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  Abstract   Nucleosides have a wide range of physiological and pathophysiological 
roles in the human brain as modulators of a variety of neural functions. For example, 
adenosine, inosine, guanosine, and uridine participate in the mechanisms underly-
ing memory, cognition, sleep, pain, depression, schizophrenia, epilepsy, Alzheimer’s 
disease, Huntington’s disease, and Parkinson’s disease. Consequently, increasing 
attention is now being given to the speci fi c role of nucleosides in physiological and 
pathological processes in the human brain. Different elements of nucleoside system, 
including nucleoside concentrations, metabolic enzyme activity, and expression of 
nucleoside transporters and receptors, may be changed under normal and pathologi-
cal conditions. The alterations suggest that interlinked elements of the nucleoside 
system are functioning in a tightly concerted manner. 

 Nucleoside levels, activity of nucleoside metabolic enzymes, and expression of 
nucleoside transporters and receptors are unevenly distributed in the brain, suggest-
ing that nucleosides have different roles in functionally distinct human brain areas. 
The aim of this chapter is to summarize our present knowledge of the anatomical 
distribution of nucleoside system in the human brain, placing emphasis on potential 
therapeutic pharmacological strategies.  
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  Abbreviations  

  5 ¢ NT    5 ¢ -Nucleotidases   
  A 

1
  receptor/A 

2A
  receptor/

A 
2B

  receptor/A 
3
  receptor     A 

1
 R/A 

2A
 R/A 

2B
 R/A 

3
 R subtype of 

adenosine receptors   
  AC    Adenylate cyclase   
  ADA    Adenosine deaminase   
  Ade    Adenine   
  ADK    Adenosine kinase   
  Ado    Adenosine   
  AMP    Adenosine monophosphate   
  CDP-choline    Cytidine diphosphocholine   
  cN    Cytoplasmic 5 ¢ -nucleotidases   
  CNS    Central nervous system   
  CNT transporters    Concentrative nucleoside transporters   
  CNT1/CNT2/CNT3 transporters     CNT1/CNT2/CNT3 subtype of concen-

trative nucleoside transporters   
  Cyd    Cytidine   
  EC    Extracellular   
  ENT transporters    Equilibrative nucleoside transporters   
  ENT1/ENT2/ENT3/ENT4 transporters     ENT1/ENT2/ENT3/ENT4 subtype of 

equilibrative nucleoside transporters   
  “es” nucleoside transporters     Equilibrative, NBTI sensitive type of 

ENT transporters   
  GABA     g -Aminobutyric acid   
  GDA    Guanine deaminase   
  GMP    Guanosine monophosphate   
  Gn    Guanine   
  Guo    Guanosine   
  Hyp    Hypoxanthine   
  IMP    Inosine monophosphate   
  Ino    Inosine   
  NBTI     S -(4-nitrobenzyl)-6-thioinosine   
  PLC    Phospholipase C   
  PNP    Purine nucleoside phosphorylase   
  Urd    Uridine   
  Xn    Xanthine         
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    29.1   Introduction 

 Nucleosides such as adenosine (Ado), guanosine (Guo), inosine (Ino), and uridine 
(Urd) have a role in the regulation of neuronal and glial functions in the brain (Burnstock 
et al.  2011 ; Dobolyi et al.  2011 ; Fields and Burnstock  2006 ; Haskó et al.  2004 ; Schmidt 
et al.  2007  ) . In addition, nucleosides participate in physiological and pathophysiologi-
cal processes in the brain, such as the regulation of sleep and memory, epilepsy, 
Parkinson’s disease, and Alzheimer’s disease (Dobolyi et al.  2011 ; Huang et al.  2011 ; 
Lopes et al.  2011 ; Sperlágh and Vizi  2011  ) . Increasingly, nucleoside derivatives and 
uptake or metabolic inhibitors are being used in clinical or preclinical drug develop-
ment for the treatment of different diseases, ranging from viral infections to neurode-
generative disorders (Boison  2011 ; Lopes et al.  2011 ; Parkinson et al.  2011  ) . 

 Regional differences occur in the nucleoside system of the human central nervous 
system (CNS). Nucleoside levels, metabolic enzymes, transporters, and receptors 
are unevenly distributed in the human brain (Baldwin et al.  2005 ; Barnes et al.  2006 ; 
Dawson  1971 ; Fredholm et al.  2001 ; Jennings et al.  2001 ; Kovács et al.  1998,   2010a ; 
Nagata et al.  1984 ; Norstrand et al.  1984 ; Norstrand and Glantz  1980 ; Pennycooke 
et al.  2001 ; Phillips and Newsholme  1979 ; Ritzel et al.  2001  ) . In addition, nucleoside 
concentrations are dependent on age and gender (Kovács et al.  2010b  ) . These results 
suggest region-, age-, and gender-dependent functions of nucleosides in the human 
brain. Correlations have been observed between the (1)  S -(4-nitrobenzyl)-6-thioinosine 
(NBTI) binding site and the density of adenosine deaminase (ADA) immunoreactive 
neurons (Geiger and Nagy  1986  ) , (2) regional differences in nucleoside levels and 
the nucleoside metabolic enzyme activities and distribution of adenosine receptors 
(Kovács et al.  2010a  ) , (3) ENT1 subtype of equilibrative nucleoside transporters 
(ENT1) and A 

1
  adenosine receptor subtype (A 

1
 R) density (Jennings et al.  2001  ) , and 

(4) A 
1
 R density and 5 ¢ -nucleotidase (5 ¢ NTs) levels (Fastbom et al.  1987  ) . Interactions 

have also been observed between ADA and A 
1
 Rs, resulting in the facilitation of 

agonist binding to A 
1
 Rs and the enhancement of receptor functionality in the human 

caudate nucleus (Gracia et al.  2008  ) . These results strengthen the hypothesis that the 
so-called “purinome” groups nucleoside and nucleotide receptors, transporters, 
metabolic enzymes and ligands together to organize purinergic signaling (Kovács 
and Dobolyi  2011 ; Volonté and D’Ambrosi  2009  ) . Complex anatomical, biochemi-
cal, and pharmacological analyses of the purinome are necessary to understand the 
functions of nucleoside system and to develop novel and safe drugs to treat various 
CNS diseases. 

 The aim of this chapter is to summarize the anatomical distribution of the nucle-
oside system in the human brain and to examine their potential for the development 
of pharmacological therapies. We focus on four nucleosides, Ado, Ino, Guo, and 
Urd. The available knowledge regarding the physiological and/or pathophysiologi-
cal role of other nucleosides in the human brain is too limited for comprehensive 
evaluation. We brie fl y summarize some relevant features of the brain nucleoside 
system. Then we describe the anatomical distribution of nucleoside levels, meta-
bolic enzymes, transporters, and receptors. Finally, we discuss their potential as 
targets of pharmacological therapeutics.  
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    29.2   Nucleosides in the Human Brain: Metabolism, 
Transporters, and Receptors 

    29.2.1   Metabolism 

 Ribonucleic acids (RNA) and deoxyribonucleic acids (DNA) are synthesized from 
nucleotides that are composed of nucleosides and phosphate moieties. Nucleosides 
contain purine or pyrimidine bases connected to a pentose moiety. The major purine 
ribonucleosides are Ado, Guo, Ino, while the major pyrimidine ribonucleosides are 
cytidine (Cyd), Urd, and thymidine (Thd) (Linden and Rosin  2006  ) . Nucleosides 
are synthesized de novo in the liver and can be partly obtained from food. They are 
transported into the brain and metabolized to their corresponding nucleotides. De 
novo synthesis of nucleosides in the adult brain is limited. Therefore, a salvage 
mechanism in the brain preserves the purine and pyrimidine nucleosides and bases. 
The main precursors of nucleotides in the brain are Ado, adenine (Ade), hypoxan-
thine (Hyp), guanine (Gn), Urd, and Cyd. To maintain the synthesis of ribo- and 
deoxyribonucleotides, hypoxanthine phosphoribosyltransferase (HGPRT; hypoxan-
thine-guanine phosphoribosyltransferase) catalyzes the conversion of Hyp-inosine 
monophosphate (IMP) and Gn-guanosine monophosphate (GMP; Fig.  29.1 ). 
Adenosine kinase (ADK) converts Ado to adenosine monophosphate (AMP), but 
Ado can also be metabolized to IMP in salvage reactions. Ade is metabolized to 
AMP by the adenine phosphoribosyltransferase (APRT) salvage enzyme. Cytidine 
deaminase (CDA) and uridine-cytidine kinase (UCK) salvage Cyd and Urd (Ipata 
et al.  2011  ) .  

 The degradation pathway of adenine nucleotides in the brain can convert AMP 
to IMP-Ino-Hyp or Ado-Ino-Hyp (Fig.  29.1 ). These metabolic steps are catalyzed 
by cytoplasmic 5 ¢ -nucleotidases (cN, 5 ¢ NT), AMP deaminase (AMPDA), ADA, 
and purine nucleoside phosphorylase (PNP).  S -adenosylhomocysteine (SAH) can 
be converted to Ado by adenosylhomocysteinase (SAHH,  S -adenosylhomocysteine 
hydrolase). The main route of guanine-ribonucleotide catabolism is the GMP-
Guo-Gn-xanthine (Xn) pathway catalyzed by cN, PNP, and guanine deaminase 

Fig. 29.1 (continued) deaminase; I: Nucleoside transporters; II: ATP channels and transporters; 
III: K +  channels; IV: Ca 2+ -channels; A 

1
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 ADKi  Adenosine kinase inhibitors;  Ado  Adenosine;  ADP  Adenosine diphosphate;  AMP  Adenosine 
monophosphate;  ATi  Adenosine transporter inhibitors;  ATP  Adenosine triphosphate;  cAMP  Cyclic 
adenosine monophosphate;  DAG  Diacylglycerol; G 
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 : Stimulatory);  GMP  Guanosine monophosphate;  Gn  Guanine;  GTP  Guanosine triphosphate; 

 Guo  Guanosine;  GuoR  Guo receptor;  Hyp  Hypoxanthine;  IMP  Inosine monophosphate; 
 Ino  Inosine;  IP  

 3 
  Inositol 1,4,5-triphosphate;  MAPK  Mitogen-activated protein kinase;  MTA  

5 ¢ -deoxy-5 ¢ -methylthioadenosine;  PIP2  Phosphatidylinositol bisphosphate;  PKA  Protein kinase 
A;  PKC  Protein kinase C;  PLC  Phospholipase C;  SAH S -adenosylhomocysteine;  sNUC  Synthetic 
nucleosides/nucleoside analogues;  UA  Uric acid;  UMP  Uridine monophosphate;  Ura  Uracil;  Urd  
Uridine;  UrdR  Urd receptor;  UTP  Uridine triphosphate;  Xn  Xanthine;  XOi  Xanthine oxidase 
inhibitors       
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  Fig. 29.1    Nucleoside production, transport and receptor signaling.  Abbreviations : 1: Nucleoside 
mono- and diphosphate kinases and nucleoside di- and triphosphate phosphatases; 2:  GMPR  GMP 
reductase; 3:  GMPS  GMP synthetase; 4:  IMPDH  IMP dehydrogenase; 5:  AMPDA  AMP deami-
nase; 6:  ASL  Adenylosuccinate lyase; 7:  ASS  Adenylosuccinate synthetase; 8:  UCK  Uridine-
cytidine kinase; 9:  5 ¢ NT  5 ¢ -Nucleotidase; 10:  ADK  Adenosine kinase; 11:  UP  Uridine phosphorylase; 
12:  PNP  Purine nucleoside phosphorylase; 13:  GDA  Guanine deaminase; 14:  XO  Xanthine oxidase; 
15:  ADA  Adenosine deaminase; 16:  MTAP  5 ¢ -deoxy-5 ¢ -methylthioadenosine phosphorylase; 17:  SAHH  
S-adenosylhomocysteine hydrolase; 18:  APRT  Adenine phosphoribosyltransferase; 19:  HGPRT  
Hypoxanthine phosphoribosyltransferase (hypoxanthine-guanine phosphoribosyltransferase); 20: 
ecto-ATPase; 21: ecto-ADPase; 22:  ecto-5 ¢ NT  ecto-5 ¢ -nucleotidase (eN); 23:  ecto-ADA  ecto-adenosine 
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(GDA; Fig.  29.1 ). In the  fi nal step of purine catabolism in the human brain, Xn is 
converted to uric acid (UA) by xanthine oxidase (XO). The following enzymes 
regulate the extracellular (EC) Ado concentration: ecto-5 ¢ -nucleotidase (eN), ecto-
adenosine kinase (ecto-ADK), and ecto-adenosine deaminase (ecto-ADA) 
(Fernández et al.  2010 ; Firestein et al.  1999 ; Ipata et al.  2011 ; Yegutkin  2008 ; 
Zimmermann  1996  )  (Fig.  29.1 ).  

    29.2.2   Transporters 

 Nucleosides are transported into and released from brain cells via nucleoside trans-
porters (Fig.  29.1 ). Two types of nucleoside transporters are expressed in the human 
brain. The equilibrative nucleoside transporter family (ENT transporters; bidirec-
tional facilitated diffusion) contains four ENT transporter types: ENT1–ENT4. 
NBTI partially inhibits ENTs at the nM concentration range (“es”: equilibrative, 
NBTI sensitive type of ENTs, e.g., ENT1), whereas NBTI insensitive transporters 
are inhibited by NBTI only at the  m M concentration range (“ei”: equilibrative, 
NBTI insensitive type of ENTs, e.g., ENT2). The concentrative nucleoside trans-
porter family (CNT transporters; unidirectional, sodium-dependent) includes six 
CNT transporter types (N1–N6) that are classi fi ed based on the types of nucleo-
sides transported and sodium transport coupling (Baldwin et al.  2005 ; Barnes et al. 
 2006 ; Jennings et al.  2001 ; Parkinson et al.  2011 ; Pennycooke et al.  2001 ; Ritzel 
et al.  2001  ) .  

    29.2.3   Receptors 

 All four known adenosine receptor subtypes (A 
1
 , A 

2A
 , A 

2B
 , and A 

3
 : also known as P1 

receptors) have been identi fi ed in the human brain (Fredholm et al.  2001 ; Jennings 
et al.  2001  ) . Adenosine receptors are G-protein-coupled receptors (GPCR; Fig.  29.1 ). 
A 

1
 Rs couple to “inhibitory” G-proteins (G 

i
  and G 

0
 ) and inhibit adenylate cyclase 

(AC). A 
2A

 Rs and A 
2B

 Rs, however, stimulate AC using “stimulatory” G-proteins 
(G 

S
 ). A 

2A
 Rs may also activate AC via G 

olf
 -proteins. Similar to A 

1
 Rs, A 

3
 Rs inhibit 

AC by coupling with G 
i
 -proteins. G 

q
  proteins can couple to A 

2B
  and A 

3
 Rs and stimu-

late phospholipase C (PLC) activity. A 
1
 Rs can also stimulate PLC and modulate the 

activity of K +  and Ca 2+  channels. In addition, the existence of yet unidenti fi ed nucle-
oside receptors cannot be excluded. For example, a novel subtype of adenosine 
receptors (A 

4
 ) has been proposed based on electrophysiological and pharmacologi-

cal criteria in the brain (Corn fi eld et al.  1992 ; Luthin and Linden  1995 ; Tucker and 
Linden  1993  ) . It is also conceivable that Urd, Guo, and Ade have their own recep-
tors (UrdR, GuoR, AdeR, respectively; Fig.  29.1 ) that are used to execute certain 
functions in the nervous system (Bender et al.  2002 ; Borrmann et al.  2009 ; Kimura 
et al.  2001 ; Schulte and Fredholm  2003 ; Traversa et al.  2002  ) .   
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    29.3   Anatomical Distribution of the Nucleoside System 
in the Human Brain 

    29.3.1   Distribution of Nucleoside Levels 

 The concentration of nucleotide triphosphates, such as adenosine triphosphate 
(ATP), guanosine triphosphate (GTP), uridine triphosphate (UTP), and cytidine 
triphosphate (CTP), are 2–3 orders of magnitude higher (0.2–5 mM) in the human 
brain than that of nucleosides are. Consequently, the degradation of nucleotide 
triphosphates (Fig.  29.1 ) may increase the levels of corresponding nucleosides 
over baseline concentrations. For example, a 5–60 min period of ischemia was 
found to cause rapid degradation of nucleotide triphosphates and increase the 
concentrations of nucleosides and their metabolites (Ado, Guo, Ino, Hyp, and 
Xn) by 2–150 times that of baseline (Berne et al.  1974 ; Bjerring et al.  2010 ; Eells 
and Spector  1983 ; Hagberg et al.  1987 ; Kovács et al.  2010a ; Melani et al.  2003 ; 
Traut  1994  ) . 

 Both animal and human experiments have determined that nucleoside concentra-
tions are unevenly distributed in different brain areas (Kékesi et al.  2006 ; Kovács 
et al.  2010a,   2011  ) . Kovács and colleagues (Kovács et al.  2005  )  developed an 
extrapolation method that allows realistic estimates of the in vivo nucleoside levels 
from postmortem frozen and microwave-treated brain bank samples. Using this 
method, a nucleoside map of the human brain, consisting of 61 brain and 4 spinal 
cord areas, was constructed. High Ado (15.9–23.9 pmol/mg), Urd (44.1–66.2 pmol/
mg), Ino (107.7–161.5 pmol/mg), and Guo (17.7–26.4 pmol/mg) concentrations 
were observed in several regions, including the cochlear nuclei, vestibular nuclei, 
cerebellar cortex, supraoptic nucleus,  fl occulonodular lobe, spinal trigeminal 
nucleus, temporal and occipital cortices, caudate nucleus, nucleus basalis, medial 
geniculate body, amygdala, spinal central gray, and ventral horn of the spinal 
cord (Table  29.1 ). The lowest concentrations of Ado (1.4–7.9 pmol/mg), Urd 
(15.7–22.0 pmol/mg), Ino (29.8–53.8 pmol/mg), and Guo (4.1–8.8 pmol/mg) were 
measured in the entorhinal cortex, septum, habenula, zona incerta, substantia nigra, 
locus coeruleus, preoptic area, pulvinar, and inferior colliculus (Table  29.1 ). 
Nucleoside metabolites such as Hyp, Xn, and uracil/Ura, (Fig.  29.1 ) were also 
unevenly distributed in the human brain (Kovács et al.  2010a  ) .  

 Age and gender may modulate nucleoside expression. For example, the levels of 
Ino and Ado in the frontal cortex increase with age. Urd, Ino, and Guo concentra-
tions are higher in the frontal cortex and white matter of middle-aged women when 
compared to middle-aged men, whereas Ado levels are lower in the frontal cortex of 
both middle-aged and elderly women when compared to men (Kovács et al.  2010b  ) . 
These results suggest that the nucleoside microenvironment in the human brain may 
be an important factor in the aging processes and nucleosides might play a part in 
the reduced vulnerability of female brains to excitotoxic insults (Kovács et al. 
 2010b  ) .  
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   Table 29.1    Levels of nucleosides, activity of some nucleoside metabolizing enzymes, and rela-
tive density of nucleoside transporters and adenosine receptors in the human CNS   

 Anatomical distribution of nucleoside system 

 Nucleosides in the CNS 

  Nucleosides    Nucleoside levels (pmol/mg wet weight)  
  Ado   High (15.9–23.9): cochlear nuclei, vestibular nuclei, cerebellar cortex, supraoptic 

nucleus,  fl occulonodular lobe 
 Intermediate (8.0–15.8): spinal cord (ventral and dorsal horn) + , amygdala + , 

temporal + , and prefrontal cortex + , caudate nucleus + , mediodorsal thalamic 
nucleus +  

 Low (1.4–7.9): frontal, somatosensory, cingulate, and entorhinal cortex; hip-
pocampus, nuclei of diagonal band, septum, globus pallidus externa, ventral 
lateral nucleus, habenula, pulvinar, zona incerta, preoptic area, paraventricular 
nucleus, dorsomedial nucleus (hypothalamus), lateral hypothalamic area, 
substantia nigra, inferior colliculus, locus coeruleus, dorsal vagal nuclei, 
nucleus accumbens + , spinal central gray 1  

  Ino   High (107.7–161.5): cochlear nuclei, spinal trigeminal nucleus 
 Intermediate (53.9–107.6): frontal, temporal, somatosensory + , prefrontal + , 

cingulate + , and occipital cortex; caudate nucleus, substantia innominata, 
nucleus basalis, nucleus accumbens + , reticular formation (medulla oblongata), 
amygdala + , cerebellar nuclei, spinal cord (ventral and dorsal +  horn), mediodor-
sal thalamic nucleus + , spinal cord (white matter) 

 Low (29.8–53.8): entorhinal and parahippocampal cortex; hippocampus, nuclei of 
diagonal band, habenula, pulvinar, zona incerta, paraventricular nucleus, 
substantia nigra, inferior colliculus, locus coeruleus 1  

  Guo   High (17.7–26.4): cochlear nuclei; temporal and occipital cortex; caudate nucleus, 
nucleus basalis, medial geniculate body, amygdala +  

 Intermediate (8.9–17.6): insular, prefrontal + , entorhinal + , cingulate + , and 
somatosensory cortex + ; white matter (cerebral and cerebellar), nuclei of 
diagonal band, substantia innominata, lateral geniculate body, hippocampus + , 
nucleus accumbens + , cerebellar nuclei, mediodorsal thalamic nucleus + , spinal 
cord (ventral and dorsal +  horn) 

 Low (4.1–8.8): septum, habenula, pulvinar, zona incerta, paraventricular nucleus, 
lateral hypothalamic area, substantia nigra, superior colliculus, inferior 
colliculus, locus coeruleus, spinal cord (white matter) 1  

  Urd   High (44.1–66.2): cochlear nuclei, temporal and occipital cortex, cerebellar 
cortex, amygdala + , spinal central gray, spinal cord (ventral horn) 

 Intermediate (22.1–44.0): cerebral and cerebellar white matter, somatosensory + , 
prefrontal + , cingulate + , insular and entorhinal cortex; hippocampus + , caudate 
nucleus, globus pallidus externa, anterior nuclei (thalamus), substantia nigra, 
inferior colliculus, nucleus accumbens + , locus coeruleus, inferior olive, 
reticular formation (medulla oblongata), cerebellar nuclei, mediodorsal 
thalamic nucleus + , spinal cord (white matter), spinal cord (dorsal horn) +  

 Low (15.7–22.0): ventral anterior nucleus, zona incerta, preoptic area, motor 
facial nucleus 1  

(continued)
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 Metabolic enzymes of nucleosides in the CNS 

  Enzymes    Activity level  
  5 ¢ NT   nmol/h/mg protein: 

  High (749–1,123): temporal cortex, thalamus (medial and lateral), colliculus 
superior 

  Intermediate (375–748): parietal lobe, cingulate cortex, insula, caudate nucleus, 
putamen, pallidum (internal), claustrum, thalamus (anterior), subthalamic nucleus, 
nucleus ruber, substantia nigra, amygdala, hypothalamus, midbrain (paramedian) 

  Low (210–374): cerebellar cortex, lateral geniculate body, pallidum (external), 
centrum semiovale, corpus callosum, mamillary body, internal capsule 2  

  ADA   nmol of ammonia/min/g of wet weight: 
  High (387–579): white matter of frontal, orbital and temporal lobe 
  Intermediate (194–386): gray matter of frontal, occipital, orbital, parietal and 

temporal lobe; pons, putamen, hippocampus, caudate nucleus, globus pallidus, 
thalamus, midbrain, cerebellar white matter, white matter of parietal, cingulate, 
and occipital lobe; corpus callosum 

  Low (16–193): gray matter of cingulate cortex and cerebellum; hypothalamus, 
medulla oblongata, spinal cord 3  

  ADK   nmol/min/g wet weight: 
  High (16.4–19.4): hypothalamus, pons, hind brain 
  Intermediate (13.1–16.3): cerebellum, temporal cortex, corpus callosum, occipital 

cortex 
  Low (9.8–13.0): parietal lobe, frontal cortex 4  

  PNP   Substrate transformed ( m mol)/min/g wet weight: 
  High (223–261): pons, midbrain, thalamus, white and gray matter of occipital lobe, 

amygdala 
  Intermediate (183–222): caudate nucleus, white matter of cerebellum, medulla 

oblongata, white matter of frontal lobe, gray matter of temporal, parietal, and 
frontal lobe; corpus callosum 

  Low (143–182): gray matter of cerebellum, white matter of temporal and parietal 
lobe, putamen, spinal cord 5  

  GDA   Substrate transformed ( m mol)/min/mg protein 
  High (12.9–19.2): thalamus, mamillary body 
  Intermediate (6.5–12.8): parietal cortex, caudate nucleus, putamen, pons (basis), 

hippocampus, substantia nigra 
  Low (0.005–6.4): cerebellum, olivary nucleus, corpus callosum, lateral geniculate 

body 6  

 Nucleoside transporters in the CNS 

  Transporter family 
(gene)  

  Relative density (by comparison of different brain areas with each other)  

  ENT1  (SLC29A1)  High: frontal and parietal cortex 
 Intermediate: temporal and occipital cortex, thalamus, midbrain, caudate 

nucleus, putamen, globus pallidus 
 Low: medulla oblongata, pons, cerebellum, hippocampus 7  

  ENT2  (SLC29A2)  High: midbrain, pons, cerebellum 
 Intermediate: medulla oblongata, thalamus 
 Low: frontal, occipital, temporal, and parietal cortex; hippocampus, caudate 

nucleus, putamen, globus pallidus 7  

Table 29.1 (continued)

(continued)
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 Nucleoside transporters in the CNS 

  ENT3  (SLC29A3)  High: occipital and temporal lobe, corpus callosum, medulla oblongata, 
putamen 

 Intermediate: frontal lobe, paracentral gyrus, pons, hippocampus, nucleus 
accumbens, thalamus, spinal cord, cerebellum (right) 

 Low: parietal lobe, cerebellum (left), amygdala, caudate nucleus, substantia 
nigra, pituitary gland 8  

  ENT4  (SLC29A4)  High: temporal lobe, paracentral gyrus, amygdala, caudate nucleus, 
hippocampus, medulla oblongata, putamen 

 Intermediate: parietal and occipital lobe, pons, cerebellum (right), corpus 
callosum, thalamus, pituitary gland, spinal cord, substantia nigra, 
nucleus accumbens 

 Low: frontal lobe, cerebellum (left) 9  
  CNT1  (N2/cit; 

SLC28A1) 
 Uniform distribution 10  

  CNT2  (N1/cif; 
SLC28A2) 

 High: cerebellum, putamen, hippocampus, medulla oblongata 
 Intermediate/low: amygdala, cerebral cortex, frontal, occipital, and 

temporal lobe; substantia nigra, thalamus, spinal cord 10  
  CNT3  (N3/cib; 

SLC28A3) 
 High: hippocampus, medulla oblongata, pituitary gland 
 Intermediate/low: frontal, parietal and occipital lobe; corpus callosum, 

cerebellum, amygdala, caudate nucleus, putamen, thalamus, temporal 
lobe, paracentral gyrus, pons, substantia nigra, nucleus accumbens, 
spinal cord 11  

 Adenosine receptors in the CNS 

  Receptor type    Relative density (by comparison of different brain areas with each other)  
  A  

 1 
   High: frontal, parietal and occipital cortex; caudate nucleus, putamen, globus 

pallidus 
 Intermediate: temporal cortex, thalamus, hippocampus 
 Low: medulla oblongata, midbrain, pons, cerebellum 7  

  A  
 2A 

   High: caudate nucleus, putamen, globus pallidus, nucleus accumbens 7,12  
 Intermediate/low: frontal, temporal, parietal, and occipital cortex; thalamus, 

hippocampus, medulla oblongata, midbrain, pons, cerebellum 7  
  A  

 2B 
   Uniform distribution 13  

  A  
 3 
   High: cerebellum, hippocampus 

 Intermediate/low: other brain areas 13  

  The levels of nucleosides in brain and spinal cord areas were compared to the grand average 
concentration values of the total brain and spinal cord areas (Kovács et al.  2010a  ) . We also listed 
some brain and spinal cord areas, which are implicated in particular CNS diseases, even though 
their nucleoside levels did not differ from average values (these brain areas are labeled by “+”) 

  References :  1 Kovács et al.  2010a ;  2 Nagata et al.  1984 ;  3 Norstrand et al.  1984 ;  4 Phillips and 
Newsholme  1979 ;  5 Norstrand and Glantz  1980 ;  6 Dawson  1971 ;  7 Jennings et al.  2001 ;  8 Baldwin 
et al.  2005 ;  9 Barnes et al.  2006 ;  10 Pennycooke et al.  2001 ;  11 Ritzel et al.  2001 ;  12 Svenningsson et al. 
 1997 ;  13 Fredholm et al.  2001 ;  Abbreviations : Nucleosides— Ado  Adenosine,  Guo  Guanosine,  Ino  
Inosine,  Urd  Uridine; Nucleoside metabolizing enzymes— 5 ¢ NT  5 ¢ -Nucleotidase,  ADA  Adenosine 
deaminase,  ADK  Adenosine kinase,  GDA  Guanine deaminase,  PNP  Purine nucleoside phosphory-
lase. For nucleoside transporter and nucleoside receptor abbreviations, see text  

Table 29.1 (continued)
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    29.3.2   Distribution of Nucleoside Metabolic Enzymes 

 Nucleoside metabolic enzymes form a complex network, including several alternative 
metabolic pathways (Ipata et al.  2011 ; Kovács et al.  2011  )  (Fig.  29.1 ). The distribution 
and activity of nucleoside metabolic enzymes are uneven in the human brain, 
re fl ecting spatial differences in the nucleoside metabolic network. The distribution 
of 5 ¢ NTs, ADA, ADK, PNP, and GDA (Fig.  29.1 ) activities in the human brain have 
been previously described (Dawson  1971 ; Nagata et al.  1984 ; Norstrand et al.  1984 ; 
Norstrand and Glantz  1980  )  (Table  29.1 ). 

 The activities of 5 ¢ NT, PNP, and GDA are high in the thalamus (Table  29.1 ). 
High to intermediate activity of 5 ¢ NT was found in several brain regions, including 
the temporal cortex, colliculus superior, basal ganglia, nucleus ruber, substantia 
nigra, amygdala, and hypothalamus. In contrast, the cerebellar cortex, lateral genic-
ulate body, pallidum, corpus callosum, and mamillary body showed low activity 
levels of this enzyme. 

 Interestingly, the white matter of frontal, orbital, and temporal lobes contain the 
highest ADA activity, while only intermediate activity has been observed in the gray 
matter of these brain areas (Table  29.1 ). An intermediate ADA activity was also 
found, e.g., in the basal ganglia, pons, hippocampus, and thalamus. On the contrary, 
low ADA activity was measured in the cerebellum, hypothalamus, medulla oblon-
gata, and spinal cord. Others have observed the highest level of ADA activity in the 
hypothalamus (Phillips and Newsholme  1979  ) . 

 High ADK activity has been found in the hypothalamus, pons, and hind brain. 
The temporal and occipital cortices and cerebellum show intermediate ADK activ-
ity, whereas the parietal lobe and frontal cortex contain low levels of this enzyme 
(Table  29.1 ). GDA activity is also high in the mamillary body. Intermediate GDA 
activity was measured in the parietal cortex, basal ganglia, substantia nigra, and hip-
pocampus, with the lowest activity in the cerebellum. High PNP activity was also 
revealed in the pons, midbrain and amygdala whereas low enzyme activity was 
demonstrated, e.g., in the putamen and spinal cord. 

 Spatial differences in the distribution of nucleosides are correlated with nucleo-
side metabolic enzyme activities and the neuron–glia ratio in the human brain 
(Kovács et al.  2010a  ) . Nucleoside metabolism is different in neuronal and glial cells 
(Ceballos et al.  1994 ; Zoref-Shani et al.  1995  ) . Consequently, alterations in the glia/
neuron may cause regional differences in nucleoside levels. However, the correla-
tion between the neuron–glia ratio and nucleoside levels in the human brain is weak 
(Kovács et al.  2010a  ) . Importantly, the neuron–glia ratio is changed in some brain 
areas implicated in the development of major depressive and bipolar disorders, 
schizophrenia, Huntington’s and Alzheimer’s disease, and frontotemporal dementia 
(Bowley et al.  2002 ; Brauch et al.  2006 ; Harper et al.  2008 ; Öngür et al.  1998 ; Roos 
et al.  1985  ) . 

 Table  29.1  shows that altered nucleoside metabolic enzyme activity may result in 
an uneven distribution of nucleosides and their metabolites in the human brain 
(Kovács et al.  2010a  ) . For example, high or intermediate 5 ¢ NT activity and low or 
intermediate ADA/ADK activity can generate elevated Ado, Ino, and Guo levels 
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(Fig.  29.1 ) in the temporal cortex and caudate nucleus (Table  29.1 ). High 5 ¢ NT, PNP 
and GDA activities may result in low Guo levels in thalamic areas, such as the habe-
nula, pulvinar, and zona incerta (Table  29.1 ). 

 Altogether, these results suggest that the uneven distribution of nucleoside levels 
may be due to complex interactions between regionally different glia–neuron ratios 
and nucleoside metabolic enzyme activities.  

    29.3.3   Distribution of Nucleoside Transporters 

 The distribution of nucleoside transporters in the human brain is uneven, and the 
regionally different distribution of nucleoside transporters re fl ects the functional 
signi fi cance of nucleoside neuromodulation in different brain areas (Baldwin et al. 
 2005 ; Barnes et al.  2006 ; Jennings et al.  2001 ; Pennycooke et al.  2001 ; Ritzel et al. 
 2001  ) . 

 ENT1 expression is high in the frontal and the parietal cortices, whereas the 
occipital and temporal lobe shows the highest ENT3 activity and high or intermedi-
ate ENT4 activity (Table  29.1 ). Intermediate or low ENT3 and ENT4 density occurs 
in the frontal and parietal lobes. Low levels of ENT1 expression are found in the 
medulla oblongata and the pons, whereas these brain areas show high to intermedi-
ate ENT2 expression. ENT2 expression is low in cortical areas and the basal gan-
glia. All ENT transporters are expressed at intermediate levels in the thalamus. The 
hippocampus shows low or intermediate ENT levels with the exception of ENT4, 
which is expressed at high levels in this brain area. 

 CNT transporters are also widely distributed in the human brain. Relatively high 
expression of CNT subtypes (CNT1, CNT2, and CNT3) occurs in the cerebellum, 
putamen, hippocampus, and medulla oblongata (Table  29.1 ).  

    29.3.4   Distribution of Nucleoside Receptors 

 The distribution of adenosine receptors in the brain re fl ects the physiological activ-
ity and effects of Ado in brain structures, whereas changes in the density of adenos-
ine receptors may indicate functional and pathological changes (Boison  2005 ; 
Fastbom et al.  1986,   1987 ; Jenner et al.  2009  ) . 

 Adenosine receptors are unevenly distributed in the human brain (Fredholm et al. 
 2001 ; Jennings et al.  2001  )  (Table  29.1 ). High expression of A 

1
 Rs has been mea-

sured in several cerebral cortical areas and the basal ganglia. The temporal cortex, 
thalamus, and hippocampus contain intermediate levels of A 

1
 Rs, whereas the cere-

bellum, midbrain, pons, and medulla oblongata show low density of this adenosine 
receptor type. A 

2A
 Rs are expressed at high levels in the basal ganglia and high A 

3
 R 

density occurs in the cerebellum and hippocampus. In other brain areas, A 
2A

  and 
A 

3
 Rs are expressed at lower levels. Uniform distribution of A 

2B
 Rs, however, has 

been shown to occur.   
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    29.4   Implications for Therapy 

 Drugs acting on the nucleoside system are widely used for therapeutic purposes 
(Table  29.2 , Fig.  29.1 ). Nucleoside metabolic enzyme inhibitors are used in antican-
cer therapies and the treatment of gout. In addition, several different nucleoside 
transport inhibitors are used as coronary vasodilators. Drugs acting on adenosine 
receptors are also used as vasodilators and to treat cardiac arrhythmias, carcinomas, 
rheumatoid arthritis, acute renal failure, and asthma. In addition, some synthetic 
nucleosides (nucleoside drugs) are used in antiviral and anticancer therapies.  

 Some drugs acting on the adenosine system have already been tested for the 
potential to treat brain disorders (Table  29.2 ). Based on its distribution and physio-
logical roles in the CNS, the adenosine system has much wider potential for the 
treatment of pain, movement and mood disorders, schizophrenia, epilepsy, drug 
addiction, insomnia, multiple sclerosis, dementias, and stroke. Guanosine and Ino 
may also be neuroactive purines with therapeutic potential (Deutsch et al.  2005 ; 
Schmidt et al.  2007  ) . The recent discovery of pyrimidine nucleotide receptors and 
the emerging neural functions of Urd imply that this pyrimidine nucleoside could 
also have therapeutic applications in the future (Cansev  2006 ; Connolly and Duley 
 1999 ; Dobolyi et al.  2011  ) . 

 In the following sections, we discuss several neurological disorders where drugs 
acting on the nucleoside system may have therapeutic potential (Table  29.2 ). 

    29.4.1   Movement Disorders 

 The initiation of movement is governed by the interaction of the motor cortex, the 
thalamus, and a circuit consisting of several members of the basal ganglia, including 
the striatum, globus pallidus, and substantia nigra. The underlying pathologies for 
Parkinson’s and Huntington’s diseases are loss of nigrostriatal dopaminergic cells 
and degeneration of GABA/enkephalin neurons projecting from the striatum to the 
external globus pallidus, respectively (Harris et al.  2009  ) . 

 Nucleosides and nucleoside metabolic enzymes are found in brain areas involved 
in movement disorders (Dawson  1971 ; Kovács et al.  2010a ; Nagata et al.  1984 ; 
Norstrand et al.  1984 ; Norstrand and Glantz  1980  )  (Table  29.1 ). Nucleoside trans-
porters are present in the caudate nucleus, putamen, globus pallidus, and substantia 
nigra (Barnes et al.  2006 ; Jennings et al.  2001 ; Ritzel et al.  2001  ) . Caudate nucleus, 
putamen, and globus pallidus contain high levels of A 

1
  and A 

2A
 Rs (Jennings et al. 

 2001  ) . In particular, striatopallidal GABAergic enkephalin-containing neurons in 
the basal ganglia show the highest expression of A 

2A
 Rs (Durieux et al.  2011 ; Popoli 

et al.  2007  ) . These A 
2A

 Rs tightly interact structurally and functionally with the 
dopamine D2 receptor and have been suggested to drive striatopallidal output bal-
ance (Xu et al.  2005  ) . 
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 In cases of dopaminergic hypofunction, A 
2A

 R activation contributes to the 
overdrive of the indirect pathway (Schiffmann et al.  2007  ) . A 

2A
 R antagonists 

(Table  29.2 ), therefore, have the potential to restore this inhibitor imbalance. 
Consequently, these drugs have therapeutic potential in diseases of dopaminergic 
hypofunction such as Parkinson’s disease. Indeed, A 

2A
 R antagonists have been 

effective in a variety of animal models of Parkinson’s disease (Bastia et al.  2005 ; 
Chen et al.  2001 ; Hodgson et al.  2010 ; Kanda et al.  1998,   2000  ) . Furthermore, caf-
feine ameliorates the freezing of gait that occurs in Parkinson’s disease patients 
(Kitagawa et al.  2007  ) . A number of clinical trials are under way to evaluate the 
potential of A 

2A
 R antagonists in the treatment of Parkinson’s disease (Table  29.2 ), 

and the modulation of A 
1
  and A 

2A
 Rs may be effective in the treatment of Huntington’s 

disease as well (Blum et al.  2003 ; Chou et al.  2005 ; Popoli et al.  2007  ) . 
 Uridine might also be potentially effective in the treatment for Parkinson’s dis-

ease. Coadministration of uridine monophosphate (UMP) and docosahexaenoic 
acid known to increase Urd levels and synapse formation in the brain increased 
striatal dopamine levels and alleviated the behavioral effects of 6-hydroxydopamine 
injections in a rat model of Parkinson’s disease (Cansev et al.  2008  ) .  

    29.4.2   Addiction 

 Although the different classes of drugs of abuse in fl uence numerous neurotransmit-
ter systems within the brain, all either directly or indirectly enhance the activity of 
the mesolimbic dopaminergic system. Within this system, ascending dopaminergic 
 fi bers project from the ventral tegmental area to the prefrontal cortex and nucleus 
accumbens, areas that are involved in the rewarding effects of drugs of abuse (Lajtha 
and Sershen  2010 ; Willuhn et al.  2010  ) . 

 Similar to the striatum, the level of A 
2A

 Rs is also particularly high in the nucleus 
accumbens (Ferré et al.  2007 ; Svenningsson et al.  1997  ) , an area that contains low 
to intermediate levels of nucleosides (Kovács et al.  2010a  )  and ENT3, ENT4, and 
CNT3 transporters (Baldwin et al.  2005 ; Barnes et al.  2006 ; Ritzel et al.  2001  )  
(Table  29.1 ). Based on the presence of nucleoside transporters in the nucleus 
accumbens, transport inhibitors might have therapeutic potential in the treatment 
of drug addiction and alcoholism (Table  29.2 ). Indeed, adenosine transport in the 
nucleus accumbens decreases following chronic administration of morphine to 
rats (Brundege and Williams  2002  ) . Adenosine may inhibit the reward process via 
A 

2A
 Rs (Baldo et al.  1999  ) . In animal models, A 

2A
 R agonists inhibit cocaine self-

administration, while antagonists reinstate this behavior (Knapp et al.  2001 ; 
Weerts and Grif fi ths  2003  ) . Furthermore, mice lacking the A 

2A
 R exhibit attenu-

ated reward processes (Castane et al.  2006  ) . Some novel human data also supports 
the involvement of the adenosine system in addiction. An elevated A 

2A
 R binding 

af fi nity was found in platelets of patients suffering from pathological gambling 
(Martini et al.  2011  ) . Clinical trials based on these data are expected in the near 
future (Lopes et al.  2011  ) .  
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    29.4.3   Pain Management 

 Nociceptive impulses  fi rst reach the posterior horn of the spinal cord. From here, 
information is transmitted to several brain regions involved in nociception. The 
reticular formation regulates arousal reactions and autonomic re fl exes to pain, and 
thalamic nuclei relay and differentiate the nociceptive stimuli. Speci fi c nuclei of the 
hypothalamus mediate autonomic and neuroendocrine responses. The limbic sys-
tem mediates the emotional and motivation-related aspects of nociception, while the 
somatosensory cortex is mainly responsible for pain differentiation and localization 
(Apkarian et al.  2005  ) . Additional pathways descending from a handful of brain 
regions, including the periaqueductal gray, rostroventromedial medulla, lateral 
reticular nucleus, and some brainstem monoamine cell groups, modulate nocicep-
tion (Heinricher et al.  2009  ) . 

 Nucleosides and their metabolic enzymes and transporters have been observed in 
different regions of large anatomical structures such as the spinal cord, medulla 
oblongata, midbrain, thalamus, hypothalamus, and diencephalon (Table  29.1 ). 
However, there is little data on the presence of nucleoside system in the speci fi c 
areas of nociceptive circuitry in the brain, and further studies are needed. 
Nevertheless, a signi fi cant expression of A 

1
 Rs has been described in primary sen-

sory neurons associated with nociceptive pathways (Lima et al.  2010  ) . 
 There is a great body of evidence indicating that the activation of A 

1
 Rs produces 

antinociception (Curros-Criado and Herrero  2005  ) . Mice lacking the A 
1
 R exhibit 

hyperalgesia (Johansson et al.  2001  ) . Consequently, drugs that target the nucleoside 
system have potential for the treatment of pain. GP-3269, an adenosine kinase 
inhibitor (Fig.  29.1 ), and GW-493838, an A 

1
 R agonist, may be useful in the treat-

ment of pain and migraines (Elzein and Zablocki  2008 ; Erion et al.  1997 ; Kowaluk 
and Jarvis  2000 ; McGaraughty et al.  2005 ; Wiesner et al.  1999  )  (Table  29.2 ). 
Guanosine was also found to have an antinociceptive effect in mice (Schmidt et al. 
 2009  ) , suggesting that it may also be a potential target for the treatment of pain.  

    29.4.4   Mood Disorders 

 Anxiety, panic disorder, mania, and different forms of depression do not involve major 
neuronal degeneration in any brain regions. Nevertheless, animal studies and various 
imaging techniques have identi fi ed a number of limbic brain regions that play a role 
in the etiology of mood disorders. These regions include the prefrontal and cingulate 
cortices, septohippocampal circuits, amygdala, hypothalamus, and central gray matter 
of the midbrain (Garakani et al.  2006 ; Kalia  2005  ) . Neurons in the locus coeruleus and 
raphe nuclei are thought to modulate these systems, explaining the effects of nora-
drenergic and serotonergic drugs on mood disorders (Fava  2003  ) . 

 Only some of these structures have been studied for the presence of the elements 
of the nucleoside system (Table  29.1 ). The amygdala is particularly rich in nucleosides 
(Kovács et al.  2010a  ) . Intermediate or high activities of 5´NT and PNP occur in the 
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amygdala and the frontal and cingulate cortices (Nagata et al.  1984 ; Norstrand and 
Glantz  1980  ) . Intermediate/low CNT2 and CNT3 levels are also observed in the 
amygdala and frontal cortex (Ritzel et al.  2001  ) . ENT4 is abundant only in the 
amygdala, while ENT1 is believed to be the major equilibrative nucleoside trans-
porter subtype in the frontal cortex (Barnes et al.  2006 ; Jennings et al.  2001  ) . A high 
level of A 

1
 Rs is found in the frontal cortex. Similar to the stratium (Schiffmann et al. 

 2007  ) , the cortex also contains adenosine receptors both pre- and postsynaptically 
(Kirmse et al.  2008  ) . Some other important brain regions, including the periaque-
ductal gray and monoamine systems, however, have not been systematically inves-
tigated for the presence of nucleoside metabolic enzymes and transporters. 
Nevertheless, the nucleoside system is expected to be a target for new drugs to treat 
mood disorders (Boison et al.  2012  ) . Caffeine, a competitive antagonist of the A 

1
  

and A 
2A

 Rs (Fredholm et al.  1999  ) , promotes anxious behavior both in animal mod-
els and humans (Klein et al.  1991  ) , and A 

2A
 R polymorphisms are associated with 

increased incidence of panic disorder and depression (Hamilton et al.  2004 ; Lam 
et al.  2005 ; Tsai et al.  2006  ) . In addition, mice lacking A 

1
  or A 

2A
 Rs demonstrate 

anxiogenic-like behaviors (Gimenez-Llort et al.  2002 ; Johansson et al.  2001 ; Ledent 
et al.  1997  ) . Indeed, the application of an A 

1
 R antagonist might be an effective treat-

ment strategy for patients with anxiety disorders (Table  29.2 ). Allopurinol has been 
found to elicit therapeutic effects in the treatment of mania (Akhondzadeh et al. 
 2006  )  (Table  29.2 , Fig.  29.1 ). Chronically administrated Guo produced anxiolytic 
effects in mice (Vinadé et al.  2003  ) , suggesting a potential role of this purine nucle-
oside in the management of anxiety.  

    29.4.5   Schizophrenia 

 Pharmacological studies indicate the involvement of dopaminergic and glutamater-
gic neurons in the etiology of schizophrenia. A leading current hypothesis is that 
schizophrenia arises due to abnormalities in the dopamine–glutamate system of the 
corticostriatal pallidothalamic circuit, including the prefrontal cortex, nucleus 
accumbens, ventral tegmental area, mediodorsal thalamic nucleus, and ventral pal-
lidum. Some drugs inducing drug dependence, probably by increasing the level of 
dopamine in the nucleus accumbens, also cause hallucinations suggesting that sur-
plus dopamine may be a common ethiological factor. In addition to abnormalities in 
the corticostriatal system, alterations in the ventral limbic circuits of the dopamine–
glutamate system, including the hippocampus, enthorinal cortex, and basolateral 
amygdala, may also be involved (Ross et al.  2006  ) . 

 There is an intermediate to high level of nucleosides in most of the brain regions 
implicated in schizophrenia (Kovács et al.  2010a  )  (Table  29.1 ), and the evidence 
suggests that schizophrenia is associated with a hypofunctioning adenosine system 
(Lara et al.  2006  ) . Adenosine levels can be increased by inhibiting adenosine 
transporters or xanthine oxidase with dypiridamole or allopurinol, respectively 
(Fig.  29.1 ). Both of these treatments had bene fi cial antipsychotic effects in clinical 
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trials when administered in combination with haloperidol (Akhondzadeh et al.  2000, 
  2005  )  (Table  29.2 ). Furthermore, psychotic symptoms in schizophrenic patients are 
worsened by caffeine (Lucas et al.  1990  ) . An interaction between adenosine and the 
dopamine system (Ferré et al.  1997  )  or the glutamate system (De Mendonca et al. 
 1995 ; Gerevich et al.  2002  )  could be driving these effects. Indeed, A 

2A
 R agonists 

and antagonists may have therapeutic potential for different types of psychosis 
(Table  29.2 ). 

 In animal models, some of the effects of haloperidol were augmented by coad-
ministration with Urd (Agnati et al.  1989 ; Myers et al.  1994  ) . Chronic Urd admin-
istration was also found to increase stereotypy scores and catalepsy induced by an 
acute haloperidol injection (Agnati et al.  1989  ) . Furthermore, chronic Urd treatment 
reduced expression of dopamine receptors and enhanced their turnover rate in the 
striatum (Farabegoli et al.  1988  ) . These data suggest that Urd coadministration 
might enhance the antipsychotic actions of traditional neuroleptics. 

 Moreover, the neuroprotective and neurotrophic effects of Guo may also be 
advantageous for the treatment of schizophrenia; Guo was found to attenuate hyper-
locomotion induced by dizocilpine, a pharmacological model of schizophrenia, in 
mice (Tort et al.  2004  ) .  

    29.4.6   Epilepsy 

 Epilepsy is characterized by a variety of recurrent symptoms resulting from the 
synchronous or sustained discharge of a group of neurons. The pathophysiology 
of epilepsy is poorly understood, and so far, there is no clear association between 
the abnormal function of a speci fi c group of neurons and the genesis of seizures. 
There is some evidence, however, that the impairment of inhibitory signals, often 
occurring in the neocortex and hippocampus, may be primarily involved (Bertram 
 2009  ) . 

 In the human hippocampus, ADA and GDA have intermediate activity (Dawson 
 1971 ; Norstrand et al.  1984  )  (Table  29.1 ). Adenosine and Ino levels are low, but 
intermediate concentrations of Guo and Urd are present (Kovács et al.  2010a  ) . 
Based on their abundance, ENT4, CNT2, and CNT3 are believed to be the major 
nucleoside transporters in the hippocampus (Barnes et al.  2006 ; Ritzel et al.  2001  ) . 
Furthermore, an intermediate level of A 

1
  and intermediate/low level of A 

2A
 R is 

present (Jennings et al.  2001  ) . Indeed, the interaction of Ado with the inhibitory 
A 

1
 R has been shown to have anticonvulsant effects in animal models (Barraco 

et al.  1984 ; Fedele et al.  2006  ) . As A 
1
 R agonists have peripheral cardiac and central 

sedative side-effects, adenosine kinase inhibitors (Fig.  29.1 ) have been used to 
indirectly increase Ado levels (Boison  2008  ) . These drugs were shown to have 
anticonvulsant properties (McGaraughty et al.  2005  ) . In particular, GP-3269, an 
adenosine kinase inhibitor, was found to be useful for the treatment of epilepsy 
(Erion et al.  1997 ; Kowaluk and Jarvis  2000 ; McGaraughty et al.  2005 ; Wiesner 
et al.  1999  )  (Table  29.2 ). 
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 Recently, the distribution of A 
2A

 Rs in the brain has been found to be altered in an 
animal model of human absence epilepsy (Wistar Albino Glaxo/Rijswijk rat: WAG/
Rij), both before and after appearance of absence seizures (D’Alimonte et al.  2009  ) . 
A low density of A 

1
 Rs was also found in the thalamic reticular nucleus in another 

animal model of human absence epilepsy (Genetic Absence Epilepsy Rat from 
Strasbourg: GAERS) when compared with control animals (Ekonomou et al.  1998  ) . 
These results suggest that adenosine receptors might represent a novel target for the 
treatment of absence epilepsy. 

 The anticonvulsant effects of Urd have also been hypothesized; Urd was found 
to reduce penicillin- (Roberts  1973 ; Roberts et al.  1974  ) , pentylenetetrazole- 
(Dwivedi and Harbison  1975  ) , and electroconvulsion-induced (Piccoli et al.  1971  )  
seizures in experimental rodent models of epilepsy. Indeed, Urd is released follow-
ing depolarization and inhibits unit activity (Dobolyi et al.  1999,   2000  ) . Recently, 
Urd has been found to act as an antiepileptogen in hippocampal kindling models 
(Zhao et al.  2006,   2008  ) . In addition, Guo prevented seizures induced by quinolinic 
acid and other glutamatergic agents (De Oliveira et al.  2004 ; Schmidt et al.  2000  ) . 
These data suggest that Urd and Guo also have antiepileptic potential.  

    29.4.7   Insomnia 

 EEG recordings and other evidence indicate that sleep affects most cortical areas. 
Sleep waves are generated by an interaction between cortical and thalamic circuits, 
including thalamic reticular and relay nuclei. Sleep states are regulated by speci fi c 
brain centers, and dysfunction of these regions leads to insomnia. Serotonergic and 
noradrenergic projections ascending from the brainstem and histaminergic cells in 
the tuberomamillary nucleus promote consciousness, while the preoptic area of the 
hypothalamus and cholinergic neurons in the basal forebrain and tegmental nuclei 
of the pons promote sleep. Orexinergic cells in the lateral hypothalamus may also 
have important on/off functions regarding sleep states (Datta and Maclean  2007 ; 
Saper  2006  ) . The involvement of Ado in regulating sleep has long been suspected 
due to the hypnotic effects of adenosine analogues (Radulovacki  1985  ) . The distri-
bution of Ado and its inhibitory A 

1
 R and increases of Ado levels in metabolically 

challenged cells are relatively ubiquitous. Furthermore, caffeine and theophylline 
are widely used as stimulants of the CNS. Therefore, the hypothesis emerged that, 
during daytime activity, ATP is degraded to adenosine, which could induce sleep. 
Indeed, prolonged wakefulness is known to increase Ado levels in the basal forebrain 
that, in turn, may decrease the activity of cholinergic cells to promote sleep 
(Porkka-Heiskanen and Kalinchuk  2011  ) . A selective decrease in CNT2 mRNA 
levels was demonstrated in the cerebral cortex of sleep-deprived rats (Guillén-
Gómez et al.  2004  ) . These data suggest that adenosine receptor agonists and 
 nucleoside transport inhibitors might be effective in the treatment of sleep disor-
ders (Table  29.2 ). 
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 Uridine was identi fi ed as an active component of a sleep-promoting substance 
puri fi ed from the brainstem of sleep-deprived rats (Borbely and Tobler  1989 ; Inoue 
 1986  ) . Infusion of Urd increased slow wave and paradoxical sleep (Honda et al. 
 1984  ) . Intraperitoneally injected Urd resulted in a dose-dependent appearance of 
slow-wave sleep when administered shortly before onset of the dark period (Honda 
et al.  1985  ) . Based on these data, drugs elevating Urd levels in the brain should be 
tested for the treatment of insomnia in future studies.  

    29.4.8   Dementia 

 Alzheimer’s disease is a progressive, degenerative disease of the brain that is the 
most common cause of dementia in the elderly. Typical pathological features of 
Alzheimer’s disease are neuritic plaques and neuro fi brillary tangles occurring pri-
marily in the cholinergic basal forebrain and the hippocampus, frontal, parietal, and 
temporal lobes of the cerebral cortex (Peskind  1996  ) . 

 The cerebral cortex and the basal forebrain contain all elements of the nucleoside 
system (Table  29.1 ). Neuroprotection achieved by manipulating the brain nucleo-
side system could be bene fi cial in the treatment of dementia. Animal models impli-
cate the involvement of A 

2A
 Rs in the development Alzheimer’s disease. Caffeine 

and A 
2A

 R antagonists prevent beta-amyloid (25–35)-induced cognitive de fi cits in 
mice (Dall’Igna et al.  2007  ) . Additionally, caffeine elevates alertness and improves 
cognition in humans (Eskelinen et al.  2009 ; Ritchie et al.  2007  ) . These effects might 
be due to altered acetylcholine release by A 

2A
 Rs (Cunha et al.  1995 ; Jin and Fredholm 

 1997  ) . In addition to receptor antagonists, propentofylline, an inhibitor of “es” 
nucleoside transporters, has established neuroprotective effects (Kittner et al.  1997  ) , 
and its administration to patients with Alzheimer disease and vascular dementia 
resulted in functional improvements in clinical trials (Mielke et al.  1998  ) . 

 Low to intermediate Ado levels but intermediate to high A 
1
 R density has been 

observed in brain areas implicated in Alzheimer disease (Table  29.1 ), and loss of 
human hippocampal A 

1
 Rs has been shown in dementia patients (Deckert et al. 

 1998  ) . Therefore, A 
1
  receptor antagonists are potential targets for the treatment of 

dementia and cognitive disorders (Table  29.2 ). Administration of a nucleoside–
nucleotide mixture reduced memory deterioration in elderly senescence-accelerated 
mice (Chen et al.  2000  ) . In addition, age-dependent alterations in the adenosine 
system have been found (Kovács et al.  2010b ; Meyer et al.  2007  ) . These  fi ndings 
suggest that Ado might participate in the pathophysiology of learning and memory 
disorders, as well as the normal aging process. 

 In animal studies, Urd was found to improve certain types of memory function 
(Holguin et al.  2008 ; Teather and Wurtman  2003,   2005,   2006  ) . Therefore, increased 
Urd formation may mediate the positive effects of cytidine diphosphocholine (CDP-
choline) on verbal memory in aging humans (Spiers et al.  1996  ) . Consequently, 
CDP-choline and other nutritional components that increase brain Urd levels 
(Wurtman et al.  2000  )  may be important, especially during the early phases of 
Alzheimer’s disease (Van der Beek and Kamphuis  2008 ; Wurtman et al.  2009  ) . 
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 Recently, Guo has been found to protect against beta-amyloid-induced apoptosis 
(Pettifer et al.  2004  ) . This effect appeared to be mediated by the antiapoptotic prop-
erties of Guo (Di Iorio et al.  2004  ) . Guanosine was also found to modulate memory 
processes: its pretraining administration impaired retention of inhibitory avoidance 
responses in rats (Roesler et al.  2000  ) . Furthermore, the amnesic effects associated 
with GMP pretreatment are also dependent on its conversion to Guo (Saute et al. 
 2006  )  (Fig.  29.1 ).  

    29.4.9   Stroke 

 In stroke, tissue damage is most often caused by ischemia resulting from an 
occluded blood vessel (Dietrich  1998  ) . Neuroprotection by manipulation of brain 
nucleoside system may be bene fi cial in stroke victims. Adenosine and other nucle-
osides are elevated during ischemia (Rudolphi et al.  1992  ) . While adenosine 
released from neurons or accumulated by the extracellular degradation of released 
ATP could reach a concentration ef fi cient for the activation of adenosine receptors, 
a pathophysiological release from neurons as well as glial cells occurs during an 
ischemic event (Latini and Pedata  2001  ) . Agonist stimulation of the A 

1
 R may 

inhibit excessive neuronal  fi ring and may enhance local cerebral blood  fl ow 
(O’Regan  2005  ) , reducing brain damage following experimentally induced isch-
emia in animals. Indeed, lacking the A 

1
  receptor exhibited decreased hypoxic neu-

roprotection in mice (Johansson et al.  2001  ) . Thus, Ado may be involved in 
ischemic preconditioning, an endogenous neuroprotective mechanism (Liu et al. 
 2009  ) . Consequently, drugs that act on adenosine receptors, adenosine metaboliz-
ing enzymes, and nucleoside transporters (Table  29.2 , Fig.  29.1 ) and increase EC 
Ado levels could be targets for the development of clinical therapeutics suitable for 
treatment of ischemic brain disorders (Stone  2002 ; Von Lubitz  2001  ) . Importantly, 
the effectiveness of all of these potential therapies may vary between patients due 
to differences in the spatial distribution of the nucleoside system (Table  29.1 ). 
Indeed, the nucleoside system may be modulated differently in men and women 
(Kovács et al.  2010b  ) . Changes in nucleoside levels in female brain cortical sam-
ples may serve as a protective mechanism against excitotoxic insults, suggesting 
that several normal and pathological brain functions are based on gender-depen-
dent nucleoside microenvironments in humans. 

 Other nucleosides might also have neuroprotective functions in response to isch-
emic injury, and increasing their expression might be bene fi cial both during and 
after an ischemic attack. In animal models, Guo had neuroprotective effects in both 
in vitro and in vivo stroke models (Chang et al.  2008  ) . Inosine was also shown to 
reduce ischemic brain injury in rats (Shen et al.  2005  ) . Inosine and Guo preserved 
the viability of cultured astrocytes, neurons (Jurkowitz et al.  1998 ; Litsky et al. 
 1999  ) , and brain slices maintained under hypoxic or hypoglycemic conditions 
(Frizzo et al.  2002  ) . The potential neuroprotective effects of Guo are also supported 
by the  fi nding that neuronal and astrocytic cell cultures are able to release Guo and 
Ado under both basal and ischemic conditions (Ciccarelli et al.  2001  ) .  
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    29.4.10   Multiple Sclerosis 

 Multiple sclerosis is characterized by multiple symptoms of brain and spinal cord 
dysfunction that re fl ect degeneration of particular areas of the nervous system that 
are involved. The affected regions vary between patients and are not speci fi c to the 
disease. The pathological hallmark is in fl ammatory demyelination and axonal 
lesions. In fl ammation is primarily driven by autoreactive lymphocytes, which 
recruit immune cells, such as macrophages, causing tissue damage (Hauser and 
Oksenberg  2006  ) . 

 A synthetic nucleoside, cladribine, was shown to be effective in the treatment of 
multiple sclerosis (Table  29.2 ). The biologic activity of cladribine is dependent on 
the preferential accumulation of cladribine phosphates in cells with a high intracel-
lular ratio of deoxycytidine kinase to 5 ¢ NT. Cladribine-phosphates incorporate into 
DNA, interfering with DNA synthesis and repair and inhibiting enzymes involved 
in DNA metabolism, such as DNA polymerase and ribonucleotide reductase. This, 
in turn, leads to DNA strand breaks and, ultimately, cell death (Leist and Weissert 
 2011  ) . Because activated macrophages, but not neuronal and glial cells, have a high 
deoxycytidine kinase to 5 ¢ NT ratio (Ceruti et al.  2000 ; Nagata et al.  1984  ) , cladrib-
ine can selectively inhibit the damaging in fl ammatory process that occurs in multi-
ple sclerosis. 

 Inosine may also have bene fi cial effects in the treatment of multiple sclerosis 
(Markowitz et al.  2009  ) . These data suggest that regional differences in nucleoside 
system may in fl uence the pathological processes of multiple sclerosis, but further 
studies are needed to con fi rm this hypothesis. 

 In conclusion, the current data suggest that nucleoside system offers promising 
drug targets for the treatment of a variety of brain disorders, including Alzheimer’s, 
Huntington’s and Parkinson’s diseases, epilepsy, and schizophrenia. Unfortunately, 
although the nucleoside system has been implicated in the development and treat-
ment of a number of brain disorders, a systematic investigation of the nucleoside 
system in most brain areas has not yet been performed. These data are needed to 
elucidate therapeutic strategies driven by the anatomical distribution of nucleoside 
system. In addition, attention must be given to the effects of gender and age in future 
studies. These data are eagerly awaited and will help form the foundation for studies 
of the physiological and pathophysiological functions of nucleosides and for the 
development of effective treatments for several CNS diseases.       
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