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Chapter 1~

Basic concepts and definitions

In this book we shall be concerned primarily with the

statistical problems of certain types of

or !~~2!_~32fl2~ of a variable, which in most practical

cases, will mean time.

In the first part of the book we begin with some preli

minary materials on stochastic processes. The standard refe

rence will be Gikhmen-Skorokhod’s book [1] where the reader

may find the proofs which are not given here and which are

far from the aims of this book.

Á stochastic process is a parametrized family of random

variables, where the range of random variables is a. finite
k

dimensional Euclidean space, denoted by R in the k—dimensi

onal case.

Let be given the parameter or index space Tand 1 C. T

denoting the parameter, where in most cases t means the time.

The vector random variables f(Ű(t(1),.. .‚~k~(€))

: depending on parameter t, where~ means the “transpose” of a

vector (matrix), form a stochastic process if for any values

t1, ~ t3~ (t~eT, i=l,2,...,n) there is given the

common probability distribution function of.~(t~. ..)~(tfl).

That is, for any sets E1,..., En of the k—dimensional Eucli—
k .

dean space ?

..
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is given. ~(€) (j’=O)á,..., k-i.) are called the components of

the process. This gives the~ of a, stochastic

vector process~(t) .

The probabilistic properties of the parametrized set of

random variables are uniquely determined by the corresponding

finite — dimensional distributions. That this is so is a con

sequence of the extension theorem of Kolmogorov (see L~1 ‚ or

Gilchman—Skorokhod [1]). This theorem of Kolmogorov may be

applied when Tis an interval (in the continuous case) ‚ but

the situation is more complicated than in the discrete case.

Generálly we say, that on the probability space(fL,9~P)

there is given the stochastic process «4, Q) (the space is

fLand ~CfL denoting the elements, ~ is a - algebra with

elements Acr, F’ is the probability measure), if for every

4ET «€) is a random vector variable.

Note that if we have a directly defined stochastic pro

cess we can determine the basic probability space in several

way.

Supposing a family of random vector variables whose f i—

nite dimensional distributions coincide with the given dist—

.ributions (see Gikhman—Skorokhod [1]), if we take simply

the function — value at each E then we get the sample space

ás the function space X and the process «t w) is a function

space process, where the mapping ‚‘z-*~(t,~)must be a measurable

mapping of St into K .

In the whole book, when T is the real line or an inter

val of it, for simplicity we assume that IL, or the sample



space X ‚ consists of the componentwise continuous vector

functions. So we a’viod the question of seperability.

We say that Í(-E) is continuous with probability one

when «E ~ is continuous in b for almost all w • In the

book we shall be concerned with processes continuous with

probability one. In such a case it is natural that we confi

ne ourselfes to a smaller space, the space of continuous

functions.

We say that the process ~(t c~) is separable if we can

find a countable dense set (+E ) in H’ and a set XE ~ with

measure O such that for any open set G in T and any

arbitrary closed set ‚ the set

(cji(€w)G~ for all

differs from the set

for all +1cGi

by a subset of J’( . Doob has shown ( see Gilchman—Slcorohod LU)
that for any process (with range in a. locally compact space)

there exists an equivalent separable process-. .

We say that two processes L(~I Ca) and f(i, ~) are

!2!!1!~t if.

‚ for every

later we shall see examples where we choose that process from

the class of equivalent processes, which has the best quali

ties, for example continuity, differentiability etc. (see e.g.
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the ~ on stochastic integrals).

In most cases we do not exhibit the variable c~ in E+)co)

even if an integration is according to?(dw~.

If~CE) is given in the interval La,bJ we say tha.t the

re is given a realization on La.,bJ of the process, the “samp—

le function”, the “trajectory” or “history” of the process.

The process is given directly if the space consists of the

realizationsX .

In the case when T consists of the integer numbers we

speak on a stochastic process with discrete time /or a “time

series”, or a “random sequenbe”/. The process ICE) is conti

nuous parameter stochastic process when Tis the real line,

or apart of it.

The first moment, or expectation, of the process ~(E )is

denoted by

E ~) rn(4)(m0(~), ..

and it is called the expected /or mean! value function. By

definition E~(üt I .‚~E w) ?(á.w) . We always assume, that

the second moments

E (~~(€) m3Cb)) (k(s) mj~(s)) G~J (€~s)

exist. If we arrange them into a matrix’B(Es)tjCE’s))

which is symmetrical, than we

refer to it as the covariance matrix.
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We say that the sequence of random variables tends

to the random variable ~ in mean square, which will be deno

ted by 1.i.m. ‚ if

= O.
The stochastic process «t) is a called stationary in

the wide sense /or second—order stationary! when

m(t»~E ~CE) = const~

BO~s) =‘B(E —s)
that is, the covariance matrii depends only on the difference

By a strictly stationary vector process~(€) we mean one

for which, for all n, t1, t2,..., t~ and h the distributions

or~(14),.’ . and .. .‚~(4:~+h) are the same. If

process has finite mean square, this means that

db)) (s(s) rn(s)i~$(~CE -s)-rn)(O)-mi~

8(i —sIC) = ‘BCE. — s)

i.e. it is stationary in the wide sense.

By a Markov vector process «t)we mean one for which,

for all fl E~K€2’...’~ )4.>€fl and arbitrary Borel set

and

~ . . .‚K€~.’) =x~) =PWt)eEI~@i~)=x~ }
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holds with probability 1.

A Markov process can be given by the transition proba

bilities.

P(~(DcEj Ks) x) =P(x, ~Et)

and for them the Kolmogorov—Chapman equation

(1.1) ~x1s~ ~t)=T 9(9, ~ ~ ~)P(x, S dy,t)

is valid often 2 is given by the probability density function

P(X)sE,~= I
E

The Markov process «~) is a diffusion type one, when the

following conditions are satisfied:

a! for anyE>Q and 1~O

(1.2) Lm ~

b/ there exist functions a(b,x) bEE1x) such that for any

E~D, €~O~°<x’~ the relations

(1.3) hm -i-- S (~ x) 2(t~x t ~-z~ dy) =cL(1 x)
~ ). ‚

(1.4) urn -~- S (~_x)a P(fxJt+~)dy)~b(~x)
~ (x—y)<~ ‘

hold.

The functions a(~, xi and bCE,x) are called the coef

ficients of transition reap. diffusion /or local mean and

local dispersion, see later ch.9. the definition of stochastic



differential!.

The name “diffusion process” corresponds the fact that

the move of a particle in liquor or in gas can be described

by this process under very general assumptions. The function

atE,x~ describes the trend of the particle in the sense that

during a time period of length A the particle moves with the

distance a(t,x)Ad~ tO (A) whered~ is a random variable

with mean A and dispersion bCE,x)A+O(A)
Conditions a! and b/ are hardly varificable. We give

below stricter, but easier conditions for a diffusion process.

• Por .~ ( E) to be a diffusion Markov process it is sufficient to

have the properties

for some cf’Q .

1.5 ~ f (~t±6P(€x)~± áfdy)0)

bK/ there exist functions ct(€,X) and b(E,x) such,

that for all 4~, x

(1.6) hm ~ f(y-x)P(fX~÷A dH)Q(~x)

and

(1.7) *~&~b(~x)

Indeed in this case

I ?(bx ~A &s) ~e f Jy ~xI2+~(tx~±~ d~) = ~(A)
a
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and

i(~ -x)~, x~~4A, d~) ~ fi -XI?(t)X) + A, ~)=~A)
Iy-Xí>E E

~4 fI~_x~+’p(~x~#A &~) 1~A).
~—xj >E.

It can be proved /see e.g. Gilchman—Skorolchod[23p. 65/ that

if «E) is a diffusion process and ~(€‚ x) two times conti—

nuously differentiable function of X and a continuous func

tion of -E then 3(t) «t)) is also a diffusion process with

the coefficients okE,x)) bCL,x) where

(1.8) aC~, x) =~ ~ (t,x)» a(t, ‘~~(t~x)) ~- 9(E, f(+x)) .1-

+ + b(~ ~&(~x))~ ~ &; ~k(~ x))

(‘.9) x)b(t, ~x)) L~ g(~ ~&(~ x))j.

The reader may compare (i.s) — (1.9) with the Ito formula

(see ~ 9.).

Let there be given a stochastic process «t~ ~ 0) and

a family of G -algebras with the property ~ ~- ~ if

-E4 ~ and such that «-E) is measurable with respect to

We say that the paire (~)‚ ~) forms a rnartinEaie if

g~(-~)[<oo -E~O andE(~(t)J2~)~(s) O~s~4) with proba.—

bility 1. We say that the random variable ~ is normally

distributed if the characteristic function of it equals
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La
- 4Cu.

e -~

where m=E~, ~=E(~—~)1 . In the case G#O the random

variable ~ has density function
a

Á (x-mj)
.1. ~

ü~t6

The random vector ‚~*(~)„‚)~fl) is normally

distributed when the characteristic function has the form

(l.io) Ee~~=cxp {~~~~‘)-+ u~~) ~xp{Ltujmj

4r
2 L.4 U3 -%< ik

where m3 E ~ ~ and is a

symmetric pozitiv semidefinite matrix. If has rank n the

n—dimensional density function of is

-1.
(1.11) f!(x)=(2TJ) .~xp{—-~YR (~—rD) } .

It is well known that if ~ is a Gaussian random vector and

A=(atj)(t=i2,...)n; j=~2~. ..‚m) is a matrix then

is normally distributed with parameters ~=Arn, ~RM~A
If the joint distribution of ~ and is normal and they

are uncorrelated(E~L ~z’j0 for L=4,...4n; j=t,...’,rn)

then they are independent.
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We assume that the reader is acquainted with the elemen

tary facts with respect to the norma.l distribution /the con

ditional distribution, expected value e.t.c/.

We remind some fact /see e.g. Rao LJ-J /

1. If ~j) ~2 are normally distributed (E~’,O) then

(1.12) ~ L ~ ~ L ~~112 E ~ L ~3E~ZLtE~ 4E~2~3

2. If~ and are normally distributed then ~

has also normal distribution.

3. A necessary and sufficient condition for normally distri

buted random vectors to converge in distribution is that

flh~~ and E(~nn)(mnt~~.

4. The random vector ~ in in normally distributed if and

only if when(~) u)/the scalar product of wo vectors/ is a

random variable with normal distribution for every U. E’R~ .

The process ~ (t) is a Gaussian one /or normal process/

if its all finite dimensional distributions are Gaussian.

The measure generated by the variables ~ (±) is

called a Gaussian /or norinal/ measure.

A Gaussian process f (E) is determined by the mean value

function = E ~ (€) and by the covariance function

B(sE(~(s)m(s)) (~)_~(t))*. rn (~) is an
arbitrary function but B(st) must be nonnegative definite,

i.e. for arbitrary real numbers and integer n
L

(‘Bc)chE c~ c3 B(s~EkO .
— LJ
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Exercises

1. Prove that the process ~ (-E) is Gaussian if and only if

every linear combination

. .c~

(n<~’°; ~ arbitrary,

Ct. real arbitrary numbers,) is a Gaussian random variable.

2. On the basis of Koloiogorov’s theorem prove that for every

m&t)function and positive definite function B(s~-E) (i.e.

c~ c~ B(h,~3)~ 0 ‚ where fl is an integer, C~’

are arbitrary real) there exist a probability space(f).,T1~)

and stochastic process~(t) that E «-ü=rn(~) and coy

(~(s) «i)) B(st).
3. Let ~ L . .. be a Gaussian. system with ~ O and

covariance matrix where rank of B is r ~n . It is

known that there exists an orthogonal transformation
/ ~4 *C “00 1) for which C~’R C has diagonal form. Prove

that there exist r independent Gaussian random variables

~ such that ~ (for every~) is a linear combi—

nation of them. Further, if r’ n prove tha.t there exist

exactly n—r linear relations between the variables

() •)~fl

4. Let ~ ~2~•-• be a Gaussian independent sequence with

E~=o. Prove tha.t E with probability one if and
Dc 2.

only if EE~-L <OO•

5. Let L .. finite or infinite sequence of random

variables with E ~70J E~ ‘-°°. We suppose that they are

linearly independent. If and
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L
«L,~) ~ ..

(kL-~ ~~(L(, ~)

then ~ /E~ form an orthonormal sequence of

random variables, i.e. E2L ~J = (~~
6 Let 6={G~)...,ek} and be two random

vectors, and the common distribution of G and ~ be

normal; if, moreover, the matrix coy ha.s an inverse

then

. ELI~hEe±cov coy

cov(GII)cov(e1e)~cov(ej)cov~(~j)cov~’(ej)

7. Prove that the definition of the Maricov processes may be

replaced by anyone of the following

a! There are families of —algebras and such that:

DQ ~

G)~Cb ) is measurable with respect to both and

the sets of and are independent under the

condition of T~ fl ~ with probability 1., i.e. if

Ac~± ‘~~C Q’+ ‚ then

(~) ?(AnBn?A~n~)?(mn~).
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(The Ga—algebras 6~(~(s): ‘s and may

be chosen for reap.

b/ Por any -E. and any bounded, (~ — measurable random va—

riable we have

(~) EG115~)=EG2,I5~n u.s.

cl for S ~ ~ and any bounded ? =f(x) (xGR1)

(*~E) EC?(~(s))I ~) = E(?(~(s))j~n c~) as.

(Hint: a./ It is enough to prove (~) for any finite

dimensional A and

b./ Prove (~t*) first for characteristic functi

ons of sets from .

c.l Obviously b.) =~≥c.). Prove from (m)

using the hint for b.

8. Prove tha.t for any diffusion process ~ CE) with continuous

coefficient of transition a (-E, ~.) and coefficient of

dispersion b2 (-E) x) and any continuous bounded function

‘F(x) such that the function

‚ (s~t)
f(s) = X

has bounded derivatives of first and second order with

respect to X the function u.(s,x) has the derivative
ajs,x) and the equation

(*) —~ -‚-
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is satisfied in the region S x G?’) and the bounda

ry condition

hm ~(s,x)9(x)
s 74~

holds.

(Hint: The boundary condition is a direct consequence

of the boundedness and continuity of 43(x). To prove (~)
show first that for any 0 < 54 ‘S2 ‘6

LL(s~,x) f ~t(s2z)P(s~,x; s~ d~zL

Then expanding u(s4)x) into Taylor series with respect

to X take the limit Sa—~~—-~~ in

~(s~,x) —~(s11x)

9. Prove tha,t if for a diffusion process ~(t) the conditions

a! and b/ are satisfied uniformly in X and the partial

derivatives

3p(s~x;~y) ) ~-~o~(€,y) p(SJX3t,y)) F (b2~,y)p~sx;~,y)))

exist, then satisfies the equation

~~a[]±4a [j~21

/Hint: prove that for any twice continuously differentiab—

he function ~(‘~) disappearing outside a finite interval

we have

I ~



f fi
for this prove first that

: urn ~ [f ~)p(s,x;s+b) ~)ci~~-~(x)] -

=

then use the Markov equation

?(sJx;€±h) ~)=fp(s,x;€,z) p(t~z,t+h,~) d~z

and integrate by parts in the expression for

~

Á random element ~ in a Hubert space H is called

Gaussian if for every LWEH the scalar product (~ u’) is a

normally distributed random variable /see remark 4. for

random vectors!.

Let us consider a. set of random variables (~ } and

assume that for every ~ (for simplicity M~=Q) M~2K~.
The linear space generated by the scalar product /the “inner ‚

product” (~ ~ ) = M ~ can be extended to a Hilbert space.

This Hubert space is generated by (~} and we denote it H~.
In our case the Hilbert space is called a vector Hilbert

space.

If {.~} C {‘7} then H~C Ho2, . Let ~(t) be a sta

tionary process then for the Hubert space t—i generated by

the random variables !(s), .s~E, F~l! ~I—i~
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Chapter 2:

Regularity and singularity

Let us denote by H the subspace generated by «s)’s~,

and let

t
H =°k H=uk

i.e. H~ is the Hilbert space generated by the process

If consists only of the element O we say that the

process is linearly regular /purely non deterministic!.

When H7 I—l(° we say that the process is linearly

singular /purely deterministic/.

Regularity means, that the future always contains new

information which is uncorrela.ted with the past.

when ~(-b)is linearly regular there exists a sequence

Ck such that ~ °k ~ with uncorrelated

. This is the so called Wold expansion.

Example 1. For I S I ‘ i. the process

(2.1) ) ~ a(t -n),

where 8(n) is a sequence of independent indentically distri

buted random variables (M E(thO) M É(n)t), is stationary and

regular. .

Example 2. If ISI>1 the process
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. «~)=-~ ~

is stationary and regular, where E. (t) is the same a.s in

Example 1.

It is remarkable that the processes of example 1 and 2

satisfy the equation /a stochastic difference equation/

(2.2) ~(t)=~(t-1)÷E(~). .

In example 1 the process is a Markov one depending on the

past, but in example 2 it has the Markov property depending

on the future. In example 2. a(~) and are not inde

pendent as in example 1.

It is a well known fact that if we have a series of

Hilbert spaces with the property ~ H~ and for any

element ~ G then the projection of ~ to H~ tends to O

in norm if E —> -°° then A H± reduces to the element O.

Using this fact we can show the regularity of both pro

cesses. In example 1 the projection of ~(o) to H~ ~-s
gfl ac-n) and this IiZg~a(-~)

In example 2 it follows from /x/ that hi «t) ~(o)=—~~
MŰ(O)Cb <0). From this fact we get that if~(Q)is the

projection of ~ (0) on H+ (t KG) than hi Ig(ü)~ C~ gt~~_> ~

when -L )

Example 3. Let % ~ be independent random variables
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(n ~O, ~L =~). ~(t)= ~ ± ~ cost

is stationary and singular. In this case it is trivial that

= H7=k7.

Example 4. Pinslcer gave an interesting example for a two

dimensional process J(f3 (~(b) ~2(~)) which is regular,

but the process Q2’(-E) =j(—t) is singular. /It may be proved

that in the one dimensional case if ~(-b) is regular than

has the same property.!

Let h(-E) be an independent stationary process with

~ anci 1~(t)EcJ4(tk) (Ec~ ctt),

is obviously regular.

If

(2.3) LYÚ4Z>O
~ k~.€

then the process ‘z(t)=~ (—h) is singular. It is sufficient

to prove because of stationarity. Indeed

contains the elements ~~)‚ ~(2), . ..

and L(~) =E Ck (4-k)) ~~(2) ~ 0k ~d(2~) . . .

Hence contains the elements A ~ Ck ~1(n—k)Cn k-n

...) . Further

II ~(o)- ~ ~ (~ -w)112 = 4 2

which tends to O by (2.3).
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Let we denote by the 6’ —algebra generated by the

random variables «‘t),5’tL~E) i.e. by the sets of type

C where S ~ ~ for every

and let

A~ ~Lm At~

— .

4 —* 0.0

We say that the stationary process ~(4jis regular, if the

G’ —algebra Á is a trivial one, this means that it contains

only sets of probability 1 or O.

From the O—t law of Kolmogorov it follows that an

independent sequence is always regular.

Let denote the Hubert space generated by the

random variables ~2(E2=°), which are measurable with respect

to and integrable with their square. Regularity means

that

(2.4) fl ~ = 0

That the regularity follows from /~E/ can be easily seen,

because 2~A ~ when AGA~ . On the other hand for any

there exists E X for whichJI~ckXA —211KE
and Ak~A~ (k=~) and from regularity follows (~.4).

Let T denote the shift operator ~(mt~ «t-i-i.), then

from stationarity follows that the operator ~t)=~(mE)
is isometric and it can be proved that U. may be extended to

a unitary operator on /see Rozaxiov [1] p.72./

From /~/ it follows, that if «h) is regular then for

every the stationary process «t)=U~ is linearly

regular.
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Theorem 1. Por Gaussian processes regularity and linear regu

larity are equivalent.

Proof. Prom the Wold decomposition it follows that for the

Gaussian processes f(-L)there exists a sequence of independent.

Gaussian sequence of random variables ~(-E) so that

A~ (~) . But for ~ (t) the zero—aie law is true and hence

it is true for ~(t) too.

Theorem 2. Sufficient and necessary condition for regularity

is the following

(2.5) ~ I2(A’B) —2(A) PEk)! —~ O

when t ‚ for any A E A .

Proof. Sufficiency. Let AQA~ and ~A ‚ then from (2.5)

follows that ‘P(A)P1(A) i.e. P~A)=O or ~j.

Necessity. If ~(E) is regular, then it is linearly regular
. € (€)

and for every ~1 C the projection of on )

has the property iIü~(E)fl ~ O.
If then for any

(2.6) (o~) (I~WJ ~) cnc~ I(i~j)I ~ II~ Ii ~. .

Let A.& A and BaA then from (2.6) follows for

= 9K~-P(A) ~ = - ?(B) that !(~~ ~)IP(A~)-P(A)P(B)j~ II~)Il~
when E —3 —~ which does not depend on B.
A stronger condition than (2.5) is the uniform mixing con

dition which we define in the following way. If

IL
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I?(AB)—P(A)p(’a)I —>0
(2.7) .

BcA7+~
when r ~ then ~ (E) is said to satisfy the uniform

mixing condition. It wa.s introduced by M. Roseublatt.

Exercises

For the process ~ (i) let us denote

generated by polinomials Ec ...

k
square norm, and by M(~(t)) the

variables with finite second moment

respect to the C’-’field At~

1. Prove, that ~P(~(t)) M(.~Cb)) under the following

condition: there exists a c(€)>O such, that

__ .

E e —~ /Notice, that this condition is

sufficient for the solvability of the problem of moments

for the individual distributions! Fjx)=P(~(4)c.x),)

(Hint: It is sufficient to prove, that finite, bounded,

continuous functions of n variables «~(EJ, .. .~ ~(t,j) may

be approximated by polinomials in L1 norm. Por this pur

pose prove, that finite, bounded, continuous functions of

one variable ~(~(E)) may be approximated by polinomi—

als in L norm. Approximate then at first by periodic

functions, then use the second Weierstrass approximation

theorem, and the power series expansion of trigonometric

functions.)

byN~(E)) the Hilbert-~ace

in mean

Hubert—space of random

and measurable with
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2. Suppose, that ~(-E)is a Gaussian process, and is a

complete orthonormal system in Hg . Denote by h~(x) the

fl —th Hermite polinomial. The polinomials

~k; ~) •••) ~ =b9(~),
are different) from a complete

orthonormal system in the space ‘P.’ ~ e ~ where is

the span of the polinomials of degree at most .

(Hint: Recall, that the Hermits polinomials are orth.onor—

inal with respect to the weight function a )
Consequence: any 2eM(~(-E)) has the representation

= ~ ~ ~ (~ ~?t)»~~\

(2’
where the coefficients a( “~ ) are uniquelly doter—

mined by the formulas .

V~
/Cameron—Martin expansion/.

3. Let the sequence ~ ~. . ~ ..}of random variables

have jointly normal distribution. The optimal approxima

tion /in L2 norm/ of the random variable ~ by elements

from M(~(a)) belongs to

(Hint: Use the uniqueness of the cameron—Martin expansion.)

4. Prove the Wold expansion.
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Chapter 3

The Brownian motion process /Wiener Process!

The process ‚~r (E) (for +~O) is called a Brownian

motion process /or Wiener Process/ if it is

a/Homogeneous, i.e. the distribution of

does not depend on i..

b/ A process with independent increments, i.e. for every

< <. . . . ‚~ and fl the random variables are

= ~ (k)-~ ‘)22 =~(~2)—~(t4), ~ =

independent.

c/ A Gaussian process, for which &(o)~ú, M<.r(t)=O,
M ‘~(t)=E~.
We shall investigate only continuous Brownian motion

processes.

Prom the definition it follows that
2

?{a’ w(k)’b} =? {a’w(t*k)_~(t)b)=~L fe* ~
and the characteristic function of «V (h) is given by

Me.

It is trivial that a sufficient end necessary condition for

the process 4~W(~b) to be a Brownian motion process is the

following: for every D t0 ‘-t4 (‚. . .~-~‚nand Z0~ Z~,. . •~

the relation

E Zk [~(€k) ~(tk~~)]±L z0 r(~o)}ap{4 Ez~(k—tk~)}
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holds. This formula will be used to verify is a process a

Brownian motion one or not.

We shall prove some theorems concerning Brownian motion

processes.

Theorem 1. If is a differentiable function with

< ~° and i)=mG) +‚r(t) then the variab

=

~

tends, with probability 1 /when inax/+i. —~-L~/—--’ O/)to a

random variable

(3.1~ exp ( +fL~2& +J)t) }.

Proof. It is easy to calculate

n

.. ~)tfl)~(2U) 2 ~L~&»XP L + ~ L- L- r~(b)+m(tL~&)) }
(1

... ‚~)=(2n) 2ú(1~t1~ { titL&@~L~- }

where ~L~ZQL), {ArL=w’(€L) . Here we get

= ~ (hi. “~n) ~ = v p {— ~ E ~

________ -

—l L
L LL_4

‚‘



{ - t~ Lm +

______________ ‚

- (~(tL) — «t~ -‚)) I’

Under the assumptions of the theorem the first sum tends to
2

TSLm~(~)1 cit and the second tends in mean square to

]‘ rr~) cLi2(t). We may choose such a subsequence for which the

second sum is convergent with probability 1.

Theorem 2. If max(kL—tL_4)—-> 0, ‚ ... <t1n =t))

then .

(3.2) ~~=~(t~)- w(~L~4)~

with probability. 1. .

Proof. The random variable

n2

has a X2 distribution with I” degrees of freedom, and we

have

2n

E ~- ~‘(4~-t~)= S~ T

E ~ = E ‚)) (~)—~r(t34))
3

. 2. 2”

-~ (tw(4~)-wKEj~)) +~‚E
tr’t
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So we get

_r ~ ~2 C~T
j) ~‚—C 3~ kL- ~n1

for the variance

/Here we used the relation (1.12)!

Prom the Chebishev—inequality

2 42
W~ F —~m>c1’

I ~ CI L1

and we get at once that ~ tends to ~‘27stochastica1ly. As
CE is convergent, we deduce from the Borel—Cautelli

lemma the convergence with probability 1.

Brownian motions are often considered together with a.

family of G’-algebras (~E~} for which ~ (s~ bYR)

is measurable with respect to ~ and ur(a+\i)—ur(t) is

independent of ~‚ (i.e. of the event: BG5~). It is

possible that ~ = A0 and always Ao 2 .

Theorem 3. /The Markov property of the Brownian motion

process./ The process fl(t)&~Y(T4-€)~-W<T)with fixed T is a

Brownian motion process, independent of .

Proof. The Brownian motion character of the process ‘~ (t)

follows directly from the fact, that ‘i2(t) is Gaussian, with

independent increments with the same mean and correlation

functions as the Brownian motion process. On the other hand

forevery~
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G’(w-(EO)) w~~)) .. .~ = w (t~)- ur(t0)). . . ‚w(t~ )- w<t~.))

and is independent of the variables on the right hand

side.

The question is, that if we replace T by a random vari

able will this theorem remain true? It turns out that this is

the case for a wide class of random variables.

Definition 1. The random variable t(c~) is called a Markov

moment (r~íaricov point, or stopping time) with respect to the

family of G’ —algebras { G~ } if for every

For example t=~T0 /constant/ isa Markov moment. It is easy

to see that the first uporossing time of the level a that is

the random variable ‘ta={min~c: w (t)~a}is a Markov moment.

Indeed from the continuity of ar(t)

fl U {w’(r,co»a— -4-} / r is rational/.
r~j r’~

The random variable which denotes the last moment of

crossing the Q level before reaching the level a is not a

Maricov moment, as it depends on the events occuring in the

“future”. .

Definition 2. Let t be a Markov moment with respect the G’—
C— C- .algebras s~’ then we say tha.t Ac }‚~ if for every -b ~ O
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AA{~t} E~ .

It may be proved that ja a 6’ —algebra.

As we shall see u~(~ ) is measurable with respect to T’~.
for any stopping time T’ • Indeed if {~t}= is the set

of the rational numbers then? using the fact that tw(t) is

continuous with probability one, the set (w:w~(’t)<C fl{t~€}

can be written in the form

Ru U U .

N bL~N n lt—lJtI<bL

So it is measurable with respect to

Theorem 4. /The strong Markov property.! Let V (CO) be with

probability 1 finite Markov moment. The process 2(0=
a Brownian motion processQ independent of ~.

The attached family of G’-algebras is

Proof. We introduce the sequence of random variables t~(w) ~-

‘c’(ciJ)E. ) . Obviously t’.~ ~ V and is a. Markov

moment’ Let us consider some event BG ~‘ and we shall

prove that it is independent of ‘Q(E1J ~ ‘2 (Em) where

°‘4&<)»’~)<4~fl and ~(~) W(t+tL)W’(t) is enough

to verify that

E )(~. $~(h), ...~ ~j~rn))=?(B)E~’2(%), ...~ ~j~rJ)
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for a family of functions ‚~ ‚ wide enough. For example we

suppose ~GG~Rm and II’f~ IHeüp lf~I <°°

Let

~

and

~~~(w(t~÷ t,1)—w’(L~),

As .~- and w(~) axe continuous ~‚ —5 with probability 1.

From Lebesgue theorem and the fact tha.t II~I)~II~II.

.

But

E {T~4} ~nE0r3~}Hn

~ in).kj (t~ z~}

Now using the Maricov property Bí1(z~~r} SAQ’~ and

r ~ (T=~}?(w(.~ ±t_uY(~))...)w(~-H..fl)

=E[2(,,~ {‘tn4il~

~ ~‚(tm)))



— 54 —

where ‘~(±4)). . .‚ is a Brownian motion process. We

get

~

~ (~rn)) -~P(8)E k~~)3 “)

i.e. the process ~jE) is independent of . Replacing

93~ IL and using again the Lebesgue theorem ~(1Dis a

Brownian motion process, as ‘~ (-E) is measurable with respect

to ~ By using the strong Markov property of the Brownian

motion process we can prove the so called reflection princip

le /Desire .kndré/.

Theorem 5. For cL)-O

_____ 2

(3.3)?{ sup w(t ~}=2P(~(tha}=V~ k
Q,

Proof. Let ta the moment of reaching the level

consider

1 ~*-Ef~)( .

= E I~ ~(aJ ~(~)) ~t = EJ _~(t&ts~ X(a ~)(w~t~± s)) ~s =

_‘‚t0, I —2’sje X(a(UY(t~±S)W’(tc)±~Y(ta))c~s=
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= Ea~t~J~ ~ X~00~ (~(shc) ~s .

where we used the strong Markov property of w’(~)and that

Q1. Further

= E ~ I ű~ X(~~)(~(s))ds= E&~rf~~ X(0~)(uY(s))&s =

r _2”t~ ( _~‚s ‘~ ‘1 rje .

In such. a way we get

fe~? a) ~t=~Ee~t~ =f~ P (~cd~} =

=yJe P{t~}at,

and from the uniqueness of Laplace transform

(3.4) P(uii(t»u}+P{t~’4}.
The last equation is equivalent to the reflezion principle

and our theorem is proved.

Remark 1. The distributionof tajS called the Wald distr’i—

bution and we get for it
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(3.5) 2{t~’~} ~ fe~ á~=~ f e
a ~1v~

The density function
2.

(3.6~ 2va(t) a e

It is interesting to note that

9~a(t)”~~ :~2 ? )

and so
Cr ~C. LQ

though it is well known /the reader may prove!, tha.t

Remark 2. The proof of the theorem may be done in the follo

wing intiutive way. Let tadenote the first uperossing moment

of level a, where w(tj=cL. Prom this moment let us reflect

the trajectories for the line y=c~. It is obvious that

S~p u~(i)>o~ w(r)>ct}=P{wi(T»aj.
o~ ~T

On the other hand fröm strong Markov property the behaviour

of the process w’(t)—w’(r) for t~T is independent of

and 07(t) {W(t’) is symmetrically distributed, this

means .
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Pt süp w(t)>c~,w(T)ca}=P{ supu~(b»a)UY(T)~ a. } =?{w<T)~. ct } .

0~tST

From this two equations we get the desired equality.

Multidimensional Brownian Motion. A process «±)‚ taking

values from is called an m — dimensional Brownian motion,

if ~(-L)is homogeneous, ~(o)~O continuous with probabili

ty 1, having independent increments, for which the scalar

process (z, ~ (+J) is a Brownian motion process for each

7CR with Izi = ‘1 ‚ and there is a family of G’—algeb

ras (~) in rLfor which ~ (2A:)) if t4~t2

and «t) is measurable with respect to ‘J± . Por such a

process we have the relations E(z3 ~(+)) 0~ 3D2(z1 (+)) =~.

The distribution of Í(b)is determined by the density function

(1) v(x)=(2~)2 ~p { ~J≠I1}

so that for any Borel set

(2) ?{g~)GA) =(2~~ f~p{IXI~}Am(~),

where jLLrn is the Lebesgue measure in 2m

Obviously if U. is an orthonormal transformation of

and ~ (b) is a Brownian motion in then UiG )is a

Brownian motion in too. .

It easily follows now tha.t if is a ball with radius

with its center in the beginning of the system of coordi

nates, and the~ first exit time of~(t) from 5~ then

is uniformly distributed on the surface of 59.Strong

Markovity for multivariate Brownian motion follows easily
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from the fact that its coordinates are independent one ditnen—

sional Brownian motion8.

Theorem L Por any C>O)T>O the Brownian motion ~(E) has

the property . .

IN s~ I «~)I>c)S 2PÜ~(T)I >c).

Proof. Let ‘t’ be the first exit time from the ball S~ . Then

the process — is an rn—dimensional Brownian

motion too. Hence

?{I~(T)H ch?(v<T) I ~(T)- ~(v)i >c) =

= f ~gT)-÷»c~= = .

=f?(~(T) .

where Z is any vektor for which IZI = C • But

‘P{I~(T)-iEb) ÷zj>c } ~P{(~(T) —K~),z» O} = Ya~ .

so that .

2(J~(T)I~c)~ +f?(t€~)- f2{Q~TJI()J>c}

proving the theorem.

Exercises

1. /The Wiener—Representation of the Brownian motion process./

Let {Hk(b)} be the Haar’s system, i.e.

)

(
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and if

2~ ~

Hk(t)= -z* ~ k-2P+4

O o4-her w-iscz.

Furthermore let be independent standard Gaussian

random variables. The series E ~‚ H,.’ (r) a
uniformly converges and represents the Brownian motion

process.

(Hint: At first prove, that for deterministic coeffici

ents the series Eaks.Hk(LYtt) uniformly

converges under the condition IQJJ 0(k) (O’zE 2)

Then verify, that this condition fullfills with probabi

lity 1 for the random coefficients ~ . The characte

ristic functions of the desired distributions can be com

puted directly.) .

2. /The interated logarithm theorem./ If w (-E) is the

standard Brownian motion process, then

‘P ( tim „ ö
t—a-° vZ~ ~n

(Hint: Use tjhe iterated logarithm theorem for the sequence

of i.id. random variables ur(n) —w’-(n-t) and prove — by

means of André’s reflection principle and Borel—Cantelli’5

lemma — that the defect sup (ur~t) —w(ri —4.)) has order

O(~/zn ~.n n ) with probability 1.)
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3. Prove the local iterated logarithm theorem: If ar(-~) is the

standard Brownian motion process, then

ri ~m 4~ 4
t~b-3Q ~2* tn~~~nU

(Hint: Introduce the new process Wtt)~hw(+) ‚ show

that it is also a standard Brownian motion process, and

apply to it the global iterated logarithm theorem.)

4. The local iterated logarithm theorem remains valid for the

elementary Gaussian processes «~)too.

(Hint: The difference «1hW(1)aÍ~(t) at satisfies

the relation ‘JJ (~ s(e—j~r(e ~ {) = í for every O~

5. With probability. 1 the trajectories of the Wiener process

or(€)are nowhere differentiable.

Hint: Suppose that the trajectory ur(4)has a derivative

less than at a point 6. .

Then ( w-(4)— w-(4-)j’ ~ ‘~or L =[ns]±j) ~‚cjc n+3

and sufficiently large fl • Therefore the event “

anywhere differentiable” involves the event

B U U fl •U .fl. {IwH)-w(~I~~}
L≥d. m~1 n~m o~L~h+i L~JgL+3

Prove that . .

6. Prove, .t)iat for every.E7~O there.existe a. compact subset

:of Wiener trajéctories on the. intervál [o,lj of probab1.ii~

ty 1-E. (in the sense of the uniform topology). .
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(Hint. Recall, that the compact subsets of the space of

continuous functions are exactly the subsets of uniformly

bounded equicontinuous functions. Using the iterated loga

rithm theorem prove, that for a suitable choose of the

constants and d,:

‘kU ((I~C~.)I >No) NJ~ N ((~(t)c~r (~~á,» ~)u(~ (t)> ~

(~t±’r)< S~))< 4

Remark: A theorem of Lévy gives the exact estimation of

the modulus of the continuity of Wiener trajectories.

Iw(t~)—w(~)I .

L0~T~~ ~ 1 ~

The proof of this tehorem is complicated and we need only

the above rougher assertion.)

7. Let w1*(t)= (W4(E))».)Wfl(t)} an n—dimensional

Brownian motion process Ew’(t)0) ~
where ~ is the local covariance matrix (it is positiv

semidefinite) . We say that i.e(-b) is an n—dimensional

Brownian motion process if it is homogeneous, with inde

pendent increments, Gaussian and continuous with probabi

lity 1.

Prove that if ‘v(4) is an n —dimensional Brownian motion

process then there exist a matrix C such that

G ~D
and k&(b)is a Brownian motion process with independent

components.
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Chapter 4:

Differentiation and integration

In the sequel we shall need the following.

Lemma 1. The random variables tend to the random

variable in mean square when h —) 0 if and only if the

limit

tLrn E~ ~ tLrn (~ fl=~ci~
h h-~O b b b% ~ h’ h’

exists, independently of the choice of H ‚

Pro&f. Necessity follows from the inequality

k~k L)-(~ ~)I = I (~ ~ -(L ‚D±W, D -(~‚ÜI ≤

~I(L ~)i + VLt ~)‘ ~ MLIII! L - LM±II UI I~-UI.
Sufficiency is a consequence of the relation

(4.1) J~-~t=(Lt ) ~) =

= (L, ~h)2(,L)RL,L) .

Ás the right—hand side of (4.1) tends to O as hb~ —~O so

Cauchy’s convergence criterion is satisfied’ As the HUbert

space of the square—integrable functions is complete, so

there exists ~ such, that L L. m. = . A consequence

of this lemma is that if ~ Q~—3s7~, then EL~

Another consequence is that a necessary and sufficient condi

tion for the process ~ (~) to be continuous at the point -E0

is the continuity of the trace of the covariance function
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at the point and if

CE —~ to) then

~ —~&~ s —~E0

The proof of the sufficiency follows directly from the rela—

t ion

LI ~CE)-!CEQ)I2=BCE)t)-2~(t)tO) ~%oto)

while the necessity is a consequence of the lemma 1, if we

put ~ = ~CE0± h) . We say that the process «-L)is differen

tiable at the point to if the limit

«t0±h)- «~~) =

exists. h .

As .

(W0~ h) «t0)) (~(t0±~) -~(t~)) =

h h~

= ~ ~ i~+~) -0t0f~)-~(tjh~0) -B(~€~

it follows ths.t a necessary and sufficient condition for the

differentiability of the process is the existence of the

derivative It is easy to show that the
2t as t=s=-L0

expectation of exists and . .

If is differentiable at every point t of(O~ 7)) then

~ (t) is a process of finite variance too. We shall show

that
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) * __________

(4.2) E~) ~(s) = B~Bs .

* ________

(4.3) E~R) «s) )

________ I

if for every +G (O>T) the derivative ahas

exists. Namely the existence of the limits

E~(t)~(s)*= ~Lm E
h «s) =

Urn 3(t±hs)-B(±s)= o.n&
h-~Q h

E ~) «51k Urn r KE±h)~(t) _______

b ~ —~ O

~ S4~)-B(ts±~)-B(h,s)-~,s)

h h’

follows from the differentiability and the lemma. (so from

the differentiability of ~BCE,3) along the line t5 its

differentiability follows for every ~‚sE(O,T)).

As a consequence we get that the stationary process

is differentiable if and only if its covariance function ~b(’t’)

is twice differentiable at the point t~D . Then

exists for any t and

* c&B(t)E~) ~ = )

E «t)~(t±rt = (r)
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Similar relations are true for derivatives of higher order.

By the integra.l

(4.4) b

of the process ~ (~)a over the interval (a,b) we mean the

limit in mean square of the sum ‘

E ~k~k 4), a~~ c = ~~ L~)

where maxCL~~t~4) —tfl as n —~‘°°~ By the lemma the

. integral exists if and only if the limit of the sum

E Z ~(~k~nk_tnk&) E nJf(~tflkk) =

= E W~ ~)(tflk_~fl~j)(~nj —t~34)

exists, that is, the function ‘B(1-s) is Riemann integrable

over the region ct=-b, s~b.

Remark 1. The integral of the process ~ (~) can be defined

also in another way. Let us suppose that the process

as the function of the two wa.riables E)CO is measurable and
b

a.
Then as we know from the theorem of Pubini, the function

I~(~)ca)I2 is integrable over the space

raxA, ‚axP~ ‚ where ‘B is the 6’—algebra of Borel sets of

the interval [a,b] and p.. the Lebesgue measure, and we have



EfI~(t)ta &= ;;:)~(»x2) =

b! Ei~(t)I2~.
So the integral f I~(t)P& b exists with probability 1

together with th~ integra.l f.~(t) cU . If the functions

are square Lebesgue°integrable on the interval La,b]

then the integrals f ~ (E) «t) di also exist and using

again the theorem o?Fubini we get

(4.6) E

. = Eff ~v)~(~t)&+ &~ = .

= ff ~) b(~) ~ ~

As

a+To~+T . T T

a I ~s)&+ds~f f~(t-s)&ws

~ UT B(~) ~ =

That is if ~ (±) is stationary then the limit
a I-T

~J ~(E) m
is true if and only if
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(4.7) 4 ~)({- ~) &~ —~ o.

(4.7) will be satisfied if

Remark 2. Let ~ (-E) be a, measurable process for which

c~ ) and condition (4.6) is satisfied

for every finite a,b. We may ask when the limit in mean

square exists

a+T

(4.8) tLm.

Froni Lemma 1 it follows that for the existence of the limit

in mean square (4.8) a necessary and sufficient condition is

the existence

q-i-T a+T~

E(4f ~)~X~f t)~ =

al-T q-i-T

= QLr~ T4~ f J ~r ~t)d~t cLi~.
TJT ~ a o.

Moreover, for the limit
a+T q-l-T

LLm. (41 ~)&t- ~

it is necessary and sufficient that

qj-T ql-T

~Lm4 f
T —)- Dc a-
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Por processes stationary in wide sense we have t)H~h-t),

E ~) = O.
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Chapter 5

Stochastic measures and integrals

We often need integrals according to a process «-E)

(5.1) g-E) &~(~)

Such flmctionals can not be understand as Stieltjes /or

Lebesgue—Stielties! integrals as the realisation of the

process ~ (-‘e) has infinite variation in most cases. In spite

of this we can define the integrale (5.1) so that it~wi11 be

very useful in the sequel and is suitable for the practica.l

purposes too. A complex of random variables ~(t~ w) where

tx is any measurable set of the intérval La,bl and c-acfl is

called a stochastic measure of the probability space(fl, ~~P)
if the following conditions are satisfied

i./~(A) is additive with probability 1, i.e. if

~ then ~(z\ U &)=~(A~)+ «A2))

2./ El ~ (A)12= F(A) ~
3.! ~ (~) ~(A~fü .4 A~fl Aa~

From this property it follows that

.4
4.! ‘P(A) i_s 6~—additive in mean square, i.e.

if A=U A~, ALflAk ~ if L-+kI then ~ A[) =

~4(Aj) —~(A) in mean square. From this property it

follows that F i_s 3’ —additive, i.e it is a measure.

It can be shown that if a random set function determined

on a semiring satisfies the axioms l./—4./ then it can be
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extended to a random measure on the Sd—algebra generated by

the semiring.

Example. We can determine a stochastic measure on the Borel

sets of the intervall /0,1/ with the help of a Brownian moti

on w(E) as follows. If A=~-L2) is an interval closed

from the left hand side and open from the right—hand side,

then let 4(A)=w(~2)—c~(-E4) . The intervals of such type

form a semiring and we see at once that ~ (A) sat jsf ies

the axioms 1./—4./, so it can be extended to a random measure

on the Borel sets. F(A) will be the Lebesgue measure multip

lied by a constant.

Let us define the integral according to the random

measure ~ (A) first for simple functions. Let the integral

of the function

C~ XA(~ A~flA~=~ ~

be by definition
b

(5.2)f )d1)=Z Ck ~ (Ak)

~& ~ ~flAJ’=~ •4
then we get by simple transformations that

(5.3) b

~ (&€)(J~(s) *

= ~ C~El ~(Akn~)I2=J~(t)2(t)*F(a&)
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and

~ Elf «t ) ~ ~k)l2=F( Z c~ ~ (~k))(E Ck~ (~k))*=

ZICkj F(AJ=J I~(t)~F(&€).

The integral of limits of simple functions exists if and only

if
b

f l~)I~ .F(dt)=~ ICkI2 F(~k)~.

Por simple functions it is true that

b b b

I F J~t)~ ~)f~(t)~ (a).
If ~ (€) is a limit in mean square of• the functions ~ (E)

i.e

b

fIg~-~(€ Rw~) — 0 4 n

then by (5.3)

~ (~)-f?m(~) ~ (dfn(t) m(~?F(~t)> Q t~ fl~ m —~

consequently the random variables J’ ‘~‘r’(~) t. (dk) will

have a limit in mean square and this random variables will be

called the stochastic integral of~(-E) .

b «±) Lm.f~n(~)

The value of this integral will not depend on the choise of

the sequence ~ . It can be defined for every function

satisfying the condition
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(5.4) ] i*t f&4Ko~

and the relation(5.3)will be satisfied too.

Let us examine now some properties of the stochastic

integral. Let CF (~) a stochastic measure

where F(A)is a totally additive positive definite matrix

function. Let

i.e fi 2

Á random set function ~i’ (~) will be defined as follows

= f~~?)~) ~ (a).
is obviously a random measure and on the basis of the

property (3’) .

. EIY(A)I~~f(~)I2F(d~G(A), .

while on the basis of (3)

(5.5) E~)t(~f=f X~) X~)J~)I2F(~) =

1 ~(S F(&~). .

Theore~n~l~ If ~)~L~(G) then ~)2(~)EL2(F) and

b

] ~)Y(&~) =1 ~
Proof. For simple functions (~)=S ck’X~(-b)) the

statement is obvious
b b

f)~(&t)=~ ckt(A)~f~ G~ X)~(t)CF(&~)=

= j ~(t) ~ (cL~).
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Let ‚~~(1)be a. fundamental sequence of simple functions in

L2 (a-) then

El f?h(t)Y(d1)f ~m(t)~’@~)I2=JI ~ml

-fI’-~J(~(E)t ) .

i.e. f~’-~(~) ~j€) is fundamental in L2(P) and the state

ment of the theorem is obvious.

Theorem 2. If Y JX14i) ~(~(d3:)) ~GL2(F))

then

‘F(~Dj*)~
Proof. The function 2~(+) can be equal to o only on a set of

measure o (mod 0) so • Moreover

I ~ X~)G(~) =1 ~ l~(t)J2F~t)tF(~)~
and so by Theorem 1.

f ~) X~(t)t(cL~) ~J ~ X~) ~(t)

Example. Let ~ (tx) be a random measure over the interval

_oc.ct~oc .

E g(t~) «fkB()
whereb(O) is a positiv definite matrix. If c(4) is square

integrable i.e. .

S c(t)I2dt ‘~

then for any t the integral

(5.6) ~(t) =7 c(~ -s) ~(&s)
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exists and

(5.7) Eo~(t)=O, 0°

E ~(t)~(s)*=~(O) j c(t-s*~)~
i.e. the process ‘2(h)is stationary.

Let we have now a. function with two variables ~t, (4, ~)
(cL~J~b) c~L=ci) measurable with respect to the two var

iables 4~ and «dfl\) a stochastic measure such, that

Ii ~ «&~)
for almost every t (F(’cL7’) E*~)~(ct)’)).

Por these t the integral

~ ~(t) 2~’) «cL?”)

exists and the process ~(+)has finite variance. If

is measurable as a function of two variables and

IL ~t~)I2 F(~~
then the integra.l of «t) exists and

~~ ~ (&~) &t.
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Chapter 6:

Integral representation of stochastic processes

With the help of stochastic integrals we can get differ

ent representations of stochastic processes. If a process

~ (+) can be represented in the form

(6.1) ~(+) = f «t, ~) ~ (cLx), (E~(d7’) ~(ci7’) =

then its covariance function has the form

(6.2) E ~(~sf

on the basis of the property (5.3).

Let L2 (~(E)J denote the set of the linear combina

tions of the functions ~(t~?’) . and their limit in mean

square according to the measure P(&7’) . If L2 t~-(~H
coincides with L2(F) the system «~E 7’) will be called

complete.

Theorem 1. If the covariaxice matrix of the process «t)can

be represented in the form (6.2) where «t2’)G L2(F)
then there exists a stochastic measure ‘F (& 7’) such that

E~(d.?~’) (dfl’)*F(&7’) and the relation (6.1) is satisfied

with probability 1. .

Proof. Let us bring the linear combinations of the functions

(6.3) 9(7’)= E
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into correspondence with the random variables

(6.4) = ~ ~k ~k)

Let ( ~ ) resp. [ ~ J denote the mainfold of the func

tions of the form (6.3) resp. (6.4) . Let us define the seal

er product with the integral

(6.5) = I ~) ~~(~)& F(c1k).

On the basis of the relation(97zZ)=Eol~=(~,9~)

this correspondence is isometric. This correspondence can be

extended to the Hilbert space L2 (~(E)jresp. L2 kJ keeping

isoinetricity. Naaely let ~(-tp9 cL2 (~(~) ] then we can

find 9flCL)2’)CM [‘?~ such that II~~(1’2’)—~(t9\)U—O 4 n—~’oc.

If the functions ~‚(-E 2’) correspond to the random variables

~ G M (~ I ‚ then from the isometrical correspondence

—~ 0 ‚ if fl rn

that is there exists a limit . G L2 . To prove

uniqueness let —~ • For the variables corre—

ponding to we have Iv~ —~H—~ 0 . Let moreover

~2fl~fl; ~an~Űt~nth1eh1 we have II~ —.~lI-—-~ 0, and for some

20)1120910ü>O, so we must have with

probability 1. So we have a one to one correspondence between

the spaces L2 i ?(€)] and L2 ~ which preserves the

scalar product (6.3).

Let us suppose that the system ?(-b1~) is complete in

L2(F) . Let A be a Borel measurable set, then XA(2~DE
GL2(F) L2 If,] and let 4) (A) denote the random
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variable corresponding to is a stochastic

measure for which

E ~(A4) ~(AJ= I ~() ~(F(&~) F(A~ A2).

The process defined by the stochastic integral

2(t)=f ?(~~)~(d~)
coincides with ~ (4:) as

E «~) ~= E!(~)( S ~(t~) (d~)7=f ~F(d~))
namely

E ~) ~ (A)*~(t,~)1 7~(2~) f~(t,~\)~ 4:rF(d~) ~
and from this we get

El ~(t) - = H(~) - ~(t))(~) -

~El~(4)!*~ E~(t)2(t)*~E~)± EI~(t)l2 =0.

If the system ~(t~7~) is not complete in L2(F) then let

us chose h(E2’) (EG5~~ LFfl T to ~e complete over

the Hubert space L2(F)B L2 (?(E)J . Let the Gaussian

process ~ E ‚ be independent of ~ ~. 4:) and let E «~)O

E!~t4) i(tz)* fh(4~) h(€~x)F(&~).
We may apply the previous considerations to the process

~ 4:cT and ~(4:)4)4 ~GT)

and complete the proof of the theorem.

If the system ( ) is complete in LZ(F) then

the stochastic measure is an element of the Hubert

space L2 { ~ ) i.e. it can be determined from the realiza

tions of the process • In such cases we say that ‘P is
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subordinated to ~‘(4) .

Exercises

1. Let ~ (L ) be a continuous stochastic process on Lo,T~ with

mean zero and covariance function ‘P(s4) . The mapping

LJT) into L2(T), defined by .

?: ~(~)=f~(s~(s)&s ) 4 ~ L011

has positive eigenvalues ~ and the corresponding eigen

functions ~~b) . Prove the Karhu.nen—Loeve expansion

theorem:

where .

~n=

2. If, in addition, the process ~(L) is Gaussian prove by

virtue of the Koltnogorov inequality, that the series

z~n ~)
converges also with probability one.

3. Let ‚4(4) the Brownian—motion process with mean zero and

covariance

1~ (s4)= min(st),

and T = ‘1 . The corresponding eigenvalues

and eigenfunctions are well—known:

= sL~ (2kM) ~t/2,

. 2. 4
E ~k (zu+1~2
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So we have

w(t)=Z ~k~k(t))

where the series converges in the meai~ square and with

probability one.
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Chapter ‘T

Stochastic integrals

In this section we define the stochastic integral for a

stochastic process

(7.1) J~(t,~)w(&~)= ~ ~w(t)

where w’(4)is the standard Brownian motion process.

In the case whene ‘f~. (-E) was a function /and not a process!

we saw tha.t the integral cannot be defined as a Stieltjes or

Lebesgue—Stieltjes one.

On the basis of the fact that

/see theorem 3.2 for Brownian motion process, where for

simplicity M~r(-Ett / we see that the definition of the

integral /1/ is not an obvious one from the following exam

ples:

Z [~(tk+j-~j] k) —~

z [~) - ~j] ~(t~) ~ T))

Z L~C- ~J1 4k+~)-~tk) —~ + ~ .

where the convergence is true with probability 1 and in mean

square too.

To prove 1. we know

M

T
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and from there

Z~ — ()]2 = ~ [~(~k±— ~(~J] (±~+) —

~~

which proves the statement.

The way as we defined the stochastic integral in the preced

ing paragraph for a deterministic function «-E), proposed in

the thirties by Paley, cannot be extended to the case of ran

dom function /stochastic process!. It was K. Ito who proposed

a much more general way of constructing stochastic integrals,

applicable in the case of a wide class of random functions.

In the following let ~ A) denote 6’—algebra.s for

which ~ 2 ~ h and ~F’ be independent of the future

of Brownian motion process ‘Ar(t) ‚ that is the events

and twQc+h)_wtt)tr~x ) must be independent for every

Band h~O) X • In this case we say that (w~(t), ~J

forms a Brownian motion process. It may happen, that T4 is

the G’—a.lgebra Á~ generated by c.a(5)) O~s~-E.

Definition 1. Let { w’(~), ~) be a Brownian motion proc

ess on the probability space (fL)’RJP) . We shall say

that the stochastid process ‘?(tJ ~) does not depend on the

future if it is measurable in (t,w) (with- respect to

X and for any +~O ~(hc~) is measurable

according to • The class of such processes will be

denoted by 9)1 .

Let us denote the class of the functions
~ (OTT’)

f. (t, cc) for which ‚
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(7.2) s atP(~c) = E j~(t)~

and
a flL2J~LXEOTI

Obviously 9)~ ~ is a. closed subspace of L~EoT~

Definition 2. ‘~(-b,c~)GL~’pLXrOTJ is a simple function if

4 -EGLt~)tk+4); k-O~ i,

where (040<t4c .. .‘i~=7) is a decomposition of the

interval Lo,T1.
The stochastic integral of a simple function

is defined by the formula

t

J «s~ w) & kr(s) Z ~k(c~) [ur(~k+t )-w(tk~ +~m4)(WKt) ~4m±j) a

The basic properties of the stochastic integral of simple

functions are:

i(s) +~9(s)) (s)=~(s)&~(s)+RÍ9(s) &~(s),

b/ f ~(s)&Lr(s)= f~(s)~w(s)+ S «s)d~Y(s)) )

cl the integral is a. continuous function of the upper

bound;

dl E(S~(s)~(s)/~) = f f(s) ~(s)~ ~or o~ ~+

with probability 1, especially

f(s) W~(s)) = D
e/ EL? ?(~) ~(s))( f2(s) ~(s)= s) ~(s)&s.
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Properties a! and b/ are obvious. Property cl follows from

the continuity of Brownian motion process. To prove property

dl it is enough to note that if tk~t

E(~(w)[~(€k~~) C~k)]J~’) Ej’~k~~ =

~~)=D

In the same way can be proved e/. Indeed, without restriction

of generality we may suppose that ?.(h) and are piece

wise constant on the same intervals. Let ~ ~ then

E ~k+~h~z)) 2b(~n#~)~~

= E ~(~t~j- ~k)) ~hEL( ~ -0~

and .

E ~(~(~k+j-~ —~(tk))~E ?k~k(~kH ~k),

and from here we get e/.

The properties dl and el mean that the transformation of

a stochastic simple process ~ G Z determined by

the stochastic integral ~ into L~xEJ is isometric.

For the definition of the stochastic integral f j&w~’

of any process it remains to prove that the

set of simple processes is everywhere dense in ~‚N . The

proof of this fact is the following.

Let ~(tc~)GwJ l’?~Cb,c.)I ‘~ C and continuous with

probability 1 according to t. Then for simple functions



~(±~H(~% 4 ~ (k÷~T)

we haNe G 9? and ~ with probability 1, and

T

Ef(~—~) d~ —>0, ~ n—>oc.

Further now we assume that I~(€c~o)k C. . The functions
-F:

‘~~(-h~c~)=n f~(s,co)ds

(max(-E-4)O}

are continuous and are contained in 9R 2) • The sequence

~ (€‚ c) converges to ‘~(-E, c~) with probability one and as

I ~I ‚ C in mean square toot i.e.

T

4
Finally let ‘~(h3c~) arbitrary in 9? . It may be approxima

ted in mean square by the bounded functions

~
So we have defined the stochastic integral all over ~

Nów we shall prove that the properties a/—e/ are valid for

any process ~(t)c~)G ~uJ’.
To prove a! let us choose two sequences of simple func

tions i~c~), 1(t w) converging in mean square to

‘g’(-b1cz) resp. ~(-E,w) .

Then a! is true for arid and it remains true for

the limit too. .

In the same way we can prove b/. But we can prove it

using a! for arbitrary ~‚(t3c~)G ~uJ . Indeed
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t

s’g(E)a.wKb)= S .~‘(s) Xrj(s)cLw{~9.

It is well known and may be easily proved, that if

(n —~°) arid is a «-.algebra, then

EIF(L!~) -E(~)!~—~ Q 4 n ~

Using this fact we shall prove property dl. Let ?~(b)C ~

a simple ~rocess such, that E J(~~(€) _~))Z dt —~ O if

fl ~ • As

E U ~) = J~) ~(t)

and

1~

E(R(t)d~ur(~)-f ~rQTJ(t)~(t) r(~)t~O, 4 n

E(/ ~~t)- I 4)&~(t)f—~o, ~ -~

we get the required result. .

Property el is a trivial consequence of the definition of

stochastic integral, where there exists sri isoiuetry between

? (~ ~) and its integral

~ / «s,cJ) &~(s).
Let us turn to property cl, which states that the stochastic

integral is a continuous function of its upper bound. Here

we prove the following theorem.

Theorem 1. The process «4» is equivalent to

a process with continuous trajectories.
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First we shall prove the Kolmogorov inequality for

martingales with continuous time parameter.

Lemma 1. If (~(b)~ ~) is a inartingale, where ~ (+) is

continuous with probability 1, then

(7.3) ? Süp ~(€)I~ C } ~
ost’T C

The proof of this lemma may be carried out in two steps.

First the Kolmogorov inequality can be proved for the discre

te time martingale

~)= ~(~)) ~=O12,...) fi

in the same way as in the case of sums of independent random

variables /with zero mean/.

In the second step we should take the limit from the martin—

gales

*o «+) aS fl___>Oc

Let

~k (~ lfl.I’ C) j=~2~. ~ 2j~cJ ~ ~
whereVnkfl’3~=J~ 4 k~t,ahd.

1E~= ( c~: max 192 I~c) =U ~k .

k~fl ~
The following inequality proves the theorem in the discrete

time case:

=

=E E[X~kE(~/~)J E(Xk(~G2flJ~J)2J =

= ~ EL ~ E = c~ 2(B),
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where we used the Jensen inequality and the martinga.l equal

ity.

In continuous time case we have the equality for contin

uous processes:

(sG~p «~E)~c}= ( 5üp ~(r)~ c where (r) is the set of ration—

als. Moreover

~sup ~(r)~cJ = hm (max ~(-~-»cj, with integer k,n.
r n—>c° k~2.

From here using the Kolmogorov inequality in discrete time

case we get

sup I «~)I~c] = t~m ?~ max. ~(~)~ci’ EUT)2

Proof of the theorem. Por simple processes (~‚c~) the paire

( ~~i~~(s) d~ur(s)1~~ ) form~ a. continuous martingale.

Prom the Kolmogorov inequality wé get

2{supIJ~~(s)a~(s) -f~4) &~(s)> c }‘ =

= ~ Ej (~~(s) ~())Z ~

If~~ tends to so quickly, tha.t

Em(s)_~mn(s))2&s ~

then ~ dw-’ is the sum of continuous functions so that the

convergence is uniform with probability 1, and this means that

5 ‚~‚cLw’ is also continuous. Indeed

d~~= !~±!~-~ &~+
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where the convergence is in mean square. The members of this

sum are continuous /with probability 1/, and the uniform

convergence with probability 1 follows from the inequality

~~{sup if ~ *I ~ K

and from the Borel—tjantelli lemma. .

If the processes a, b G~2 EDT] and ~‘(~) is

defined by the equation

(7.4) ~)= ~(o)± !a(€w) &t# ?b(t c~) &w(~)

we say that the process «-b)has a, stochastic differential

(7.4’) = o~(t)w) &t ± b(~ w) &~~)

The last expression has not meaning in itself, it is

only a short writing of the integral expression.

It is possible to extend the definition of the stochas

tic integral to the case where 4=?(~EcAD)G~lj i.e. it is

measurable with respect to X A (~BrQT: is the

G~—algebra of Borel sets! ‚ and ~ w) is ~ measurable

for every fixed -E where (1’r(t)~ T~) is. a. Brownian motion

process, and finally we suppose only that

(7.5) =

The last condition is weaker than E J~(t1~) ~

The definition of the stochastic integral for simple functions

is the same as in the discussed case.
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It is obvious that for simple functions the integral has

the properties a/—c/.

Before studying further properties of stochastic integ—

rals we prove the following le~nma.

Lema]a 2. If ~‚ ~ w) ~ is a simple function then for

the process

(7.6) ~) &~(s)- + 7~z(S~) ~s

(~Cb) ‘~±) is a rnartingale, for which

i.e.

(7.7) E~every

Proof. We have that

(7.8) E~/~)~xp i!#n(~ E~

Let for simplicity

-L~ ~

Then

4 4 t~—4

E ~xpEí~1~ ~jg&~/~i Ei~xp~f ~n ~ ~f ~

EL~xp[f ~ ~- ~ 7 :.
-(
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As the conditional distribution of

= c3.jw-(tj)-w-(€~_4)) under the condition ~ is normal

with parameters (D~ c~_~Cbj—t~_~) we have

t3 ti

EL~xpEf ~ ~- ~ ~± .

ti—l.

Applying this relation repeatedly we get (7.7) and from (7.8)

that «±) is a rnartingale.

Here we shall not give the extension of the stochastic

integral for arbitrary ?c Wt and ?(fr(+)d..t’oc) = 1. ‚the

reader can find it in GikhEnan—Skorokhod Ez J ‚ or in

Shiryayev Lii .

The definition of stochastic integral can be extended to

the case J=0’= if .

1.

The definition may be given so, that

? ELm Í?(~w)~=4
T/oo O O

The generalized stochastic integrals have the properties

a/—cl and .

a’ D~ EL T~S~ ~en E T~(s,~) ~ ~(s) = 0,

1~ EÍV(s,o) &s ~ than

E L 7~s~ ~(~Z E f ~w) &s.

I
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Let be T’ a Markov moment with respect ‘E’, ‚ and

Further f~(s,w)aw(s) = !s~s) on

. Then

f~(s)~) ~(s) T~(t~5) ~(s)w) ~(s)

2’) If for d~OEexp{(cY+’Vz)fflsc~a)&s) ~0o then

~ J is a martingale with the property

where

t 4;
1)=exp [ J «~cc) cLw(s)- 72 1 ~ (~w) ~s

Remark 1. Recently A. Novikov ILIJ has shown that j) is true

under the assumption

~exp (1/aJ ~(sc~) cLs

Remark 2. Por stopping time /Markov—moment/ of a Brownian

motion process ur (t) we have

E w(t~=O

(if ~u~(-b)~E) ‚ which is known as the Weld indentity for

Brownian motion process.

Remark 3. (7.7) is the generalization of the so—called

“fundametal identity” of sequential procedure.
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Chapter 8

Á theorem of Levy

Theorem. Let there be given the continuous process ~(-b )~
-E~O~ !(o)0 ‚ and for everyf~O there are given the

G’—algebras ‚ with the property ~ when +~

If for process ~ (E) the conditions

a/ for all -b ~ O the random variable ~E ) is ‘f~ measu—

rab 1 e

b/ for every -b~ O and h>O with probability 1

El « ~h) - ~)J/’fl 0

cl for every E ~ O and h ~ O with probability 1

El ~±h) -

are fulfilled, then ~‘±) is a Brownian motion process. The

theorem is due to P. Levy.

Proof. We want to prove that for any decomposition

of the time interval we have

E CX~ iL 2zk[~) t~k-&)~ ~XP’ ~ Z~ j”)

i.e. the increments are independent and normally distributed.

We first compute the conditional characteristic fimction of

the increment under the condition

~(t~)-~~ELe



— 75 —

n _______Let ‘~ ~(E±~h)~Eb÷ ‘~~h) ‚ then

r+ (

~xp aL~(t±h)-~)]~pa(Z ~)Z Le ÷ 2n
k—( i r—Q

n ~r~Q~J
k~1. k

So we have for the conditional expectation

bz ~-& r

E{cxpLz[~(t±h)(4~/~}T~Z E{~xp[Lz Je~~
r=O

2’

hl’s _____

-e’~i/~ f ~
We want to estimate the sum on the right hand side. As

r r

2
liz

t(e = .

cp[Lz~~] E(e~~ -4- Lz~t~ } +

r liz
±E {expfLzZ ~J(t12 % S- ~ )j~}

<=1. k

and using the relation é~—1—x a’(x2~) ‚ where Öca~’{ ‚

we get

ht_E
(s.i) IE(~xp[LzU(~ ~I(~t-iz ) +

Z E[ I E(e LZ9~~~ Lzv +
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To estimate the second term on the right hand side we have to
nd~

estimate the sum of the form ZEI~1J where ct~2..

From condition cl we get that E = ‚ i.e. the

sum Z(~) is bounded in probability, (this follows

from Maricov inequality) . From here and from continuity of

we get that

fl)’~flf2 t2~)2—~ O ő~Z)

in probability.

From b/—cl by repeated applications of conditional

expectation we get -

E(~ «J~)=~ ~)I

T ~)/~÷t)J~) =0, 4

and

with at least one definite inequality among r,l,j,k.

Further we have the following lirnib relation in probability

J~±h)j(t)J~=trn L(~4 ±3t~:)k~4t(~ t ~:]
So by the Fatou lemma and from the above relations

E[~#h)-~(€)fI~j ~ E(L(~ )k~3~(n~

- Z ~1/~{) = G
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= G C EL Z~ n(n~ h1 L~• k

Now we are able to estimate ;

indeed

E(iU~±h)- ~(t)I3fl~) g

~ (E(k(~ ~) ~(t)IZ/~ ) ECRt ~h)-.~(t)j~ ~ ) }~k ~ ~ b .

Applying this to ‘.

(; ~ 3 f~~•~•

I ~÷ ~ C.

i LZX zYi’ /zxI3
As je —i-Lzx—--~--j— r we have the estimate for

the second term in (8.1)

n n

E {J Lz~ &~ + Y ~ cznh (h)3/2

/4
= o’k~j€). .

So we showed that

E[exp Lz(~(4 +h) - «a))j~j = ~

From this and the definition of conditional expectation for

every decomposition Q=~.i~c, . •) • it follows that

Ecxp { L Z zk(~(tk) !(tk&)) I = E CXp (L ~: zk(~k)- ~(hk~j) I
k~i
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EL~xp L = E «~p I ~ Z zk( kH~k-~~ i

I ___________

2

By induction the desired result follows and the theorem is

proved.

The statment of the theorem may be deduced from the following

general lemma..

Lemma. Let (~(4), 3~) satisfy the conditions of the theorem

end ~ (x) be a bounded twice continuously different ia.ble

function where ~? and ~ are bounded, then

. EL ~(V~ ))I~ ~s)) = I! EL~”(~(n))/~1~1 t

We shall not prove this lemma but we show how can we

get the theorem froni it.

Let .?{x) = and we can apply the lemma; so we get

= E Le~J~J &~ ) ~ S

or

~~ j=— ~!ELe~I~] c1~.u.

using the notation

~ (t,s) = E Le (s))J~j

we have

2.
~(t1s)-4~- ~-J ~(u~s)cL~.



— $77
By differentiation

~ ~(t5)~ ~S) «s,s)=j.

It is well known that the only continuous solution of the

above equation with the given boundary condition is

~(ts)= 4(~-s)
which proves the theorem. .

Remark 1. In other words the theorem states that if ~(t) is

a continuous martingale and is a martingale too

then ~(~) is a Brownian motion process /see e.g. Doob

theorem 11.9/.

Remark 2. The statement of the theorem remains true imder a.

bit weaker condition. Namely if the following conditions are

satisfied: ~(4)is continuous with probability 1, «Q)0,

there exist such random variables 19Z2’ O with M ‚

(~- 412)) that .

~JELW~ *h)-~/~]/ ~ ~ EEl +~~~)/Z/~ ~

and with probability 1 the following limits exist

~—.*Ot~S FE ±A)-~(E)/~J = 0,

~1?~ ~E[(~±~)- ~(4)$~/~J = 4’

then the process ~ (€) is a Brownian motion process.

Proof of the latest statement: Let us denote in the case
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f(t)~E[(~)- ~(s))/~J.

Then from our conditions, using the Lebesgue theorem,

. _________ . r( ~ i~
tan tanL~

A1~O

~rE(E[ ~(t+A- =

Exercise. Generalize the theorem of Levy to the multidimensi

onal case, that is prove the following statement: If the

process ~ (t) is continuous with proba:bility 1, ~(o)=O
and

a! ~ (4) is ‘J~ measuxable for all € ~ Q,

b/ E(1( h)-j(t)J~{) = O for every4~ O and ~i>O

with probability 1,

cl there exists a positiv semidefinite matrix B such that

E((+h)-±h)-~(t)$I~) =h.3

for every 4 ~ and h > 0 with probability 1

then ~(-~) is a multidimensional Brownian motion process.

The same statement is true under the weaker conditions of

remark 2 /p.Gl/.

It may be easily proved tha.t ‘.9(-b) is continuous with probe.—

bility 1 and so f(4.) must be constant. As f(s)=O~ ‘f{E)=O for

-L ~ S • So we have proved that condition bl in the theorem is

satisfied. Similar argument shows that for the function
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~ (~) E[(~)- ~Q)Z/g]

11w = 4 is satisfied, if €~ S ‚ and
A’LO
so t S . Which proves the statement.
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Chapter 9:

Stochastic differentials and a. theorem of Ito

If the process may be represented in the form

(9.1) «th ~(o)± Ia(t,~) &~ + I b(~, ~)~)

where the processes a(t)c~) ‚ b(~,c~) belong to ~ Lo TI
then we say that it satisfies the stochastic differential

equation /or it has the stochastic differential!

dj(t)= a(€c~)dk± b(~w)dnű(t).

We have to remark that the termin stochastic differential has

only meaning in the sense of 9.1 ‚ but we shall use this

termin for brevity. Q,(4.,w) and b(-it’w) we shall call

the stream coefficient !loca.l expectation! resp. diffusion

coefficient /local variance! of the process «-E).

In the general case we suppose that a. (s1 c~) and b (s, w)

are measurable with respect to for every fixed s and

{)

~U b(s)w)&s~}f)

where {1Y(-E),~~?} form a martingal inO~+~T(T may be

In the sequel when we say «-E)ha.s stochastic differen

tial /or satisfies stochastic differential equation! we mean

that a, b satisfy the above conditions. .
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Theorem (Ito). Let LL=l.t(~,X~kJ...)xfl) a function on

‚ where the functions

-. ___

O ~j ) ~ a~t~ ~axtax~

are continuous. Let us suppose that the processes

L = i~2, . . .‚ n satisfy the stochastic differential equations

L(~)L~)d~ ±bJt,~) &~(~).
Then the process ~2,(t)=’w(E)~~(t), . .. has the

stochastic differential

J~)= ~ ... )~n)+~Ebi~wLjjd+ ~L

tE bLbjuLjl &t±~ ~ [a~ ~+bL~~(~

Before the proof of this theorem let us consider some examp

les. In the case n=i Ito’s formula is the following

(L1~1D c(t,~) 8~R,fl ______ +

+L ‚ (~ ax O~LAY~’t .

The difference between the ordinary and stochastic differen—
• . 4Z atittials is expressed by the term rb ‚ Its

appearance may be explained by the known properties of the

Brownian motion process, for which

(& ())Z =
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at the same time (dkf’ O . The formula is an

equivalent form of the relation
T

I (~(~)) - T.

Let ~t(tx) x2 and ~(t) = w~(~) . In this case

Prom Ito’s formula, we get for

(9.2) ~(~) = ~ + 2uy(t) ~w(t).

This result is nothing else a.s the differentia.l form of the

known relation for Brownian motion processes

1~)~(t)= ~[~(T)- T].

Heuristically (9.2) may have the following explanation:

(t)= J(€ +~)-~) =(~(t+~)- ~)~€ ~)± ~))=

=(~(t±~)- ~)~t+A) -~(t)+2 ~(t))

+ 2~(t) ~

where (~fl)Z

This gives (9.2) .

Ás a next example let’ 4?(1~ «a,w) measurable with respect

to ~‚ ?{ / c~)c ~°}

= ~xp (I ~(s~c~) ‚v(s) + f

that is

~(t)~exp{ «t)})
where

- 2(t) ~t±~(4,o) d~r(~).
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Prom Ito’s formula we get

d~)= ~)~) ~(€)‚

dl ~ ~‚ ____ ___&R)

This means that the process ~(E)is the solution of the follo

wing stochastic integral equation

(9.3) ~(t) = f ~(s) d~(s).

We prove with the help of Ito’s formula that the only contin—

ous solution of (9.3) is given by

t 4.

c~p{S «s)&~(s)-f V(~)~ }.

Let o~,(-b) a continuous solution of (9.3) . Ás we have seen

is a solution too. Applying Ito’s formula to the process

. we get if we put i.L(t1x~1y~)cx~.x~)

~) ~(€±~(t)~H- ~

= g ~ ~

-

this means that ‘~(thj(t~ with probability 1.

Proof of the theorem. It is enough to prove the theorem for

the case when aL(4. c~) and b1 (t, w) are simple functions,

that is they are constantson some intervals of t. This means

that -
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~L(~) o.~t ~- - On ~Zk ‘~ )

where 0-L and. b1 are constants. In this case there exists a

smooth function ~‘Y such that

~~ (~~(t)).

So we prove Ito’s formula for functions of the form

~ ~

Let t [Z~ ~J and ~ &AY~ ~i.~(k . 2~)-i.’r((k -1)2~); k= i2. .

then

~(t, ~)) -~(o, o) ~ {~(~) ~ f))-~((~-i)~ ~(k.2)) }

~((k -1)r~) «~ 2~ ))- ~((k- &)f)) } ~

+ {~(t,~(t))-~(Lf, ~(~2~))},

from our assumptions of differentiability we have, with the

notations

I ~ax1 ; Li 9X•LaX3 ‘

‚ ~-±)2~ t~r(k.f))’ =

~((k-&)í~, ~(w.z~)). 2~ ~

( ‚ - ~((k-í)f, ~((k-í)f)) =
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~ w((u -i)2~ )) ~ ~ u~’((k -Of, ~ -O2~))•

~2 c(~wkt}

and

~))-~(L2~ ~(t2~)) = .

Prom the definition of stochastic integrals we get

I %((k~i)2~1 ~(k.2~)). 2~± ~(f)

-Of, ~k-0f))&~t f ~1((k-0f, k-~)f))(1~’J

+ ~~kt } = 7 ~(s, ~~(~)) &~(s) +íSv~(s~(s)) &s +

+4 ~ u~((k-i)f~ ~~((k-i)f)) [(~J+~(~)
From the last relations we see that to complete the proof

for the special case it is enough to show that

Z u~~((k-1)Ű, w((~-j)f). [(~kt-z~J
iii probability if ~

Let
=

and for fixed N

N .

L max ~‘k
. .

We have

p ~ {)f ~((k-±)f )) E~ ~L~-x:~1 + O I ~
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sC~p lwK~)HNJ —~O, ~ N —÷~°

o.~4~i
On the other hand

E Z%~((k-i)z~, k-~)z~)) Ek~ 0,
and (using E E~=2.22~’)

E(E~ k~4((k- x~ )Z=

~~-&)f) ~r((k-{)2~)) ~ct .

~ sü.p v~t4.3x) Z = 2.. s;p o~(~x)~(2.~)t___>O,

. lxI~R

if n —~o~ • So the proof is completed.

Exercises .

1. Prove that for natural rn ~ 2’
m-d. ( ~ rn-2-

rfl(hY(t)) dt4)~ m m- (‚AY(~))

2. Prove, if is twice differentiable and is

continuous then

+ } ~r(~))

3. Let bL(t,ca) (Li12) measurable with respect ~ )

. 1then

E S b~) ~(t) f b~(t) &~) =SE t~(t) b~(~) ~±.

4. Let b(t, c) has the properties of the preceding exercise

and 5 EB (rn .- natural) ‚ then

Zm-i)J Tm~!ErG)&.
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Chapter io
Martingales, semi ‘nartingaieé

Let [f)~ be a probability space, ‘]~ 2’~4~

algebras /n=i~2.../.

Definition We call the sequence ~ ) a martingale, if

a! ~ is 2~ measurable,

b/ ElL’°~)

cl E(~4~J~ )= ~

If we heve the inequality

c’/ ~~ resp.

~«Űi E(L+L”rh) ~ instead of

the equality cl we call the sequence a super— /reap. sub—i

mart ingale.

Examples

1.! Let and L~E(~IT~) ; then {!n,’~) is a

raartingale.

2.1 Let L... be a sequence of independent identically

distributed random varieties ( E ~ 0) . If g~6(~{)...,~fl)

and ~±. . .± ~ then (~‚ ‘~~) is a martingale.

3.! Let ? < Q. be two measures on T V~ and Q1~ the re

strictions of 2 and Q. to ~ (s T~÷~) . Then obvious

ly ?~ < ~L, . Let ~= ~‘ the Radon—Nikodym derivati

ve, i.e. for any ‘P~(A)J ~ Q~’(d..c~,) .

Then (k’~, ~ ) is a martingale. Indeed, ~ is a
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taartingale if and only if for any A E~m m

f L(~) Q(&c~) = f~ Q(&ca).
A A

4.1 Let ~ . .. be independent, identically distributed

random variables.

Let us have two hypotheses for the distribution of

H~: the probability density function is p(x)

the probability density function is

Let ? and Q1 be the corresponding two measures generated

by(~)~,. ..) on (fL ~ . If for any Borel

able A from J’ 9’(x)cLx=Q follows f~(x)d1x-o ‚ then
A AQ a. e. —~

_____ = -j~ 9(h(ca)) =

dQ~ L=1. 9(k(t~)’))

The sequence ~ ~ Q’ ) is a martingale.

5.! Let- ~ ... be random variables

Let ‘~t~bfL)

and . -

The sequence (r~ ~ J is a. mart ingale.

6.1 Let {k ‘~} be a submartingale /n=i~2,.../.

Let gO_Q) •~~) ~—‘ L— !‚~ ‚ for n~ J. .

Then

~fl ~ =~ B~E~kI~.J ±~E(!k(~

- -- - - - ...-.-.--‚-— ---.- -
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where

E(~j~j-E(L- L4 l~) ~
So we get L ‘Qn~6n ‚ where

~n ~

is a martingale and oL~ - is a non decreas

ing sequence.

In the sequel we recite some well known theorems from

Lebesgue’s integral theory.

Theoreml/monotone convergence/. If —~ with probability 1,

then from ~‚ 1’ ‘~ arid E ~ ~ °~ /reap. ‘~,, ‘J’ ‘~ and

/follows E?,, ~ E’~’ / resp. Eq,, 4 E.~ /

Definition. The sequence of integrable functions is

uniformly int egrable if

urn süp J I~,jcW—O.
a—~°— “

This condition is equivalent to the following two conditions:

(i) SUP E]?~H0.~ )

(ii) urn sup S l~jdP=O.
~ A

Theorem 2.(Fatou’s lemma.):

If the sequence ) is uniformly integrable and

IE lirnsup~,,jc°~0 ‚then E (lirnsupf~,)~ iirnsupE.~’~

Theorem 3.If ‘~, ~ 0 ‚ ~-„—~ 4~’ a.e. and ~ Coo ‚ then

the convergence E?. is equivalent to the uniform

integrability of the sequeúce (~?‘~ ) .
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Theorem 4.(majorated convergence). If —~ ~ a.e. and there

exists a function 3- ‚ for which f,’.~ I ~ and

then

Theorem 5,(L~vy). Let 2~ be a non decreasing sequence of e’—
subalgebras of ‘~P~ ‚ and denote U 2:~-~ by 2~ . For any T

measurable random variable ~ with EH’ °° ‚ the following

relation holds a.e.:

urn
fl -~ Qe

Proof.

Without loss of generality we may assume tha.t ~ . We

shall use the following lemma:

Let (rL1 ‘P’ ?) a probability space and C- an algebra., which

generates the Ga-algebra ‘fr. For arbitrary a~o and AG
there exists a BaG ‚ such that

‘p(A\»b)±P(BNA)’ E

(Hint for the proof. Let Ut be the class of the sets of the

above property. (it ~ G and ut is a. 6’ —algebra, so Ik. ~ 2:’).
Obviously (4) means, that . .

. EIXA~X~kE.
From (2) and the ‘J~ measurability of ~ follows that for

any given E>O there exist a natura.l n0=n0(6) and an

measurable random variable ~ ‚ of property

EI~-~I< E7z
Let I and

t =inf[n~n0: E(~I~)>E~
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(if there is no such fl ‚ then t_00). As for every n>=n0
rrr~

SO

2 (E(2iT~,) > a for some nan0) =

t P~flJZ ~ if E(~I~)aP=
fl’~o ~o (T = fl h0 €r~n3

=Zk S~a2~=fE’2,=4
I1=no ~t’=n}

Fuxtheruiore for every n ~

IEU- L0M~) ±(Lj OI~ IE(FLI~)I÷

+ IL0- .

Hence .

?(IE(~t~)HI> .za tör some r’~n~) ~

H EC~I~y>a for some n~n0 +

This proves Lévy’s theoreni.

The following theorem includes the theorems of Lebesgue arid

Lévy too.

Theorew.6. If a..e., ILIC ~2. E2c o.=,{~f~ ~fl
is a non—decreasing sequence of C—algebras and Cf = G’(uT~) ‚

then a.e. urn
fl, rfl

Proof. Let cL, = urn sup
N-*~ n~N

cL = hm inf E(~~J~).
N~no n~N

rn≥N

We shall prove, that with probability 1
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We set for fixed K .

~—sup
K h~K ‚

Than ~or n~K:

~K~~fl) ~

~ sup E(~~1~) ~ Q~m sup E(2 ‘~m)
N n~N ~ m~N

It is clear, that .

E12j E[ I s~p LU )

by Lévy’s theorem

urn sup EGzj9~) = urn

So for anyK we get ~≤E(~I~,0) and as v~H’ ~ ~~L=
liín ~ furthermore ~ by the monoto—
fl~D n )

ne convergence—theorem (which is valid for conditional ex

pectations too) :

ot ~ urn

Similarly we can prove, that

As ot ~ 0L ‚ we get the desired relation

ui~ E(~hJ2~)= E(~I~C).

Semi martingale convergence

Theorem 7. If L, is a submartingale and sup

then there exists /the limit/ urn L ~ with probability].,.
I, -÷ ~
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Theorem 8. If Kr, T~ I is a supermartinga.le and sup <

COothen there exists /the limit/ hm
n -~

Obviously it is sufficient to prove theorem 7. For this

purpose we recite an inequality of Doob:

Let hl~ 92.)• •‚ be a sequence of real numbers, and

a<b.

Set

-E4 =nin:w;i~n)~k~a]

= tnin{k:+4~k~n1 ~dk~b

min (k:4~~.2<k~n, ~k~~’I

12,tn = min (i< : i~ ~

If one of above sets is empty, then the corresponding E is

equal to’z~c . .

Let us denote max {rn:m~0~ i.e. the number of

intersections from below by (~ (a,b) and the number of inter

sections from above by oC (a,b).

If we replace ~.. ~ by random variables ~ then

. . ~ Er~ o~.’(a,b) and(~(a,b) also become random varia

bles. Doob’s lemma asserts the following:

Let (~‚ be a subruartingale and n ~ N . Then

E &(ab» E(L-a) ~ E(~+IoH)

~ ‚( ~ E(L~b)±~ ~±Ibi) .

Proof: Let first ( ~ be a nonnegative submartinga.le

and a=O; we show that
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‘J1’~J~ b

Let L=O~ u~=i and

4 4 h~ji’ ~tm±&) (rn is o&d,)

0 4 t ) ( rn ~s «.vq.n)

We suppose.that LJN (instead of 44—~°) if the corresponding

set is empty.

It is easy to see that

~o L± ~i(~i

and so

~E~(Ob)~E Z
Ás

iUt={i= U .CLC4~ -

m

=u {Ít~~i_{€m+(C~) G~L_t)
m odd-

denoting by ‘~lL we get

(lcs) E ~O~E ~ LL~LhEL±E E UL~L~

= E~0± E ~ ~W LIrL~)’E~O~E ~~E(~LlT~)=

If ‘~) is a nonnegative submartingale then from

the relations (4) and (5) we get

E(3(o,b» EL
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To complete the proof of the lemma it is sufficient to show

that the number of intersections (2, (a.,b) is equa.l to the

number of intersections B(o, b—a) for the submartingale

Remark. If for the nonnegativ submartingale (~‚ ‘f~,) u’

denotes the indicator function of the set max ~L ~ b then
LgN

we get

? max . .b

Proof. L~ ~ ‚ so in (5) we have

E L± E ~ E(~l~J~E ~ E(~ E(~1Í~=

=~ 5.
t_-t

The proof of Theorem 7.

Let

= ntn süp L1,
L = urn inf ~

and suppose that {P r~-~~} >o .

Prom the identity

{~ >L} - { U r~~b>Q
acb

a,b rationals

we get then, that there are ra.tionals a,b such that
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?{ r> c >b LI > 0

From this if follows that

(lo.~)

But according to the inequality e we have

K O

contradicting (6).

So the first statement of Theorem 7 . is proved. The

second statement is a consequence of the first.

Two examples for the use of the supermartingale conver

gence theorem.

1. Let .

L= ~

be a martingale. On the basis of the supermartingale conver

gence theoreis there exists the limit ~ =limE(U~~) and

it is Toc measurable.

Show, that hm E(~I’~) =

2. The Kolmogorov’s 0—4 law.

Let °7t,Qz,’-- be independent random variables, and

= ~(~1 0ZZ) . ~) . Suppose that AGC’(~fl~() .)

for every n. (E.g. the sets of the form (sup ~ ~ } or

~there exists him ~ ). .

fl -÷ Co

The fields ~ and ~t”Lh+j, 91fl+2’) ...) are independent,

and if AGG(~fl4(,...) then
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On the other hand, fro~n 1.

therefore

Le. P(A)0 or 1 .

Martinga.l Inequalities

From Doob’s Lemwa it follows that if IL ) is a

subwartingal then

(lo.7) 2 Irnax ~~~CEL
k~n C

This is the so called Kolrnogorov’s inequality. We can easily

see that even the stronger inequality

~ S ~
k~n (fl’5%~ ~C1

L<

holds.

Leter for stochastic integrals we want to prove the inequali

ty

z T

E sup (f~(s~) ~(s)) ~ kE ‚ r(~,~) ~
o~4~9’ O

In order to do this we need the following inequality.

Leuirna 1. Let o61 and the random variables L... ~
satisfy the conditions: EkkI C and for each L<

E(~- LR •.. L) = O
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Then denoting ‚ ~‚=süp(Q, ~)
we have

E~
Proof Let a>O and xk(a)—t if ~ ...)~kLa) ~„=Q•’

else %~(o~)=O . As 4 if a ~ ~. and ZXk(a)=

= O if ~ a we have for

From the definition of we way deduce the inequality a

~ ~ . So we have

at~~
and

~{

~k(°-) aré measurable functions of the variables

consequently .

~) ~G~(a) =E ~k( a)E(L ~kJh

and

E ~

Taking the integral of both sides of this relation with

respect to a from O to infinity we get

CIF°’cC ~
‘—Z~ ~—oC--4.J
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Using Hölder’s inequality we shall have

~~

which is equivalent with the stateaient of the lemma..

Remark 1. Let us notice that

~ ~E~k(a)

and so from the relation

n
r Z ~ ~k~) (r =~z)

we get the inequalities

)~EL p~~’
a, a?’

Corollary. Applying the lemma to the

we get

E r
where L =max(O,i~.. •)—L)) ~=max(O~— L) . Hence, using

ot ~oL
equalities maxi~kI=tnax(~ ~.)‚ J~IJ (L) ±tL) we

get

CLeZI ~
ma~ ~k ~ ~oL-{) E ~fl

k

Theorem 9. Let 1’ oC’0-0and(~~~ a non—negative

submartingal for which

s~p
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Then

(16.8) E (süp ~)
~‚

(10.9) E (süp ~) t(\a~zT) sLip

Proof. The submartinga.1 convergence theoreui ensures the

existence of 1i~n . By Fatou’s leímna

E ~ ~ ij~ E. ~‚

Let Q2 = sup . For any )‘~ O we get from Kolrnogorov’s
N

inequality

I ~ cL?.
H ~‘

Set F(~)?(~N . Then

s ~j ~ ~F(~)=s F(~)&(~)

~m L~F(~)J ~ I F(~) &(~‘)~f~(f L &?)&(~)
O O

“ZN 0’ ot. cc—-i
= ~L(í &~&?E~
Using Hölder’s inequality

E~N~ ~(E~ (~N

c’ (cL-i)’y f/Of

N N’

Now if E ~ ‚ then the statement follows easily.
N

(r’)
Otherwise let 12N ~ ; then the inequality
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g S ~
. N

holds, and applying the above result we get

r( (~‘h’ 0tr~0t

~1N~ cj~ ~.SN .

Ás ~ it follows by Fatou’s lemma tha.t

hm ~(r~5’c ~~°‚

which proves the theorem.

Remark. Lemma. 1 is a special case of theorem 1.

Corollary 1. Let (L, TV~) a martinga1,o6~., süp~~~j°’cc~o

then, as (I ‘3~’ I is a submartingal

E(süpj~flI)0’~00) .

L(süPJ~~J)°4 ~(0’4)O1 süpEk~l°’.

Corollary 2. Let the ruartingal (~‘,, G~) be square integ—

rable, for which sup ~ 0° . Then

4 süpH:~.

Remark. If cL =1, the theorem is not true, so the following

theorem is useful.

Theoremlo. Let ( ~ be a martinga.l, for which

s~p E(I LI logt ILI)~)
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then

E(s~p~~j)~~

Proof. Let a,b ~ 0 ; then

a log tb ~ a logt a +

/This can be seen as follows:

io~ ~-‚~ ~-‚ a ‚

from where

a log~-~ 04j- =

a log b~ a log ct÷-~-- ~ a ~ ~

and

a 1og~~~ a 1og~o.H-~.)

Integrating the above mentioned inequality

?{süpÍLJ~ctI ~ ~ILÍct2 ‚
‘ (Süp !~rnJ~a)

tnCn

according to a in(4,c~~~) we get

‘(~Qj~ ?P(5ÜpíL~~
4 fsűpÍ~i2a)

rn~ h

= ~(J~J ~oj( süp I ~j) ~ E(iL(~~~ Lh ~
Furthermore

(Joa~ E(sapÍ~j) 1? ( sr~ILJ
cta
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consequently from (10)

72 S~pJLJ> a } ~a ~ ÷EL/L/~ojI~~I~ bF?Is~pkmJ~cI ~•

1 i m~fl

Supposing that E~ sup I~~] ~ we get
Ill ~fl

(~ ~) T~ s~pj~j~a )&~ ~ + FULl &o~f LI]
and from (n)

F[sctp (Li] ~ 1± ~i[t~E[IL/to~IL/] ~
rn~ fl

~

To see that E [sup I L’]< is always true we can use the

“truncating” method, and get the above inequality from where

the theoreta follows directy. . .

Maxtingales and semi martingales with random time.

Theoremil. Let {L’~ } be a non—negative supermartingale

/that is ~ ~ L ) r and 6~ two stopping times!

according to (2~,) ) .

Then L~- and ~ are integrable and on the set V ~ &‘ the

relation

E ~ Ír

holds with probability 1.

Proof. The limit !~ =lim L exists and by Fatou’s lemman-a

ECE ~rn L~Irn ~ ~j°°.
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Similarly, if

EL=E~irn ~ slim ~j cr~ ~0c
— tAn ~_ St

So we han for any

F
)oo ttcoc) t .

That is ~. is integrable /and ~ too!.

{L~~ )T~ ) is a super~atingale, as

~ ~m’~’(r..m} + ~nt~»fl~
1v’ C ‚1

so ~ is 1~ measurable, and

~Z L trr~+ E(I~~) Xtt~fl} ~
rcv’fl

S ~ ~(t=m}~ -4~t=n-i)~ ~h-t~fln) ~(n-&)
— Z__j hi

mcn—j

Let now E Iejc o° • Then the equality E(e(1~~.)—E(el’~~)
will be satisfied on the set {~=n ) . To see this let us

define 2(w) on the set {6’=n } by

~(~)= E(eI~).
Ás

furthermore for any

I ‘~(o)ciP=E I E(eI’~)d.P=E Se cL?~ r’AflcG’~

= fed2=fE(ej~)&?
A A
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That is o~ is 1~’ measurable.

Now on the set{6’—n} we have

and it is enough to show that

(40JL) ~
5~L~t t fl

As I ~VAn ‚ js a super—tuartingale, we get, using

Pa.tou’s lemma

kAn=Et~c.J~) =E(~j~).

So we have @12) on the set It an I and the theoreta is

proved.

Theoreml2. Let ~~E(~2l2~.) ‚ where EÍ~I~0~ . Then for

any two stopping times withPttcoo =~we have (s~ g ‘r)

• E -~ ~\S~ e~

Proof. We get, as above that ~ on the set (r=n }
and

EG~Í~) = F(~I ~)
on the same set. That means

E C( ia
5r QkÉ?lI rv .

Furthermore C as we can easily see and

~(Y’~i~D=~=I~
Theoreml3. Let { ~ ~‚) be a super—martingal, such that

‚ where • Then for any TG~ withnW
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)~E(E 1t3Z

~ L\’~#~’j ~‘

Proof. Follows from the theorems 1 and 2 and from the

identity

. ~= E(~/~)+(~-E(~))

using the fact that ~~—E(92’j~) is a non negative super—

mart ingale.

Applying Theorem 2 with C~=l we get the very useful

(10.13) ~

relation. (13) is true under different sufficient conditions

too.

Theoreml4. Let (L~ ) be a martinga.le, V stopping

time with P(r ~°~)~‚ ~ and Hm I L dY =0
~ ~t~n)

then

Proof. For any n > 0 we can have the formulae

E(E(~~i Tj)I’r=k)P(z-~k)± ~(~~ft’>h)9(’r>h)

=

=E(LIt~ ~)2(r~n)+E(~~Iv>n)2(v> n)~
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~ =

E L E~LIv~ n)?(t>n)±E(~~f v >

Ás E ~h = E h and the second and third terms in the right

hand side of the above equation tend to O as n—~-, we have

the statement of the theorem.

Corollary. If E(Ltc K D ‚ then E . Indeed

‚ and

If L &?I~ .f k~IcLP ~( S ~zap)’h(2~)lJz
tt>n)

~

Example. Let ‘2i ‘722)• . be a sequence of i.i.d random vari

ables with P(Q~=4)—P(th=—~) = ‚ and

~fl=~4+•..+~fl

r=inf{n:~~=r1, or~~=—N ); Gr, N naturals)

Let ~p=2(~~M), P(~~-~).
/Obviously 2(~r ~°~°){ ) . Then

Ej%-/a max(M,N)’oo . Moreover ILk max(MN) on the

set ‚tz’n ) and

~ (LI &I~ max(M,N)?(r~h)—~O, (n—no).
(t~. ii)

So according to Theoretnl4

OE~ EL2M 49r(-N)-pM±(i-p)(-N) ~ M+N 9’ = M+N



. —108—
Based on Theoreml4 we can prove the so called Wald’s identity.

Theoreml5. Let 2~’ ~2z . . . be i.i.d randoLn variables,

~I~J ~ t— stopping time for

then with Et~”c

~

Proof. Let tN =min(tN)

.+

~‚ } is a martingale. According to Theoremj4 /or

The oreml2 /
H; = EL = O.

Applying this result to /~I we get

~{ t~j+.. I~i)

atd tNtt) ZkLItZIT?JJ ‚ so by Patou’s 1e~ma whence

EJ~ÍtE4I~E(i~j~. . .

Now we show that Ura f /~„Jd~9O .

fl-3Ocft>fl)

Obviously

I LI ~I ~ -E~4i±.. .÷[~~-L~~I ~J~4I+~ . .*I2~I+
(‘r ~n)

and on the set

~E12j. .

So fI~I&P~f(1t24J~. ..±Iv~J+r~Jt!) cL? —~O
tt~.’n2
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as (L H241i-~ tEl24!) Ot and 2(t ~ ~ . That

is the conditions of Theoreml4. are satisfied.

Exercise 1. Prove that if and ~ then

Exercise 2. Prove that in the exaiuple after Theorem 4 .

M. N.
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. Chapter ii;

Some properties of the stochastic integrals as

functions of the upper bound

Theorem 1. If .~.G,c3)G ~uz and iE.~Z(f)&t c0e then

the continuous process satisfies the

following inequalities .

P(sü~I J~(s)aür(s)I~a~ ~

E süp fi~(s)&~(s)/Zá ~!Er(~)~~.
Dg~T O O

Proof of the theoreLn. Let us first suppose that ‘J~’ (t ) is a.

piecewise constant function from w~ . Let A~ = { t~~%’ )
sequence of decompositions of the intervall [O,TJ such that

A~ CA . UA~ is a set everywhere dense in (o,T) and

~. (L) is constant on(-bfl~) E~÷() . Then

~ =süp Íf~(s)d~(s) I = li~
QCt~T Q ~

with probability 1 where

/jnk~)()[ .

Ás the variables tflk ‘f{~) d~ur(t) are measurable with

respect to we have

E(f~(t) &~(€) - j~ &~(t)jf~) &~(t)) .
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and the conditions of Lemma 1. are satisfied for the variables

f.~(t)d~w’CE) . Using Remark 1 and Corollary 1 we can write

2{~a}~

E~ ~‘j~n&.
Taking the limits in these relations we get the proof of the

theorem in the case of piecewise constant functions.

Let us now consider the general case i.e. when

and 1 5j,z(~)&’0o . Then we can choose a sequence of

stepwise constant functions ‘?~(L) so that

hm
fl-+~e O

Let us choose ~h(~) so, that

be satisfied. Then

+ 2 3

The function ~ is piecewise constant so

P ( sap I .í~~44(s) &~s) - ?~(s) d~(s)J ~ ~) S
O~~T O

~ n~f E(~~ ~)-~~(t#& ~
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As the series Z ~ is convergent we can use the lemma of

Borel—Cantelli, and see that there exists a /random! integer

‚ finite with probability one, so that if n ~ n0 then

~ ~fl+d(~) dur(s)-I?n(s)&w~s)l~ -4

Hence the series

?~js) &~(s)± ~(fL(s) ~(~)- [~n(~) &ur(s))

converges uniformly with probability one. So their sum will

be continuous with probability one.

We can complete the proof of the theorem in the same way

as we did in the case of piecewise constant functions.

Theorem 2. If ~G9n the process continuous

with probability 1 and

~{sup
O O

Let ~‚ ~‘ be two stopping times with respect to the

Ga—algebras ~jO~H€~T) such that

~ T)~4

and the G’ —algebra belonging to as defined in

definition 2 ~ 1. is the G’—algebra generated by the

sets of the form Bfl(~€) )O)T~G~. (see definition 2 p. 19)

Theorem 3. If ~(-E)Gwi (OT) and

then
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Ii . L .

~([ !~(t) a~(t)]2i~) =~~
Proof. Let o~ be any random variable measurable with respect

to arid Xt(-~) (L = 1,2V) be two processes defined by

j if ~‘.L ~+ and X.L(b)=O if -E ~ • Then

x~ (t) are measurable with respect to ~ .

Furthermore, as we shall see the process ‘2(%2(-E)—X~(€)) is

measurable with respect to ~ too. Indeed, let us first

assume, that is an indicator function of a set of the form

AflG~ ~ S), where AG~ . Thenif ~ then both

coefficients of the product are measurable with respect to

~ and if s~+ then .

(~() - xfl)

~ ~Afl(~~ ~~

~ ~Afl( ~(ix~(t)) XA L4(t)({-~4(~))= O

Now we see that ~ (%2,QE) — %~(-~)) is measurable with res

pect to for any indicator function of some A G

As any variable 0~ measurable with respect to can be

represented as an almost everywhere convergent limit of auras

of the form Z q< A~ C q we proved that

has the desired measurability. Now
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L
I (~)&uí(~)= I (~)ci~x(&)- I2~(t) cLt&~(t) =

T T

t~(~)) &~(t).

Obviously

JE)-t4(~)d~≤~

Consequently

T

E~~
2’ T a

~ L~t~ &~)] = E J~ ~~)-~)) &~(t)) =

= I E~ ~(tfl~)- %4(~))~ = E =

= E’21 f,~’Z(t)&
~1.

That taeans that the proof of Theorem 11 is completed.

Remark Taking the expectations in the two equations of the

theorem we see that

‘~ (E) cL 1»? (E )) = O

h 2.

E( S )cLw(~)) = E I
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Theoreni 4. Let ~(i)~O, -E~DJ ~(t)G~n [o,tJ for every

T> O Let us assume that ~° }= ~ ‚ and let

tk=ifG: ~ k) • The process

~(L)= J~(s)cLu~(s)

is a Brownian motion process. .

Proof As we have seen t~ is a stopping time and ~-

if t~ ‚ 4~ . In the previous theorem we have proved that

;
E( í~(s)&~(~)/~ ) =0

~(L í~(s)~L~~(s)J ‘k
L ‘

= ~( i~j~ =t2-t~
;

So to use Levy’s theorem we have to prove that the
;

process «L)=~ S ‘~(s)d’ur(s) is continuous with probability

1. As t.~ is monotonic with probability 1, its only discon—

tinuities are jumps. So the only discontinuities of ~ are

jumps and they are placed at the jumps of the process t~ .

Let us suppose now for some •h C then as

EI~(s)d,s ~2E ->Q L~ E —~

using Chebyshev’s inequality we get that

f~(s)&~~(s)—~ O

with probability 1.
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Remark If the function 4(t) is determined only for

te (O,T] then we can apply Theorem 12 by putting ‘~.Q)=i,
t~ T • Then ~ will be a Brownian motion proceas with

lifetime T

e — 1 .?.2(t) cU.
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Chapter lfl

Solutions of stochastic differential equations

In the following we want to explain what do we mean by a

solution of a. stochastic differential equation. In the dis

crete time case the solution of the equation

~= a(~_~ n) +b(~~_~, n) .

where E~ is an independent (~L = 0) sequence of random

variables can be defined in the following way. Át first from

the definition we see that L is measur4ble with respect to

the Ga—algebra A &o generated by the random variables

. . may be any random variable, ~° = E~ and

it is independent of A ~ • The recursion (ii.i), with

the functions a,b and sequence E,, defines the new process

which is called the solution of the difference equation.

The properties of the process ~„ depend on the choice of the

functions a and b. Froui (11.1)

= ~ n), .

(L-A ))ZJ A;~J =~ h) t I A;~1 =

= b2(L~)n). c’t
where - ~ . The- distribution of L, in many cases~

under condition L, ...~ ‚ depends only on

which means that the process ~„ is Maricovian.
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Now let us consider the continuous time case when we

have the differential equation

(11.2) d~(th c~(t~ )di +b(~(t))&i&r(4))

where (t~’r(h))~) is a Brownian motion process, are

Gd—algebras ~ 2 ‘E~ when and

is independent of T~. /for every tI. The functions a (tx)

and b (f i’) are measurable in (t~ x)

We say that the process ~(E ) is a solution of the equa

tion (12.2) in the interval Ű~—b~ T if the following con

ditions are satisfied

a! ~ (o) is measurable with respect to ~ (a ) is

the initial value of the process; .

b/ ~(t1 Ca) 15 measurable in (t oa) ;

cl «~E,cc) is ‘~ —measurable for every Qc+ ~ T ~

dl The integrals Í/a(t,~(t))/~

exist and are finite with probability 1;

e/ With probability 1 the equation

«~ «°) ! a(s~ (s)) ~f ~(s, «s)) &~(s)

holds for every O~t~T.

Theorem 1. Let the functions a(E~)1 b(+.,x) satisfy the

following conditions

ía(s,%)-a(s~)I±lb(s~x)-b(s’y)I ~KIx ~~!j

I ~(s,x)~ + Ib(~x)I2 ~ k(f~ ~))
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for a fixed K and for every O ~StT

Further let us have for the initia.1 value ~ (a) measurable

with respect to T0 and satisfying Ei~(a)Í2’~’~ ‚ then

1. There exists a solution «t), continuous with proba

bility 1 with the initial value ~(ü);

2. Sup EI~C.b)Iz
3. If gm(E) and ~(2’)(t) are solutions with

properties 1. and 2. then

2( ({)(~)_ ~2~(t)!~O ) = L
OS t_T

Proof. The uniqueness follows froui the following. If
(z~í \and ~ ~; satisfy

(12.2’) g(t)=~(o)+~

then

EL 4)-2~(€~=E: ?L~s~~ks~ a(s~~(s))J ~ +

÷ ! [b(s, ~4ks))-b(s, ~2)(s))] &~(s)j ~

~ 2 ~ r ! (a(5, ~ks~ -a(5 ~(z)(s)~) ~Z 2 ELI(b(s (s)-b~s,~s)~~

~ 2€L I La(s, ~s)) - a(s~(s))JZ ~ ~ zE kb(s, ~4ks))-bs ~(s))~ ~s ~

~ I E(s)~2)(s))~ +

~ L.!
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From this inequality it follows that the function w(-E) =

b 0 ‚ which means ~ ~~(4)) ±.

The fact that w(1) O is a consequence of the following

lemma.

Lemma 1. If c(~O) «.(t)~0, o’(+D~0 then from

u1(€)~ c{#Sw(s)4r(s) d~s

follows

~t(t)~ C~ exp { I u’(s)ds).

Proof of the lemma. We have

~
C(+f w(s)u’(s)d.s

By integration ° .

or tnLc4±Js)~(s)d~&cJ I~(s)~,

+)~ cj~ c~e~p(t’r(s)~ 1,

which gives the desired result. The case Ct=O we may get

from here by limiting (c~ ‘Ji 0).

Ás ?(~í()~2’)(t)} ~-{ and the processes

axe continuous we have .

P (süpI~k4 ) ~~0){

Indeed if R is the set of rationals

P( s~p = 0) 1)

but R is dense inEot’] and from the continuity of the

processes we have
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p ~ J~)(Z~(~); 0) =? ~l ~~W(~)J =0 1 =

o~ t~r

which proves the uniqueness.

To prove the existence we shall apply the usual itera—

tional procedure.

Let the first approximation be,

@)~ ~(O)

and

~(o)± ?
With a. similar argument as we did in the’ proof of uniqueness

we get

E) n+d(t) ~fl(~)jZ ~ H I EJ ~(s)-C~(s)!~d~.

Ás

El ~t(t)~°(t)j~E ( ~ + Íb(s~(o)) ~(s)

~ H. T
Prom the last two inequalities for suitably choosen C we get

(12.3) EJ ~n4t .

Further

- r(t)J~s~T 1) ~(5)~fl(5)) (~tfl)Í d~i

~P
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Now we use the theorem 1. of the preceeding lo. paragraph,

namely

.?~(sw) ~4)~2g ~JJE~Z(S~) ~s.
O O

Using the Lipschitz condition for the functions a and b we

get

E süpl ~fl4&(~) ~fl(~)JZ ~ ZT~2J El í(*) r&)lz dl ~

+ &Ka.íEIÍ& )-í~(± )Iz& = cZJEIr(+)~t()i2d±,

and froai (12.3) .

E J~h+{(t)~flflIZ ~ C~. C.T

Using the Ohebisev inequality

~?~ ±~-&~?

So the series

~(o) ~h+k(~) -

converges uniformly with probability 1. I.e ~‘ (~h) tends to

a certain process, let us denote it by ~ (-h) ‚ which is

continuous with probability 1.

Taking the limit in the equation [

~~)= ~(o ) ± I a(s, ~s)) ~ + Ib(s, ~1s)) &~(s) . ‚

we find that the process ~ ci) is measurable in (+j ~)
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and satisfies the relation (11.2’)

Further for any fixed the random variables ~(-E) are

~+ measurable.

Finally

~ St E(~(o))~ ~Lia(sr’(s)) jZ ±

± ~!bs s))&~(s)1Z ~ 3E(~ (o)t~ 3LiE(~5~~
and by iteration

E(r(t)~ 3(o)~+3E(~(o)t. 3 Lt 4(3 Lfít(t~5)Rr2(s)t ~

~ 3~(o))Z± 3 L± 3(o))z+3E(~@))z (3Lt)2± :.. ~ 3E(~(o)~ LT

That means

sűp E(~))~ 3E(~(O))Ze3LT
os ~-r

that is the theorem is proved.

Exercises .

1. Let (fly 2) a probability space and ‘~ 2k
a family of nondecreasing 6’ -algebras and (w-(t)) ‚~ ~P)
a Brownian motion process.

Let the functions ~(t)c~)3 o.{a,’~,c~)b(~,x,w)

have the properties

1. they are measurable in -E1 x, w

2. for fixed -~ and x they are i~’ measurable.

We say that the process «~)={~(E,c~)) O ~ T ) is a

solution of the equation
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(*) ~) =~ ~(5)w) ~~ ~(s)w) ~(~)

if the following conditions are satisfied:

a! «4w) is (tw) measurable;

b/ for any ~ «+~c~) is ~ —measurable,

cl the integrals in (~) exist

dl equation (*) is satisfied for every t with probability

1.

Prove that if sup Ef(4,whtoe and there exists a con—

stant K, that the inequalities

Í~Ct%w)IZ+ Jb(~x)w)]2

I a(t~w)- a(4c~)J+ibw)~b(ti~,W)IZVIXYi

hold with probability 1, then the equation (~) has a

solution, for which

sup
O~ -EST

and if ~ (-E) and ~ (-E) are any two solutions then

they are stochastically equivalent, i.e.

2. Prove that under the conditions of Theorem 1. the sölution

~ (-b) of the stochastic differential equation (12.2) is a

Markov process.

Hint: it is enough to prove that for any A~ mea.surabl~

random variable «~‘ (w) and bounded continuous function

(5 ~.) we have
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~ (s))/ A~) E(~E(~j «±))).

Using the unique solvability of the equation (11.2) and

denoting its solution in the interval (t1s) by ~t’i(u~)

we get that

~‘ ~tjw (5) a.s.

The function

?~)‚ ~) f3(L~(s))
depends on only through the increments ur(u~)-w-(-b)

(-L~u.< s) . Approximate BOx, c~) by functions of the form

3. Let the functions a(t)~x) and b(i)K) be continuous with

respect to the pair (4~~x) and satisfy the conditions of

Theorem 1. Then the process ~(L) ‚ which is the solution

of the equation (11.2) is a diffusion process.

Hint: use Exercise 4. to prove that ~j.~5~(t)-xl~ =

‚ then use this, Lipschitz condition and Wilder’s

inequality to prove that E(~5~O)-~x)= o~(5,~)(~-s)±o’(~ —s);

similar estimations lead to sr~5~(t)—xY b”(s,xX-~-s)±o-(€-s).)

4. Prove that if for a. diffusion process

AJ the coefficient of transmission a (5) )K) is continu

ous with respect to the pair (s~ x) ‚ and.
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for some k~o

B! There exists a function 4) (x) independent of ‚5 and

á.~O, such that ‘p(x)> {+fx/, sup
O’S~T

and

I ~= x)I± E((~+A- ~)ZI ~ x)~ 4)(x)~

E{]~#AI+I~+J ~ } ≤

Then there exists a Brownian motion w-’(s) ‚ measurable

with respect to such that ~ satisfies the

stochastic differential equation

cL~ c(~5 s) cLs ~

(Hint: prove first the relations(with ~= ~3 fo~(Lu)cLt)

E((~~- ~5fIA3~j=V~(x5)~

k E(~~~-25 A~0j= O

~ E(~5~- )z)A~j= O

then, using Levy’s theorem prove that a~ is a Brownian

motion, considering the expectation

~ JA~)~L)

and using Lebesque’s theorem about majorated convergen

ce.
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Chapter 13:

Stochastic integrals and differential equations in

multidimensional case.

I . .Let k— i)Z...,nl ‚ independent Browinan

motion processes with the same family of non—decreasing C’—

algebras ~ . Let (t)—(~1(-~)w), . ..%~(t~w)) a vector

process, where ~L(E) are ‘7~’ measurable for every i and any

fixed t. We denote ~GLZEOTIKI~ if I~+~±. ~
is integrable on La, TJ X Xi. with respect dt &P . The

class of vector functions with the above two properties will
2-be denoted by 9M .

TThe stochastic vector integral with n components

f 4(t.w)d..t0-~(~) is determined as the vector (~

..‚ • All

properties of the stochastic integrals a/— e/ in one dimen

sional case remain true. We must substitute J4~I=V4~~±. . .÷.~?

Now let us take in stochastic vector processes ‘g(t~ w)

‚ then for every It the integral j~k({)d,()

is defined. Let oj4.w) be an n—dimensiona,l vector function,

of the real variable t.

As in the one dimensional case we may define the stochastic

different ia].

(12.1) (t)=~)& ±~ ~(d~k(~)
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if
L m L

- «~) = T ~(t) & + 1 ~~
L0 k—4 L0—

Let us have a vector function in 2(n) where

x G 1~ (n) . We suppose that all the functions

Bxt ~ B~L~j ~ (t,j = iZ~.. .~n)
are continuous. If the stochastic process

has a differential (12.1) then the process (~)~u’(t~(t))

has a differential too and

+ ~ otCb)~ ±~~ ~‘.

WL).

(Ito’s for~nu1a. in multidimensional case).

Let a(L1x) and ~(~x) (‘<={2~,...~m) be vector valued

measurable functions with values in K • We shall

examine the solution of the stochastic differential equation

(12.2) dj(~ a(~ ~ (t)) &t + ~ ~(t)) ~ (t)

or in the equivalent form

(12.2’) ~(t)-~(~ L ±~ ~~k(~4(5))~
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~ (bO) does not depend on w(t) — ~r(t0) for every ~

We sa.y ~(~) is the solution of above differential equation

if the integrals in (12.2) exist and the equation (12.2) is

satisfied with probability 1 for every t ( 0 ~ ~ T).

The existence and the uniqueness of the solution of

equation (12.2) can be proved under similar conditions and on

the same way as in the one dimensional case.
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