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Abstract. The nonlinear in-plane stability of shallow arches with cross-sectional inhomo-
geneity is investigated. It is assumed that a central concentrated load is exerted at the crown
of the arch and the supports are uniform rotationally restrained pins at the endpoints with
constant stiffness. The effects of the springs on the stability is investigated. It is found that
such arches may buckle in an antisymmetric bifurcation mode with no strain increment at
the moment of the stability loss, and in a symmetric snap-through mode with an increased
strain. The effects of the springs are notable on the bucking ranges and also on the critical
(buckling) loads. If the spring stiffness is zero we get back the results valid for pinned-pinned
arches and as the stiffness of the rotational restraints tends to infinity the results become
consistent with those for fixed-fixed arches. The results computed are compared with finite
element calculations.
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1. Introduction

Arches are widely used in many engineering applications. Let us mention, for in-
stance, their role in arch bridges and roof structures. It is naturally important to be
aware of the behavior of such structural members. An early scientific work on the me-
chanical behavior of such arches was published in the 19th century by Bresse [1], who
derived the connection between the displacements and the inner forces. Regarding the
stability, Hurlbrink [2] was the first to work out a model for the determination of the
buckling load assuming the inextensibility of the centerline. The model of Chwalla
and Kollbrunner [3] accounts for the extensibility of the centerline. Results by Timo-
shenko and Gere [4] are also of importance. Since the 1960s, work on stability issues
became more intensive. Schreyer and Masur provided an analytical solution to arches
with rectangular cross-section in [5]. DaDeppo [6] showed first in 1969 that quadratic
terms in the stability analysis should be taken into account. Dym in [7] and [8] derives
results for shallow arches under dead pressure. The thesis by Szeidl [9] determines
the Green’s function matrices of the extensible pinned-pinned and fixed-fixed circular

c©2014 Miskolc University Press



172 L. Kiss

beams and determines not only the natural frequencies but also the critical loads
given that the beam is subjected to a radial dead load. Finite element solutions are
provided by e.g., Noor [10], Calboun [11], Elias [12] and Wen [13] with the assump-
tion that the membrane strain is a quadratic function of the rotation field. A more
accurate model is established by Pi [14]. Analytical solutions for pinned-pinned and
fixed-fixed shallow circular arches under a central load are provided by Bradford et
al. in [15], [16].

In the open literature there can hardly be found account for elastic supports when
investigating the buckling behavior of arches. However, as structural members are
often connected to each other, they can provide elastic rotational restraints. This
can, in one way, be modeled by applying pinned supports with torsional springs,
which impede the end rotations of the arch. Such a hypothesis is used by Bradford
et al. in [17] for symmetric supports and a central load and in [18], where the spring
stiffnesses are different at the ends. The authors have come to the conclusion that the
springs have a significant effect on the in-plane elastic buckling behavior of shallow
arches. Stiffening elastic supports for sinusoidal shallow arches are modeled in [19]
by Plaut.

Within the frames of the present article a new geometrically nonlinear model is
introduced for the in-plane elastic buckling of shallow circular arches with cross-
sectional inhomogeneity. Nonlinearities are taken into account through the rotation
field. The loading is a concentrated force, normal in direction and exerted at the
crown point. The principle of virtual work is used to get the equilibrium equations.
Uniform, rotationally restrained pinned supports are considered at the ends by using
torsional springs with constant stiffness. The effects of the elastic restraints on the
buckling types and buckling loads are studied. Special cases when the spring stiffness
is zero and when it tends to infinity coincide with the earlier results in [20], [21] valid
for pinned-pinned and for fixed-fixed supports. The solution algorithm is based on
the one presented in [17]. However, the current model uses less neglects and is also
valid for nonhomogeneous materials. In addition, more accurate predictions for not
strictly shallow arches are also a benefit.

The paper is organized in seven Sections. Section 2 presents the fundamental
hypotheses and relations for the pre- and post-buckling states. The differential equa-
tions, which govern the problem are derived in Section 3. Solutions to these are
provided in Sections 4 and 5. Numerical evaluation of the results is presented in
Section 6. The article concludes with a short summary, which is followed by the
Appendix and the list of references.

2. Fundamental relations

2.1. Pre-buckling state. Figure 1 shows the rotationally restrained arch and the
applied curvilinear coordinate system, which is attached to the E-weighted centerline
(or centerline for short). The former has a constant initial radius ρo. The right-
handed local base is formed by the unit vectors eξ (tangent to the centerline), eη
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(perpendicular to the plane of the centerline) and eζ (normal to the centerline) –
eη = eζ × eξ.
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Figure 1. Rotationally restrained arch.

Under cross-sectional heterogeneity is meant that the material parameters – the
Young’s modulus E and the Poison’s number ν – are functions of the cross-sectional
coordinates η and ζ (that is, these are independent of ξ): E(η, ζ) = E(−η, ζ),
ν(η, ζ) = ν(−η, ζ). Otherwise, the material of the arch is isotropic. The cross-
section is uniform and symmetric with respect to the coordinate plane (ξ, ζ). The
E-weighted centerline, along which the coordinates ξ = s are measured, is assumed
to remain in the coordinate plane (ξ, ζ). The position of the point at which the
E-weighted centerline intersects the cross-section is obtained from the condition

Qeη =

∫
A

E(η, ζ) ζ dA = 0, (1)

in which the integral is the E-weighted first moment with respect to the axis η – this
quantity is denoted by Qeη. We assume that the displacement vector at an arbitrary
point of the cross-section prior to buckling has the form

u = uo + ψoηζeξ = woeζ + (uo + ψoηζ)eξ , (2)

where uo is the displacement vector of the centerline and ψoη is the rigid body rotation
there – Euler-Bernoulli beam theory is considered. The rotation can be determined
in terms of the displacements as

ψoη = −1

2
(u×∇)|ζ=0 · eη =

uo
ρo
− dwo

ds
, ∇ =

ρo
ρo + ζ

∂

∂s
eξ +

∂

∂η
eη +

∂

∂ζ
eζ . (3)

Nonlinearities are taken into account by keeping some nonlinear terms in the Green-
Lagrange strain tensor, that is

E = EL+EN , EL =
1

2
(u ◦ ∇+∇ ◦ u) , EN =

1

2
(∇ ◦ u)·(u ◦ ∇) ' 1

2
Ψ ·ΨT . (4)

Here Ψ is the tensor of small rotations and, for shallow arches, it is dominant compared
to the other quadratic components [15]. Consequently

εξ = eξ ·
1

2
(u ◦ ∇+∇ ◦ u) ·eξ +eξ ·

1

2

(
ΨT · Ψ

)
·eξ =

ρo
ρo + ζ

(εoξ + ζκo)+
1

2
ψ2
oη (5)
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is the axial strain at an arbitrary point, where

εoξ =
duo
ds

+
wo
ρo

, κo =
dψoη
ds

=
1

ρo

duo
ds
− d2wo

ds2
and εm = εoξ +

1

2
ψ2
oη . (6)

Here εoξ and εm are the linear and the nonlinear axial strain on the centerline, further
κo is the curvature there.

It is assumed that σξ is much greater than any other element of the second Piola-
Kirchhoff stress tensor. Under this condition σξ = Eεξ is the constitutive equation.
The E-weighted reduced area AeR, the E-weighted reduced moment of inertia IeR
and the E-weighted reduced first moment QeR are defined as

AeR =

∫
A

ρo
ρo + ζ

E(η, ζ) dA '
∫
A

E(η, ζ) dA = Ae , (7a)

IeR =

∫
A

ρo
ρo + ζ

E(η, ζ)ζ2 dA '
∫
A

ζ2E(η, ζ)dA = Ieη , (7b)

QeR =

∫
A

ρo
ρo + ζ

E(η, ζ)ζ dA ' 1

ρo

∫
A

ζ2E(η, ζ) dA = −Ieη
ρo
. (7c)

With the aid of these quantities and by recalling the kinematic relations (5)-(6), we
get the axial force and the bending moment:

N =

∫
A

Eεξ dA = AeRεoξ +QeRκo +Ae
1

2
ψ2
oη ≈ Aeεm −

Ieη
ρo
κo , (8)

M =

∫
A

Eεξζ dA =

∫
A

E
ζ

1 + ζ
ρo

dA︸ ︷︷ ︸
QeR'−

Ieη
ρo

εoξ +

∫
A

E
ζ2

1 + ζ
ρo

dA︸ ︷︷ ︸
IeR'Ieη

κo +

∫
A

Eζ dA︸ ︷︷ ︸
Qeη=0

1

2
ψ2
oη =

= −Ieη
(

d2wo
ds2

+
wo
ρ2o

)
. (9)

With the knowledge of the bending moment we can check – by utilizing (8) and (6)2,3
– that

N =
Ieη
ρ2o

(
Aeρ

2
o

Ieη
− 1

)
εm −

M

ρo
≈ Aeεm −

M

ρo
. (10)

2.2. Post-buckling state. Quantities denoted by an asterisk belong to the post-
buckling equilibrium state, while the change (increment) between the pre- and post-
buckling equilibrium is denoted by a subscript b. (The change from the initial con-
figuration to the pre-buckling state is not denoted specifically.) Making use of this
convention, similarly as before, we can derive the rotation field and the change of
curvature as

ψ∗oη = ψoη + ψoη b , ψoη b =
uob
ρo
− dwob

ds
, κ∗o = κo + κo b , κo b =

1

ρo

duob
ds
− d2wob

ds2
.

(11)
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As regards the strain increment (assuming
∣∣∣ 12ψ2

oη b

∣∣∣ � |ψoηψoη b|, which is generally

accepted in the literature) we have

ε∗ξ =
ρo

ρo + ζ

(
ε∗oξ + ζκ∗o

)
+

1

2

(
ψ∗oη
)2

= εξ+εξ b, εξ b '
ρo

ρo + ζ
(εoξ b + ζκo b)+ψoη bψo η ;

(12a)

εoξ b =
duob
ds

+
wob
ρo

, εmb ' εoξ b + ψoη bψo η . (12b)

Recalling (7), (8), (10) and (12) we can write

N∗ =

∫
A

Eε∗ξ dA = N +Nb , Nb = Aeεmb −
Ieη
ρo
κob . (13)

In the same way we obtain the increment in the bending moment as

M∗ =

∫
A

Eε∗ξζ dA = M +Mb , Mb = −Ieη
(

d2wob
ds2

+
wob
ρ2o

)
. (14)

Let us assume that

Aeρ
2
o/Ieη − 1 ≈ Aeρ2o/Ieη = (ρo/ie)

2 = m , ie =
√
Ieη/Ae . (15)

Here ie is the E-weighted radius of gyration and m is the slenderness ratio of the arch.
The latter (heterogeneity) parameter is of particular importance as the computational
results will significantly depend on it.

With the knowledge of the increment in the bending moment we can check, in the
same way as we did for equation (10), that

Nb =
Ieη
ρ2o

(
Aeρ

2
o

Ieη
− 1

)
εmb −

Mb

ρo
≈ Aeεmb −

Mb

ρo
. (16)

It should be pointed out that Bradford et al. have assumed ρo/(ρo + ζ) = 1 when
expressing the axial strain and the strain increment at an arbitrary point. They
have also neglected the terms M/ρo and Mb/ρo in their corresponding article when
expressing the axial force and its increment – compare (10) and (16) with (15) and
(47) in [17]

We shall change derivatives with respect to s to derivatives with respect to ϕ by
using the following equation:

dn(. . .)

dsn
=

1

ρno

dn(. . .)

dϕn
= (. . .)

(n)
, n ∈ Z. (17)

This transformation is carried out, where necessary without a remark.

3. Governing equations

3.1. Equations of the pre-buckling equilibrium. Assuming symmetric loading
and support conditions Figure 1 shows the centerline in the initial configuration (con-
tinuous line) and in the pre-buckling equilibrium (dashed line). We shall assume in
a more general approach that the arch with a central angle of 2ϑ is subjected to the
concentrated force Pζ at the crown as well as to the arbitrary distributed line load
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f = fteξ + fneζ . Moreover, the [left] (right) end of the arch is rotationally restrained
by torsional springs with spring stiffness [kγ`] (kγ r). The principle of virtual work is
given by∫

V

σξδεξ dV = −Pζ δwo|s=0 − kγ`ψoηδψoη|s(−ϑ) − kγrψoηδψoη|s(ϑ) +

+

∫
L

(fnδwo + ftδuo) ds, (18)

where the virtual quantities are preceded by the symbol δ. After substituting the
kinematic equations (5) and (6) in terms of the virtual quantities and applying then
formulae (8) and (9) established for the inner forces, the integration by parts theo-
rem leads to a form of the principle of virtual work from which, with regard to the
arbitrariness of the virtual quantities, we get the equilibrium equations

dN

ds
+

1

ρo

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]
+ ft = 0 ,

d

ds

[
dM

ds
−
(
N +

M

ρo

)
ψoη

]
− N

ρo
+ fn = 0 .

(19)

It also follows from the principle of virtual work that boundary conditions can be
imposed on

N |s(±ϑ) or uo|s(±ϑ) , (20a)[
dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s(±ϑ)

or wo|s(±ϑ) , (20b)

(M ± kγψoη)|s(±ϑ) or ψoη|s(±ϑ) , (20c)

where it is assumed that kγ` = kγ r = kγ . In addition, the discontinuity condition[
dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s=+0

−
[

dM

ds
−
(
N +

M

ρo

)
ψoη

]∣∣∣∣
s=−0

− Pζ = 0 (21)

for the shear force at the crown point should also be fulfilled.

In the sequel we assume ft = fn = 0. Upon substitution of equation (6) into
equation (19)1 we get

d

ds
(Aeεm)− 1

ρo
(Aeεmψoη) = 0 . (22)

Let us now neglect the quadratic term εmψoη. Consequently, we arrive at

dεm
ds
' dεoξ

ds
= 0 → εm ' εoξ = constant, (23)

which shows, depending on which theory is applied, that the nonlinear/linear strain
on the centerline is constant.

If we introduce (3) and (6)1,3 into the expression ρoεm

(
1 + ψ

(1)
oη

)
we arrive at the

following result (the quadratic term is neglected when that is compared to the others):
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ρoεm

(
1 + ψ(1)

oη

)
= ρoεm

[
1 +

1

ρo

(
u(1)o − w(2)

o

)]
=

= ρoεm

[
1 +

1

ρo

(
ρoεm − wo −

1

2
ψ2
oηρo − w(2)

o

)]
≈

≈ ρoεm(1 + εm)︸ ︷︷ ︸
≈1

− εm
(
wo + w(2)

o

)
≈ ρoεm − εm

(
w(2)
o + wo

)
. (24)

Substitute now formulae (9) and (10) into (19)2 and take equations (23) and (24) into
account. After some manipulations we have

W (4)
o +

(
χ2 + 1

)
W (2)
o + χ2Wo = χ2 − 1 , χ2 = 1−mεm . (25)

Here and in the sequel Wo = wo/ρo and Uo = uo/ρo are dimensionless displacements.
Equation (25) can be compared with the equation Bradford et al. have used in their
series of articles published recently on stability problems of shallow arches. This
equation is of the form

W (4)
o + (χ2 − 1)W (2)

o = χ2 − 1. (26)

Equation (25) includes less neglects than that derived by Bradford et al. – see, e.g.,
[15], [17].

3.2. Equations of the post-buckling equilibrium. The principle of virtual work
for the buckled equilibrium configuration assumes the form∫

V

σ∗ξδε
∗
ξ dV = −P ∗ζ δw∗o |s=0 − kγ`ψ

∗
oηδψ

∗
oη

∣∣
s(−ϑ) − kγrψ

∗
oηδψ

∗
oη

∣∣
s(ϑ)

+

+

∫
L

(f∗nδw
∗
o + f∗t δu

∗
o) ds . (27)

By repeating the line of thought leading to (19),(20) and taking into account that (a)
the principle of virtual work should be fulfilled in the pre-buckling state; (b) Pζb = 0
and kγ` = kγ r = kγ the principle of virtual work yields

dNb
ds

+
1

ρo

dMb

ds
− 1

ρo

(
N +

M

ρo

)
ψoη b −

1

ρo

(
Nb +

Mb

ρo

)
ψoη b + ftb = 0 , (28a)

d2Mb

ds2
− Nb
ρo
− d

ds

[(
N +Nb +

M +Mb

ρo

)
ψoη b +

(
Nb +

Mb

ρo

)
ψoη

]
+ fnb = 0,

(28b)

which govern the post-buckling equilibrium. For the buckled configuration, boundary
conditions can be prescribed on the following quantities:

Nb|s(±ϑ) or uob|s(±ϑ) ,

(29a)[
dMb

ds
−
(
N +Nb +

M +Mb

ρo

)
ψoη b −

(
Nb +

Mb

ρo

)
ψoη

]∣∣∣∣
s(±ϑ)

or wob|s(±ϑ) ,

(29b)
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(Mb ± kγψoη)|s(±ϑ) or ψoη b|s(±ϑ) .
(29c)

In the forthcoming it is assumed that ftb = fnb = 0. Observe that, apart from
the last but one term, (28a) formally coincides with (19)1. However, since the term
mentioned is quadratic in the increment, it can be neglected with a good accuracy.
Therefore repeating now a similar line of thought leading to (23), we obtain that the
strain increment is constant:

d

ds
(Aeεmb)−

1

ρo
(Aeεmψoηb)︸ ︷︷ ︸

it can also be neglected

= 0 ⇒ εmb ' εoξ b = constant . (30)

If we (a) take into account that ε
(1)
m = ε

(1)
mb = 0; (b) substitute Mb from (14) and

(c) utilize that

mρoεmb

(
1 + ψ(1)

oη

)
' mρoεmb

[
1− 1

ρo

(
w(2)
o + wo

)]
= mρoεmb −mεmb

(
w(2)
o + wo

)
(this relation can be set up in the same way as (24)) then, after some manipulations,
(28b) results in

W
(4)
ob + (χ2 + 1)W

(2)
ob + χ2Wob = mεmb

[
1−

(
W (2)
o +Wo

)]
. (31)

This equation is again comparable with the outcome derived by Bradford et al. –
e.g., [15], [17] – that is

W
(4)
ob + (χ2 − 1)W

(2)
ob = mεmb

[
1−W (2)

o

]
. (32)

4. Solution for the pre-buckling state

The general solution satisfying (25) for the dimensionless normal displacement is of
the form

Wo(ϕ) =
χ2 − 1

χ2
+A1 cosϕ+A2 sinϕ− A3

χ2
cosχϕ− A4

χ2
sinχϕ, (33)

in which Ai (i = 1, . . . , 4) are integration constants. Since all the geometry, the loa-

Table 1. Boundary conditions for the rotationally restrained arch.

Boundary conditions

Crown point Right end

ψoη |ϕ=+0 = 0→ W
(1)
o

∣∣∣
ϕ=+0

= 0 Wo|ϕ=ϑ = 0[
−dM

ds
+
Pζ
2

]
ϕ=+0

= 0→ W
(3)
o

∣∣∣
ϕ=+0

= P
ϑ

[M + kγψo η ]|ϕ=ϑ= 0→
[
W

(2)
o + SW (1)

o

]∣∣∣
ϕ=ϑ

= 0

ding and the supports are symmetric, it is sufficient to consider a half of the arch as the
pre-buckling shape is also symmetric. To determine the integration constants, we shall
use the boundary conditions (BCs) presented in Table 1 – P = −Pζρ2oϑ/2Ieη is the
dimensionless load and S = ρokγ/Ieη is the dimensionless stiffness of the restraints.
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For the sake of brevity let us introduce the constant

a =
(
χ2 − 1

)
cosϑ cosχϑ− S (sinϑ cosχϑ− χ cosϑ sinχϑ) . (34)

Solution (33) satisfies the boundary conditions if

A1 = A11 +
P
ϑ
A12 =

(
1− χ2

)
(χ cosχϑ+ S sinχϑ)

χa
+

+

(
1− χ2

)
sinϑ cosχϑ− S (cosϑ cosχϑ+ χ sinϑ sinχϑ− 1)

(χ2 − 1) a

P
ϑ
, (35a)

A2 =
1

(χ2 − 1)

P
ϑ

= A22
P
ϑ

; (35b)

A3 = A31 +
P
ϑ
A32 =

cosϑ+ S sinϑ

−a
+

+
χ
[(
χ2 − 1

)
cosϑ sinχϑ− S (sinϑ sinχϑ+ χ cosϑ cosχϑ− χ)

]
− (χ2 − 1) a

P
ϑ
, (35c)

A4 =
χ

(χ2 − 1)

P
ϑ

= A42
P
ϑ
. (35d)

If [S = 0] (S → ∞) we get back the results valid for [pinned-pinned] (fixed-fixed)
arches – see [20], [21]. The radial displacement for the whole arch is given by

Wo =
χ2 − 1

χ2
+A11 cosϕ− A31

χ2
cosχϕ+

+

(
A12 cosϕ+A22H sinϕ− A32

χ2
cosχϕ− A42

χ2
H sinχϕ

)
P
ϑ

; (36)

in which H = H(ϕ) = 1 if ϕ > 0 and H = H(ϕ) = −1 if ϕ < 0. The rotation field
(by neglecting the effects of the tangential displacement due to the shallowness) is

ψoη ' −W (1)
o = B11 sinϕ+B31 sinχϕ+

+ (B12 sinϕ+B22H cosϕ+B32 sinχϕ+B42H cosχϕ)
P
ϑ

; (37)

where the new constants are

B11 = A11 , B12 = A12 , B22 = −A22 , B31 = −A31

χ
, B32 = −A32

χ
, B42 =

A42

χ
.

Because the strain on the centerline is constant, based on (23), the mathematical
average of the strain, i.e., the strain itself, is given by

εm =
1

ϑ

∫ ϑ

0

εmdϕ =
1

ϑ

∫ ϑ

0

(
εoξ +

1

2
ψ2
oη

)
dϕ =

1

ϑ

∫ ϑ

0

(
U (1)
o +Wo +

1

2
ψ2
oη

)
dϕ;

(38)
where

1

ϑ

∫ ϑ

0

U (1)
o dϕ = Uo|ϑ0 = 0. (39)
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Equation (38) results in the

I2P2 + I1P + I0 − εm = 0 , Ij(m,ϑ, χ,S) ∈ R, j = 0, 1, 2 (40)

quadratic formula for the dimensionless force, in which the coefficients Ij can be
obtained in a closed form – see Appendix A.1 for details.

5. Solutions for the post-buckling state

5.1. Differential equations, which govern the problem. Substitution of the
solution (36) into the post-buckling equilibrium equation (31) yields

W
(4)
ob + (1 + χ2)W

(2)
ob + χ2Wob = −mεmb

1− χ2

χ2

(
1

1− χ2
+A3 cosχϕ+A4 sinχϕ

)
.

(41)
In general, there are two possibilities regarding the buckled equilibrium of the arch
[15]. When the strain increment εmb is constant but not equal to zero, the problem
is governed by the above relation and the buckled shape is symmetric. However,
it is also possible that the arch buckles antisymmetrically with no strain increment
(εmb = 0). Then the phenomenon is described by the

W
(4)
ob + (1 + χ2)W

(2)
ob + χ2Wob = 0 (42)

homogeneous differential equation. The mathematical average of the strain incre-
ment, that is, the strain increment itself can be determined by using the kinematical
equations (3), (10) and (12b) under the assumption that the effect of the normal
displacement is again negligible when calculating the rotation increment:

εmb '
1

2ϑ

∫ ϑ

−ϑ
(εoξ b+ψoη bψoη) dϕ=

1

2ϑ

∫ ϑ

−ϑ

[
U

(1)
ob +Wob+

(
Uob−W (1)

ob

)(
Uo−W (1)

o

)]
dϕ ≈

≈ 1

2ϑ

∫ ϑ

−ϑ

(
Wob +W

(1)
ob W

(1)
o

)
dϕ. (43)

It will later be shown that antisymmetric shape belongs to bifurcation buckling, while
in the case of a snap-through (or limit point) buckling the shape of the arch is always
symmetric.

Figure 2. Antisymmetric and symmetric buckling shapes.
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In Figure 2 the continuous lines show the centerline in the initial configuration, the
dashed lines represent the pre-buckling equilibrium state and the dotted lines illustrate
the buckled arch shapes for antisymmetric and symmetric buckling.

5.2. Antisymmetric buckling. The solution to the homogeneous equilibrium equa-
tion (42) is sought for the whole arch as

Wob(ϕ) = C1 cosϕ+ C2 sinϕ+ C3 sinχϕ+ C4 cosχϕ , (44)

where Ci (i = 1, . . . , 4) are integration constants. It is paired with the homogeneous
BCs gathered in Table 2.

Table 2. Boundary conditions in terms of Wob.

Boundary conditions

Left end Right end

Wob|ϕ=−ϑ = 0 Wob|ϕ=ϑ = 0(
−W (2)

ob + SW (1)
ob

)∣∣∣
ϕ=−ϑ

= 0
(
W

(2)
ob + SW (1)

ob

)∣∣∣
ϕ=ϑ

= 0

Upon substitution of solution (44) into the boundary conditions, we arrive at a ho-
mogeneous equation system for which solution different from the trivial one exists if
the determinant of the coefficient matrix vanishes:

D =
[(
χ2 − 1

)
sinϑ sinχϑ+ S (cosϑ sinχϑ− χ sinϑ cosχϑ)

]
×

×
[(
χ2 − 1

)
cosϑ cosχϑ+ S (χ cosϑ sinχϑ− sinϑ cosχϑ)

]
= 0 . (45)

Vanishing of the first factor in (45) results in the transcendental equation

Sχ tanϑ

S + (χ2 − 1) tanϑ
= tanχϑ. (46)

Some numerical solutions for F = χϑ in terms of the ϑ are plotted in Figure 3. When
[S = 0](S → ∞) this characteristic equation coincides with that valid for [pinned-
pinned](fixed-fixed) arches – see [20], [21].

Recalling (25)2, we get the critical strain for antisymmetric buckling:

εmcr anti =
1− χ2

m
=

1

m

[
1−

(
F(ϑ,S)

ϑ

)2
]
. (47)

If we now substitute the solution (46) back to the boundary conditions, it follows
that C1 = C4 = 0 and C2 = −C3sinχϑ/sinϑ. Consequently, recalling the general
solution (44), we get that the shape of the arch is antisymmetric:

Wob(ϕ) = C3

(
sinχϕ− sinχϑ

sinϑ
sinϕ

)
= C3

(
sin

F

ϑ
ϕ− sinF

sinϑ
sinϕ

)
. (48)
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Figure 3. Some solutions to F(ϑ,S).

Vanishing of the second factor in (45) yields(
χ2 − 1

)
+ S (χ tanχϑ− tanϑ) = 0 . (49)

After solving the above equation for G = χϑ, we find that a symmetric buckling
shape is the solution for the radial displacement with C2 = C3 = 0 and C1 =
C4 cosχϑ/ cosϑ:

Wob(ϕ) = C4

(
cosχϕ− cosχϑ

cosϑ
cosϕ

)
= C4

(
cos

G

ϑ
ϕ− cosG

cosϑ
cosϕ

)
. (50)

5.3. Symmetric snap-through buckling. The general solution to the inhomoge-
neous equation (41) is

Wob(ϕ) = D1 cosϕ+D2 sinϕ+D3 sinχϕ+D4 cosχϕ−

− mεmb

2χ3

(
2

χ
+A3ϕ sinχϕ−A4ϕ cosχϕ

)
. (51)

Since now the buckled shape is symmetric, the BCs collected in Table 3 are valid for
the right half-arch.

Table 3. Boundary conditions for symmetric buckling.

Boundary conditions

Crown point Right end

W
(1)
ob

∣∣∣
ϕ=0

= 0 Wob|ϕ=ϑ = 0

W
(3)
ob

∣∣∣
ϕ=0

= 0 W
(2)
ob + SW (1)

ob

∣∣∣
ϕ=ϑ

= 0
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Upon substitution of solution (51) into the boundary conditions, we get a system of
linear equations from which

D1 = εmb

(
D̂11 + D̂12

P
ϑ

)
=

= εmb
m

χ3a

{
A31

[
χ cos2 χϑ+ 0.5S (ϑχ+ cosχϑ sinχϑ)

]
+ (χ cosχϑ+ S sinχϑ)

}
+

+ εmb
m

2χ3 (1− χ2) a

{
A32

(
1− χ2

) [
2χ cos2 χϑ+ S (ϑχ+ cosχϑ sinχϑ)

]
+

+A42

[
2χ
(
1− χ2

)
(sinχϑ− χ sinϑ) cosχϑ+

+S
(
2χ2 cosϑ cosχϑ+ 2χ3 sinϑ sinχϑ− 3χ2 + 1 +

(
χ2 − 1

)
cos2 χϑ

)]}P
ϑ
, (52a)

D2 = εmbD̂22
P
ϑ

= εmb
mA42

(χ2 − 1)χ

P
ϑ
, D3 = εmbD̂32

P
ϑ

= εmb
A42m

(
3χ2 − 1

)
2χ4 (1− χ2)

P
ϑ
,

(52b)

D4 = εmb

(
D̂41 + D̂42

P
ϑ

)
=

= εmb
m cosϑ

−2χ4a

{
2 (1 + S tanϑ) +A31χ

[
2χ− ϑ

(
χ2 − 1

)
tanχϑ +

+ S (ϑ tanϑ tanχϑ+ tanχϑ+ χϑ)] cosχϑ

}
+

+ εmb
m

2χ4 (χ2 − 1) a

{
A32χ

(
1− χ2

) [(
2χ− ϑ

(
χ2 − 1

)
tanχϑ

)
+

+S (ϑ tanϑ tanχϑ+ tanχϑ+ χϑ)] cosϑ cosχϑ+

+A42

[(
1− χ2

)2
(tanχϑ− χϑ) cosϑ cosχϑ+ S

[
2χ3 (1− cosϑ cosχϑ) +

+
(
1− χ2

)
ϑχ (χ tanχϑ− tanϑ) cosϑ cosχϑ+

(
1− 3χ2

)
sinϑ sinχϑ

] ]}P
ϑ

(52c)

are the integration constants Di (i = 1, . . . , 4). We remark that the constants D̂11,

D̂12, D̂22, D̂32, D̂41 and D̂42 can be read off equations (52).

For the sake of brevity, we manipulate the particular solution to (51) into the
following form:

Wob part = −εmb
m

2χ3

[
2

χ
+

(
A31 +A32

P
ϑ

)
ϕ sinχϕ−A42ϕ cosχϕ

P
ϑ

]
=

= εmb

[
−m
χ4
− A31m

2χ3
ϕ sinχϕ+

(
−A32m

2χ3
ϕ sinχϕ+

A42m

2χ3
ϕ cosχϕ

)
P
ϑ

]
=

= εmb

[
D̂01 + D̂51ϕ sinχϕ+

(
D̂52ϕ sinχϕ+ D̂62ϕ cosχϕ

) P
ϑ

]
, (53a)
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where

D̂01 = −m
χ4

, D̂51 = −A31m

2χ3
, D̂52 = −A32m

2χ3
, D̂62 =

A42m

2χ3
. (53b)

With the knowledge of the integration constants

Wob(ϕ) = εmb

[
D̂01 + D̂11 cosϕ+ D̂41 cosχϕ+ D̂51ϕ sinχϕ+

+
(
D̂12 cosϕ+ D̂22H sinϕ+ D̂32H sinχϕ+ D̂42 cosχϕ+

+D̂52ϕ sinχϕ+ D̂62Hϕ cosχϕ
) P
ϑ

]
(54)

is the solution for the complete arch. The increment in the rotation field for shallow
arches is given by

− ψoη b 'W (1)
ob = εmb

[
E11 sinϕ+ E41 sinχϕ+ E51ϕ cosχϕ+

+ (E12 sinϕ+ E22 cosϕ+ E32 cosχϕ+ E42 sinχϕ+

E52ϕ cosχϕ+ E62ϕ sinχϕ)
P
ϑ

]
, (55)

where

E11 = −D̂11 , E41 = D̂51 − D̂41χ , E51 = D̂51χ , E12 = −D̂12 , E22 = D̂22H ,

E32 = D̂32Hχ+ D̂62H , E42 = D̂52 − D̂42χ , E52 = D̂52 , E62 = −D̂62H .

(56)
We can now calculate the mathematical average of the strain increment for the right
half arch on the basis of (43). We get

1 =
1

ϑεmb

∫ ϑ

0

(
U

(1)
ob +Wob +W (1)

o W
(1)
ob

)
dϕ = J2P2 + J1P + J0, (57)

where the right side is also independent of εmb. Formulae for the coefficients (integrals)
J0, J1 and J2 are presented in Appendix A.1. Though the corresponding integrals
can be given in a closed form, these are very long and are therefore omitted.

6. Computational results

6.1. What to compute? In this section results are presented for four different mag-
nitudes of the parameter m. At first, we investigate how the spring stiffness affects
the endpoints of the typical buckling intervals. Then the critical loads are calculated.
The results are comparable with those obtained by Bradford et al. in [15] and [17]
using more neglects but, due to this fact, arriving at analytical solutions. When
S = 0 and S → ∞ our results – since they are based on a similar mechanical model –
coincide with those valid both for pinned-pinned [20] and for fixed-fixed [21] arches.
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6.2. Limits for the characteristic buckling intervals. There are four intervals of
interest regarding the buckling behavior of symmetrically supported shallow arches.
For a given ϑ, the endpoints of these intervals are functions of m, χ(εm) and S.
The lower limit of antisymmetric buckling can be obtained from the condition that
the discriminant of (40) should be real when the antisymmetric critical strain (46) is
substituted, consequently inequality[

I21 − 4I2(I0 − εmcr anti)
]∣∣
χϑ=F

≥ 0 (58)

should be fulfilled. We remark that when the spring stiffness is zero – i.e. the arch is
pinned-pinned – instead of using the exact solution we assumed that F = π−10−4. It
is also possible in certain cases that a real antisymmetric solution vanishes, so there is
an upper limit also in the investigated ϑ = 0 . . . 1.5 range. The upper limit is obtained
by using an algorithm which monitors at what value of S there exists no real solution
any longer if χϑ = F.

When evaluating the critical antisymmetric and symmetric buckling loads against
the geometry of the arch, we find that these two curves sometimes intersect each other.
This intersection point varies with S. There is a switch between the symmetric and
antisymmetric buckling modes at the intersection point as it is shown in Section 6.4.
Prior to the intersection, the symmetric buckling shape governs. However, after this
intersection, the bifurcation point is located before the limit point of the corresponding
primary equilibrium path, which means that antisymmetric buckling occurs first. (To
better understand the meaning of limit point see Figure 12). This switch can be found
when (40) and (57) are equal at χϑ = F with all the other parameters being the same:[

I2P2 + I1P + I0 − εm
]∣∣

F,m,S,P =
[
J2P2 + J1P + J0

]∣∣
F,m,S,P . (59)

Finally, the lower endpoint for symmetric buckling, below which there is no buck-
ling at all, is obtained by substituting the lowest symmetric solution (49) into the
pre-buckling averaged strain (40) when the discriminant is set to zero:[

I21 − 4I2(I0 − εmcr sym)
]∣∣
χϑ=G

= 0. (60)

Now we turn the attention to the evaluation. Choosing m = 1 000, Figure 4 shows
the effects of the dimensionless spring stiffness in terms of the semi-vertex angle.
When S = 0, we get back the results valid for a pinned-pinned arch. Thus, when
ϑ ≤ 0.347 there is no buckling – see the range denoted by (I). Then, up until ϑ = 0.5,
only symmetric limit point buckling can occur at the right loading level (II). Even
though a bifurcation point (and therefore the possibility of antisymmetric buckling)
appears when further increasing ϑ (III), still the symmetric shape is the dominant
up until the intersection point of the symmetric and antisymmetric buckling curves
at ϑ = 0.553. At this point the buckling loads and strains are the same for symmetric
and antisymmetric buckling and it holds a switch between the buckling types since
above it (IV ) the bifurcation point is located on the stabile branch of the primary
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Figure 4. Typical buckling ranges when m = 1 000.

equilibrium path as it will be shown later. Apart from the range limits, there are no
any other differences as long as S ≤4.2. Passing this value results in the disappearance
of the intersection point of the buckling curves, therefore antisymmetric buckling is
only possible after symmetric buckling. Another limit of importance is S = 7.6, since
above that, the bifurcation point vanishes. It can also be seen that as S approaches to
infinity from below – i.e. the arch becomes fixed – the switch between no buckling and
symmetric buckling can be found at ϑ = 0.606. The results when [S = 0] (S → ∞)
are in a complete accord with what have been achieved in [20], [21]. This statement
is valid for all the forthcoming results as well.

Figure 5. Typical buckling ranges when m = 10 000.

The behavior of arches with m = 10 000 is very similar to the former description
– see Figure 5. This time an intersection point can be found up until S = 6.6 and
an upper limit for antisymmetric buckling until S ≤ 33.3. So these points show an
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increase in S as m is increased. It is also noticeable that increasing m yields a decrease
in all the typical buckling endpoints in ϑ.

Figure 6. Typical buckling ranges when m = 100 000.

More complex are the results in Figure 6 obtained for m = 100 000, since the
presence of an upper limit for antisymmetric buckling is experienced above S(ϑ <
1.5) = 2.83. Therefore, if S = 0 . . . 2.83 there is a range in which there is no buckling
(I). It is followed by the range of symmetric buckling only (II). Then antisymmetric
buckling comes after symmetric buckling (III). After that, for all included angles,
the antisymmetric shape governs. However, for S = 2.83 . . . 11.2 after range (IV )
the symmetric shape becomes again the dominant (II), since the possibility of an-
tisymmetric buckling vanishes. A further increase in the spring stiffness yields the
vanishing of the intersection point, so above range (I) the symmetric shape governs.

The characteristics of the curves valid for m = 1 000 000 in Figure 7 are very similar
to that described in relation with m = 100 000. So an increase in m results in a slight
increase in the upper limit for antisymmetric buckling and a decrease in all other
limits expressed in ϑ.
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Figure 7. The typical buckling ranges when m = 1 000 000.

6.3. Buckling curves. In what follows, the governing buckling curves are drawn
for four magnitudes of m. In each of these graphs, curves are presented for S = 0
(pinned-pinned arch); S = 1020 (fixed-fixed arch with a very good accuracy) and
S = 1 (rotationally restrained arch) with the restriction that when both symmetric
and antisymmetric shape is possible only the one, which comes prior in the load-
deflection curve is plotted, since that is the dominant – see Section 6.4.

Antisymmetric buckling can be evaluated upon substitution of the critical strain for
antisymmetric buckling from (47) into the averaged pre-buckling strain (40), therefore

P =
−I1 ±

√
I21 − 4(I0 − εmcr anti)I2

2I2

∣∣∣∣∣
χϑ=F

. (61)

Here we get two solutions for the load but only the one in relation with the first
bifurcation point is presented.
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As for symmetric buckling we have two unknowns – the force and the critical strain.
We also have two equations – one obtained from the averaged pre- (40) and one from
the averaged post-buckling strain (57). Solving these simultaneously[

I2P2 + I1P + I0 − εm
]∣∣
χ,ϑ,S,m =

[
J2P2 + J1P + J0

]∣∣
χ,ϑ,S,m (62)

leads to the lowest buckling load. In Figure 8, m = 1 000. The lower limits for
symmetric buckling are ϑ(S = 0) = 0.346; ϑ(S = 1) = 0.371 and ϑ(S = 1020) = 0.606.
This buckling type is dominant for fixed-fixed arches throughout the whole interval
while for the other two cases an intersection point was found with the corresponding
antisymmetric curve at ϑ(S = 0) = 0.553 and ϑ(S = 1) = 0.590. Above these the
antisymmetric buckling governs. It can therefore be seen that increasing the value of
S results that the lower limit of symmetric buckling and the intersection point moves
to the right in the scale with increasing corresponding buckling loads. It is also clear
that arches with rotationally restrained ends can bear such loading levels, which are
between the critical loads for pinned-pinned and fixed-fixed arches. It is generally
quite a notable range in P so account for such restraints seems inevitable.

Figure 8. Buckling loads versus the semi-vertex angle when m = 1 000.

Setting m to 10 000 yields what is shown in Figure 9. Now the lower endpoints for
symmetric buckling are ϑ(S = 0) = 0.196; ϑ(S = 1) = 0.205 and ϑ(S = 1020) = 0.334
so the increase in m decreases this limit as it has already been pointed out in relation
with Figure 5. It turns out that the intersection point in ϑ increases as the spring
stiffness is increased: ϑ(S = 0) = 0.317; ϑ(S = 1) = 0.328. Above S = 6.6, this
point vanishes. It is also clear that the symmetric buckling curves of the two lowest
stiffnesses run quite close compared to m = 1 000. (This is the reason why this part
is enlarged on the top part of the figure.) Above ϑ = 0.3, they almost coincide. The
critical load for any S is generally greater this time compared to the results when
m = 1 000.
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Figure 9. Buckling loads versus the semi-vertex angle when m = 10 000.

In Figure 10, m is 100 000. The lower limit of symmetric buckling happens to
decrease further but slowly: ϑ(S = 0) = 0.111; ϑ(S = 1) = 0.113 and ϑ(S = 1020) =
0.187, while the intersection points occur at ϑ(S = 0) = 0.179; ϑ(S = 1) = 0.182.
This time the symmetric curves are again closer to each other and the starting points
of all the curves are closer to the origin.

With m = 1 000 000, we find that ϑ(S = 0) = 0.062; ϑ(S = 1) = 0.063 and
ϑ(S = 1020) = 0.105 are the lower limits for symmetric buckling and ϑ(S = 0) =
0.101; ϑ(S = 1) = 0.102 for the intersection point. This intersection point exists until
S = 19.7. The symmetric buckling curves for the two lowest stiffnesses coincide with
a very good accuracy in their quite narrow interval in ϑ. Generally, the differences
compared to m = 100 000 are not that relevant when moving from m = 1 000 to
m = 10 000.
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Figure 10. Buckling loads versus the semi-vertex angle when m = 100 000.

It is clear from the corresponding figures that the presence of the springs have a
huge effect on the buckling load. For instance, if m = 1 000 000 and ϑ = 1 the critical
dimensionless load varies between 5.4 and 7.5. This range becomes greater when the
central angle is greater as it turns out.

The results of the new model for symmetric buckling are verified by finite element
computations using Abaqus 6.7. The cross-section considered is rectangular with
0.01 [m] width and 0.005 [m] height and the Young’s modulus is 2 ·1011 [Pa]. B22 (3-
node quadratic Timoshenko) beam elements and the Static,Riks step have been used
to draw the load-deflection diagrams. Results are gathered in Table 4. It can be seen
that the greatest differences (4.4%) are experienced when m = 106 and ϑ = 1.366, so
predictions of the new model for not so shallow arches also seem to be quite good.
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This new model, anyway, generally yields lower critical loads except when m = 103

and ϑ = 0.641.

Figure 11. Buckling loads versus the semi-vertex angle when m = 1 000 000.

Table 4. Some control results regarding the symmetric buckling loads.

S m ϑ PAbaqus PNew model

0/10/1020 103 0.641 4.98 / 5.03/5.09 5.23 / 5.26 / 5.29
0/10/1020 103 1.052 6.78 / 6.83 / 6.99 6.70 / 6.86 / 7.09
0/10/1020 103 1.416 7.48 / 7.51 / 7.71 7.36 / 7.43 / 7.62
0/100/1020 106 0.289 6.75 / 7.20 / 7.38 6.69 / 7.14 / 7.32
0/10/1020 106 0.782 6.98 / 7.18 / 7.52 6.76 / 6.99 / 7.42
0/10/1020 106 1.366 7.58 / 7.70 / 7.98 7.26 / 7.39 / 7.64
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6.4. The primary equilibrium paths and the load-strain relationships. In
Figure 12 on the horizontal axis, the dimensionless displacement of the crown point
WoC is plotted against the dimensionless load P for arches with m = 100 000. The
former quantity is obtained by dividing the displacement (36) at ϕ = 0 by the rise of
the arch:

WoC =
−Wo|ϕ=0

1− cosϑ
. (63)

There are four central angles picked to represent the different path types when S = 1
(continuous lines in the forthcoming figures). Results for S = 0 (fine dashed lines),
S = 15 (dotted lines) and S = 1020 (dashed lines) are also included. When ϑ = 0.113,
the slope is always positive and there is neither limit point nor bifurcation point for
the spring supported arches. This is also true for the fixed-fixed arch with, of course,

Figure 12. Dimensionless crown point displacement versus dimen-
sionless load, m = 100 000.

less displacement under the same load. However, for a stiff pin support, there appears
a limit point. Increasing ϑ to 0.16 results in the appearance of a limit point for all
but the fixed arch and the corresponding critical loads increase with S. The fixed
arch still has a positive tangent throughout but this curve generally runs closer to
the others up until the first limit point on the curves for the restrained arches. At
ϑ = 0.17, there can be found a bifurcation point also but on the descending branch of
the corresponding load-deflection curve for the pinned and restrained arches. Finally,
for ϑ = 0.2, there is a limit point in all four curves and these are quite close to each
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other as well as all the first stabile branches. This time, and above this central angle,
the two picked rotationally restrained and the pinned arches buckle antisymmetrically
first, as the bifurcation point is located on the stabile branch, while fixed arches might
still buckle symmetrically only.

Figure 13. Typical load-strain relationships for m = 100 000.

For S = 1, the load-strain curves are drawn in Figure 13. On the horizontal axis the
strain - critical strain ratio for antisymmetric buckling is measured. When ϑ = 0.113,
there are two different branches to which always a different P belongs. If ϑ = 0.16,
the branches intersect each other and a limit point also appears at which symmetric
snap-through buckling occurs. However, the εm/εmcr = 1 ratio is not reached, so
there is no bifurcation. Increasing ϑ to 0.17, we experience that a bifurcation point
appears after the limit point. Finally, if ϑ is greater or equal with 0.2, the bifurcation
point comes prior to the limit point, so the antisymmetric buckling shape dominates
for such shallow arches under a central load. It is also remarkable that every time
there are two branches. The first one always starts at the origin, while the second one
commences around 3.3 − 3.5 in P, depending on the angle. There is an intersection
point at εm/εmcr ≈ 0.27 to which a loading level of P ≈ 1.75 belongs.

7. Conclusions

For rotationally restrained shallow arches with cross-sectional heterogeneity, a geo-
metrically nonlinear model for the buckling analysis has been presented, partly on
the basis of [17]. Nonlinearities were taken into account assuming the dominance
of the rotation field. By using the principle of virtual work, we have derived the
governing differential equations both for the pre-buckling and post-buckling state for
arches under a central concentrated load and an arbitrary distributed load. Based
on this achievement, the pre-buckling axial strain, as well as the post-buckling strain
is constant on the centerline, when only a concentrated load is exerted at the crown
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point. Heterogeneity appears in the formulation through the parameter χ(m). The
equations of static equilibrium posses less neglects than the model derived and solved
by Bradford et al. – see e.g., [15]; [17]. For this reason, the results computed by using
the current model are more accurate even for greater central angles as well when they
are compared to the previously cited articles. It should also be mentioned that for the
rotation field the effect of the tangential displacement is neglected, which can cause
erroneous predictions for deeper arches.

The evaluation process of the results are based on what Bradford et al. have used
in their series of articles. We have presented how the different buckling limits and
ranges are affected by the spring stiffness. It turns out that symmetrically supported
shallow arches under a central load can buckle in an antisymmetric bifurcation mode
with no strain increment at the moment of the stability loss, and in a symmetric
snap-through mode, when there is a buckling strain. We have found, in an agreement
with the earlier results, that an increase in S results in an increase of the typical
buckling limits for any fixed m. However, as m increases, those limits show a decrease.
Evaluation of the critical loads for three different spring stiffness is carried out. If
S = 0 and S → ∞, we retrieved the results valid for pinned-pinned and fixed-fixed
arches – see [20], [21]. The rotational restraints can have a considerable effect on the
critical load a shallow arch can bear. For the same arches, but with different spring
stiffnesses, the maximum difference between the critical loads can reach up to 25%
when ϑ ≤ 0.8 and up to 57% for greater central angles. The load-deflection curves
are also affected by the rotational restraints as it has been presented.
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Appendix A.1. Detailed manipulations

Calculation of the pre-buckling averaged strain. Integral (38) is divided into two parts. The
first part is

1

ϑ

∫ ϑ

0

Wo dϕ = Ia + IbP,

where

Ia =
1

ϑ

∫ ϑ

0

(
χ2 − 1

χ2
+A11 cosϕ− A31

χ2
cosχϕ

)
dϕ =

χ2 − 1

χ2
+A11

sinϑ

ϑ
− A31

χ3

sinχϑ

ϑ
,

(A.1)

Ib =
1

ϑ2

∫ ϑ

0

(
A12 cosϕ+A22 sinϕ− A32

χ2
cosχϕ− A42

χ2
sinχϕ

)
dϕ =
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=
1

ϑ2

(
A12 sinϑ−A22 cosϑ−A32

sinχϑ

χ3
+A42

cosχϑ

χ3
+A22 −

A42

χ3

)
. (A.2)

The other part is of the form

1

ϑ

∫ ϑ

0

1

2
ψ2
oηdϕ = Ic + IdP + IeP2 . (A.3)

Here

Ic =
1

2ϑ

∫ ϑ

0

(B11 sinϕ+B31 sinχϕ)2 dϕ =
−1

8ϑχ (1− χ2)
×

×
[
B2

11χ (sin 2ϑ−2ϑ)+
8B11B31χ (sinχϑ cosϑ−χ sinϑ cosχϑ)

(1−χ2)
+B2

31 (sin 2χϑ− 2ϑχ)

]
.

(A.4)

To simplify the calculation it is advisable to decompose Id:

Id =
1

ϑ2

∫ ϑ

0

B11 sinϕ (B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ) dϕ+

+
1

ϑ2

∫ ϑ

0

B31 sinχϕ (B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ) dϕ = Id1 + Id2 ,

(A.5)

where

Id1 =
−B11

4ϑ2 (1− χ2)

{
B12

(
1− χ2) (sin 2ϑ− 2ϑ) +B22

(
1− χ2) (cos 2ϑ− 1) +

+ 4B32 [sinχϑ cosϑ− χ cosχϑ sinϑ] + 4B42 [cosϑ cosχϑ+ χ sinϑ sinχϑ− 1]} (A.6a)

and

Id2 =
B31

4χϑ2 (1− χ2)
{4χB12 [χ sinϑ cosχϑ− sinχϑ cosϑ] +

+ 4χB22 [sinϑ sinχϑ+ χ cosϑ cosχϑ− χ] +B32

(
1− χ2) [2ϑχ− sin 2χϑ] +

+B42

(
1− χ2) [1− cos 2χϑ]

}
. (A.6b)

Moving on now to the calculation of Ie in (A.3), it is again worth decomposing the factor in
question as

Ie =
1

ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ) B12 sinϕdϕ+

+
1

2ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ)B22 (cosϕ) dϕ+

+
1

2ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ)B32 (sinχϕ) dϕ+

+
1

2ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ)B42 (cosχϕ) dϕ =

= Ie1 + Ie2 + Ie3 + Ie4 .

(A.7)

The four terms in this sum are

Ie1 =
B12

8ϑ3 (1− χ2)

{
B12

(
1− χ2) [2ϑ− sin 2ϑ] +B22

(
1− χ2) [1− cos 2ϑ] +

+ 4B32 (χ sinϑ cosχϑ− cosϑ sinχϑ) +4B42 [1− cosϑ cosχϑ− χ sinϑ sinχϑ]} , (A.8a)
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Ie2 =
−B22

8ϑ3 (χ2 − 1)

{
B12

(
χ2 − 1

)
(cos 2ϑ− 1)−B22

(
χ2 − 1

)
(sin 2ϑ+ 2ϑ) +

+ 4B32 [χ cosϑ cosχϑ+ sinϑ sinχϑ− χ] + 4B42 [sinϑ cosχϑ− χ cosϑ sinχϑ]} , (A.8b)

Ie3 =
B32

8χϑ3 (1− χ2)
{4B12χ [χ sinϑ cosχϑ− cosϑ sinχϑ] +

+ 4B22χ [sinϑ sinχϑ+ χ cosϑ cosχϑ− χ] +

+B32

(
1− χ2) [2ϑχ− sin 2χϑ] +B42

(
1− χ2) [1− cos 2χϑ]

}
(A.8c)

and

Ie4 =
B42

8ϑ3χ (χ2 − 1)
{4B12χ [cosϑ cosχϑ+ χ sinϑ sinχϑ− 1] +

+ 4B22χ [χ cosϑ sinχϑ− sinϑ cosχϑ] + 2B32

(
χ2 − 1

)
sin2 χϑ+

+ 2B42

(
χ2 − 1

)
[χϑ+ sinχϑ cosχϑ]

}
. (A.8d)

With the knowledge of the previous integrals

I0 = Ia + Ic , I1 = Ib + Id and I2 = Ie (A.9)

are the coefficients in (40).

Calculation of the averaged strain increment. Integrals Ja and Jb in

1

εmbϑ

∫ ϑ

0

Wobdϕ = Ja + JbP (A.10)

are given below in closed forms:

Ja =
1

ϑ

∫ ϑ

0

(
D̂01 + D̂11 cosϕ+ D̂41 cosχϕ+ D̂51ϕ sinχϕ

)
dϕ =

=
1

χ2ϑ

[
χ2
(
D̂01ϑ+ D̂11 sinϑ

)
+ D̂41χ sinχϑ+ D̂51 (sinχϑ− χϑ cosχϑ)

]
, (A.11a)

Jb =
1

ϑ2

∫ ϑ

0

(
D̂12 cosϕ+ D̂22 sinϕ+ D̂32 sinχϕ+ D̂42 cosχϕ+ D̂52ϕ sinχϕ+

+D̂62ϕ cosχϕ
)

dϕ =
1

χ2ϑ2

[
χ2
(
D̂12 sinϑ+ (1− cosϑ) D̂22

)
+ D̂52 sinχϑ+

+ (cosχϑ− 1) D̂62+ +χ
(

(1− cosχϑ) D̂32 + D̂42 sinχϑ− D̂52ϑ cosχϑ+ D̂62ϑ sinχϑ
)]

.

(A.11b)

As for the third integral in (57), let us recall formulae (37) and (55). Consequently, we get

1

ϑεmb

∫ ϑ

0

W (1)
o W

(1)
ob dϕ = J2P2 + JdP + Jc, (A.12)

in which

Jc = − 1

ϑ

∫ ϑ

0

(E11 sinϕ+ E41 sinχϕ+ E51 ϕ cosχϕ) (B11 sinϕ+B31 sinχϕ) dϕ , (A.13a)

Jd = − 1

ϑ2

∫ ϑ

0

(B11 sinϕ+B31 sinχϕ)×

× (E12 sinϕ+ E22 cosϕ+ E32 cosχϕ+ E42 sinχϕ+ E52ϕ cosχϕ+ E62ϕ sinχϕ) dϕ−
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− 1

ϑ2

∫ ϑ

0

(E11 sinϕ+ E41 sinχϕ+ E51 ϕ cosχϕ) (B12 sinϕ+B22 cosϕ+

+B32 sinχϕ+B42 cosχϕ) dϕ , (A.13b)

J2 = − 1

ϑ3

∫ ϑ

0

(B12 sinϕ+B22 cosϕ+B32 sinχϕ+B42 cosχϕ)×

× (E12 sinϕ+ E22 cosϕ+ E32 cosχϕ+ E42 sinχϕ+ E52ϕ cosχϕ+ E62ϕ sinχϕ) dϕ .
(A.13c)

Observe that

J0 = Ja + Jc; J1 = Jb + Jd.

We would like to emphasize that the above integrals can all be given in closed forms. We
omit them from being presented here as these are very complex. Any mathematical software,
like Maple 16 or Scientific Work Place 5.5 can calculate these constants.
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