
definition 2 § 1. ?:g ig the 6 -algebra generated by the

i
sets of the form BN(§=t) +>0DBEX. (see definition 2 p. 19)

Theorem 3. If f(+)€w (0, T) and EP(t)dt=""
then
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i

E‘(fﬂ (8) dw(®) F ) -0

(L SHd w15 B P )
. _ L

Proof. Let 7 be any random variable measurable with reapect
to ’:Féi and X (t) (L -1,2) be two processes defined by
X (£)-4 if § =% and % (t)=0 if + < {. . Then
x; (t) are measurable with respect to ¥ .
Furthermore, as we shall see the process 7(%,(t)-%,(t)) 1is
measurable with respect to % too. Indeed, let us first
assume, that 7 is an indicator function of a set of the form
AN(E, £5), where A G'J:'gi . Then if s<+ then both
coefficients of the product are measurable with respect to

%, and if s>t then

rX’Aﬂ(gigS) (?Cz_(f) - 'X,i(t)) =

I

X’An(gi"éjc)(%g_(t) - 7('4_({:)) <

= %An(glg_a)(i— ‘X‘:L(k))z 'X'A ‘ 'X’i({'-)(i"xi(‘h))ﬂ 0
Now we see that 79 (%,(£)- %X, (%)) is measurable with res-
pect to % for any indicator function of some A& q::gl
As any variable 7 measurable with respect to (:ng can be
represented as an almost everywhere convergent limit of sums

of the form 2., Ko, 1 A 6?51 we proved that
p(%X, (5)-%, (%)) has the desired measurability. Now
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§2 f, :
gf nd(t)dw(t)=- 6[Q¥(£)dw(t)— oj (&) dar() =

T T

= S (), (8) dwr(8) = [ 2() %, () dar(t) -

0

T

= [ d() (%, (£) - %, () duw(t).

Obviously

OJTE FIX )~ 1,0 () db = LLJT'E PR b =

Consequently

En gf?(%)dw(lc%Ef«z{a(lc)(%z(t)—xi({))dw(t)=0
[/ 300dw®] - E t fphem (o)1) dufo) -

- OJT E o g2() (%, (6) = %, (8)) dt = E ffqg')@z(%)(?ﬁl({)—%(ﬁ)) dt -

§2 '
i =x) g{ Po(E) dt

That means that the proof of Theorem 11 is completed.

Remark Taking the expectations in the two equations of the

theorem we see that

52
E(ff £lt)dw(t))=0

E(f,fgi@(t) d.w'(’c))z= ngfzyz({) dt.
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Theorem 4. Let J(t)z0, tz0, {(t)€w [0,T] for every
T >0 Let us assume that fp{g°£36£)d$ <= }=4 , and let
T, = ifi+t: ng(s)da 2k} . The process

§(4) = J (s duols)

is a Brownian motion process.

Proof As we have seen T, is a stopping time and T < T,

if ty <4, .« In the previous theorem we have proved that
T,
ECJI6)dw(s)|% ) =0
T, t4

S e dus T, ) -

1

- ECS ) dsl ) -4yt

So to use quy’s theorem we have to prove that the
process §(t)= fLiéé)dAw(s) is continuous with probability
l. As T, 1isg moA;tonic with probability 1, ite only discon-
tinuities are jumps. So the only discontinuities of §, are
jumps and they are placed at the jumps of the process T,
Let us suppose now for some * T,_,<T,_,, ) then as

++E

E .l'ﬁz(s)ds=2£ =0 ¥ £—0
+t-£

]

uging Chebyshev’s inequality we get that
T +E

'rj-.;]l(S)dW(S) — 0

with probability 1l.
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Remark If the function { () is determined only for

t e (O,T] then we can apply Theorem 12 by putting $(t) =1
£+2 T . Then §, will be a Brownian motion process with

lifetime T
o— [P*() dk.
]
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Chapter 127
Solutions of stochastic differential equations

In the following we want to explain what do we mean by a
solution of a stochastic differential equation. In the dis

crete time case the solution of the equation
§n= O”(Eh—i) l’]) +b(§h-iJ n) - E"“J

where €, is an independent (E§ =0) sequence of random
variables can be defined in the following way. At first from
the definition we see that §t‘ is measurgble with respect to
the G'-algebra A;,O generated by the random variables
6,80y -+, €. E, may be any random variable, £, = ¢, and
it is independent of AE, 1 . The recursion (11.1), with
the functions a,b and sequence Ein defines the new process

gn which is called the solution of the difference equation,
The properties of the process gn depend on the choice of the

functions a and b. From (11.1)

E(EalAre ) = alboy, n),
B[ o (6, ) AL T-E[BCG, ) Exlag, ] -

2 2

b(gh_i )h) . gan
where Gﬁ\= E &2, . The distribution of §, in many cases,
under condition §,,5, ... %, , » depends only on §,_,

which means that the process {, is Markovian.
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Now let us consider the continuous time case when we

have the differential equation

(11.2)  dE(t)=a(t §(+))db + b+, §(+)) duwr(®),

where (W('\:)) ) is a Brownian motion process, F, are

6'-algebras ¥, < % when t =i, and w(ten)-w(t)
is independent of ¥, /for every t/. The functions a (%t,x)
and b (& ») are measurable in (¢, x).

We say that the process £(t)is a solution of the equa-
tion (12.2) 1in the interval OSt= T if the following con-
ditions are satisfied

a/ £(0) is measurable with respect to %, , { (0) is

the initial value of the process;

b/ §(t o) is measurable in (t, ) ;
e/ §(tw) is ¥, -measurable for every O<t = T 5
T

o
: 2
d/ The integrals o.l Ja(k,6(¢))/ dt, Ofb(f, §(t)) dt
exist and are finite with probability 1;
e/ With probability 1 the equation

£§(0-50) - S al58(5)) det [ b(s, §(5)) dus(s)
holds for every Ot =7,

Theorem 1. Let the functions a(tx), b(tx) satisfy the

following conditions
las,x)= als,y)l +Ib(sx)-b(s,y)l = K Ix -yl
la,(s,x)fz + b, 2 KM+ %),
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for a fixed K and for every 0 ES=T and -e= = xg=o°,
Further let us have for the initial value ¢ QQ) measurable
with respect to ?ﬂ, and satisfying E1§(G)IZ‘=G° , then
1. There exists a solution f(+), continuous with proba-
bility 1 with the initial value £(0);
2. sup E[§(6)7 <o

3. If g“’(%) and gZ)(t) are golutions with

properties 1, and 2., then

Proof, The uniqueness follows from the following. If ?“(t)
and §u3(£) satisfy

(12.2)  §()-50)+ [ ols, @) ds + 1 b(s,6(s)) dus(s),

then

EL £90) - £2( ] =Bt (5,560 - ol £9(s)] s +

¢ 1 Tbls,95)-b(s, {2()] dure)) =

=3[ 1 (0l £7%6) -5 £ ] +2ET (6(557%)-b(s £ duolo)] =

= 2tF f La(s, £9(s) - als fs)T ds+2F f(b(S, €N -bls, £ ds =

= 2k T EGO() -0 ds + 2K f E(E9%) - () ds =

A

L. j C(6%)-§9(s ) ds .
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From this inequality it follows that the fumction W(t) =
=E(§(-D(Jc)—§(2)(£))z s 0 , which means Pl gm(*c)"“ §m(t) }=1.
The fact that w(t)=0 is a consequence of the following
lemma.,

Lemma 1. If ¢,>0, w(*)20, v(t)Z0Q then from

L
wk)=c,+ él' w(s)w(s)ds

follows ,
wt)sc, expl fu(s)dst.

Proof of the lemma. We have

E.(Jc)u*(t) < L’;(JC)
| ¢t/ w@)uls)ds
By integration °

folc,+ fu(s)u(s)dfﬂ ~Inc, £ J r(s)ds,

or
+ +
wt)S e+ T u(s)u(s)ds € ¢, axp{(.)f' v(s)ds ¥,

which gives the desired result{. The case (;, -0 we may get
from here by limiting (c, ¥ 0).
as Pl §m(ic) = E(ﬁ k) =4 and the processes §(n (+ ))

5(2} (+) are continuous we have

D (sl £+ )- €91 =01=1

Indeed if R is the set of rationals

- (2
DY sup [£9)-§7w)] =0y -1,
Lter
O£LET
but R is dense in[ O T] end from the continuity of the

procesgses we have



Pl sup [£°(4)-§70)-01 Plsupl £ (] -0 1 -4

O LT

which proves the uniqueness.
To prove the existence we shall apply the usual itera-
tional procedure,.

Let the first approximation be,
§(£)= §(0)
and
n + n-1 - n-4
§0)-Ho)+ [als, 87 (s)ds+/b(s, £ (s))ds.
With a gimilar argunent as we did in the. proof of uniqueness

we get
C1E - E 0 5 LTEIE ()-8 ds.
As

EI ) - -E f afs, §(0)) ds + fb(s) £(0)) duw(s) } =

2
=L, T K. (L+EGO)).
From the last two inequalities for suitably choosen C we get
n

(12.3) & ()-C () = ¢ &P

n

Further

sip 187'(¢)-'(x)|= stp [ o(5,§"(s)) ~ als € (s)) ds+

0=t ET OSt=T 0 .

e

+

¢ sip  [1b(s,87())-b(s8" (s )] dwr(s).
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Now we use the theorem 1. of the preceeding lo. paragraph,

namely

E o sup ”@(Sm}dw(s)l LHJEQ(sw)dé

0St=T
Using the Lipschitz condition for the functions a and b we

get
E stipl E )-8 = ZJTK"".C{TE/?’G:)—§"'1(Jc)l2 dt +

: £K?’ofT EIE ()-8 )P at - o, [ EJE"@) -8 (w) 2

and from (12.3)

’ n+ n - .__._..._n—i
E sl 74 ) - ()2 2 ¢y o GO

Using the Chebisev inequality

r;iP ossfip. { Mi(t) E(Jc)l> = Z %’:(IZ)L'); a

S50 the series
§0)+ 518" (4) - £

converges uniformly with probability 1. I.e £ (t) tends %o
a certain process, let us denote it by £(+) , which is
continuous with probability 1.

Taking the limit in the equation

§(-t) §(0)+ fo,(s £ i(g,))d&-# fb(s £ (5) duw(s)

we find that the process §(£)03 is measu;able in ({,uﬂ
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and satisfies the relation (11.2?)
Further for any fixed the random variables §(+) are
T, measurable,

Finally

EE)) = 3EEO) +EL fals, ™60 sl +

n-4

PEL bl €7D dusT ) = 5E(s o) 31 atas

and by iteration
E(E" @)Y = 3EEO) +3E(0))f. 3L+ +(3L)"‘D.ft (E-)E(E" ()} ds =

= 3E(6(0)) + 3L+ 3E(5(0))+ 3E(2(0)f (3—}5*913 =3E(0)Y .

That means
sip  E(i(e)) = 3E(s0))* ™
O LET

that is the theorem is proved.

Exercises _ _
1. Let (0, F P ) a probability space and T A 0=tsT
a family of nondecreasing G -algebras and (kv(t)) ?i|@?)
a Brownian motion process.
Let the funmctions  (+,w), a(t,%,w) bk, x,w)
have the properties
1. they are measurable in £]x,co
2, for fixed t and x they are ¥, measurable.
We may that the process {(t)={f(t,w), 0Zt£T ! iga

golution of the equation
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(x) K= §e) ol o)) ds b6 56) ) dls)

if the following conditions are satisfied:

a/ §(t,w) is (% w) measurable;

b/ for any 0=t=T, f(t,w) is % -measurable,

¢/ the integrals in (%) exist

d/ equation (%) is satisfied for every t with probability
1.

. 2
Prove that if sup =y (£,w) <= and there exists a con-
OSLET ’

stant K, that the inequalities
[alex, o))+ bt xo)f* = K(L+E),

| Oﬂ(tlxlw)'_ O’(tl lj;c'o)]+ }\b(‘tijw) —b(-h,%lco)] s Kx - 3}
hold with probability 1, then the equation (x) hasg a

solution, for which

sup [ £(¢ ) <o=
o +<T

and if £ (+) end {, (+) are any two solutions then

they are stochagtically equivalent, i.e.

Prove that under the conditions of Theorem 1., the soluiion
£ (L) of the stochastic differential equation (12.2) is e
Markov process.

Hint: it is enough to prove that for any A, measurabl?d’
random variable < (<) and bounded continuous function

A (%) we have
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E(eet(E(sN]AL) = EEMGE)IE®).

Using the unique solvability of the equation (11.2) and
denoting its solution in the interval ('LJS) by Em(uu)
we get that

§(s)= §, ¢ (5) a.s.

The function

%@(JC), CO) = B(EL,EM (S))

depends on only through the increments w{u)-wr(t)

(=u<s), approximate B(x, co) by functions of the form
Z‘?’k(x) %k(w))

Let the functions a (+,x) and b(t,x) be continuous with
respect to the pair (Jc,x) and satisfy the conditions of
Theorem 1. Then the process §(%) , which is the solution
of the equation (11.2) is a diffusion process.

Hint: use Exercise 4. to prove that EI §51x(t)—xfh =

= Of(Jc—S) , then use this, Lipschitz condition and Holder’s
inequality to prove that E(és'x(t)—x)= alsx)(t-s)ro(t-s)
similar estimations lead to E[  (£)-x]" =E(sx)(t-s)+oft-s).)

Prove that 1f for a diffusion process §{t)
A/ the coefficient of transmission a (S)X) is continu-~

ous with respect to the pair (‘S, x) , and

[alsx)] & K(1+(x )



B/
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for some K> 0,

There exists a function § (x) independent of S and
A>0, such that P{x)> 1+[x |, sup EP(ES)‘fD“
O<=SET

and

B, A= & 8= B, a8 ) (5= x)2 9(x)a

IIA

IR TS

p(x)

Then there exists a Brownian motion w(S) , measurable

with respect to A° such that {_. satisfies the

By

stochastic differential equation
df = alf,,s) ds+ duw(s)

. 5
(Hint: prove first the relations(with 7 = §.- fa,@u, w)du)
0

IE(’Q5+A— frgsz_S%)[ =K (x)a
S p- 2} 1A )=, 9010

Aliin(] _/_:1\:“ E(VZS-I-A_ 025 I Afog)z O

‘ 5
Jim, & Bl g f )=

then, using Levy's theorem prove that /QS is a Brownian

motion, considering the expectation

s

Elgens AZ) - E(SE g, ppm 2n 1AIAL)

and using Lebesque’s theorem about majorated convergen-

ce,
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Chapter 13.

Stochagtic integrals and differential equations in

multidimensional cage.

Let {uwi(t)%, k-42,...m ) independent Brownian
motion processes with the same family of non~decreasing 6”-_
algebras %_ . Let f*(’c%(efq(f)oo))...,{ln({:,w)) a vector
process, where J (t) are T, measurable for every i and any
fixed t. We demote Lel'f . . if [4P=fi+fiv . g?
is integrable on [0, T] x N with respect dt dP . The
class of vector functions with the above two properties will
be denoted by mtz. .

The gtochastic vector integral with n components

J Q(&Lu dﬂn(@ 1s determined as the vector l‘%(Loﬂciw'GJ
6!'!;2(@@)&%&),... j.?n("c o) d,urb(4;); . ALl

properties of the stochastic integrals a/- e/ in one dimen-

sional case remain true., We must substitute | |3 =/$f+ S+ PE
Now let us take m stochastic vector processes ﬁ Qt co),
)Q (£ QQEEHt » then for every k the integral J% G;quAmlk)
is defined. Let o (t w) be an n-dimensional vector function,
of the real variable %.
As in the one dimensional case we may define the stochastic

differential

(12.)  di@)-al)dt+3 () aun)
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if
- Mmoo
§E)-§)= Ta®)ab + 35 T2 (1) duw (+).
LU k=4 tg -
Let us have a vector function L_L(t, X ) in KR, (n) where
x €R™ | We suppose that all the functions

ou 3 3® -
E(Jt’ﬁ)J 2t / AXL -L-L-’J Axi 8%; ’L&(J‘:;ES) ("J]:'i.?’)' . .,n)
are continuous. If the stochastic process £*(L)=(¢,(t),...,§.(t))

has a differential (12.1) then the process 7 (t)=u(t §{(*))

has a differential too and

dp (€)= [‘lf + 2 O“L(J‘:)g%i% YT A axJ ’F %]di ¥

F 35 ey do).

i=t 8%j
(Ito’s formula in multidimensional case).
Let ot x) and b (tx) (k=142,...,m) be vector valued

()
measurable functions with values in R ,
examine the solution of the stochastic differential equation

g™ . We shall

(12.2)  di@®)=alt g+t + Bl L) dw(®) -

= ahE(E)e v 2 b (5 5() du ()
or in the equivalent form

(12.2%) E(t)-£(t,) a (s, E(s))ds-+§§j Ib (Sé(ﬁ))cium(S
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E(Lo) does not depend on w(t)- wl(ty) for every t=>1t,
We say £(+)is the solution of above differential equation
if the integrals in (12.2) exist and the equation (12.2) is
satisfied with probability 1 for every t( 0=t = T).

The existence and the uniqueness of the solution of

equation (12.2) can be proved under similar conditions and on

the same way as in the one dimensional case.
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