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Abstract

In this paper, we show that a small minimal blocking set with
exponent e in PG(n,p'), p prime, spanning a (t/e — 1)-dimensional
space, is an Fpe-linear set, provided that p > 5(¢/e) — 11. As a corol-
lary, we get that all small minimal blocking sets in PG(n, pt), p prime,
p > bt — 11, spanning a (¢ — 1)-dimensional space, are Fy-linear, hence
confirming the linearity conjecture for blocking sets in this particular
case.
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1 Introduction

In this section, we introduce the necessary background and notation. If V is
a vectorspace, then we denote the corresponding projective space by PG(V).
If V has dimension n + 1 over the finite field F,, with ¢ elements, ¢ = p', p
prime, then we also write V as V(n + 1,¢) and PG(V') as PG(n, q).

A blocking set in PG(n, q) is a set B of points such that every hyperplane
of PG(n,q) contains at least one point of B. Such a blocking set is some-
times called a 1-blocking set, or a blocking set with respect to hyperplanes. A
blocking set B is called small if |B| < 3(q¢ + 1)/2 and minimal if no proper
subset of B is a blocking set.

A point set S in PG(V), where V.= V(n+1, p') is called F, -linear if there
exists a subset U of V that forms an F,-vector space for some F,, C F,
such that S = B(U), where

BU) = {(w)s,, : ue U\ {0}



We have a one-to-one correspondence between the points of PG(n, ¢%) and
the elements of a Desarguesian (h—1)-spread D of PG(h(n+1)—1, qo). This
gives us a different view on linear sets; namely, an Fy,-linear set is a set S of
points of PG(n, ¢l) for which there exists a subspace 7 in PG(h(n+1)—1, q)
such that the points of S correspond to the elements of D that have a non-
empty intersection with 7. We identify the elements of D with the points of
PG(n,gl), so we can view B(r) as a subset of D, i.e.

B(r) = {R € D|RN~ # 0}

For more information on this approach to linear sets, we refer to [5].
The linearity conjecture for blocking sets (see [11]) states that

(LC) All small minimal blocking sets in PG(n, ¢) are linear sets.

Up to our knowledge, this is the complete list of cases in which the lin-
earity conjecture for blocking sets in PG(n,p'), p prime, with respect to
hyperplanes, has been proven.

o t =1 (for n =2, see [1]; for n > 2, see [10])
o t =2 (for n =2, see [9]; for n > 2, see [8])
o t =3, (for n = 2, see [6]; for n > 2, see [§])

e B is of Rédei-type, i.e., there is a hyperplane meeting B in |B| — p'
points (for n = 2, see [2]; for n > 2, see [7])

e (B) =1 (see [10]).

In this paper, we show that if (B) = ¢ — 1, and the characteristic of the
field is sufficiently large, B is a linear set, as a corollary of the main theorem.

Main Theorem. A small minimal blocking set B in PG(n, q), with exponent
e, ¢ =p', p prime, qo := p°, qo > 7, t/e = h, spanning an (h—1)-dimensional
space is an Fy -linear set.

2 The intersection of a small minimal block-
ing set and a subspace

A subspace clearly meets an IF,-linear set in 0 or 1 mod p points. The
following theorem shows that for a small minimal blocking set, the same

holds.



Theorem 1. [10, Theorem 2.7] If B is a small minimal blocking set in
PG(n,p'), p prime, then B intersects every subspace of PG(n,p') in 1 mod
P or zero points.

From this theorem, we get that every small minimal blocking set B in
PG(n,p'), p prime, has an ezponent e > 1, which is the largest integer for
which every hyperplane intersects B in 1 mod p® points.

2.1 The intersection with a line

The following theorem by Sziklai characterises the intersection of particular
lines with a small minimal blocking set as linear sets.

Theorem 2. [11, Corollary 5.2] Let B be a small minimal blocking set with
exponent e in PG(n,q), g = p', p prime. If for a certain line L, |L N B| =
p®+ 1, then Fpe is a subfield of Fy and L N B is IFpe-linear.

Using the 1 mod p-result (Theorem 1), it is not too hard to derive an
upper bound on the size of a small minimal blocking set in PG(n, ¢) as done
in [12]. This bound is a weaker version of the bound in Corrolary 5.2 of [11].

Lemma 3. [12, Lemma 1| The size of a small minimal blocking set B with
exponent e in PG(n, q(’}), qo :=p° > 7, p prime 1S at most qg + qg_l —|—qg_2 +
3q0°.

In this paper, we will make use of the fact that we can find lower bounds
on the number of secant lines to a small minimal blocking set. In the next
lemma, one considers the number of (go + 1)-secants to the blocking set B,
which will give a linear intersection with the blocking set by Theorem 2.

Lemma 4. [12, Lemma 4] A point of a small minimal blocking set B with
exponent e in PG(n,ql), qo := p® > 7, p prime, lying on a (qo + 1)-secant,
lies on at least g ' — 4qh~2 + 1 (qo + 1)-secants.

For the proof of Lemma 7, we will make use of the concept of point
exponents of a blocking set and the well-known fact that the projection of a
small minimal blocking set is a small minimal blocking set.

Lemma 5. [10, Corollary 3.2] Let n > 3. The projection of a small minimal
blocking set in PG(n,q), from a point Q ¢ B onto a hyperplane skew to Q,
is a small minimal blocking set in PG(n — 1,q).

The exponent ep of a point P of a small minimal blocking set B is the
largest number for which every line through P meets in 1 mod p®? or zero
points. The following lemma is essentially due to Blokhuis.
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Lemma 6. See [3, Lemma 2.4(1)] If B is a small minimal blocking set in
PG(2,q), g = p', p prime, with |B| = q + k, and P is a point with exponent
ep, then the number of secants to B through P, is at least

(g—r+1)/p" + 1.

Lemma 7. A point P with exponent ep = 2e of a small minimal blocking set
B in PG(n,qb), qo := p® > T, p prime, lies on at least qg_Q — qg_?’ — q[’}_4 —
3¢6° + 1 secant lines to B.

Proof. 1If n = 2, Lemma 3, together with Lemma 6, shows that the number
of secant lines to B is at least (¢f — g™ — b =3¢ +1)/g3 +1 >
a0 —q gt =3¢+ 1.

If n > 2, then let L be a line through P, meeting B in ¢ + 1 points. By
Theorem 1, a plane through L, containing a point of B, not on L, contains
at least g5 points of B, not on L. By Lemma 3, this implies that there is
a plane II through L with no points of B, outside L. Let @) be a point of
IT\ L and let B is the projection of B from Q onto a hyperplane through L.
By Lemma 5, B is a small minimal blocking set in PG(n — 1,¢). It is clear
that every line through P meets B in 1 mod q2 or 0 points, and that there
is a line, namely L, meeting B in 1 + g2 points, so ep = 2¢e in the blocking
set B. It follows that the number of secant lines through a point P with
exponent 2e to B is at least the number of secant lines through the point
P with exponent 2e to B in PG(n — 1,¢/). Continuing this process, we see
that this number is at least the number of secant lines through the point P
with exponent 2e in a small minimal blocking set B in PG(2,ql'), and the
statement follows. O

2.2 The intersection with a plane

In the following lemma, we will distinguish planes acording to their inter-
section size with a small minimal blocking set. We will call a plane with
g2 + qo + 1 non-collinear points of B a good plane, while all other planes will
be called bad. Note that also planes meeting B in only points on a line, or
skew to B are called bad. The following lemma shows that good planes meet
a small minimal blocking set in a linear set.

Lemma 8. If I is a plane of PG(n,q) containing at least 3 non-collinear
points of a small minimal blocking set B in PG(n, q), with exponent e, ¢ = p',
p prime, qo := p°, then

(i) & +q+1<|BNTI.



(ii) If IBN | = ¢ + qo + 1, then BN1I is F,,-linear.
(iii) If [ BNTI| > g2 + qo + 1, then |[BNTI| > 2¢3 + qo + 1.

Proof. (i) By Lemma 1, every line meets B in 1 mod ¢y or 0 points. Since
we find 3 non-collinear points, it is easy to see that |[B NII| > ¢2 + qo + 1.

(ii) From the previous argument, we easily see that if [BNII| = g5 +qo+1,
then every line in II contains 0, 1 or ¢g + 1 points of B. Suppose that there
exist two (go + 1)-secants that meet in a point, not in B, then the number of
points in IIN B is at least g2 + g0 + 1 + qo. Hence, every two (go + 1)-secants
meet in a point of B. Moreover, through two points of B N 1I, there is a
unique (go + 1)-secant, so B meets II in an F,-subplane.

(iii) By Theorem 1, if there is a line L of II containing more than (g + 1)
points of B, then |LNB| > 2¢y+1, and [IINB| > 2¢2+qo+1. So from now on,
we may assume that every line meets B in 0, 1 or ¢g+ 1 points. If there is an
FF,,-subplane strictly contained in IIN B, then clearly |BNII| > ¢3+¢3+qo+1,
so we may assume that there is no F, -subplane contained in IIN B.

Let L be a (go+1)-secant in IT, let P be a point of BN L, let Q be a point
of B\ L and let M be the line PQ. From Theorem 2, we know that L N B
and M N B are sublines over [F,,. These sublines define a unique I -subplane
IIy. Let Ny be a line, not through P, through a point of L N B, say R; and
M N B, say Ry. Let Ny be another line, not through R; or Ry, meeting L in
a point R3 of B and M in a point R4 of B. If T' is the intersection point of
N; and N,, then T' belongs to the subplane IIj.

Now suppose that T is a point of B, then N; meets B in a subline,
containing 3 points of the subline Iy N Ny, hence, the subline Ny N B is
completely contained in B. The same holds for the subline N, N B, and
repeating the same argument, for every subline through 7" meeting L and
M in points, different from P. Again repeating the same argument, for a
point 7" = T on N, not on L or M, yields that Il is contained in B, a
contradiction. This implies that the ¢o — 1 points of B on the line Nj, not
on L or M are different from the gy — 1 points of B on the line N5, not on L
or M. Varying N; and N, over all lines meeting L and M in points of B, we
get that there are at least ¢2(qo — 1) + 2qo + 1 points in B NI O]

To avoid abundant notation, we continue with the following hypothesis
on B.

B is a small minimal blocking set in PG(n, ¢), with exponent e, ¢ = p',
p prime, qo := p°, t/e = h, spanning an (h — 1)-dimensional space.

Lemma 9. A plane of PG(n,q) contains at most ¢ + g2 + qo + 1 points of
B.



Proof. Suppose there exists a plane IT with more than ¢3 + g2 + qo + 1 points
of B, then, by Theorem 1, [IINB| > g3 + g2 + 2o + 1. We prove by induction
that, for all 2 < k < h — 1 there is a k-space, containing at least (qé€Jr2 —
1)/(go — 1) + g5~ * points of B. The case k = 2 is already settled, so suppose
there is a j-space II;, j < h — 1, containing at least (q{fr2 —1)/(go—1)+ qg_l
points of B. Since B spans an (h — 1)-space and j < h—1, there is a point Q)
in B, not in II;. Because a line containing two points of B contains at least
qo + 1 points of B, this implies that (Q,T;) N B| > (4™ —1)/(q0 — 1) + ¢
By induction, we obtain that B contains at least (¢i™ — 1)/(qo — 1) + ¢ 2
points, a contradiction, since |B| < ¢l + ¢! + ¢t + 3¢5, ]

Lemma 10. Let L be a (qo + 1)-secant to B. Then either L lies on at least
qg_Q — 4q3_3 + 1 good planes, or L lies on bad planes only. In the latter case,
all planes with points of B, outside L contain at least g3 + qo+ 1 points of B.

Proof. Let Q be a point on L, not on B. We project B from () onto a
hyperplane H, not through @, and denote the image of this projection by B.
Let P be the point LNH. It follows from Lemma 5, that B is a small minimal
blocking set. Since every subspace meets B in 1 mod ¢y or 0 points, every
subspace meets B in 1 mod ¢y or 0 points. Suppose that P has exponent
ep = 1, then it follows from Lemma 4 that P lies on at least qg_l — 46]3_2 +1
(qo + 1)-secants. This means that there are at least q(’}’l — 4(]6“2 + 1 planes
through L containing at least g2 + qo + 1 points of B, which implies that
|B| > ¢3(qh —4¢"%+1), a contradiction since |B| < ¢t +¢t ¢l +3¢) 3
by Lemma 3.

If P has exponent ep at least 4, we get that the planes through L which
contain a point of B, not on L, contain at least g4 + go + 1 points, which is
impossible by Lemma 9. We conclude that P has exponent ep = 2 or ep = 3.
If P has exponent ep = 3, then every plane through L that contains a point
of B not on L, contains at least g3 + qo + 1 points, and hence, all planes
through L are bad.

Finally, if P has exponent 2, we know from Lemma 7 that there are at
least s = ¢ % —qb > — ¢ ™" — 3¢} 7" + 1 secant lines through P, which implies
that there are at least s planes through L containing a point of B outside L.
Suppose t of the s planes are bad, than, using Lemma 8(iii), B contains at
least £(2¢2) + (s —t)(q2) +qo+ 1 points. If we put t = 3¢h 3 — ¢l —3¢07° 41,
we get a contradiction since |B| < ¢! + qg_l + qg_z + 3qg_3 by Lemma 3. [

Lemma 11. A point P of B lying on a (qo + 1)-secant, lies on at most one
(qo + 1)-secant L that lies on only bad planes.

Proof. Let P be a point of B, lying on a (go + 1)-secant and let L be a line
through P that only lies on bad planes. From Lemma 9 and Lemma 10, we



get that ¢8 +qo+ 1 < |IINB| < ¢ + ¢2 + qo + 1 for all planes IT through L,
containing points of B outside L.

By Lemma 3, |B| < ¢} + q(})‘_1 + qg_Q + 3q8_3, so there are at most
qg B 2q3‘4 planes through L containing points of B outside L. Since P lies
on at least qg_l — 4(13_2 +1 (qo + 1)-secants, there are at least two planes Iy
and T, containing at least g2 — 6qo + 1 (g + 1)-secants through P. Suppose
that L' is a (qo + 1)-secant through P, different from L, lying on only bad
planes. At least one of the planes Ilq, Il,, say II;, does not contain L'.

We will now show that for all £ < h—2, there exists a k-space through 11y,
not containing L/, containing at least ¢& — 6¢5 " (go + 1)-secants through P.
For k = 2, the statement is true, hence, suppose it holds for all k < 7 < h—2.
Let II" be a j-space through IT;, not containing L’ and containing at least
@ — 6¢) " (go + 1)-secants through P.

Let |I' N B| = A, then a (j + 1)-space I1” through IT’; containing a point
of B, not in II', contains at least (go —1)A+ 1 points of B, not in I, and we
see that the number of (j 4 1)-spaces containing a point of B, not in IT', is
maximal if the number of points in IT’" is minimal. Since |[BNTI;| > g3 +qo+1,
IBNTIU| > (g8 + qo + l)qg_?’ + 1. This implies that the number of points of
B in such a (j + 1)-space, outside II’ is at least qé“ —p) + qg_l — qg_?’ + p.
Since |B| < ¢l + g} 4+ q0~% +3¢4 3, the number of such (j + 1)-spaces is at
most qp 7!+ 2072+ 4¢) 73 At most (g)t —1)/(qo—1) (go + 1)-secants
through P lie in II". Suppose that all (j 4+ 1)-spaces through II', except
possibly (I', L) contain at most ¢} — 6¢3~" (o + 1)-secants through P, not
in IT', then the number of (go + 1)-secants through P is at most

(@07 +2g0 72+ 4g 70 = 1)(g) — 663) + (6 — 1)/ (@) — 1),

a contradiction if 7 < h — 2, since there are at least qg_l — 4q3_2 +1 (go+1)-
secants through P. We may conclude, by induction, that there exists an
(h —2)-space I1”, not, through L/, that contains at least g% — 6¢0~> (g0 + 1)-
secants through P. Since L’ does not lie in I1”, this implies that there are at
least qg’Q — 6qg’3 different planes through L’ that each have at least g3 points
outside L, a contradiction since |B| < ¢f + qg_l + qg_Q + 3qg_3. This implies
that there is at most one line through P that lies on only bad planes. O

3 The proof of the main theorem

Lemma 12. Assume h > 3 and qo > bh — 11. Denote the (qy + 1)-secants,
not lying on only bad planes, through a point P of B that lies on at least
one (qo + 1)-secant, by Ly,...,Ls. Let x be a point of the spread element



corresponding to B in PG(h(n + 1) 4+ 1,q0) and let ¢; be the line through x
such that B(¢;) = L; N B. Let L = {{ly,...,ls}, then (L) has dimension h.

Proof. From Lemma 4 and Lemma 11 we get that s is at least ¢~ —4¢l 2 +
1 -1 =¢\" —4¢"% From Lemmas 8(ii) and 10, we get that through
every line L;, + = 1,...,s, there are at least qg_Q — 4qg_3 + 1 planes, say
IL;, j = 1,...,t, such that B NIl;; = B(m;), for a plane m;; through /;.
Denote the set of planes {m;;,1 <i <s,1 <j <t} by V, and the set of lines
{l1,...,4s} by L.

A fixed plane 7;; of V), say 71, contains go + 1 lines of £, say £1, ..., {4 41.
The lines £1, ..., ¢, 1 lie on a set of at least (go + 1)(g) 2 — 40> + 1) + 1
different planes of V. On these planes, there lie a set P of at least (qo +
1)(gh=2 =44l —1)q2 different points 1, . . ., 9y, not in 73, such that B(y;) C
B.

We claim that B(y,) = B(y.) implies that y, = y. for y,. and y. in P
(%). We know that y, lies on m;; and y, lies on 7y for some ¢, 7, j'. Since
B(m;;) = BNIL;; and B(my ;) = BNILyj, the lines (B(xy,)) and (B(xy.)) are
(go + 1)-secants to B. Since we assume that B(y,) = B(y.), these (qo + 1)-
secants coincide. Moreover, B(zy,) C B and B(zy..) C B, so xy, and xy, are
transversal lines through the same regulus, which forces y, = /.. This proves
our claim, hence, different points of the pointset P give rise to different points
of B.

We will prove that, for all 2 < k < h there exists an k-space through =
with at least ¢f ' — (5k — 11)gi 2 lines of £. The existence of 71, proves
this statement for k = 2. Assume, by induction, that there exists a j-space
through z, say v, where j < h — 1, containing at least ¢ ' — (55 — 11)¢} >
lines of L.

We will now count the number of couples (¢ € L contained in v, r a
point, not in v with (r,¢) € V). The number of lines of £ in v is at least
@' — (55 — 11)¢} >, the number of points r ¢ v with (r,¢) € V for some
fixed £, is at least (g0~ 2 — 4¢" )@@ — (@)™ —1)/(go — 1). The number of
points r with (r,£) € V, is by (*) at most | B|, hence, the number of points
r ¢ v with (r,0) € Vis at most |B| — (¢}~ — (55 — 11)¢} *)qo — 1.

Hence, there is a point r, lying on (say) X different planes (r, ¢) of V with

(™" = (57 = 1ah)(ah — 465~ = (@" = 1)/(s0 — 1))

X > — — — - : —
@+ g a3 — g+ (55 — 11)g) Tt — 1

This last expression is larger than qg_l —(G+1)— ll)qg_Q, if h > 3, for all
j<h-1. |
This implies that the j+ l-space (r, ), contains at least (¢} " —(5(j+1) —



11)q672)% +1 lines of L, hence, by induction, we find an h-dimensional-space
through @ containing at least ¢~ — (5h — 11)gh 2 lines of L.

Suppose now that there is a line of the /¢;, say /s, not in this h-space
&. Since by Lemma 10, there are at least qg_Q — 4qg_3 planes through /,,
giving rise to (¢h~% — 4¢"*)(¢2 — qo) points z, which are not contained in
¢, such that B(z) C B. By (%), and the fact that there are at least (g0 —
(5h — 11)gl™%)qo + 1 points y in & such that B(y) C B, we get that |B| >
q(}} + qg_l + qg_2 + 3qg_3, a contradiction.

This shows that the dimension of (£) is h. O

We now use the following theorem, which is an extension of [9, Remark
3.3].

Theorem 13. [4, Corollary 1] A blocking set of size smaller than 2q in
PG(n, q) is uniquely reducible to a minimal blocking set.

Main Theorem. A small minimal blocking set B in PG(n, q), with exponent
e, ¢ =p', p prime, qo := p°¢, qo > 7, t/e = h, spanning an (h—1)-dimensional
space is an Fy -linear set.

Proof. As seen in Lemma 12, there exists an h-dimensional space £ in PG((n+
1)h—1,q), such that |[B(€) N B| > ¢ —4¢"~' + 1. Define B to be the union
of B(§) and B and recall that B({) is a small minimal [, -linear block-
ing set in PG(n,q). Clearly, B is a blocking set, and its size is equal to
1B] + |B()| — | BN B(€)|. Hence, |B| is at most (¢ —1)/(a0 — 1) + g +
G g 243l P — (gh —4ql '+ 1) < 248, Theorem 13 shows that B = B(¢&),
so we may conclude that B is an F,,-linear set. O

By the fact that the exponent of a small minimal blocking set in PG(n, q)
is at least one (see Theorem 1), we get the following corollary.

Corollary 14. All small minimal blocking sets in PG(n,p'), p prime, p >
5t — 11 spanning a (t — 1)-space, are F,-linear.
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