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Peripheral injection of bacterial lipopolysaccharide (LPS) facilitates 8–10 Hz spike-wave discharges
(SWD) characterizing absence epilepsy in WAG/Rij rats. It is unknown however, whether peripherally
administered LPS is able to alter the generator areas of epileptic activity at the molecular level. We
injected 1 mg/kg dose of LPS intraperitoneally into WAG/Rij rats, recorded the body temperature and
EEG, and examined the protein expression changes of the proteome 12 h after injection in the fronto-
parietal cortex and thalamus. We used fluorescent two-dimensional differential gel electrophoresis to
investigate the expression profile. We found 16 differentially expressed proteins in the fronto-parietal
cortex and 35 proteins in the thalamus. It is known that SWD genesis correlates with the transitional
state of sleep–wake cycle thus we performed meta-analysis of the altered proteins in relation to inflam-
mation, epilepsy as well as sleep. The analysis revealed that all categories are highly represented by the
altered proteins and these protein-sets have considerable overlap. Protein network modeling suggested
that the alterations in the proteome were largely induced by the immune response, which invokes the
NFkB signaling pathway. The proteomics and computational analysis verified the known functional inter-
play between inflammation, epilepsy and sleep and highlighted proteins that are involved in their com-
mon synaptic mechanisms. Our physiological findings support the phenomenon that high dose of
peripheral LPS injection increases SWD-number, modifies its duration as well as the sleep–wake stages
and decreases body temperature.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The integrity of mammalian organisms is controlled by two reg-
ulatory supersystems: the immune system and the nervous system
(Elenkov et al., 2000). A fascinating example of neuro-immune
interactions is the relationship between inflammatory processes
and epileptogenesis, which represents an intensively studied field
of neuro-immunology (Lee et al., 2008; Maroso et al., 2010; Vezza-
ni et al., 2011a,b). Elevated proinflammatory cytokine level can
enhance epileptic seizure susceptibility (Galic et al., 2008; Shandra
et al., 2002; Vezzani et al., 2008a), as increased serum cytokine
levels are found in several different epilepsy syndromes (Sinha
et al., 2008). These proinflammatory cytokines are shown to be
synthesized by the glial cells in the brain (Mlodzikowska-Albrecht
et al., 2007; Vezzani et al., 2008a,b) and a fine balance exists be-
tween excitatory and inhibitory neurotransmitters and between
pro- and anti-inflammatory cytokines (Devinsky et al., 2013).

Bacterial lipopolysaccharide (LPS) is responsible for inflamma-
tory reactions associated with Gram-negative bacterial infections.
We previously reported that WAG/Rij (Wistar Albino Glaxo/Rijs-
wijk) rats (Coenen and van Luijtelaar, 2003; van Luijtelaar and Coe-
nen, 1986) – a genetic rat model of absence epilepsy – responded
to both peripheral (Kovács et al., 2006) and central (Kovács et al.,
2011) LPS administration with enhanced seizure activity, as re-
flected by high amount of 8–10 Hz spike and wave discharges
(SWDs), which represent the electrophysiologically detectable
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state of seizures in absence epilepsy. However, the mechanism by
which peripheral LPS cause central effects in the brain is not well
known. On the cellular level, LPS is expected to induce changes
in protein expression, triggered by its binding to Toll-like receptor
4 (TLR4) (Laflamme and Rivest, 2001; Li and Verma, 2002; Singh
and Jiang, 2004). Through the toll-ceramide pathway, it invokes
the nuclear factor-kappaB (NFkB) transcription factor, thereby acti-
vating hundreds of genes (Beutler, 2004; Bonizzi and Karin, 2004;
Pahl, 1999; Singh and Jiang, 2004). Moreover, TLR4 activation trig-
gers the synthesis and release of cytokines, e.g., IL1b (Kuno and
Matsushima, 1994; Li and Verma, 2002; Vezzani et al., 2011b)
Thereafter, the activated interleukin receptors – in the plasma
membrane of certain neurons and astrocytes – are able to induce
a signaling cascade, which also leads to NFkB activation (Li and
Verma, 2002; Vezzani et al., 2011b). Thus, both LPS and LPS-in-
duced interleukin release have a common final target in the tran-
scription factor, NFkB. Whereas an avalanche of genes can be
transcribed in the brain after peripheral LPS injection (Godbout
et al., 2005; Singh and Jiang, 2004), only a particular fraction of a
given set of transcribed genes are translated into proteins (Gygi
et al., 1999); therefore, understanding the molecular mechanisms
of altered excitability on the protein expression level after periph-
eral LPS injection is an important issue.

If there is an increase in the endogenous cytokine release,
evoked by the immune response, it influences the sleep–wake
behavior (Lorton et al., 2006; Opp, 2005; Opp et al., 2007) and
changes the electrical activity of the brain (Shandra et al., 2002).
Indeed, LPS administration changes the sleep-wake cycle in rats,
increases slow wave sleep (SWS) and decreases wakefulness and
rapid eye movement (REM) sleep (Kapás et al., 1998; Krueger
et al., 1986; Schiffelholz and Lancel, 2001). Additionally, correla-
tions between the sleep–wake cycle and the occurrence of SWDs
in WAG/Rij rats have been revealed: high numbers of SWDs were
found during light SWS and lower SWD numbers were detected
during active wakefulness, deep SWS and REM sleep (Coenen
et al., 1991; Drinkenburg et al., 1991). Thus, these data suggest that
the inflammation induced alterations in vigilance are in a tight
connection with the increased seizure genesis.

From a broad perspective, LPS-induced seizure enhancement in
WAG/Rij rats is an easily reproducible and advantageous model for
studying inflammation-related changes in the brain proteome. As
SWDs in WAG/Rij rats are generated in the thalamo-cortical neuro-
nal circuits (Suffczynski et al., 2004), we examined the fronto-pari-
etal cortex and thalamus. The changes in the cortical and thalamic
proteome after peripheral LPS application were studied by fluores-
cent two-dimensional differential gel electrophoresis (2D-DIGE),
and the results were extensively analyzed by Ariadne Genomics’
Pathway Studio� literature-based protein network modeling soft-
ware. We found changes in both the cortical and thalamic prote-
ome in conjunction with the LPS treatment of WAG/Rij rats and
revealed their connections with inflammation, epilepsy and
sleep-wake cycle alterations.
2. Methods

2.1. EEG experiment

2.1.1. Implantation of animals for EEG recording
Six-month-old WAG/Rij rats were used in all experiments. Ani-

mals were kept under a 12-h light–dark cycle (light was on from
08.00 AM to 08.00 PM), and food and water were supplied ad libi-
tum. The care and treatment of all animals conformed to guidelines
approved by Council Directive 86/609/EEC and the Hungarian Act
of Animal Care and Experimentation (1998, XXVIII), as well as with
local regulations for the care and use of animals for research. Rats
were maintained in air-conditioned rooms at 22 ± 2 �C, and all
efforts were taken to minimize the animals’ pain and suffering
and to reduce the number of animals used.

In the electrophysiological experiment, five rats were implanted
while under Halothane-air mixture (1%) anesthesia with 0.8-mm
stainless steel screw electrodes for EEG recording as described pre-
viously (Kovács et al., 2006). Briefly, screw electrodes were placed
into the bone above the frontal (A 2.0, L 2.1) and parietal (A �6.5, L
2.1) cortices (Paxinos and Watson, 1997). The ground electrode
was placed above the cerebellar cortex, whereas a stainless steel
reference electrode (a plate of 3 � 4 mm) was implanted under
the skin and over the masseter muscle. Electrodes were soldered
to a ten-pin socket and glued to the skull with dentacrylate ce-
ment. Lidocaine ointment was used for post-implantation pain re-
lief. Rats were allowed to recover for at least two weeks. The
recovery was controlled by recording the EEG, and full recovery
was established when the SWD frequency was stabilized. Animals
were gently handled several times daily to reduce stress-induced
changes in the SWD-number. Thermo-resistors (Pt 100) were used
for body temperature measurement by implanting them onto the
surface of the skull. Body temperature was measured every
10 min at 0.05 �C accuracy with a thermometer (SUPERTECH Ltd.,
Pécs, Hungary).

2.1.2. Recording of SWDs and LPS treatments
A differential amplifier (SUPERTECH Bioamp 4, Pécs, Hungary)

and an analog–digital conversion interface (CED 1401 lII data cap-
ture and analysis device; Cambridge, UK) were used for EEG data
recording (bandwidth of the EEG recording: 0.3–150 Hz, sampling
rate: 1 kHz). To establish the average SWD numbers, average SWD
duration and total duration of SWDs, as well as the sleep–wake
pattern, animals (n = 5) were i.p. injected daily with 1 ml saline
for 3 days and EEGs were recorded. Following the 3-day control
period, rats were i.p. injected with 1 mg/kg LPS (Sigma–Aldrich
Ltd., Budapest, Hungary, Escherichia coli, serotype O111:B4) dis-
solved in 1 ml saline. To examine the possible long-lasting effects
of LPS on SWDs and the sleep–wake cycle, a saline control experi-
ment (post-treatment control day, 1 ml saline i.p.) was performed
on the fifth day.

The same dose of LPS was injected into intact WAG/Rij rats
(n = 6) for the proteomic study.

2.1.3. Analysis of EEG data: determination of SWD numbers and SWD
duration and evaluation of sleep-wake stages

We measured the number and duration of SWDs, as well as the
sleep–wake stages, between 30 and 270 min post-injection (from
1.30 PM to 6.00 PM). Initial stress can change the number of SWDs
and the sleep–wake stages in the first 30 min (Kovács et al., 2006,
2012; Sarkisova and van Luijtelaar, 2011); thus, the first 30-min
post-injection time was omitted from analysis. The recording peri-
ods were split into 60-min sections, and these sections were eval-
uated separately. SWDs (with the average amplitude at least twice
as high as the basal EEG activity, power spectra 7–11 Hz) (Fig. 1A)
were extracted from the raw data files and were checked by FFT
analysis (Kovács et al., 2006).

EEG was analyzed offline by visual evaluation of the raw EEG
(Gottesmann et al., 1995; Kovács et al., 2006, 2012). Briefly, we dis-
tinguished five stages in 60-min epochs as follows: passive awake
(dominantly beta (20–40 Hz) and theta (6–8 Hz) activity); active
awake (beta and theta activity interrupted by high slow waves of
motor artifacts); light slow-wave sleep (light SWS; sleep spindles
(10–16 Hz), theta waves and some slow waves (2–4 Hz)); deep
slow-wave sleep (deep SWS; gradually disappearing sleep spindles
and increasing ratio of high slow delta waves (0.5–4 Hz)); and ra-
pid eye movement sleep (REM sleep; continuous theta activity
without any motor artifact).



Fig. 1. The effect of 1 mg/kg LPS (i.p.) on the epileptic activity and body
temperature of WAG/Rij rats. (A) A representative SWD measured in the WAG/Rij
rat. (B) Number of SWDs after LPS injection (black columns) and on the following
day (post-treatment control day: post-tr. control day; gray columns) in the% of
control. The number of SWDs significantly increased during the whole 4-h
recording period after the LPS treatment, whereas on the post-treatment control
day it significantly decreased between 30 and 150 min; ⁄ labels p < 0.05 and ⁄⁄ labels
p < 0.005 level of significance. (C) Changes of the body temperature (�C) after LPS
injection (black squares) and on the post-treatment control day (post-tr. control
day; open circles).
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The means of averaged SWD number, SWD duration and dura-
tion of sleep-wake stages of 3-day control periods were compared
to the SWD number, SWD duration and duration of sleep-wake
stages measured after i.p. LPS injection and on the post-treatment
control day. The changes were evaluated by ANOVA.

2.2. Proteomics experiment

2.2.1. Preparation of tissue samples and the DIGE method
The gender, the weight and the age of rats were the same in the

proteomics and the electrophysiological experiments. The two
studies were done at different time and on different animals, but
in the same schedule. Animals used in the proteomics experiment
were i.p. injected daily with 1 ml saline for 3 days. After 3 days, LPS
or saline injection in LPS treated or control groups of animals were
done at the same time points in both experiments. The LPS-treated
rats (n = 6) and saline-injected control rats (n = 6) were sacrificed
12 h after injections and the brains were rapidly removed from
the skull (<20 s) and immediately cooled in dry ice. The thalamus
and the fronto-parietal cortex were dissected on a plate in dry
ice and stored at �80 �C until use. Alteration of protein expression
profile was determined using 2D-DIGE Minimal Dye method. All
equipment, material and software were supplied from GE Health-
care, Little Chalfont, UK, if not, it is labeled separately. The detailed
DIGE protocol has been described in our earlier study (Szego et al.,
2010). In briefly, after brain homogenization and centrifugation
protein concentration was determined. Fifty micrograms of protein
containing volume of the samples was labeled with CyDye DIGE
Fluor Minimal Labeling Kit. Brain lysates from LPS- or saline-trea-
ted rats were labeled with Cy3 or Cy5 randomly, and the reference
(pooled internal standard) was labeled with Cy2. The three differ-
ently labeled protein samples were multiplexed and six mixtures
were run in six gels simultaneously. The isoelectric focusing was
performed on 24-cm IPG strips (pH 3–10 NL) in an Ettan IPGphor
instrument. After separation the focused proteins were reduced
then alkylated in equilibrating buffer containing mercaptoethanol
and iodoacetamide, respectively for 20–20 min (both of them were
purchased from Sigma–Aldrich Ltd., Budapest, Hungary). Then the
strips were loaded onto 10% polyacrylamide gels (24 � 20 cm) and
electrophoresis was performed using an Ettan DALT System. Fol-
lowing electrophoresis, gels were scanned in a TyphoonTRIO+
scanner using appropriate lasers and filters. Differences were visu-
alized using Image Quant software and quantitative analysis was
performed using the DeCyder software package: the Differential
In-gel Analysis and the Biological Variance Analysis modules. The
p values (Student’s t-test) were determined for each protein spot.
The internal standard was a pool of equal amounts of all samples
within the experiment, and it was representative of every protein
present and was the same across all gels. The standard provided
an average image against which all other gel images were normal-
ized, thus removing much of the experimental variation and reduc-
ing gel-to-gel variation.

For protein identification, a separate preparative 2D electropho-
resis was performed with the above mentioned methods and set-
tings using a total of 800 lg of proteins per gel. Resolved protein
spots were visualized post-electrophoretically by Colloidal Coo-
massie Blue G-250 (Merck, Darmstadt, Germany) according to
the protocol.

Individual spots of interest were punched out from the prepara-
tive gel, de-stained and subjected to in-gel digestion with trypsin
(Trypsin Gold (Promega)) for 8 h at 37 �C (modified after Shev-
chenko et al., 1996). Tryptic digest peptides were extracted from
gel pieces using 5% formic acid and were dried under a vacuum.

2.2.2. LC/MS analysis and protein identification
All LC-MS experiments were performed using Agilent 1100 Ser-

ies nano-LC coupled through an orthogonal nanospray ion source
to an Agilent LC-MSD XCT Plus ion trap mass spectrometer (Agilent
Co., USA). The nano-LC system was operated in sample enrich-
ment/desalting mode using a ZORBAX 300SB-C18 column
(0.3 � 50 mm, 5 lm) for the enrichment and a ZORBAX 300SB-
C18 (75 lm � 150 mm) nanocolumn for the chromatography. Elu-
tion of peptides was accomplished by gradient elution at a flow
rate of 300 nl/min with a gradient from 100% solvent A (0.1% for-
mic acid in water) to 40% solvent B (0.1% formic acid in acetoni-
trile) in 25 min. The MS was operated in peptide scan auto-MS/
MS mode, acquiring full-scan MS spectra (300–1600 m/z) at a scan
speed of 8100 u/s and a resolution of less than 0.35 u (FWHM).
From the four most abundant peaks in the MS spectrum, auto-
mated, data-dependent MS/MS was used to collect MS/MS spectra
(100–1800 m/z at 26,000 u/s and a resolution of less than 0.6 u,
FWHM).

All acquired data were processed and peak lists were generated
by the Agilent DataAnalysis 3.2 software using the default settings.
All MS/MS samples were analyzed using Mascot 2.2.04 (Matrix Sci-
ence, London, UK) and X! Tandem http://www.thegpm.org/tan-
dem/. Mascot and X! Tandem were set up to search the
Swissprot 56.8 database, assuming trypsin as the digestion
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enzyme. Both search engines assumed a fragment ion mass toler-
ance of 0.80 Da and a parent ion tolerance of 1.5 Da. An iodoaceta-
mide derivative of cysteine as a fixed modification and oxidation of
methionine as a variable modification were specified in Mascot
and in X! Tandem.

Scaffold (version Scaffold_2_02_03, Proteome Software Inc.,
Portland, OR) was used to validate MS/MS-based peptide and pro-
tein identifications. Peptide identifications were accepted if they
could be established at greater than 95.0% probability, and protein
identifications were accepted with greater than 95.0% probability
and containing at least 2 identified peptides.
2.2.3. Strategies of interpretation modeling
For interpretation of our proteomics data, we first used manual

verification and initial functional clustering using PDB (http://
www.pdb.org, La Jolla, CA, USA), ExPASy and UniProt databases
(http://www.expasy.org and http://www.uniprot.org, respectively;
Swiss Institute of Bioinformatics, Switzerland). Subsequently, the
lists of altered proteins were given to the Ariadne Genomics Path-
way Studio� 9.0 software environment, a protein interaction data-
base and protein network modeling software (ResNet 9.0, 2010Q4,
Ariadne Genomics, Inc, Rockville, MD, USA) (Kékesi et al., 2012).
The group enrichment analysis tool was used to assign cellular
localization to our measured proteins. We made two separate fig-
ures for the LPS effect in the two brain structures. We built two
protein interaction pathways where NFkB and some NFkB-regu-
lated proinflammatory proteins (chemokines, cytokines, enzymes
and adhesion molecules) are connected to the altered proteins in
our brain samples and are grouped according to the available liter-
ature. In these two figures, inflammation-related networks are
shown, where connections represent LPS-induced alterations and
connections between well-known, and recently identified, inflam-
mation-related proteins.

We also tested whether our measured proteins could be found
in the SynProt database (http://www.synprot.de), which is dedi-
cated to synaptic proteins primarily based on data obtained from
twelve different proteomics screens on postsynaptic density
(PSD) synaptic protein preparations.
3. Results

3.1. Changes in the SWD number, SWD duration and body
temperature after LPS injection

LPS injection (1 mg/kg i.p.) significantly increased the number
of spike and wave discharges (SWDs) in WAG/Rij rats (Fig. 1B).
One recorded example of SWDs, characterized by 8–10 Hz oscilla-
tions is shown on Fig. 1A. The number of SWDs more than doubled
relative to the control level (246.6 ± 47.5%) in the first measured
hour (30–90 min), and it increased further during the following
2 h (up to 763.5 ± 229.3%) and remained high (591.3 ± 161.1%) in
the last hour (210–270 min; Fig. 1B). In addition, the total SWD
duration also increased in parallel with an increase in the SWD
number (in the% of control; 30–90 min: 257.4 ± 56.4; 90–
150 min: 279.3 ± 25.6; 150–210 min: 568.6 ± 163.4; and 210–
270 min: 524.4 ± 98.5). LPS injection also changed the morphology
of the SWDs, as the amplitude of the SWDs became more variable
and the long SWD spindles were fragmented. Indeed, the average
SWD duration significantly decreased between 90–150 and 150–
210 min (% of control: 78.5 ± 6.2 and 75.5 ± 6.6). On the post-treat-
ment control day, the SWD number significantly decreased be-
tween 30–90 and 90–150 min (SWD number/SWD duration as%
of control: 35.5 ± 9.1/31.2 ± 7.1 and 45.5 ± 19.0/44.6 ± 18.4). LPS
caused a 1.0 degree Celsius decrease in body temperature during
the second measured hour, which remained reduced for two hours,
then started to increase, and on the post-treatment control day re-
turned to normal (Fig. 1C).

3.2. Effect of LPS treatment on sleep-wake stages

The mean of active and passive wake time (sec) significantly de-
creased during the whole 4-h recording period after LPS treatment
(except the passive wake time between 30 and 90 min), whereas
light SWS duration significantly increased (% of control; 30–
90 min: 135.0 ± 7.7; 90–150 min: 129.2 ± 5.6; 150–210 min:
130.9 ± 9.9; 210–270 min: 141.5 ± 6.5). Deep SWS and REM sleep
times were significantly decreased by LPS between only 210–
270 min (% of control; deep SWS: 83.2 ± 6.0; REM sleep:
67.1 ± 8.5).

We did not observe significant changes in sleep-wake stages on
the post-treatment control days.

3.3. LPS altered the proteome of the fronto-parietal cortex and
thalamus

We used 2D-DIGE proteomics technology to investigate the dif-
ferences in the protein expression profile of the fronto-parietal cor-
tex and thalamus of WAGR/Rij rats that were peripherally injected
with LPS. Fifteen protein spots in the fronto-parietal cortex and 28
protein spots in the thalamus had significant differences (Suppl.
Fig. 1 shows the representative gel images). The fold changes in
the fluorescence intensities of the protein spots were in the ranges
of �1.106 to �1.378 (reduced concentration) and +1.062 to +2.044
(elevated concentration) after the LPS treatment (groups were nor-
malized to the internal standard), and all changes were statistically
significant (p < 0.05) using standard t-test across all gels (see Suppl.
Table 1). In the cortex, 8 protein spots’ intensity increased while
seven spots’ intensity decreased in gel compared to the control
after the LPS treatment. In the thalamus, 19 protein spots’ intensity
increased and nine spots’ intensity decreased (see Suppl. Table 1).

MS/MS analysis of the altered spots revealed 16 proteins from
the cortex and 35 proteins from the thalamus (Table 1, Suppl. Ta-
bles 1 and 2). The following four proteins were found in both brain
areas: ATP synthase subunit d, mitochondrial protein (ATP5H),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glial fibril-
lary acidic protein (GFAP) and neurofilament light polypeptide
(NEFL). The number of spots and the number of identified proteins
cannot be matched directly, as there were a few spots without an
identified protein, while in many cases, the same spot contained
more than one protein. To determine high abundance proteins in
a multi-protein spot, MS mol% is estimated from the exponentially
modified protein abundance index (emPAI) calculated for each pro-
tein and the sum of emPAI values of all proteins in the spot (see
Suppl. Table 1). Only peptides with scores above the homology
threshold were counted (http://www.matrixscience.com/help/
quant_empai_help.html). Only very low abundance proteins
(<2 mol%) were removed, false positive expression changes are con-
sidered to be caused by random coincidence of isoelectric point
(IEP) and molecular weight (Mw). Furthermore, there were pro-
teins that were identified from multiple spots. In some exceptional
cases, the same protein can be found in two different spots that
changed in opposing directions (see Table 1 and Suppl. Table 1).
These are common phenomena in gel-based proteomics, and they
can be explained by the physical interactions of some proteins or
by post translational modifications (e.g. phosphorylation).

Functional clustering revealed that the measured proteins could
be associated with biological functions and processes, such as cyto-
skeletal proteins (n = 11; Th-Ctx; overlap: 10-3; 2), motor proteins
(n = 4; 4-0; 0), chaperone/oxidative stress (n = 6; 5-1; 0), carbohy-
drate metabolism (n = 4; 3-2; 1), lipid metabolism (n = 3; 1-2; 0),
protein metabolism (n = 2; 2-0; 0), ATP synthesis/respiratory chain

http://www.pdb.org
http://www.pdb.org
http://www.expasy.org
http://www.uniprot.org
http://www.synprot.de
http://www.matrixscience.com/help/quant_empai_help.html
http://www.matrixscience.com/help/quant_empai_help.html


Table 1
Functionally clustered protein list and identification data of significantly altered proteins in the thalamus and the cortex. ⁄ proteins involved in synaptic functions.

Gene name Protein name Th Ctx Cellular localization Function

Cytoskeletal proteins
ACTA2⁄ Smooth muscle alpha-actin ; Cytoplasm Cytoskeletal protein, cell motility
CAPG⁄ Macrophage-capping protein " Cytoplasm, nucleus, extracellular

space
Cytoskeletal organization, involved in macrophage
function

DPYSL2⁄ Dihydropyrimidinase-related protein 2 " Cytoplasm, mitochondrion Axon guidance, neuronal growth, cell migration,
cytoskeleton remodeling

GFAP⁄ Glial fibrillary acidic protein "; " Cytoplasm Cytoskeletal protein, cell-specific marker
INA⁄ Alpha-internexin " Cytoplasm Cytoskeletal organization, neuronal morphogenesis
LMNA⁄ Lamin-A ; Nucleus Provides a framework for the nuclear envelope and

interacts with chromatin
LMNB1⁄ Lamin-B1 ; Nucleus Provides a framework for the nuclear envelope and

interacts with chromatin
NEFL⁄ Neurofilament light polypeptide ; ; Cytoplasm Maintenance of neuronal caliber
TUBB2A⁄ Tubulin beta-2A chain " Cytoplasm Microtubule-based movement
TUBB2C⁄ Tubulin beta-2C chain, Neuron-specific " Cytoplasm Microtubule-based movement
TUBB3⁄ Tubulin beta-3 chain " Cytoplasm Microtubule-based movement

Motor proteins
MYH1 Myosin, heavy chain 1; skeletal muscle –

Myh11 O08638
; Cytoplasm Motor protein, muscle contraction

MYL1⁄ Myosin, light chain 1 ; Cytoplasm Motor protein, regulatory light chain of myosin
TAGLN2⁄ Transgelin 2 ; Muscle organ development
TPM2⁄ Tropomyosin 2 (beta chain) " Cytoplasm Motor protein, association with the troponin complex

Chaperone/oxidative stress
DNAJB11 DnaJ homolog subfamily B member 11 " Cytoplasm, endoplasmic

reticulum
Co-chaperone for HSPA5

HSPA8⁄ Heat shock cognate 71 kDa protein "; Cytoplasm, plasma membrane Chaperone
PARK7⁄ Protein DJ-1 " Cytoplasm, mitochondrion,

nucleus
Chaperone, response to oxidative stress

PDIA6⁄ protein disulfide-isomerase 6 " Endoplasmic reticulum Catalyzes the rearrangement of –S–S– bonds in proteins
STIP1 Stress-induced-phosphoprotein 1 ; Cytoplasm, nucleus Association of the molecular chaperones HSC70 and

HSP90
PRDX6⁄ Peroxiredoxin 6 " Cytoplasm, endoplasmic

reticulum
Response to oxidative stress, lipid metabolism

Carbohydrate metabolism
ENO1⁄ Alpha-enolase " Cytoplasm, nucleus, plasma

membrane
Glycolysis, growth control, hypoxia tolerance, allergic
responses

GAPDH⁄ Glyceraldehyde-3-phosphate
dehydrogenase

; " Cytoplasm Carbohydrate metabolism, tRNA binding, transcription
regulation, apoptosis, cytoskeletal organization

MDH1⁄ Malate dehydrogenase, cytoplasmic "; Cytoplasm Carbohydrate metabolism, glycolysis
TPI1⁄ Triosephosphate isomerase ; Cytoplasm Glycolysis, gluconeogenesis

Lipid metabolism
APOE⁄ Apolipoprotein E " Extracellular space Cytoskeleton organization, lipid metabolism, response to

oxidative stress
IAH1 Isoamyl acetate-hydrolyzing esterase 1

homolog
" Cytoplasm Lipid degradation

PAFAH1B2 Platelet-activating factor acetylhydrolase
IB subunit beta

" Cytoplasm Lipid degradation, lipid metabolism

Protein metabolism
PSME1 Proteasome activator complex subunit 1 " Cytoplasm Immunoproteasome assembly and antigen processing
UCHL1⁄ Ubiquitin carboxyl-terminal hydrolase

isozyme L1
" Cytoplasm Processing of ubiquitin precursors and of ubiquitinated

proteins

ATP synthesis/respiratory chain
ATP5B⁄ ATP synthase, H+ transporting,

mitochondrial F1 complex, beta
polypeptide

"; Mitochondrion ATP synthesis

ATP5H⁄ ATP synthase subunit d, mitochondrial ; ; Mitochondrion ATP synthesis
NDUFV2⁄ NADH dehydrogenase [ubiquinone]

flavoprotein 2, mitochondrial
" Mitochondrion Core subunit of the membrane respiratory chain NADH

dehydrogenase
SUCLA2⁄ Succinyl-CoA ligase [ADP-forming] subunit

beta, mitochondrial
; Mitochondrion Carbohydrate metabolism, tricarboxylic acid cycle

UQCRC1⁄ Cytochrome b-c1 complex subunit 1,
mitochondrial

" Mitochondrial inner membrane Respiratory chain

Signal transduction
GNB2⁄ Guanine nucleotide-binding protein G(I)/

G(S)/G(T) subunit beta-2
" Cytoplasm Modulator or transducer in various transmembrane

signaling systems
GUK1⁄ Guanylate kinase 1 ; Cytoplasm Recycling GMP and indirectly, cGMP

Transcription/translation
HNRNPA2B1⁄ Heterogeneous nuclear ribonucleoprotein

A2/B1
" Nucleus Pre-mRNA processing

HNRNPH2⁄ Heterogeneous nuclear ribonucleoprotein
H2

; Nucleus Pre-mRNA processing
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Table 1 (continued)

Gene name Protein name Th Ctx Cellular localization Function

PURA⁄ Transcriptional activator protein Pur-alpha " Nucleus, cytoplasm Transcription activation, initiation of DNA replication and
recombination

Synaptic transmission
ATP6V1E1⁄ V-type proton ATPase subunit E 1 "; Lysosome, mitochondrion,

plasma membrane
Acidifying a variety of intracellular compartments

NECAP1⁄ Adaptin ear-binding coat-associated
protein 1

; Cytoplasm, plasma membrane Involved in endocytosis

SEPT3⁄ Neuronal-specific septin-3 " Cytoplasm, plasma membrane Synaptic plasticity, cytoskeletal filament formation
cytokinesis

SEPT5⁄ Septin-5 " Cytoplasm, plasma membrane,
synaptic vesicle membrane

Cytoskeleton organization, cytokinesis

SH3GL2⁄ Endophilin-A1 " Cytoplasm, mitochondrion Recruition of proteins to membranes, synaptic vesicle
endocytosis

Miscellaneous
PPA1 Inorganic pyrophosphatase " Cytoplasm Phosphate metabolic process
VDAC1⁄ Voltage-dependent anion-selective

channel protein 1
" Mitochondrion, plasma

membrane
Cell volume regulation, apoptosis
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(n = 5; 3-3; 1), signal transduction (n = 2; 1-1; 0), transcription/
translation (n = 3; 2-1; 0), synaptic transmission (n = 5; 4–1; 0)
and miscellaneous (n = 2; 1-1; 0) (see Table 1).

To gain more biologically relevant information from our protein
lists, we performed a literature-based bioinformatics analysis. By
manual literature search, we sorted the experimentally altered
proteins into groups based on their association with epilepsy and
LPS-induced inflammation (Suppl. Table 3). We assigned the pro-
teins to the following 4 groups: (i) proteins known both from the
epilepsy and LPS literature (15 altered proteins); (ii) proteins
known only from the literature on epilepsy (13); (iii) proteins
known only from the LPS literature (10); and iv) proteins that are
not known in either the LPS or epilepsy literature (10). The major-
ity of the proteins (81%) were known from the extensive epilepsy
and/or LPS-induced inflammation literature (Suppl. Table 3). More-
over, we also compiled a list of the sleep-related proteins (32,
(68%)) (Suppl. Table 3) based on the sleep-promoting effect of
LPS treatment to elucidate common cellular components of the
processes involved in absence seizures and sleeping.

3.4. Interpretation modeling of our proteomics data

We compiled two separate figures for the LPS effect in the two
brain structures (Fig. 2 and Fig. 3). In the modeling we marked the
certainly identified proteins to separate them from the uncertain
ones (based on Suppl. Table 1). We considered a protein ‘‘certainly
identified’’ if (a) it was the only one found in a given spot; or (b) it
had the highest MS mol% score in a multi-protein spot; or (c) two
proteins in a single spot with the highest MS mol% scores if the dif-
ference between their scores was <5%. Some proteins revealed in
our study are highly connected to members of the complex inflam-
mation-related molecular network, and a notable proportion of the
identified proteins are involved in these networks in general.

We also searched the SynProt database for the recently identi-
fied proteins, and forty of the measured proteins (85%) were found
in the database as follows (see Table 1; (⁄) after gene name): thal-
amus 31 (66%), cortex 13 (28%), and both 4 (100%).
4. Discussion

We report here that peripherally injected LPS induces altera-
tions in the cortical and thalamic brain tissue proteome of WAG/
Rij rats that occur in parallel with enhanced epileptic spike-wave
discharges, and we report the effects of LPS on the sleep-wake cy-
cle. SWDs in the electroencephalogram (EEG) are the hallmark of
absence seizures, reflecting hypersynchronization in thalamo-cor-
tical circuits. Experimental studies of genetic rat models of absence
epilepsy have indicated that the perioral region of the somatosen-
sory (parietal) cortex initiates the seizure activity that entrains the
thalamo-cortical circuit and produces generalized SWD activity
(Meeren et al., 2002; Polack et al., 2007). No structural changes
were observed in SWD generator brain regions, but several
changes at the subcellular level have been observed, such as
changes in receptor subunits (Beyer et al., 2008; van de Bovenk-
amp-Janssen et al., 2006) and ion channel expression (de Borman
et al., 1999; Klein et al., 2004; Kole et al., 2007; Lakaye et al.,
2002; van de Bovenkamp-Janssen et al., 2004; Weiergräber et al.,
2008). Recently, a proteomics study identified ATP synthase sub-
unit delta, 14-3-3 zeta isoform, myelin basic protein and macro-
phage migration inhibitory factor as differentially expressed
proteins in these regions in Genetic Absence Epilepsy Rats from
Strasbourg (GAERS) (Danis et al., 2011). Thus, it can be assumed
that the seizure genesis areas in WAG/Rij rats are molecularly dif-
ferent from normal rats.

Previously, we demonstrated that both peripheral and central
LPS injection facilitates SWD genesis in the WAG/Rij rat (Kovács
et al., 2006, 2011). In this study, we injected a high dose of LPS
(1 mg/kg i.p.) that increased the SWD number up to 800% and de-
creased the body temperature. In addition, the SWD number de-
creased on the post-treatment control day, indicating that
protein expression changes reduced the absence-like activity. This
finding suggests that SWDs are sensitive read-outs of molecular
changes that enhance the thalamo-cortical excitability and hyper-
synchronization induced by LPS. Because protein synthesis and
degradation are time consuming and because alterations in the
proteome are more sustained than the changes in the transcrip-
tome, we measured protein expression changes 12 h after LPS
injection and identified 16 differentially expressed proteins in
the fronto-parietal cortex and 35 proteins in the thalamus. Thus,
we focused on sustained protein changes, which were sustained
longer than the rapidly developing proinflammatory cytokine re-
sponse to LPS. Proteomics is a principally data-driven molecular
hypothesis-making approach; therefore, we intend to select molec-
ular mechanisms that can be investigated by classical experimen-
tal approaches.
4.1. Critical considerations about the interpretation of proteomics data

Protein separation and detection methods are less sensitive
than RNA detection due to a lack of amplification methods such



Fig. 2. Network of inflammation-related proteins supplemented with proteins identified from the cerebral cortex. The figure depicts that LPS induced signaling in the
periphery leads to the subsequent production of proinflammatory factors (IL1B and TNF are highlighted) which activate proinflammatory cellular events as well and the latter
occurs also in the central nervous system. Connections between the entities represent direct bindings, protein modifications and expression regulations. Red: Inflammation
promoting proteins upstream to NF-jB. Blue: Inflammation promoting proteins downstream to NF-jB. Green: Proteins identified from the cerebral cortex. Abbreviations:
CCL2: C–C motif chemokine 2; CCL3: C–C motif chemokine 3; CCL5: C–C motif chemokine 5; CSF2: granulocyte–macrophage colony-stimulating factor; ICAM1: intercellular
adhesion molecule 1; IKBK: inhibitor of nuclear factor kappa-B kinase; IL1B: interleukin-1 beta; IL1R1: interleukin-1 receptor type 1; IL6: interleukin-6; IL8: interleukin-8;
IRAK1: interleukin-1 receptor-associated kinase 1; IRAK4: interleukin-1 receptor-associated kinase 4; LPS: lipopolysaccharide; MAP3K7: mitogen-activated protein kinase
kinase kinase 7; MYD88: myeloid differentiation primary response protein MyD88; NF-kB: nuclear factor NF-kappa-B; NFKBIA: NF-kappa-B inhibitor alpha; NOS2: nitric
oxide synthase, inducible; PLA2G1B: phospholipase A2; PTGS2: prostaglandin G/H synthase 2; SELE: E-selectin; TIRAP: toll/interleukin-1 receptor domain-containing adapter
protein; TLR4: Toll-like receptor 4; TNF: tumor necrosis factor; TOLLIP: toll-interacting protein; TRAF6: TNF receptor-associated factor 6; VCAM1: vascular cell adhesion
protein 1. The certainly identified proteins marked with darker color and bold text, based on Suppl. Table 2. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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as PCR. Deduction of protein expression from mRNA would provide
only a partial solution because of the intense mRNA degradation in
the nucleus, as only a fraction of the transcribed genes are trans-
lated into proteins and the selection rules are unknown (Gygi
et al., 1999). State-of-the-art proteome analysis allows the detec-
tion of a few thousand proteins (detecting 2000–3000 proteins is
routine) out of the estimated 30,000 different proteins within a cell
(Lopez, 2007; Marouga et al., 2005). Thus, we are only capable of
tracking the concentration changes of 10% of the entire proteome
of a sample. Therefore, it is not surprising that the primary dataset
of the statistically significant protein concentration changes in a
DIGE study contains a relatively small number of altered proteins,
which are weakly interconnected by direct interactions.

Without a method capable of tracking the concentration
changes of all proteins in a given cell, we have to deal not merely
with our measured proteins but also with their known protein
interactions. In the present study we tried to follow this logic as
we attempted to highlight the complexity of the cellular processes
that drive LPS-induced changes in brain function (and dysfunction)
using bioinformatics tools for extending the measured dataset to
functionally relevant networks of proteins that might be involved
in the molecular action of LPS. Our approach was based on the
reconstruction of known LPS-activated protein networks, such as
the cytokine release inducing pathways. We used the Ariadne
Genomics Pathway Studio� 9.0 software environment, which was
developed for the analysis and navigation of molecular networks
(Nikitin et al., 2003). It uses MedScan technology, which is a natu-
ral language processing engine that extracts molecular interactions
and functional relationships from the entire contents of PubMed,
as well as accessible open-source full-text articles (Novichkova
et al., 2003). It has to be noted that Pathway Studio makes 10% false
connections in a network, thus we performed a serious control of
the network nodes and edges.

4.2. LPS administration-induced signaling leads to extensive metabolic
changes – functional interplay between inflammation, sleep and
epilepsy

The identified proteins that changed after LPS injection in the
WAG/Rij rats were associated with several different cellular pro-
cesses (see Table 1). The majority of the measured proteins were
known from the extensive epilepsy and/or LPS/inflammation liter-
ature, and only eight altered proteins (17%) were found to be inde-
pendent from both (4 are not shown in Suppl. Table 3). According
to the literature, LPS-induced cellular changes involve receptors on
the cell surface and a complex inflammation-related intracellular
molecular network (see Figs. 2 and 3). The massive amount of
the network-connected proteins, identified in our recent study, is



Fig. 3. Network of inflammation-related proteins supplemented with proteins identified from the thalamus. The figure depicts that LPS induced signaling in the periphery
leads to the subsequent production of proinflammatory factors (IL1B and TNF are highlighted) which activate proinflammatory cellular events as well and the latter occurs
also in the central nervous system. Connections between the entities represent direct bindings, protein modifications and expression regulations. Red: Inflammation
promoting proteins upstream to NF-jB. Blue: Inflammation promoting proteins downstream to NF-jB. Green: Proteins identified from the thalamus. Abbreviations: CCL2: C–C
motif chemokine 2; CCL3: C–C motif chemokine 3; CCL5: C–C motif chemokine 5; CSF2: granulocyte–macrophage colony-stimulating factor; ICAM1: intercellular adhesion
molecule 1; IKBK: inhibitor of nuclear factor kappa-B kinase; IL1B: interleukin-1 beta; IL1R1: interleukin-1 receptor type 1; IL6: interleukin-6; IL8: interleukin-8; IRAK1:
interleukin-1 receptor-associated kinase 1; IRAK4: interleukin-1 receptor-associated kinase 4; LPS: lipopolysaccharide; MAP3K7: mitogen-activated protein kinase kinase
kinase 7; MYD88: myeloid differentiation primary response protein MyD88; NF-kB: nuclear factor NF-kappa-B; NFKBIA: NF-kappa-B inhibitor alpha; NOS2: nitric oxide
synthase, inducible; PLA2G1B: phospholipase A2; PTGS2: prostaglandin G/H synthase 2; SELE: E-selectin; TIRAP: toll/interleukin-1 receptor domain-containing adapter
protein; TLR4: Toll-like receptor 4; TNF: tumor necrosis factor; TOLLIP: toll-interacting protein; TRAF6: TNF receptor-associated factor 6; VCAM1: vascular cell adhesion
protein 1. The certainly identified proteins marked with darker color and bold text, based on Suppl. Table 2. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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an interesting finding. The proteins associated with the epilepsy
literature are mainly related to carbohydrate and energy metabo-
lism, and the data assume intensive cytoskeletal changes as well
(Suppl. Table 3). These facts led to a hypothesis about functional
crosstalk between the molecular mechanisms of epilepsy and
inflammation in the brain, and they support the idea that inflam-
mation-activated signaling is able to influence metabolic activity
and cytoskeletal alterations, which in turn are associated with en-
hanced epileptic seizures.

In addition, cytokines are responsible for inflammation-induced
sleep enhancement (Krueger, 2008; Krueger et al., 1986, 2011) and
increased seizure susceptibility (Vezzani, 2005; Vezzani et al.,
2002, 2008a,b). Thus, it is also an interesting topic to elucidate
the relationship between the modification of the sleep–wake cycle
by LPS treatment and increased frequency of seizures. A 1 mg/kg
dose of LPS increased the time of light SWS and decreased the deep
SWS time, so the observed rise in SWD number could be a conse-
quence of that change in vigilance. We conducted a literature-
based bioinformatics analysis from the altered proteins in relation
to sleep. From the 47 affected proteins, 32 (68%) were identified in
the sleep literature (Suppl. Table 3), and among these proteins, 27
were known from the epilepsy and/or LPS/inflammation literature
as well (Suppl. Table 3). Many of the sleep-related proteins were
also involved in mechanisms of seizure generation, and only 5 of
32 were solely sleep-related proteins in our dataset. In conclusion,
our data suggest overlapping molecular mechanisms of inflamma-
tion, sleep and epilepsy in the brain. LPS is assumed to be a factor
in exerting a sleep-promoting effect; thus, the shift in the sleep–
wake cycle to light SWS after LPS administration may enhance
the occurrence of absence seizures. This is another data-driven
working hypothesis that requires serious investigation in the
future.

4.3. Proteomics data highlights proteins that are also involved in
synaptic function

In our previous study, we measured the elevation of IL1b, TNFa
and IL6 after injection of 350 lg/kg LPS in the WAG/Rij rat (Kovács
et al., 2006), as an increase in cytokine levels is involved in direct
synaptic modulation that influences the brain.

One of the most interesting findings of our proteomics study is
that the majority of the altered proteins may be involved in synap-
tic transmission, as 85% of them have been found in the SynProt
database (see ⁄ in Table 1).

Several proteins regulate synaptogenesis by their involvement
in the formation of developing neurites and in the arborization of
the dendritic structures, including alpha-internexin (INA) (Benson
et al., 1996), dihydropyrimidinase-related protein 2 (DPYSL2)
(Chae et al., 2009), neuronal specific septin-3 (SEPT3) (Tsang
et al., 2011), septin-5 (SEPT5) (Tsang et al., 2011), and ubiquitin
carboxyl-terminal hydrolase isozyme L1 (UCHL1) (Cartier et al.,
2009). The following is another group of identified proteins that
are known molecular players in the recycling of synaptic vesicles
or in vesicular neurotransmitter filling: adaptin ear-binding coat-
associated protein 1 NECAP1 (Murshid et al., 2006), endophilin-
A1 (SH3GL2) (Sullivan, 2011), SEPT3 (Tsang et al., 2011), SEPT5
(Beites et al., 2005; Tsang et al., 2011), and V-type proton ATPase
subunit E 1 (ATP6V1E1) (Di Giovanni et al., 2010; El Far and Seagar,
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2011). DPYSL2 (Brittain et al., 2009) and neurofilament light
polypeptide (NEFL) (Fiordelisio et al., 2007) are able to modulate
voltage-gated calcium-channels; moreover, voltage-dependent an-
ion-selective channel protein 1 (VDAC1) is also implicated in the
regulation of intracellular Ca2+ homeostasis (Rapizzi et al., 2002),
which is essential in synaptic events (e.g., exocytosis of synaptic
vesicles). Apolipoprotein E (APOE) presumably influences synaptic
plasticity (Herz and Chen, 2006). Finally, alpha-enolase (ENO1)
(Ueta et al., 2004), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) (Ikemoto et al., 2003; Schousboe et al., 2011), heat shock
cognate 71 kDa protein (HSPA8) (Tobaben et al., 2001), and protein
DJ-1 (PARK7) (Usami et al., 2011) are attached to certain parts of
synaptic membranes, such as synaptic vesicles.

These data support our observation that the LPS administration
induced immune response influences synaptic processes directly
and causes increased seizure frequency, which was recorded
25–30 min after LPS injection. In turn, we can raise the third
data-driven hypothesis for further research that LPS action in the
brain has a synaptic effect, targeting the synaptic molecular net-
work and inducing a rapid onset change in neurotransmission elic-
ited by immune response related cytokine level elevation. This is
an interesting hypothesis for further research because synaptic
mitochondria are involved in seizure genesis (Folbergrová and
Kunz, 2012).

The WAG/Rij model of absence epilepsy provides an excellent
read-out for such changes and allows extensive investigation of
synaptic functions in inflammation.

In conclusion, after high-dose LPS injection, we found alterations
in the cortical and thalamic proteome of the WAG/Rij rat that oc-
curred in parallel with increased seizure activity. The peripheral
inflammatory response could induce remodeling of the brain pro-
teome, and this remodeling could directly involve several proteins
of the synaptic region. We suggest here three data-driven hypoth-
eses for further studies on the influence of peripherally induced
inflammation on brain functions. Our data suggest a complex and
sustained change in the signaling system, mitochondrial metabo-
lism and synaptic transmission after peripheral application of LPS
that could be mainly driven by the immune reaction triggered ele-
vation of cytokine levels in the brain.
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