Designing Decidable Logics of Epistemology

Gábor Sági *

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest P.O.B. 127, H-1364 Hungary sagi@renyi.hu and Department of Algebra, BUTE, Budapest, Egry J. u. 1, H-1111 Hungary

Abstract. We investigate the following "epistemic" extensions of (fragments of) first order logics: if φ is a formula, then $\Box_i \varphi$ is also a formula, where I is a fixed finite set. The intended meaning of $\Box_i \varphi$ is "the i^{th} agent (i^{th} participant of the model) knows φ ". The main result of the paper is Theorem 1: if L is such a fragment of first order logic whose consequence relation is weakly decidable, then the consequence relation of the epistemic extension of L remains weakly decidable, as well.

1 Introduction

Definition 1. Let L be a fragment of first order logic and let I be any finite set. The set E_L of elementary epistemic formulas over L is defined to be the smallest set satisfying the following two stipulations:

• E_L contains all formulas of L and

• for any $i \in I$ and $\varphi \in E_L$ we have $\Box_i \varphi \in Form_{\mathcal{E},I}(L)$ (that is, E_L is closed for the operations \Box_i , for any $i \in I$).

In addition, $Form_{\mathcal{E},I}(L)$ is defined to be the set of all Boolean combinations of E_L .

The intended meaning of $\Box_i \varphi$ is "the i^{th} agent (i^{th} participant of the model) knows φ ", where φ is a formula that may also contain \Box_i operations.

Logics of epistemology has been studied intensively, for related investigations we refer to [1], [2] and the references therein.

Our main aim is to provide semantics for the formulas $Form_{\mathcal{E},I}(L)$ in such a way, that the consequence relation of our semantics remains decidable, whenever the consequence relation of L is decidable. For a quite expressive fragment of first order logic with (weakly) decidable consequence relation, we refer to [3].

To achieve our goal, we need further preparations. In Section 2 we are summing up the preliminaries and definitions we need, in Section 3 we present the proofs.

^{*} Supported by Hungarian National Foundation for Scientific Research grant K83726 and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

2 Gábor Sági

2 Technical Introduction

Our notation is standard, however, the following short list may help the reader. Throughout **N** denotes the set of natural numbers. Let L be a logic. Then $Form_L$ and \models_L denote respectively, the set of formulas of L and the consequence relation of L (as usual, \models_L also denotes the satisfaction relation of L). If \mathcal{A} is a model for L then $Th(\mathcal{A})$ denotes the theory of \mathcal{A} which is defined to be

$$Th(\mathcal{A}) = \{ \varphi \in Form_L : \mathcal{A} \models_L \varphi \}.$$

Throughout, by Gödel numbering we mean an injective function

$$g: Form_{\mathcal{E},I}(L) \to \mathbf{N}$$

such that both g and g^{-1} is computable. It is well known, that such a g function exists (in fact, there exists a primitive recursive such g with g^{-1} primitive recursive, as well). We do not specify g further, because below we will use the fact only, that such a g exists (and we do not use the particular form, or further properties of such a g).

Definition 2. Let $\varphi \in Form_{\mathcal{E},I}(L)$. Then the tautological skeleton taut(φ) is defined inductively as follows.

if φ is a formula of L, then $taut(\varphi) = \varphi$; $taut(\neg \psi) = \neg taut(\psi)$; $taut(\psi \land \varrho) = taut(\psi) \land taut(\varrho)$; $taut(\Box_i \psi) = Z_n$ where Z_n is the nth propositional variable and n is the

Gödel-number of $\Box_i \psi$.

In addition, if $X \subseteq Form_{\mathcal{E},I}(L)$, then taut(X) is defined to be

$$taut(X) = \{taut(\varphi) : \varphi \in X\}$$

Remark 1. It is easy to see, that taut is a computable function, that is, there exists an algorithm computing $taut(\varphi)$ from φ . Moreover, φ is also computable from $taut(\varphi)$, because each propositional variable Z_n corresponds at most one formula $\psi \in Form_{\mathcal{E},I}(L)$, namely, Z_n corresponds to that ψ (if any) whose Gödel number is n.

Definition 3. Let $X \subseteq Form_{\mathcal{E},I}(L)$ and let $i \in I$ be fixed. Then $cl_i(X)$ is defined to be

$$cl_i(X) = \{\varphi, \Box_i \varphi : taut(X) \models_L taut(\varphi)\}.$$

Definition 4. By an $\langle \mathcal{E}, I \rangle$ -structure we mean a pair $\langle \mathcal{A}, f \rangle$ where \mathcal{A} is an L-structure and $f: I \to \mathcal{P}(Form_{\mathcal{E},I}(L))$ is a function, such that for any $i \in I$

- If $\varphi \in Form_L$ and $\mathcal{A} \models_L \varphi$ then $\varphi \in f(i)$;
- $cl_i(f(i)) = f(i)$.

Definition 5. Let $\langle \mathcal{A}, f \rangle$ be an $\langle \mathcal{E}, I \rangle$ -structure and let k be an evaluation over A. Then the satisfaction relation $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi[k]$ is defined recursively on the complexity of $\varphi \in Form_{\mathcal{E},I}(L)$ as follows.

- for an atomic (first order) formula $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi[k]$ iff $\mathcal{A} \models \varphi[k]$;
- $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \neg \varphi[k] \quad iff \quad \langle \mathcal{A}, f \rangle \not\models_{\mathcal{E},L} \varphi[k];$
- $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi \land \psi[k]$ iff $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi[k]$ and $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \psi[k];$ $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \exists v_n \varphi[k]$ iff there exists an evaluation k' such that $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L}$ $\varphi[k']$ and for any $m \neq n$ we have k(m) = k'(m);
- $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \Box_i \varphi[k] \quad iff \ \varphi \in f(i).$

Finally, $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi$ iff $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi[k]$ for any evaluation k over \mathcal{A} .

Using the notation of the previous definition, it is easy to see, that for a first order formula $\varphi \in Form(L)$ the assertion $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi$ is equivalent with $\mathcal{A} \models \varphi.$

Definition 6. Let $\Sigma \subseteq Form_{\mathcal{E},I}(L)$ and let $\varphi \in Form_{\mathcal{E},I}(L)$. Then $\Sigma \models_{\mathcal{E},L} \varphi$ iff for any $\langle \mathcal{E}, I \rangle$ -structure $\langle \mathcal{A}, f \rangle$ the following holds:

if for all
$$\psi \in \Sigma$$
 we have $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \psi$ then $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi$.

We say, that the consequence relation of a logic \mathcal{L} is weakly decidable iff there exists an algorithm π whose input is a finite set $\Sigma \subseteq Form(\mathcal{L})$ and a formula $\varphi \in Form(\mathcal{L})$ and π always stops after a finite number of steps and provides a

correct answer for the question " $\Sigma \models_{\mathcal{L}} \varphi$ ".

Our main result is as follows.

Theorem 1. Suppose the consequence relation \models_L of L is weakly decidable. Then $\models_{\mathcal{E},L}$ is also weakly decidable.

The rest of this paper is devoted to prove this theorem. To do so, we need further preparations.

3 Proofs

Lemma 1. Assume, that the consequence relation \models_L of L is decidable. Let $X \subseteq Form_{\mathcal{E},I}(L)$ be a decidable subset of $Form_{\mathcal{E},I}(L)$ and let $i \in I$ be fixed. Then $cl_i(X)$ is a decidable subset of $Form_{\mathcal{E},I}(L)$.

Proof. Clearly, if X is decidable, then so is taut(X) (because by Remark 1, $taut^{-1}$ is computable and X is assumed to be decidable). Combining this with the assumption, that the consequence relation \models_L of L is decidable, the statement follows immediately.

Now we will define a relation *Ded* and show, that this relation is decidable. Finally, we show, that *Ded* and the consequence relation $\models_{\mathcal{E},L}$ coincide, thus the algorithm deciding *Ded* also witnesses, that the consequence relation $\models_{\mathcal{E},L}$ is weakly decidable.

Definition 7. Let $X \subseteq Form_{\mathcal{E},I}(L)$ and let $\varphi \in Form_{\mathcal{E},I}(L)$. Then

$$Ded_0(X) = \{ \psi \in Form_L : X \cap Form_L \models_L \psi \}.$$

Now suppose, that Ded_n has already been defined for some $n \in \mathbb{N}$. Then $Ded_{n+1}(X)$ is defined by recursion as follows.

 $\begin{aligned} Ded_n(X) &\subseteq Ded_{n+1}(X);\\ if \varphi &= \Box_i \psi \ then \ \varphi \in Ded_{n+1}(X) \ iff \ \psi \in cl_i(Ded_n(X));\\ if \ \varphi &= \neg \psi \ then \ \varphi \in Ded_{n+1}(X) \ iff \ \psi \notin Ded_{n+1}(X);\\ if \ \varphi &= \psi \land \varrho \ then \ \varphi \in Ded_{n+1}(X) \ iff \ \psi \in Ded_{n+1}(X) \ and \ \varrho \in Ded_{n+1}(X). \end{aligned}$

Finally, let

$$Ded(X) = \bigcup_{n \in \mathbf{N}} Ded_n(X).$$

Theorem 2. Assume, that the consequence relation \models_L of L is weakly decidable. Let $X \subseteq Form_{\mathcal{E},I}(L)$ be a finite subset of $Form_{\mathcal{E},I}(L)$. Then Ded(X) is a decidable subset of $Form_{\mathcal{E},I}(L)$.

Proof. A simple inspection of Definition 7 together with Lemma 1 shows, that $Ded_n(X)$ is decidable for all $n \in \mathbb{N}$, in addition, (the Gödel number of) an algorithm deciding $Ded_n(X)$ may be computed from n. Moreover, $\varphi \in Ded(X)$ iff $\varphi \in Ded_n(X)$, where n is the number of all occurrences of \Box -operations in φ . It follows, that Ded(X) is decidable, as desired.

Now we are ready to prove Theorem 1. We will split the proof into two parts.

Theorem 3. Assume, that the consequence relation \models_L of L is weakly decidable. Let $X \subseteq Form_{\mathcal{E},I}(L)$ be a finite subset of $Form_{\mathcal{E},I}(L)$ and let $\varphi \in Form_{\mathcal{E},I}(L)$. Then

$$\varphi \in Ded(X)$$
 implies $X \models_{\mathcal{E},L} \varphi$.

Proof. Suppose $\varphi \in Ded(X)$. Then there exists $n \in \mathbb{N}$ such that $\varphi \in Ded_n(X)$. So it is enough to show

(*)
$$\varphi \in Ded_n(X)$$
 implies $X \models_{\mathcal{E},L} \varphi$ and $\langle \mathcal{A}, f \rangle \models X$ implies $(\forall i \in I) Ded_n(X) \subseteq f(i)$.

We apply induction on n. If n = 0, then (*) holds, obviously. Now assume, that (*) holds for 0, ..., n; we shall show, that it remains true for n + 1. To do so, let $\varphi \in Ded_{n+1}(X)$.

If $\varphi \in Form_L$ then, in fact, $\varphi \in Ded_0(X)$, hence (*) follows for φ from the n = 0 case.

If $\varphi = \Box_i \psi$, then, according to Definition 7, we have $\psi \in cl_i(Ded_n(X))$. By induction, we have $X \models_{\mathcal{E},L} Ded_n(X)$. Assume $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} X$. It follows, that

 $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} Ded_n(X)$. So, again by induction, we have $Ded_n(X) \subseteq f(i)$. Combining this with the second stipulation of Definition 4, we obtain $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \varphi$. This shows, that (*) remains true for φ .

If $\varphi = \neg \psi$ or $\varphi = \psi \land \varrho$ then (*) for φ may be derived from Definition 5 and Definition 7 in the usual way.

This completes the induction, and we are done.

Now we prove the converse of Theorem 3.

Theorem 4. Assume, that the consequence relation \models_L of L is weakly decidable. Let $X \subseteq Form_{\mathcal{E},I}(L)$ be a finite subset of $Form_{\mathcal{E},I}(L)$ and let $\varphi \in Form_{\mathcal{E},I}(L)$. Then

 $X \models_{\mathcal{E},L} \varphi \quad implies \quad \varphi \in Ded(X).$

Proof. Assume, $\varphi \notin Ded(X)$; it is enough to show, that $X \not\models_{\mathcal{E},L} \varphi$. Do do so, we shall construct an $\langle \mathcal{E}, I \rangle$ -structure $\langle \mathcal{A}, f \rangle$ such that $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} X$ but $\langle \mathcal{A}, f \rangle \not\models_{\mathcal{E},L} \varphi$.

First we show, that $X \cap Form_L$ is consistent (in the sense of usual first order logic). Indeed, if $X \cap Form_L$ would be inconsistent, then it would follow, that $Ded_0 = Form_L$, consequently, we would have $Ded(X) = Form_{\mathcal{E},I}(L)$; particularly we would have $\varphi \in Ded(X)$. Thus, there exists a first order structure \mathcal{A} such that $\mathcal{A} \models_L X \cap Form_L$.

Now, for any $i \in I$, let $f(i) = cl_i(Th_L(\mathcal{A}))$. Clearly, $\langle \mathcal{A}, f \rangle$ is an $\langle \mathcal{E}, I \rangle$ structure. Observe, that for any $\psi \in Form_{\mathcal{E},I}(L)$ we have $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} \psi$ iff $\psi \in Ded(X)$. Particularly, $\langle \mathcal{A}, f \rangle \models_{\mathcal{E},L} X$ and $\langle \mathcal{A}, f \rangle \not\models_{\mathcal{E},L} \varphi$, as desired.

Now we are ready to prove the main result of the paper which is a more detailed version of Theorem 1.

Theorem 5. Suppose the consequence relation \models_L of L is weakly decidable. Let $X \subseteq Form_{\mathcal{E},I}(L)$ be a finite subset of $Form_{\mathcal{E},I}(L)$ and let $\varphi \in Form_{\mathcal{E},I}(L)$. Then we have

- (1) $X \models_{\mathcal{E},L} \varphi$ iff $\varphi \in Ded(X)$;
- (2) $\models_{\mathcal{E},L}$ is weakly decidable, too.

Proof. Combining Theorems 3 and 4, (1) follows immediately. To prove (2) we note, that according to (1), for any finite $X \subseteq Form_{\mathcal{E},I}(L)$ and $\varphi \in Form_{\mathcal{E},I}(L)$ we have $X \models_{\mathcal{E},L} \varphi$ iff $\varphi \in Ded(X)$. But, by Theorem 2 Ded(X) is decidable for any decidable X (in addition, an algorithm deciding Ded(X) may be effectively constructed from an algorithm deciding X).

References

- Ertola B., Rodolfo, C. On some extensions of intuitionistic logic, Bull. Sect. Logic, 41 (2012), no. 1-2, 17-22.
- Kooi, B., Pacuit, E., Logics of rational interaction. Dynamic formal epistemology, 5-32, Synth. Libr., 351, Springer, Dordrecht, 2011.
- Sági, G., A note on algebras of substitutions, Studia Logica, Vol. 72, No. 2, 265-284, (2002).