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Abstract

Vaught’s Conjecture states that if T is a complete first order theory in a countable
language that has more than ℵ0 pairwise non isomorphic countable models, then T has
2ℵ0 such models. Morley showed that if T has more than ℵ1 pairwise non isomorphic
countable models, then it has 2ℵ0 such models.
In this paper, we first show how we can use algebraic logic, namely the representation
theory of cylindric and quasi-polyadic algebras, to study Vaught’s conjecture (count
models), and we re-prove Morley’s above mentioned theorem. Second, we show that
Morley’s theorem holds for the number of non isomorphic countable models omitting
a countable family of types. We go further by giving examples showing that although
this number can only take the values given by Morley’s theorem, it can be different
from the number of all non isomorphic countable models. Moreover, our examples show
that the number of countable models omitting a family of types can also be either ℵ1

or 2 and therefore different from the possible values provided by Vaught’s conjecture
and by his well known theorem; in the case of ℵ1, however, the family is uncountable.
Finally, we discuss an omitting types theorem of Shelah.

The algebraic proof of Morley’s theorem has been independently examined, essentially the
same way, by T.S. Ahmed and M. Assem in Cairo and by G. Sági and D. Sziráki in Budapest,
(see [12]). The rest of the paper is the joint work of the authors.

1 Introduction

The famous conjecture of Vaught says that if T is a countable complete theory, then the
number of pairwise non isomorphic models of T is either at most countable or 2ℵ0 . The
conjecture, in this form, has not been settled yet, though it is proven in a number of particular
nontrivial cases by many prominent logicians (like Bouscaren, Buechler, Burgess, Lascar,
Steel and Shelah). The most general result obtained in this connection is Morley’s theorem,
which excluded all other possibilities except for ℵ1.

Morley’s proof uses essentially the logic Lω1,ω which allows infinite conjunctions. The
proof distinguishes basically between two cases. One is when the theory T is not scattered,
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meaning that for some infinitary fragment F ⊆ Lω1,ω and n ∈ ω, the set Sn(T, F ) of all
maximal F -types is uncountable. Examples of such theories are ThN (true arithmetic) and
the theory of real closed fields.

In the other case, the theory T is scattered, meaning that Sn(T, F ) is countable for
every infinite fragment F and every n. Examples include the theories of dense linear orders,
algebraically closed fields and random graphs. This is the critical case. In other words,
Vaught’s conjecture is actually equivalent to the fact that if T is a scattered theory then
the number of non isomorphic models of T is at most countable. A violation of Vaught’s
conjecture would thus entail constructing a scattered theory which has exactly ℵ1 many
pairwise non isomorphic countable models.

There are other proofs of Morley’s result existing in the literature. One such proof uses
Burgess’ famous theorem that addresses a much more general context, namely, group actions
on Polish spaces. It is motivated by the topological version of Vaught’s conjecture, which
deals with general actions of various Polish groups on Polish spaces rather than the action
of S∞ on the Polish space of countable models of a given countable complete theory. (This
set can be endowed with a very natural topology).

Our proof also uses Burgess’ theorem, so why do we claim that it is new? At the
technical level, we apply Burgess’ theorem to a topological space completely different from
the space Morley originally dealt with. This technical difference provides a uniform algebraic
way that may be utilized to study Vaught’s conjecture and related problems in several
modifications (restrictions and generalizations) of first order logics, like certain logics with
infinitary predicates.

In more detail, here are the novelties that we point out:

(1) our proof is algebraic; it uses the representation theory of cylindric and quasi-polyadic
algebras which is implemented by counting what we call Henkin ultrafilters in the
Stone space of the Boolean part of the algebra representing the theory in question.
Such ultrafilters correspond exactly to countable models, and the natural topology on
the set of countable models mentioned above corresponds just to the Stone topology
on these ultrafilters.

This approach is a novel one initiated by Sági. Indeed, it opens a new avenue between
algebraic logic, model theory and descriptive set theory. Also it has the asset of
obtaining model-theoretic results for first order logic with equality and without equality
using essentially one algebraic argument. Other results on model theoretic spectrum
functions (like the number of non isomorphic models of a given theory in a given
cardinality) may be systematically investigated on this basis; in this connection we
refer to [10].

(2) Our proof is also significantly distinct from all the known proofs because of the fol-
lowing. We apply Burgess’ theorem to the Stone dual space of certain cylindric-like
algebras. These seem to be much more comprehensive than other “usual” spaces orig-
inating from certain fragments of infinitary logics that can be associated to countable
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models. Moreover, as we mentioned, our approach provides a uniform way to treat
related problems in rather different settings.

(3) We assume that our theories are only consistent, we do not assume completeness; (this
is not a major difference, though). Algebraically we deal with arbitrary locally finite
algebras that are not necessarily simple.

(4) The method enables us to count the number of non isomorphic models that omit a
given countable family of non principal (finitary) types; this is done by stipulating that
the desired ultrafilters preserve additional sets of meets.

For the number of non isomorphic countable models omitting a countable family of types,
we obtain the same possibilities as the ones that were provided by Morley’s theorem for
the number of all countable models. However, for certain particular theories and families
of types, there are interesting discrepancies between the two actual values. For example,
the set of ultrafilters (models) which do not omit the given types may have the power of
the continuum. There are theories T (like the Peano arithmetic) and types satisfying the
above property such that T has exactly one model that omits the given types. By the first
property, these theories have 2ℵ0 non isomorphic models, showing that the two values can
be different.

Another example shows that, in contrast with a famous theorem of Vaught, there is a
(countable and complete) theory T and a non principal type Γ of T such that the number
of countable models omitting Γ is exactly 2.

Also, the number of countable models omitting types can be ℵ1, and therefore different
from the possible values provided by Vaught’s conjecture. This is very easy to show using
infinitary types, but we also give an example of a family of finitary types omitted by ℵ1

countable models. The family in our example is of size 2ℵ0 , and if Vaught’s conjecture for
Lω1,ω holds, then any such family has to be uncountable.

Notation

Our system of notation is mostly standard, but the following list may be useful. Throughout,
ω denotes the set of natural numbers, and for every n ∈ ω we have n = {0, . . . , n− 1}. Let
A and B be sets. Then AB denotes the set of functions whose domain is A and whose
range is a subset of B. In addition, |A| denotes the cardinality of A and P(A) denotes
the power set of A, that is, the set of all subsets of A. If f : A −→ B is a function and
X ⊆ A, then f ∗(X) = {f(x) : x ∈ X} and f |X is the restriction of f to X. Moreover,
f−1 : P(B) −→ P(A) acts between the power sets.

We denote structures by letters M,N , . . . while their underlying sets are denoted by
M,N, . . ..
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2 Preliminaries from the Theory of Cylindric and Quasi-

Polyadic Algebras

In this section, we recall the needed preliminaries from algebraic logic given in [10]. The
section has survey character and is included to make the paper self contained and available
to readers not so familiar with algebraic logic.

2.1 Cylindric Algebras

Cylindric algebras emerged in the first half of the twentieth century, due to the work of
Alfred Tarski and his students. Their original intention with this theory was to provide
an algebraic treatment of first order logic (with equality), just as Boolean algebras do for
sentential calculus. Let α be an ordinal. Then an α-dimensional cylindric algebra is an
algebraic structure of the form

A = 〈A,∧,−, ci, dij〉i,j<α

where the ci are unary operations and dij are constants and A satisfies extra equational
postulates, (see, e.g., Definition 1.1.1 of [4]). There are two main methods of constructing
cylindric algebras, called “algebraizing syntax” and “algebraizing semantics”. We start by
describing algebraizing syntax. Suppose L is a first order language with equality, and let
T be a theory in L. Two formulas φ and ψ are defined to be equivalent mod T , in symbols
φ ≡T ψ, iff T |= ∀(φ ↔ ψ), where ∀(φ ↔ ψ) is the universal closure of φ ↔ ψ. Clearly, ≡T
is an equivalence relation on the set of L-formulas. Quotienting the formula algebra (the
completely free algebra) with this equivalence relation, we obtain an ω-dimensional cylindric
algebra which is denoted by CA(T ) and sometimes called the Lindenbaum algebra of T .

Algebraizing semantics may be described as follows. LetM be a model of T , and for a
formula φ, let ‖φ‖M = {s ∈ ωM :M |= φ[s]}; (we write ‖φ‖ whenM is understood). The set
{‖φ‖ : φ is an L-formula}, together with the operations ci‖φ‖ = ‖∃viφ‖ and dij = ‖vi = vj‖
(and set theoretical intersection and complementation) forms an ω-dimensional cylindric
algebra denoted by Cs(M).

2.2 Quasi-Polyadic Algebras

Suppose φ, ψ are L-formulas and ψ is obtained from φ by substituting the variable vj for
vi, (both assumed free in φ). Let sijx be the cylindric term ci(x ∧ dij). Then in CA(T ) we
have ψ/ ≡T = sij(φ/ ≡T ), and in Cs(M) we have ‖ψ‖ = sij‖φ‖. For i, j ∈ ω, the cylindric
algebraic terms sij are called substitutions.

When one wants to apply the same process to theories in languages not containing the
equality symbol, substitution operations are no longer term definable. To overcome this
difficulty, the sij are defined to be basic operations when algebraizing equality free logics.
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More concretely, an α-dimensional quasi-polyadic algebra is an algebraic structure of the
form

A = 〈A,∧,−, ci, sij〉i,j<α
satisfying certain equational postulates. Here, the ci correspond to existential quantifiers,
and the sij correspond to substitution operations. Algebraizing syntax and semantics may
be defined similarly to the cylindric case; the resulting algebras are denoted by QPA(T ) and
by Qs(M), respectively.

2.3 Dimension Sets

Let A be an α-dimensional cylindric or quasi-polyadic algebra, and let x ∈ A. The dimension
set ∆x of x is defined to be ∆x = {i ∈ α : cix 6= x}. Intuitively, it is the set of free variables of
x (as a formula). A is said to be locally finite if every element of it has a finite dimension set.
Algebras obtained by the algebraization processes described above are locally finite, because
each formula contains only a finite number of variables. We let Lfα and LfQPAα denote the
classes of α-dimensional locally finite cylindric and quasi-polyadic algebras, respectively.

Simultaneous substitution in formulas can be described with a function τ ∈ ωω: for every
i ∈ ω, let us substitute the variables vτ(i) for the variables vi simultaneously. As explained in
Definitions 1.11.9 and 1.11.13 of [4], an operation corresponding to this kind of generalized
substitution can be introduced in every locally finite algebra; it is denoted by s+

τ .
Given an α dimensional cylindric algebra A and an ordinal β < α, the neat β-reduct

NrβA of A is defined to be the cylindric algebra whose universe is

NrβA = {x ∈ A : cix = x for all i ∈ α− β}

and whose operations are those of the β-dimensional reduct ofA, (i.e., the Boolean operations
and ci and dij for i, j < β,) restricted to NrβA; (it is easy to check that Nrβ is indeed closed
under these operations and therefore NrβA is a β-dimensional cylindric algebra). Neat
reducts in the quasi-polyadic case are defined similarly. If A is obtained by one of the above
algebraization processes of first order logic and n < ω, then NrnA corresponds to restricting
our attention to those formulas in which only the free variables v0, v1, . . . , vn−1 are allowed.

2.4 Set Algebras

Let U be a set. Then the full cylindric set algebra on U of dimension α is the structure

〈P(αU),∩,−, Ci, Dij〉i,j∈α ,

where ∩ is set theoretical intersection, − is complementation (w.r.t. αU) and for any X ⊆ αU
and i, j ∈ α,

CiX = {s ∈ αU : (∃z ∈ X)(s|α−{i} = z|α−{i})} and Dij = {s ∈ αU : s(i) = s(j)}.
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The class Csα of α-dimensional cylindric set algebras is defined to be the class of all subalge-
bras of α-dimensional full cylindric set algebras. Similarly, the full quasi-polyadic set algebra
on U of dimension α is the structure 〈P(αU),∩,−, Ci, Sij〉i,j∈α, where for any X ⊆ αU and
i, j ∈ α,

SijX = {s ∈ αU : s ◦ [i/j] ∈ X};

([i/j] denotes the transformation that maps i to j and is the identity function on α − {i}).
The class Qsα of α-dimensional quasi-polyadic set algebras is defined to be the class of all
subalgebras of α-dimensional full quasi-polyadic set algebras.
An element X of an α-dimensional cylindric or quasi-polyadic set algebra is said to be regular
iff for every s, z ∈ αU we have

s ∈ X and s|∆X = z|∆X imply z ∈ X,

where ∆X = {i ∈ α : CiX 6= X}. A cylindric or quasi-polyadic set algebra is regular if all its
elements are regular. The classes of α-dimensional regular cylindric and quasi-polyadic set
algebras are denoted by Csregα and Qsregα , respectively. If M is an L-structure, then Cs(M)
and Qs(M) are regular cylindric and quasi-polyadic set algebras, respectively.

Suppose T is a theory in a language L with equality. Then h : CA(T ) −→ Cs(M),
φ/ ≡T 7→ ‖φ‖ is a surjective homomorphism. Thus, Cs(M), which is an element of Lfω∩Csregω ,
is a homomorphic image of CA(T ). Conversely, an element A of Lfω ∩ Csregω , together with
a distinguished set of its generators, determines a structure for some language; (this fact
is well known, see [10]). This structure is a model of T iff there is a homomorphism from
CA(T ) onto A mapping the distinguished set of generators of CA(T ) onto that of A.

Similarly, if T is a theory in a language without equality, there is also the above one-
one correspondence between models of T and surjective homomorphisms from QPA(T ) onto
elements of LfQPAω ∩Qsregω . Consequently, the problem of finding all the possible countable
models of T is equivalent to finding all homomorphisms from CA(T ) or QPA(T ) onto some
locally finite dimensional and regular set algebra with a countable base.

3 Representations

Let A be any Boolean algebra. The set of ultrafilters of A is denoted by U(A). The Stone
topology makes U(A) a compact Hausdorff space; we denote this space by A∗. Recall that
the Stone topology has as its basic open sets the sets {Nx : x ∈ A}, where

Nx = {F ∈ U(A) : x ∈ F}.

It is easy to see that if A is countable, then A∗ is Polish, (i.e., separable and completely
metrizable).
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Now, suppose A is a locally finite cylindric or quasi-polyadic ω-dimensional algebra with
a countable universe. Note that if T is a theory in a countable language with (without)
equality, then CA(T ) (respectively QPA(T )) satisfies these requirements. Let

H(A) =
⋂
i<ω
x∈A

(N−cix ∪
⋃
j<ω

Nsijx
)

and, in the cylindric algebraic case, let

H′(A) = H(A) ∩
⋂

i 6=j∈ω

N−dij .

Note, for later use, that H(A) and H′(A) are Gδ subsets of A∗, and are nonempty, – this
latter fact can be seen, for example, from Theorem 3.1 below – and are therefore Polish
spaces; (see Theorem 3.11 of [7]). Assume F ∈ H(A). For any x ∈ A, define the function
repF to be

repF(x) = {τ ∈ ωω : s+
τ x ∈ F}.

We have the following results due to G. Sági and D. Sziráki; (see [10]).

Theorem 3.1. If F ∈ H′(A) (respectively H(A)), then repF is a homomorphism from A
onto an element of Lfω ∩ Csregω (respectively LfQPAω ∩Qsregω ) with base ω. Conversely, if h is
a homomorphism from A onto an element of Lfω ∩ Csregω (respectively LfQPAω ∩ Qsregω ) with
base ω, then there is a unique F ∈ H′(A) (respectively H(A)) such that h = repF .

Theorem 3.2. Let T be a consistent first order theory in a countable language with (without)
equality. Let M0 and M1 be two models of T whose universe is ω. Suppose F0,F1 ∈
H′(CA(T )) (respectively H(QPA(T ))) are such that repFi are homomorphisms from CA(T )
(respectively QPA(T )) onto Cs(Mi) (respectively Qs(Mi)) for i = 0, 1. If ρ : ω −→ ω is a
bijection, then the following are equivalent:

1. ρ :M0 −→M1 is an isomorphism.

2. F1 = s+
ρ F0 = {s+

ρ x : x ∈ F0}.

These last two theorems allow us to study models and count them via corresponding
ultrafilters.

4 Counting Models

4.1 A New Proof of Morley’s Theorem

This section begins with our new proof of Morley’s theorem. In this proof, we basically
translate into algebraic logic some well known results from descriptive set theory, with the
help of the above two theorems from the representation theory of cylindric and quasi-polyadic
algebras.
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Theorem 4.1.

1. (Morley) Suppose T is a complete first order theory in a countable language with equal-
ity. If T has more than ℵ1 pairwise non isomorphic countable models, then it has 2ℵ0

such models.

2. The same statement holds for theories not necessarily complete, in countable languages
with or without equality.

Proof. Let T be a first order theory in a countable language with equality, and letA = CA(T ).
We remark that in the case of equality free languages, all the coming work can be done with
A = QPA(T ); we just replace H′ by H. Let Sym(ω) be the set of permutations on ω; (it is
a Polish group w.r.t. composition of functions and the topology it inherits from the Baire
space ωω). Consider the map J : Sym(ω)×H′(A) −→ H′(A) defined by J(ρ,F) = s+

ρ F for
all ρ ∈ Sym(ω) and F ∈ H′(A). It is easy to see that J is a well defined action of Sym(ω)
on H′(A). We show that J is a continuous map from Sym(ω) × H′(A) (with the product
topology) to H′(A). To do this, it is enough to show that for an arbitrary a ∈ A,

J−1(Na ∩H′(A)) =
⋃

τ∈Sym(ω)

(
{µ−1 : µ ∈ Sym(ω), µ|∆a = τ |∆a} × [Ns+τ a

∩H′(A)]
)
.

This is enough, because, for fixed τ ∈ Sym(ω), the set {µ−1 : µ ∈ Sym(ω), µ|∆a = τ |∆a}
is an open subset of Sym(ω). To see this, let f : Sym(ω) −→ Sym(ω) be the map given
by f(τ) = τ−1. As we know, f is continuous and open. Hence, {µ−1 : µ ∈ Sym(ω), µ|∆a =
τ |∆a} = f ∗({µ ∈ Sym(ω) : µ|∆a = τ |∆a}) is the image of an open set via an open map, and
is therefore open.
Now, let (ρ,F) be an arbitrary element in Sym(ω)×H′(A). We have the following:

(ρ,F) ∈
⋃

τ∈Sym(ω)

(
{µ−1 : µ ∈ Sym(ω), µ|∆a = τ |∆a} × [Ns+τ a

∩H′(A)]
)

⇐⇒ (∃τ ∈ Sym(ω))[(∃µ ∈ Sym(ω))(µ|∆a = τ |∆a ∧ ρ = µ−1) ∧ s+
τ a ∈ F ]

⇐⇒ (∃τ ∈ Sym(ω))[(∃µ ∈ Sym(ω))(µ|∆a = τ |∆a ∧ ρ−1 = µ) ∧ s+
τ a ∈ F ]

⇐⇒ (∃τ ∈ Sym(ω))[ρ−1|∆a = τ |∆a ∧ s+
τ a ∈ F ]

⇐⇒ (s+
ρ )−1a = s+

ρ−1a ∈ F
⇐⇒ a ∈ s+

ρ F
⇐⇒ J(ρ,F) = s+

ρ F ∈ Na ∩H′(A)

⇐⇒ (ρ,F) ∈ J−1(Na ∩H′(A)).

And so, J is a continuous action of Sym(ω) onH′(A). It follows that the the orbit equivalence
relation is analytic; (see 3.2 in [1]). Thus, by a result of Burgess, (see [2]), if there are more
than ℵ1 orbits, then there are 2ℵ0 orbits. By Theorems 3.1 and 3.2, the number of orbits
here is exactly the number of non isomorphic countably infinite models of T . This completes
the proof.
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4.2 Counting Models which Omit Types

The proof of Theorem 4.1 can be generalized to talk about special kinds of models. For
example, suppose (Γi : i < ω) is a countable family of non principal types of T ; (by a type,
we mean a set of formulas which is finitary, i.e., is in finitely many variables and which is
consistent with T , but not necessarily maximal, as in Definition 4.1.1 of [8] for example).
Then we can take the space Homit, (and restrict the action to it), where Homit corresponds
to the set of countable models of T which omit the given family (Γi : i < ω) of non principal
types of T . More precisely, we have the following theorem.

Theorem 4.2. Let T be a theory in a countable language with or without equality. Let
(Γi : i < ω) be a family of non principal types. Then the number of non isomorphic countable
models of T omitting this family is either ≤ ℵ1 or 2ℵ0.

Proof. Set

Homit = H′(CA(T )) ∩
⋂
i∈ω
τ∈W

⋃
φ∈Γi

N−s+τ (φ/≡T ) ,

where W = {τ ∈ ωω : |{i : τ(i) 6= i}| < ω}. It is easy to see that Homit corresponds to
the set of countable models of T which omit the family (Γi : i < ω). (Here, we have to use
the fact that the Γi are types in finitely many variables, i.e., ∆ =

⋃
{∆(φ/≡T ) : φ ∈ Γi}

is finite. This is what allows us to replace ωω by the countable W in the definition above.)
Thus, Homit is Gδ, and therefore Polish, see Theorem 3.11 of [7]. Hence, we can apply an
argument similar to the one in the proof of Theorem 4.1. For languages without equality,
the same argument works with H(QPA(T )).

Problem 4.3. It would be interesting to know whether Theorem 4.2 remains true if we
allow families to be uncountable, in particular, for families of size < covK. This is the
least cardinal for which the Baire category theorem fails, i.e., covK is the least cardinal κ
for which the real line, – or equivalently, any Polish space without isolated points – can be
covered by κ many nowhere dense sets. Martin’s axiom implies covK = 2ℵ0 , but it is also
consistent that covK = ℵ1 < 2ℵ0 , see [9].

The cardinal covK is connected intimately to omitting types: if T is a countable theory,
then any family of < covK many non principal types can be omitted by a countable model
of T , and for certain countable theories, (even complete ones,) one can find a non omissible
family of covK many types [9, 3]. With our method, it is easy to see the first statement:
if T is a countable theory and G = (Γi : i < λ) is a family of non principal types for some
λ < covK, then the sets

Xi,τ
def
=
⋂
φ∈Γi

Ns+τ (φ/≡T ),

are nowhere dense for all i < λ and τ ∈ W , due to the fact that the types are non principal.
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Thus, the set

Homit = H′(CA(T ))−
⋃
i∈λ
τ∈W

Xi,τ

is nonempty, by the properties of covK, implying that there is a countable model of T
omitting the types in G.

Unfortunately, the previous argument is not sufficient to determine the number of models
omitting the family G, i.e., the number of orbits of the action J on Homit induced by isomor-
phism. In particular, while it does imply that Homit is nonempty, it does not guarantee that
it is Gδ. However, the above connection of covK to omitting types makes Theorem 4.2 for
models omitting families of size < covK feasible.

As mentioned above, covK is the least cardinal κ such that a family of κ many non
principal types of a countable theory may not necessarily be omitted by a countable model.
It is interesting to note that the situation is very different when we consider maximal types;
in that case, even families of size < 2ℵ0 can always be omitted. This follows from a (deep
as usual) result of Shelah, see Theorem 5.16 CH. IV [11]; (also see 7.2.4 and 7.2.5 in [6]).
Here, the distinction between covK and 2ℵ0 is highly significant; for although covK is an
uncountable cardinal ≤ 2ℵ0 , one can show using iterated forcing that it is consistent that
covK < 2ℵ0 .

Suppose T is a countable theory, λ < 2ℵ0 and (Γi : i < λ) are non principal maximal

types of T . Defining the (nowhere dense) sets Xi,τ
def
=
⋂
φ∈Γi

Ns+τ (φ/≡T ) as above, Shelah’s
result tells us that

Homit = H′(CA(T ))−
⋃
i∈λ
τ∈W

Xi,τ 6= ∅.

(On the other hand, if the types are not maximal, then we also know that the latter set can
be empty; as mentioned above, there are known examples of countable theories, and even
complete countable theories, that do not omit covK many types.)

In light of the above, one can ask the following question: can the above result (that
Homit 6= ∅ for families of < 2ℵ0 many maximal types) be obtained by a topological argument?
If so, it can not rely solely on the Baire Category theorem, because this theorem simply does
not apply in the uncountable case when we take ≥ covK many nowhere dense sets, and this
is precisely the reason why the omitting types theorem can fail when we consider ≥ covK
many non principal types that are not maximal. Perhaps there is a way to express the
condition of maximality topologically that can be used in such an argument.

4.3 Some Examples

What we have proved in Theorem 4.2 is that for a countable theory T , the possible values of
the number |Homit| of non isomorphic countable models of T which omit a given countable
family of types are exactly the values given by Morley’s theorem for the number |H| of all
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non isomorphic countable models. But, as the examples below show, the values |Homit| and
|H| may well be different for a theory T .

Example 4.4. Let T be Th(N), true arithmetic. The standard model N of T is an atomic
model, (see [8] p. 129). Thus, the neat n-reduct of A = CA(T ) is atomic for each n < ω,
(by an algebraic reformulation of a well known characterization of the existence of countable
atomic models; see for example Theorem 4.2.10 of [8]). Now, let Γn = {−x : x ∈ AtNrnA},
that is the set of the co-atoms of the neat reduct NrnA. The Γn’s are non principal types,
and a model M omits them iff it is atomic; (it is not hard to show that any model that
omits co-atoms actually omits any family of non principal types). Hence, any model that
omits the Γn’s is isomorphic to N, by the unicity of countable atomic models. Thus, up to
isomorphism, T has one countable model that omits the family (Γn : n < ω). On the other
hand, it is known that T has 2ℵ0 non isomorphic countable models, (see [8] p.155).

Example 4.5. Let T be the theory of algebraically closed fields of characteristic zero. Then
T has countably many non isomorphic countable models; for each α ≤ ω, there is one model
of transcendence degree α over the rationals. Let A = CA(T ), and define the types Γn
as above. Then the model of degree zero (the field of algebraic numbers) is atomic and is
therefore the only countable model omitting the family (Γn : n < ω). However, as can be
seen from Example 4.6 below, the above countable family can be replaced by just one type
in this case.

The next example is motivated by a well known theorem of Vaught which says that a
countable complete theory T cannot have exactly two non isomorphic countable models. In
his proof, Vaught argued that if T has exactly two such models, he can always construct from
these models a third one which is not isomorphic to either original model, a contradiction. If
we require that the two models omit a given family of non principal types, then, in principle,
the constructed third model might not omit this family of non principal types, so perhaps
Vaught’s argument fails in this new context. The example below shows that this is possible.

Example 4.6. Take the language L = {cn : n ∈ ω}, where the cn are constant symbols.
Let T = {cn 6= cm : n 6= m ∈ ω}. Then a model M of T is determined up to isomorphism
by how many “extra” elements it has, i.e., by

∣∣{b ∈ M : b 6= cMn for all n ∈ ω}
∣∣. Thus,

T is ℵ1-categorical and so, since it has only infinite models, it is complete. Also, T has
countably many non isomorphic countable models; these are the models Mα with α many
extra elements for α ≤ ω.

Consider the following 2-type Γ of T :

Γ = {v0 6= v1} ∪ {v0 6= cn : n ∈ ω} ∪ {v1 6= cn : n ∈ ω}.

Then Γ is a non principal type and is omitted by exactly two countable models of T ; these
are the models M0 and M1.

11



We note that this argument can be generalized for complete strongly minimal theories
T which have (countable) models of dimension α for all α ≤ ω; (see Section 6.1 of [8]).
Suppose T is such a theory, and let Γ be the unique 2-type of two independent elements; (Γ
is determined uniquely by Lemma 6.1.6 of [8]). Then the non principal type Γ is omitted by
exactly two models of T , those of dimension 0 and 1. In particular, the theory in Example
4.5 above also has a non principal type that is omitted by exactly two models. Similarly,
one can find, for all 0 < n < ω, an n-type omitted by exactly n countable models of T .

Another question arises naturally in the spirit of the last example and of Theorem 4.2:
can we have a theory together with a family of (non principal) types such that the number
of non isomorphic countable models omitting this family is exactly ℵ1? An infinitary type
that is omitted by exactly ℵ1 such models is not hard to construct: let T be the theory of
linear orders (in the language L = {<}) and let Γ = Γ(v0, v1, . . .) = {vn > vn+1 : n ∈ ω}.
Then Γ is omitted by a model M of T iff M is well ordered, implying that T has exactly
ℵ1 non isomorphic countable models which omit the type Γ.

A modification of the above idea answers the question affirmatively for finitary types as
well; see Example 4.7 below. However, this example differs from those above in that the
cardinality of our family of types is uncountable, namely 2ℵ0 . Managing to make the family
of types countable is expected to be very hard. For if this could be done, then we would
actually obtain a negative answer to Vaught’s conjecture for Lω1,ω sentences. In more detail,
suppose that T is a countable theory and (Γn : n ∈ ω) is a family of finitary types such
that the number of countable models of T omitting the Γn’s is exactly ℵ1. Consider now the
Lω1,ω sentence ∧

T ∧
∧
n∈ω

(
¬(∃v̄n)

∧
φ∈Γn

φ(v̄n)

)
,

(where v̄n are the free variables in Γn). Clearly, the models of this sentence are exactly those
of T which omit the Γn’s, and therefore this sentence violates the conjecture.

Example 4.7. Take the first order countable language L = {<, c0, c1, c2, . . .} where < is a
binary relation symbol and c0, c1, c2, . . . are constants, and let T be the theory of L which
states that < is a linear order and that ci 6= cj for all i 6= j ∈ ω. Define the following types
of T : take the 1-type

Γ(v) = {v 6= ci : i ∈ ω}

and for every injective f ∈ ωω, let

Γf = {cf(i) > cf(i+1) : i ∈ ω}.

Consider the family G = {Γ(v)} ∪ {Γf : f ∈ ωω is injective} of 2ℵ0 many non principle types
of T . Clearly, if a model omits G, then it is a well order, (because of the following: if a model
omits Γ(v), then all its elements are presented by constants. If in addition it omits all the
Γf ’s, then it has no infinite decreasing sequences, and is therefore a well order). This makes

12



the number countable of models omitting G less than or equal to ℵ1. Conversely, given any
countable well order, it is easy to obtain a modelM such that (M,<) is isomorphic to that
well order and M omits Γ(v) and therefore G. Thus, there are exactly ℵ1 countable models
of T which omit G.
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