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Abstract: Bile acids play important physiological role in the solubilisation and absorption of
dietary lipids. However, under pathophysiological conditions, such as short bowel
syndrome, they can reach the colon in high concentrations inducing diarrhea. In this
study our aim was to characterise the cellular pathomechanism of bile-induced
diarrhea using human samples. Colonic crypts were isolated from biopsies of patients
(controls with negative colonoscopic findings) and of cholecystectomised/ileum-
resected patients with or without diarrhoea. In vitro measurement of the transporter
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mitochondrial transmembrane potential and caused sustained intracellular Ca2+
elevation. We also showed that chenodeoxycholate induced Ca2+ release from the
endoplasmic reticulum and extracellular Ca2+ influx contributing to the Ca2+ elevation.
Importantly, our results suggest that the chenodeoxycholate induced inhibition of NHE
activities was ATP-dependent, whereas the inhibition of CBE activity was mediated by
the sustained Ca2+ elevation.
We suggest that bile acids inhibit the function of ion transporters via cellular energy
breakdown and Ca2+ overload in human colonic epithelial cells, which can reduce fluid
and electrolyte absorption in the colon and promote the development of diarrhea.
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Abbreviations used in this paper: BA, bile acids; BAM, bile acid malabsorption; BAPTA-AM, 1,2-bis(o-

aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; [Ca2+]i, intracellular Ca2+ concentration; CBE, Cl-/HCO3
- 

exchanger; CCCP, carbonyl cyanide m-chlorophenyl hydrazone; CDC, chenodeoxycholate; ER, endoplasmic 

reticulum; GCDC, glycochenodeoxycholate; H2DIDS, dihydro-4,4’-diisothiocyanostilbene-2,2’-disulfonic acid; 

HOE-642, 4-isopropyl-3-methylsulphonylbenzoyl-guanidin methanesulphonate; IP3R, inositol-triphosphate 

receptor; (ΔΨ)m; mitochondrial transmembrane potential; NHE, Na+/H+ exchanger; pHi, intracellular pH; RR, 

ruthenium red; RyR, ryanodin receptor; SERCA, sarcoplasmic/endoplasmic reticulum calcium ATPase; SLC26, 

solute carrier family 26; TEM, transmission electron microscopy; Tg, Thapsigargin;   
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Abstract 

Bile acids play important physiological role in the solubilisation and absorption of dietary lipids. However, under 

pathophysiological conditions, such as short bowel syndrome, they can reach the colon in high concentrations 

inducing diarrhea. In this study our aim was to characterise the cellular pathomechanism of bile-induced diarrhea 

using human samples. Colonic crypts were isolated from biopsies of patients (controls with negative 

colonoscopic findings) and of cholecystectomised/ileum-resected patients with or without diarrhoea. In vitro 

measurement of the transporter activities revealed impaired Na+/H+ exchanger (NHE) and Cl-/HCO3
- exchanger 

(CBE) activities in cholecystectomised/ileum-resected patients suffering from diarrhea, compared to control 

patients. Acute treatment of colonic crypts with 0.3mM chenodeoxycholate caused dose-dependent intracellular 

acidosis; moreover, the activities of acid/base transporters (NHE and CBE) were strongly impaired. This 

concentration of chenodeoxycholate did not cause morphological changes in colonic epithelial cells, although 

significantly reduced the intracellular ATP level, decreased mitochondrial transmembrane potential and caused 

sustained intracellular Ca2+ elevation. We also showed that chenodeoxycholate induced Ca2+ release from the 

endoplasmic reticulum and extracellular Ca2+ influx contributing to the Ca2+ elevation. Importantly, our results 

suggest that the chenodeoxycholate induced inhibition of NHE activities was ATP-dependent, whereas the 

inhibition of CBE activity was mediated by the sustained Ca2+ elevation. 

We suggest that bile acids inhibit the function of ion transporters via cellular energy breakdown and Ca2+ 

overload in human colonic epithelial cells, which can reduce fluid and electrolyte absorption in the colon and 

promote the development of diarrhea. 

Keywords: bile acids, colonic epithelial cells, ion transporters, intracellular Ca2+ 
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Introduction 

 

One of the main non-motor functions of the colon is to absorb about 90% of the fluid (~1.5 to 1.9 L), 

arriving daily from the small intestine [41], which is mediated by the polarised epithelial cell layer. The colonic 

epithelial cells express numerous ion channels, pumps and transporters located either on the luminal or the 

basolateral membrane, allowing highly efficient transport of water and ions, especially Na+ and Cl-  [25]. The 

adequate activity of these transporters is essential to keep the precise balance between absorption and secretion. 

The electroneutral NaCl absorption in the colon is most likely mediated via the coupled activity of Na+/H+ 

exchangers (NHEs) and the SLC26 Cl-/HCO3
- exchangers (CBE) [30,45]. 

Bile acids (BA) are natural detergents excreted into the small intestine, and most of them (90-95%) are reclaimed 

in the distal ileum then returned to the liver. If this precisely regulated enterohepatic circulation impairs, bile acid 

malabsorption (BAM) occurs, thus BA can enter the colon in higher concentrations and can induce diarrhoea 

through a yet unidentified mechanism. BAM and diarrhoea are well-known clinical complications following ileal 

resection or cholecystectomy [1,11,37].  The lack of proper diagnostic approaches and limited number of clinical 

guidlines on the appropriate management of patients with BAM making the disease underrecognized and great 

challenge for gastroenterologists [46]. Further complicates the situation that cholestyramine therapy (a bile acid 

sequestrant) does not solve the problem in every case [10,34,48,3]. Moreover, cholestyramine treatment can 

reduce the bioavailability of co-administered drugs as well. These observations suggest the neccessity of 

developing new therapeutical approaches, therefore it is crucial to understand to pathogenesis of bile acid 

induced diarrhoea.  

In this study we provide strong evidence that BA impair the ion transport mechanisms of human colonic 

epithelial cells which could play an important role in the development of BAM associated diarrhoea. We 

demonstrate that chronic exposure of the colon to high concentrations of BA results in decreased activities of 

acid/base transporters, responsible for NaCl absorption. In addition, the non-conjugated BA chenodeoxycholate 

inhibits the activities of NHEs and CBE via (ATP)i depletion and sustained intracellular Ca2+ elevation in 

isolated human colonic epithelial cells. These intracellular changes could reduce fluid and electrolyte absorption 

in the colon and promote the development diarrhoea. Thus, our results might contribute to the development of 

new therapeutic approaches in the treatment of bile-induced diarrhea. 
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Materials and methods 

 

Human subjects involved in the study 

The patients involved in the study were divided into three groups. The first group contained patients 

having diarrhoea after ileum-resection/cholecystectomy (Diarrhoea). In the second group ileum-

resected/cholecystectomised patients were involved who did not develop diarrhoea (NON-Diarrhoea). The 

control group included patients without any surgical intervention in the gastrointestinal tract. The patients 

enrolled in this study were between the age of 25-55 years. Informed consent was obtained prior to endoscopy. 

Protocols of the study were approved by the regional ethical committee at the University of Szeged, Szeged, 

Hungary. 3-6 colonic biopsies were obtained from the proximal colon (cecum, colon ascendens) from each 

patient undergoing colonoscopy at the First Department of Medicine. In none of the patients were macroscopic 

(by endoscopy) or microscopic (by histology) signs of the presence of inflammation in the colon. Patients with 

normal endoscopic findings were examined because of colorectal cancer screening or different abdominal 

complaints. 

 

Materials and solutions for the experiment 

 The compositions of the solutions used are shown in Table 1. The pH of HEPES-buffered solutions was 

set to 7.4 with NaOH at 37oC. HCO3
--buffered solutions were gassed with 95% O2/5% CO2 to set the pH to 7.4 

at 37oC. 

General laboratory chemicals were obtained from Sigma-Aldrich. Collagenase A was obtained from 

Roche Diagnostic (Mannheim, Germany). HOE-642 (4-isopropyl-3-methylsulphonylbenzoyl-guanidin 

methanesulphonate) was provided by Sanofi Aventis (Frankfurt, Germany) and was dissolved in dimethyl 

sulfoxide (DMSO). BCECF-AM (20,70-biscarboxyethyl-5(6)-carboxyfluorescein-acetoxymethylester), FURA-

2-AM (2-(6-(bis(carboxymethyl)amino)-5-(2-(2-(bis(carboxymethyl)amino)-5-methylphenoxy)-ethoxy)-2-

benzofuranyl)-5-oxazolecarboxylic acetoxymethyl ester), BAPTA-AM (1,2-bis(o-aminophenoxy)ethane-

N,N,N9,N9-tetraacetic acid), Magnesium-green-AM and TMRM (tetramethylrhodamine methyl ester) were 

obtained from Invitrogen (Eugene, OR); cell and tissue adhesive from Becton Dickinson Bioscience (Cell Tak, 

Bedford, MA). BCECF-AM, BAPTA-AM and TMRM were dissolved in DMSO, FURA-2-AM, and 

Magnesium-green-AM were dissolved in pluronic acid and DMSO. Thapsigargin was obtained from Merck 

(Darmstadt, Germany) and it was dissolved in DMSO. 
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Isolation of colonic crypts 

Colonic crypts were isolated from three human biopsy specimens obtained from the proximal (cecum or 

colon ascendens) part of the large intestine. Only one segment of the colon was investigated in each patient. The 

tissue samples were placed immediately in ice-cold NaHCO3 containing Hank’s balanced salt solution (HBSS). 

The samples were washed three times with HBSS, cut into small pieces with a razor blade and incubated in 1mM 

dithiothreitol (DTT) in HBSS for 15 minutes followed by 2x30 minutes enzymatic digestion with 0.38mg/mL 

collagenase A at 37oC and continuously gassed with 5% CO2/95% O2. The small fragments were mixed with a 

Pasteur pipette, the large fragments were allowed to settle down to the bottom of the flask under gravity for 35–

40 seconds, and the supernatant removed and visualised under a Nikon stereo microscope (Jencons-PLS, 

Grinstead, UK). The crypts (200–300 crypts/isolation) were aspirated into a micropipette and transferred into a 

Petri dish. For fluorescent measurements the crypts were kept in a culture solution for 3 hours at 4oC before the 

experiments. The culture solution contained Dulbecco’s Modified Eagle’s Medium (DMEM), 10% fetal bovine 

serum (FBS; Sigma-Aldrich, Budapest, Hungary), 2mM L-glutamine, 100U/mL penicillin, and 100μg 

streptomycin.  

 

Measurement of intracellular pH (pHi), Ca
2+

 concentration ([Ca
2+

]i) and ATP level [(ATP)i] by 

microfluorometry 

Colonic crypts were attached to 24mm glass coverslips covered with CellTak 3h after isolation and 

placed in a perfusion chamber mounted on the stage of an inverted fluorescent microscope linked to an 

excellence imaging system (Olympus, Budapest, Hungary). 

During the microfluorometry experiments, colonic crypts were incubated in standard HEPES solution at 37oC 

and loaded with the appropriate fluorescent dye. Crypts were continuously perfused with different solutions at a 

rate of 9-10ml/min. Two to three small areas (region of interest (ROIs)) from the surface of each crypt were 

investigated (Fig. 1). 

pHi was estimated with the pH-sensitive fluorescent dye BCECF-AM. After incubating with BCECF-AM 

(2μmol/l) for 20-30 minutes, colonic crypts were excited with light at wavelengths of 495nm and 440nm and the 

495/440 fluorescence emission ratio were measured at 535nm [17,42]. 
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For the measurement of intracellular Ca2+ concentration ([Ca2+]i) the cells were loaded with the Ca2+ sensitive 

fluorescent dye FURA-2-AM (5µmol/l) for 60 min. For excitation, 340 and 380nm filters were used, and the 

changes in [Ca
2+

]i were calculated from the fluorescence ratio (F340/F380) measured at 510nm. 

To determine changes of (ATP)i concentrations the fluorescent dye Mg-green-AM was used, which has been 

shown to indirectly reflect the changes in (ATP)i. Colonic crypts were incubated with Mg-Green (4μmol/L) for 

60 minutes than were excited with 476nm light and emission was detected at 500–550nm. Because ATP has a 

10-fold greater affinity for Mg2+ than ADP, and most intracellular Mg2+ is present as Mg-ATP [22,27], the 

ADP:ATP ratio can be monitored. The elevation of fluorescence intensity caused by the increase in free 

intracellular Mg2+ concentration suggests a reduction of (ATP)i [7]. The (ATP)i measurements were performed in 

standard HEPES-buffered solution. 

 

Measurement of NHE activities 

During the measurement of pHi, in order to characterize NHE activity NH4Cl pulse technique was used 

in HEPES-buffered solution. Exposure of colonic crypts for 3 minutes to 20mM NH4Cl induced an immediate 

rise in pHi due to the rapid entry of lipophilic base NH3 into the cells. After the removal of NH4Cl, pHi rapidly 

decreased. This acidification is caused by the dissociation of intracellular NH4
+ to H+ and NH3, followed by the 

diffusion of NH3 out of the cell. Under these conditions, the initial rate of pHi recovery from the acid load 

reflects the activities of NHEs. -J(B-) was calculated from the first 60 sec of pHi recovery from acidification. 

Further experiments were done to investigate the activities of the different NHE isoforms. The crypts were acid 

loaded by exposure to a 3-min-pulse of 20mM NH4Cl in HEPES solution followed by a 10-min-exposure of 

Na
+
-free HEPES solution. Due to the blocked acid/base transporters (neither sodium nor bicarbonate are present 

in the solution); the pHi is set to a stable acidic level. NHE activity was switched on by re-addition of 

extracellular sodium and the activities of NHEs were determined by measuring the initial rate of pHi recovery 

over the first 60 sec. The activities of the different NHE isoforms are extracted by using the isoform selective 

NHE inhibitor HOE-642. The isoform selectivity of HOE-642 is dose-dependent, 1µM HOE642 inhibits NHE1 

whereas 50µM HOE642 inhibits both NHE1 and 2 but not NHE3 [2,6]. The activities (A) of NHE isoforms can 

be calculated from the recoveries (R) as follows: 

ANHE1 = R0μM HOE-642 - R1μM HOE-642 

ANHE2 = R1μM HOE-642 - R50μM HOE-642 

ANHE3 = R50μM HOE-642 
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Determination of buffering capacity and base efflux 

The total buffering capacity (βtotal) of colonic epithelial cells was estimated according to the NH4
+
 pre-

pulse technique [16,47]. Colonic epithelial cells were exposed to various concentrations of NH4Cl in a Na+- and 

HCO3
--free solution. βi (which refers to the ability of intrinsic cellular components to buffer changes of pHi) was 

estimated by the Henderson–Hasselbach equation. βtotal was calculated from: βtotal = βi + βHCO3- = βi + 2.3x[HCO3
-

]i, where βHCO3- is the buffering capacity of the HCO3
-/CO2 system. The measured rates of pHi change (dpH/dt) 

were converted to transmembrane base flux J(B-) using the equation: J(B-)=dpH/dtx βtotal. The βtotal value at the 

start point pHi was used for the calculation of J(B-). We denote base influx as J(B-) and base efflux (secretion) as 

-J(B-). 

 

Measurement of CBE activity 

Cl- withdrawal technique was used to investigate the activity of CBE [43]. Removing Cl- from the 

standard HCO3
-/CO2 buffered solution caused alkalization due to the reversed activity of the Cl-/HCO3

- 

exchanger. The activity of the exchanger was determined by measuring the initial rate of alkalization over the 

first 30 sec. 

 

Electron microscopy 

 Morphological changes of the different cell organelles of the colonic epithelial cells were evaluated by 

transmission electron microscopy (TEM). Biopsy samples were fixed in 2% glutarldehyde (in PBS) overnight at 

4°C degree. Samples were cut into small pieces (1X1 mm) than were infiltrated with 2% gelatin (PBS) and the 

small cubes were made, which were than embedded to Embed 812 (EMS, USA) using a routine TEM embedding 

protocol. After the semithin sections (1µm), the thin (70nm) sections were cut for TEM examination. 

 

Measurement of mitochondrial transmembrane potential ( (Δψ)m) 

Changes of (Δψ)m were assessed by loading cells with 100nmol/L Tetramethylrhodamine, methyl ester 

(TMRM) for 30 minutes at 37°C to measure fluorescence in the perigranular mitochondrial region. 

Depolarisation of the mitochondria results in redistribution of TMRM from the mitochondria to the cytosol, 

causing a decrease in mitochondrial fluorescence [44]. Excitation 488nm, emission was detected at >550nm with 

Olympus Fluoview FV10i confocal system [7]. 
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Statistical analysis 

 Values are means ± SE. Statistical analyses were performed using analysis of variance (ANOVA) with 

the post-hoc test Dunnett or Bonferroni. P≤0.05 was accepted as significant. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10 

 

Results 

 

Chronic exposure of the colon to bile acids impair the activities of NHEs and CBE of isolated human 

colonic epithelial cells 

 Colonic crypts were isolated from patients whose colon is probably exposed to high concentrations of 

BA. Ileum-resected or cholecystectomised patients were divided into two groups depending on the presence 

(Diarrhoea; D) or absence (NON-Diarrhoea; NON-D) of diarrhoea after the surgical intervention. The calculated 

acid/base transporter activities were compared to those measured in control patients to determine the effects of 

BA on the epithelial ion transport.  

Representative curves of the pHi traces and the summary data of the calculated NHE activities are shown in Fig. 

2a, b. The activities of the different NHE isoforms are extracted by using the isoform selective NHE inhibitor 

HOE-642. 1µM HOE642 inhibits NHE1 whereas 50µM HOE642 inhibits both NHE1 and 2 but not NHE3 [2,6]. 

The functions of all examined NHE isoforms were significantly reduced in patients in group D compared to 

control patients. 

The function of CBE was investigated using the Cl- withdrawal technique (Fig. 2c). Removal of Cl- from the 

standard HCO3
-/CO2 bath solution caused a marked alkalization in colonic crypt cells suggesting the presence of 

a functionally active anion exchange mechanism. The activity of the CBE was significantly impaired in D group 

compared to control patients (Fig. 2d). In colonic crypt cells, isolated from NON-D patients, the activities of the 

examined acid/base transporters were not changed significantly, compared to the control group, suggesting the 

significant role of ion transporters in bile-induced diarrhoea. 

 

Bile acid administration dose-dependently reduce the pHi of isolated human colonic epithelial cells 

Our next aim was to characterise the acute effects of BA on colonic epithelial cells. For these experiments, 

colonic crypts were isolated from control patients. The administration of  chenodeoxycholate (CDC) resulted in a 

dose-dependent reduction of the pHi of perfused colonic epithelial cells (Fig. 3). The characteristic response was 

a rapid decrease in pHi which than slowly recovered to a variable degree during continuous exposure to BA (Fig. 

3a-d). In HEPES-buffered solution, the ΔpHmax was more prominent during CDC administration compared to 

those observed in HCO3
--containing solution, which can be explained by the increased buffering capacity of the 

colonic epithelial cells in the presence of HCO3
-/CO2.   
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Acute exposure to bile acid inhibits the activities of acid/base transporters of isolated human colonic 

epithelial cells 

Impaired NHE and CBE activities were observed in patients suffering from diarrhoea, whose colon is 

probably continuously exposed to an elevated BA concentration, therefore we wanted to characterize the effects 

of acute BA administration on the ion transport mechanisms of human colonic epithelial cells. Colonic crypts 

isolated from control patients were used during these series of experiments. In order to investigate the effects of 

BA on the activities of NHEs, we analysed the pHi recovery from an acid load induced by the removal of NH4Cl. 

The representative pHi traces (Fig. 4a) and the summary data of the calculated NHE activities (Fig. 4b)  show 

that 10 min treatment with 0.1mM CDC had no effects on the NHE activities.  When the colonic crypts were 

perfused with 0.3 mM CDC, an inhibition of the activities of NHEs was observed. To identify the exact NHE 

isoforms, which were inhibited by 0.3mM CDC, we used the ammonium pulse technique with the isoform-

selective NHE inhibitor HOE-642 during the continuously perfusion with 0.3mM CDC. According to our results, 

all of the NHE isoforms were significantly inhibited by 0.3mM CDC (Fig. 4c). 

We also tested the effects of higher BA concentrations, although when 20mM NH4Cl was applied at the same 

time with 1 mM CDC, the fluorescent intensities at 440 and 495nm rapidly decreased causing an immediate 

elevation of the 440/495 ratio. This might be explained by the loss of BCECF and reflects the permeation of the 

plasma membrane, or by the lysis of the cells.  

The Cl--withdrawal technique was applied to examine the activity of CBE as well. The apical Cl- removal from 

the extracellular solution increased the pHi of the cells by driving HCO3
- into the cell via the apical CBE, 

whereas, re-addition of Cl- decreased pHi inducing secretion of HCO3
- via the CBE. Treating the crypts with 

0.3mM CDC resulted in a strong inhibition in the activity of CBE (Fig 4.d,e).  

Besides the non-conjugated BA we also investigated the effects of the conjugated BA on the ion transport 

activities of the colonic epithelial cells. We tested the effects of glycochenodeoxycholate in different 

concentrations (0.1, 0.3, 1mM) on the activities of NHE and CBE; however no changes were observed (data not 

shown). 

 

High concentration of bile acid induces severe mitochondrial damage 

 Our next aim was to explore the intracellular mechanisms by which BA inhibit acid/base transporters. 

Since previous works have reported that BA can disrupt intracellular organelles (mitochondria, or Golgi) 

[4,29,31], we first analysed the structure of the cell compartments of human colonic epithelial cells following 
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incubation with BA. Transmission electron microscopy (TEM) revealed that administration of low 

concentrations of CDC (0.1mM or 0.3mM) for 1-10 min had no effect on the structure of intracellular organelles 

(Fig. 5a). On the other hand, 10 min exposure of the human colonic epithelial cells to high concentration (1mM) 

of CDC strongly damaged all of the mitochondria. The mitochondria swelled up and the inner membrane 

structures were disrupted. We did not observe such alteration in other intracellular organelles, such as ER, Golgi 

or nuclei. For positive control experiments, the mitochondrial toxin carbonyl cyanide m-chlorophenyl hydrazone 

(CCCP, 100μM) was applied. The mitochondrial injury was similar to those seen after 1mM CDC treatment.  

 

Bile acid treatment decreases (ATP)i and (Δψ)m of isolated human colonic epithelial cells 

 Since TEM experiments didn't reveal the inhibitory mechanism of 0.3mM CDC completely, we tried to 

dissect the mechanism at a functional level. Therefore, in the next step we aimed to find out whether CDC has 

any influence on the (ATP)i level of the human colonic epithelial cells. Using the Mg-Green fluorescent probe, 

which is indirectly sensitive to (ATP)i (see Methods) we showed, that 0.3mM CDC significantly, but reversibly 

depleted (ATP)i of isolated human colonic epithelial cells (Fig. 5b, c). Following administration of 0.1mM CDC 

the (ATP)i was not affected (data not shown). In case of 1mM CDC, not only the structural impairement of the 

mitochondria was evident but a significant and irreversible decrease of the (ATP)i level was perceptible as well. 

For positive control, the mitochondrial toxin CCCP was applied similarly to the morphological studies. The fact 

that high concentration of CDC caused more prominent (ATP)i depletion than CCCP, suggests that BA have 

additional effects, which further decreases (ATP)i. To investigate the effects of BA on glicolytic (ATP)i 

production the combination of deoxyglucose (DOG)/idoacetamide (IAA) was used, which inhibit the glycolytic 

metabolism of colonic epithelial cells. 10mM DOG + 5mM IAA significantly and irreversibly depleted (ATP)i. 

CCCP and DOG+IAA together mimicked the effect of high conenctrations of CDC on the (ATP)i of isolated 

human colonic epithelial cells. 

Alterations of (Δψ)m were also examined. Representative traces in Fig. 5d demonstrate that administration of 

0.1mM or 0.3mM CDC induced a significant decrease in TMRM fluorescence, which indicates the loss of 

(Δψ)m. This effect was reversible, (Δψ)m returned to basal level following removal of CDC. Furthermore 1mM 

CDC or 100µM CCCP caused a marked and irreversible reduction of (Δψ)m. 

 

Bile acid treatment dose dependently increases [Ca
2+

]i via endoplasmic reticulum (ER) Ca
2+ 

release and 

extracellular Ca
2+

 influx 
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To further investigate the intracellular effects of BA, the changes of [Ca2+]i in isolated human colonic 

epithelial cells was measured during CDC-treatment. In our experiments, administration of CDC caused a dose-

dependent increase in [Ca
2+

]i (Fig. 6a-c). The increase in [Ca
2+

]i was sustained, plateau-like pathophysiological 

signal. The removal of Ca2+ from the extracellular solution significantly decreased this effect. Pretreatment of the 

colonic crypts with BAPTA-AM (40μM), a fast chelator of [Ca2+]i abolished the effect of 0.1 and 0.3mM CDC, 

however, a moderate increase of [Ca2+]i was still observable when 1mM CDC was applied (Fig. 6d). 

We made attempts to identify the source of Ca2+, released during CDC-treatment. Caffeine (20mM) and/or 

Ruthenium red (RR, 10μM) were utilised in order to antagonise inositol triphosphate receptor (IP3R) and 

ryanodin receptor (RyR), which can mediate Ca2+ release from the endoplasmic reticulum (ER). Representative 

curves and the summary bar chart (Fig. 8a, b) demonstrate that the application of caffeine significantly inhibited 

the increase in [Ca2+]i generated by 0.3mM CDC, while the administration of RR had no effect on the Ca2+ 

release. The rate of [Ca2+]i increase was significantly diminished as well during the administration of caffeine 

(Fig. 8c). In the next step gadolinium (Gd3+, 1μM) was applied to block plasma membrane Ca2+ entry channels. 

Gd3+ alone was not able to decrease the elevation of [Ca2+]i induced by 0.3mM CDC, while the simultaneous 

administration of Gd3+, caffeine and RR significantly reduced it. To further characterize the CDC-induced 

increase of [Ca2+]i in colonic epithelial cells, thapsigargin (Tg), the sarcoplasmic/endoplasmic reticulum calcium 

ATPase (SERCA pump) inhibitor was applied. In Ca2+-free solution, Tg (2μM) induced Ca2+ store depletion 

with consequent [Ca2+]i elevation (Fig. 8d). This elevation was markedly decreased when Tg was administered 

after 0.3 mM CDC (Fig. 8e). Tg, when administered during 0.3mM CDC, further induced a slight increase in 

[Ca2+]i (Fig 8). These observations suggest that beside the extracellular Ca2+ influx, CDC deplete ER Ca2+-stores 

via IP3R mediated processes.  

 

The BA induced inhibition of Na
+
/H

+
 exchange activities is ATP-dependent, whereas the inhibition of CBE 

activity is Ca
2+

-dependent in isolated human colonic epithelial cells 

Next we examined the potential connection between the intracellular effects of 0.3mM CDC ((ATP)i 

depletion and [Ca2+]i elevation) and the decreased function of acid/base transporters following treatment with the 

BA. Ammonium pulse technique (Fig. 9a) showed that chelation of intracellular Ca2+ with BAPTA-AM did not 

influence the inhibitory effect of 0.3mM CDC on the NHE activity. In contrast, when the glycolysis inhitbitors 

DOG+IAA were applied the same inhibition of NHEs was perceptible (Fig. 9b, d), which suggests that CDC 
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inhibits NHE via (ATP)i depletion. This result confirms the observation of other workgroups that the NHEs are 

ATP-dependent transporters [5,38,39]. 

We also investigated the inhibitory effect of 0.3mM CDC on CBE in more details. We tested the effects of 

[Ca2+]i chelation and (ATP)i depletion during the Cl--removal technique in isolated human colonic epithelial 

cells. We showed that the intracellular Ca2+-chelator BAPTA-AM completely abolished the inhibitory effect of 

0.3mM CDC on the activity of CBE. In contrast, depletion of (ATP)i with DOG+IAA was not able to reduce 

CBE activity. These observations suggest that bile acids inhibit CBE activity via toxic [Ca2+]i elevation unlike 

NHE activity, which is inhibited (ATP)i depletion. 
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Discussion 

 BA are amphipathic molecules participating in fat solubilisation and lipid digestion [23]. Besides the 

physiological functions, BAs are also known to cause bile-induced diarrhoea, a common feature of BAM, which 

often develops after small bowel resection or post-cholecystectomy [1,37,40]. Although bile-induced diarrhoea is 

a frequent complication affecting high number of patients, its pathogenesis is not completely undertood yet. In 

this study we provide strong human evidence, that bile acids impair the activity of the acid/base transporters 

(NHE and CBE) via different mechanisms in colonic epithelial cells. The impaired activity of NHE and CBE can 

decrease the fluid and electrolyte absorption in the colon and promote the development of diarrhoea. 

The colonic epithelial cells express different ion channels and transporters, which transport ions and water. 

NHE1 is constitutively expressed on the basolateral membrane of the epithelial cells. Although it does not play a 

role in the Na+ absorption, it fulfils housekeeping functions, regulating cell volume and pHi  [24]. In addition the 

presence of NHE2 and NHE3 on the apical membrane of colonic epithelial cells has been confirmed [20]. NHE3 

knock out mice develope diarrhoea, which supports the idea that this might be the dominant NHE isoform, 

responsible for Na+ uptake in the intestine [12,35,49]. Together with NHE3, the SLC26A3 Cl-/HCO3
- exchanger 

(or downregulated in adenoma; DRA), a member of the SLC26 gene family, maintains the absorption of NaCl in 

the colon. Mutation of this transporter results in congenital chloride-losing diarrhoea [19], moreover, similar 

conditions develop in SLC26A3-deficient mice [36]. The fact that impaired activities of these transporters were 

observed in diarrhoea-associated diseases, such as ulcerative colitis and secretory diarrhoea [8,28,50], further 

underlies the importance of the NHE3 and SLC26A3 in colonic electrolyte and water absorption. 

BA can induce diarrhoea when they are present in the colon at high concentrations; therefore we recruited ileum-

resected or cholecystectomised patients and divided them into two groups depending on having (D) or not 

having diarrhea (NON-D) after the surgical intervention. The measurement of the ion transporter activites 

revealed that in the D group the activities of NHE1-3 isoforms were markedly lower, compared to the control 

group. This inhibitory pattern is clearly different from our previous observations in ulcerative colitis patients, 

where the activity of NHE1 was increased, whereas the activity of NHE3 was significantly decreased in colonic 

epithelial cell [9]. Moreover the activity of CBE was significantly diminished in patients in group D as well. 

Importantly, the function of the acid/base transporters was unaltered in colonic epithelial cells isolated from 

NON-D patients. These data suggest that the reduced absorptive function of the colon is probably due to the 

continuous presence of non-physiological concentration of BA.  
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In the next step we aimed to characterise the acute effects of BA on human colonic epithelial cells. Hamilton et 

al. showed, that the physiological concentration of total BA – including conjugated and non-conjugated forms - 

in the proximal colon (cecum) reaches 1mM [15]. In addition, in the large intestine BAs are metabolized, mainly 

deconjugated, by resident bacteria [18,21,33] further elevating the concentration of the non-conjugated BA. 

Based on these observations, we used 0.1mM CDC as low, physiological and 0.3-1mM CDC as high, non-

physiological concentrations. In our experiments, administration of CDC caused an immediate, dose-dependent 

and reversible decrease of the pHi in human colonic epithelial cells. Moreover we also provided evidence that 

administration of high concentration (0.3mM) of CDC resulted in a significant inhibition of NHEs and CBE of 

human colonic epithelial cells, suggesting the possible toxic effects of high doses of non-conjugated BA. Using 

the isoform-specific NHE inhibitor HOE-642 we also showed that the functions of NHE1-3 isoforms were 

reduced in response to 0.3mM CDC. Similarly, high concentration of CDC strongly inhibited the acid/base 

transporters of guinea pig pancreatic ductal epithelial cells [43]. 

To dissect the intracellular mechanisms of the inhibitory effects of BA on colonic epithelial cells, first we 

investigated the effects of CDC on the morphology of intracellular organelles. Previous studies demonstrated 

that BA can perturb intracellular organelles and induce Golgi fragmentation and disruption of the mitochondria 

in cultured colonic epithelial cells and in pancreatic ductal cells [4,29,31]. In our experiments, 10 minute 

exposure of the colonic epithelial cells to 0.3mM CDC did not induce any visible alteration in the morphology of 

the cell compartments. Nevertheless, 1mM CDC caused a severe damage in all of the mitochondria. The 

mitochondria swelled up and the structure of the inner membranes was disrupted, whereas other intracellular 

organelles seemed to remain intact. Although 0.3mM CDC inhibited the activities of acid/base transporters, it 

did not induce alteration in the structure of intracellular organelles, therefore we investigated whether 

mitochondrial function is altered by BA. Administration of 0.3mM CDC significantly but reversibly depleted the 

(ATP)i and decreased (Δψ)m of isolated human colonic epithelial cells. The toxic effects of BAs were previously 

demonstrated on isolated rodent pancreatic acinar [44].  

Next, we investigated another potential intracellular target of BA, the Ca2+ signalisation, a well-known mediator 

of numerous cellular processes. It was shown previously that the Cl-/HCO3
- exchanger SLC26A3 and NHE3 are 

inhibited by the pathological increase of intracellular Ca2+ [6,26]. In our experiments, CDC induced a dose-

dependent sustained increase in [Ca2+]i,. The removal of Ca2+ from the extracellular solution significatnly 

decreased, while preincubation of the colonic crypts with BAPTA-AM (40μM), a fast intracellular Ca2+chelator, 

almost completely abolished the effect of 0.3mM CDC. If elevation of [Ca2+]i occurs, the source of Ca2+ could be 
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the release from the ER via IP3R and/or RyR or Ca2+ entry from the extracellular space [32,14,13]. In our 

experiments, the IP3R antagonist caffeine, but not the RyR-blocker RR or the plasma membrane Ca2+ channel 

inhibitor Gd
3+

, reduced the CDC induced [Ca
2+

]i elevation. These observations suggest that BA mobilizes stored 

Ca2+ from the ER via IP3R. However, since the inhibition of IP3R did not completely abolished the effect of 

CDC, proposes that extracellular Ca2+ influx must play a role as well. This process is most probably mediated by 

a Gd3+ insensitive Ca2+ channel, Na+/Ca2+ exchangersor non-specific cation channels. These ion channels have 

large Na+, Ca2+ and/or K+ conductance but since specific inhibitors are lacking, it is difficult to distinguish their 

functions. Beside, the SERCA inhibitor thapsigargin induced a further elevation of the [Ca2+]i after or during 

CDC administration suggests that CDC does not completely empty the ER Ca2+ store. These observations further 

confirmed our hypothesis that CDC mobilizes Ca2+ from the ER and promotes the influx of external Ca2+. The 

fact that the increase in [Ca2+]i in response to CDC was reversible argues the possibility that it was caused by the 

detergent property of the BA.  

Finally, we examined whether there is a connection between the inhibitory effect of 0.3mM CDC on the 

activities of acid/base transporters and its effects on (ATP)i or [Ca2+]i. We showed that the depletion of (ATP)i 

resulted in a similar decrease of NHE activities as it was observed following the administration of 0.3mM CDC. 

In contrast, pretreatment of the colonic epithelial cells with the [Ca2+]i chelator BAPTA-AM did not prevent the 

toxic effect of 0.3mM CDC on the activities of NHEs. These results indicate that 0.3mM CDC inhibits the 

functions of NHEs rather via depleting (ATP)i. This is in agreement with previous observations that NHEs are 

ATP-dependent transporters [5,38,39]. Beside the Na+ transport, the Cl- absorptive capacity via the CBE of the 

colonic epithelial cells was also tested. (ATP)i depletion caused by the glycolysis inhibitors did not have any 

influence on the activity of CBE. However, preincubation of the colonic crypts with the [Ca
2+

]i chelator BAPTA-

AM restored the diminished activity of CBE caused by 0.3mM CDC. This observation further supports the 

hypothesis that CBE is inhibited by the non-physiological elevation of [Ca2+]i [26]. 

Taken together using isolated human colonic crypts we showed that non-conjugated bile acids, when they are 

present in the colon at a relative high concentration, can enter the colonic epithelial cells. Via impaired cellular 

ATP production and toxic [Ca2+]i elevation bile acids can decrease the activities of acid/base transporters, 

responsible for NaCl absorption, which can reduce fluid and electrolyte absorption in the colon promoting the 

development of diarrhoea. Stimulating either the sodium uptake via NHE or the chloride uptake via CBE shall 

offer new therapeutical approaches in the treatment of bile-induced diarrhea. 
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Figure 1. Phase contrast (A) and fluorescent (B) pictures of an isolated human colonic crypt. Crypts were 

fixed on glass coverglass. Three regions of interests (ROIs) of each crypt were excited with lights at different 

wavelengths and the fluorescence emissions were measured. B: base, M: middle, S: surface, L: lumen of the 

crypt, BL: basolateral membrane. 

 

Figure 2. The activities of NHE and CBE were decreased in colonic epithelial cells isolated from ileum-

resected/cholecystectomised patients suffering from diarrhea. (A) The activities of different NHE isoforms 

were determined by NH4Cl pulse technique with the isoform-specific NHE inhibitor HOE-642 as described in 

materials and methods. (B) Summary data of the calculated NHE activities. The activities of NHE1-3 were 

significantly impaired in patients suffering from diarrhea. (C) Representative pHi traces showing the effect of the 

Cl- removal on the pHi of the colonic epithelial cells. (D) Summary data of the calculated CBE activities, which 

were significantly decreased in patients suffering from diarrhea. Groups of patients were C: control; D: ileum-

resected/cholecystectomised with diarrhea and NON-D: ileum-resected/cholecystectomised without diarrhea. 

Data are presented as means ± SEM. n=5-6 patients/16-24 crypts/32-48 ROIs, *p<0.05 vs. control 

 

Figure 3. Bile acids induce dose-dependent acidosis in isolated human colonic epithelial cells. 

Representative pHi traces demonstrating the effect of non-conjugated CDC (0.1, 0.3 and 1mM) administered in 

HEPES- (A) or in HCO3
-/CO2-buffered (C) solution. Summary data of the calculated base flux (J(B-/min)) (B) 

and the maximal pHi change (ΔpHmax) (D) induced by bile acids. Bile acids dose-dependently reduced the pHi of 

colonic epithelial cells. Data are presented as means ± SEM. n= 4-6 patients/14-18 crypts/28-36 ROIs. *p<0.05 

vs. CDC, #p<0.05 vs. HEPES. ND: not detectable. 

 

Figure 4. Administration of 0.3mM CDC significantly inhibited the activities of acid/base transporters in 

isolated human colonic crypts. (A) Representative pHi curves showing the effects of CDC (0.1 and 0.3mM) on 

the recovery from an acid load induced by removal of 20mM NH4Cl. (B) Summary data of the initial rate of pHi 

recovery from acid load. (C) Summary data of the effect of 0.3mM CDC on the calculated activities of the 

different NHE isoforms. The isoform-selective NHE inhibitor HOE-642 revealed that all NHE isoforms were 

inhibited by 0.3mM CDC. (D) Representative pHi traces showing the effect of CDC (0.1 and 0.3mM) during the 

removal of extracellular Cl-. (E) Summary data of the initial rate of pHi elevation after Cl- withdrawal. A and B 

were in HEPES-buffered, C and D were performed in HCO3
--buffered solution. High concentration of CDC 
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significantly decreased the activity of CBE. Data are presented as means ± SEM. n=3-6 patients/6-12 crypts/12-

40 ROIs, *p<0.05 vs. control. 

 

Figure 5. Treatment with 0.3mM CDC does not alter the structure of intracellular organelles but it 

significantly decreases (ATP)i and disturbs (Δψ)m. (A) Representative transmission electron microscopy 

pictures showing the effects of CDC (0.3mM and 1mM) on the mitochondria of human colonic epithelial cells. 

L: crypt lumen, arrow: mitochondria. 1 mM but not 0.3mM CDC induced severe mitochondrial damage. (B) 

Representative curves of the Mg-green fluorescent experiments. Elevation of fluorescent intensity represents 

depletion in (ATP)i. (C) Summary data for the maximal fluorescent intensity changes. High concentrations of 

CDC significantly decreased (ATP)i. (D) Representative traces of the (Δψ)m measurements. Decrease of 

fluorescent intensity represents loss of mitochondrial transmembrane potential. (E) Summary data for the 

maximal fluorescent intensity changes. High concentrations of CDC significantly decreased (Δψ)m. All 

experiments were performed in HEPES-containing solution. Data are presented as means ± SEM. n=3 patients/5-

6 crypts/13-15 ROIs. *p<0.05 vs. 1mM CDC. 

 

Figure 6. CDC dose-dependently increased the [Ca
2+

]i of isolated human colonic epithelial cells. (A-C) 

Representative curves showing the effect of CDC (0.1, 0.3 and 1mM) on [Ca2+]i of isolated human colonic crypts 

in Ca2+-free or 1mM Ca2+-containing solution with/without pretreatment with the [Ca2+]i  chelator BAPTA-AM. 

(D) Summary data for the maximal fluorescent intensity changes. All experiments were performed in HEPES-

buffered solution. Data are presented as means ± SEM. n=2-4 patients/5-10 crypts/10-21 ROIs. 

 

Figure 7. CDC released Ca
2+

 from the ER and induced extracellular Ca
2+

 influx in isolated human colonic 

epithelial cells. (A) Representative curves showing the effect of the IP3R inhibitor caffeine (20mM) and RyR 

inhibitor Ruthenium Red (10μM) on the increase of [Ca2+]i induced by 0.3mM CDC. (B) Summary data of the 

maximal fluorescent intensity changes. The inhibition of IP3R, but not RyR decreased the CDC induced Ca2+ 

release. (C) Representative curves showing the effect of the plasma membrane Ca2+ channel inhibitor Gd3+ 

(1μM). (D) Summary data of the maximal fluorescent intensity changes. All experiment were performed in 

HEPES-buffered solution. Data are presented as means ± SEM. n=2-4 patients/5-8 crypts/10-18 ROIs. *p<0.05 

vs. CDC in 0 mM Ca2+ containing solution, #p<0.05 vs. CDC in 1mM Ca2+ containing solution. (E) 

Representative traces showing the effects of SERCA-inhibitor Tg (2μM) administered alone and following or 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24 

 

during 0.3mM CDC on the [Ca2+]i. (F) Summary data of the maximal fluorescent intensity changes. All 

experiments were performed in Ca2+-free HEPES-buffered solution. Data are presented as means ± SEM. n=2-3 

patients/5-6 crypts/12-14 ROIs. #p<0.05, ##p<0.01 vs. Tg alone. 

 

Figure 8. 0.3mM CDC induced (ATP)i-dependent inhibition of NHEs and Ca
2+

-dependent decrease in the 

activity of CBE in isolated human colonic epithelial cells. (A) Representative pHi curves showing the effect of 

0.3mM CDC, (ATP)i depletion or pretreatment with the [Ca2+]i chelator BAPTA-AM on the initial rate of pHi 

recovery from an acid load induced by the removal of 20mM NH4Cl. (B) Summary data of the initial rate of pHi 

recovery from an acid load in HCO3
--containing solution. The depletion of (ATP)i, mimicked, but the prevention 

of Ca2+ elevation did not change the effect of CDC on the NHE activities. (C) Representative pHi curves 

demonstrating the effect of 0.3mM CDC, (ATP)i depletion or pretreatment with the [Ca2+]i chelator BAPTA-AM 

on the removal of extracellular Cl-. (D) Summary data of the initial rate of pHi elevation after Cl- withdraw. The 

chelation of the [Ca2+]i elevation abolished the inhibitory effect of CDC. A and B were in HEPES-, C and D 

were performed in HCO3
--containing solution. Data are presented as means ± SEM. n=3-6 patients/5-12 

crypts/8-40 ROIs. *p<0.05 vs. control. 

 

Table 1. Composition of solutions for in vitro studies. Values are concentrations in mmol/L. 
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