A small minimal blocking set in $\mathrm{PG}\left(n, p^{t}\right)$, spanning a $(t-1)$-space, is linear

Peter Sziklai Geertrui Van de Voorde

September 28, 2011

Abstract

In this paper, we show that a small minimal blocking set with exponent e in $\mathrm{PG}\left(n, p^{t}\right)$, p prime, spanning a $(t / e-1)$-dimensional lary, we get that all small minimal blocking sets in $\mathrm{PG}\left(n, p^{t}\right), p$ prime, $p>5 t-11$, spanning a $(t-1)$-dimensional space, are \mathbb{F}_{p}-linear, hence confirming the linearity conjecture for blocking sets in this particular case.

Keywords: Blocking set, linearity conjecture, linear set

1 Introduction

In this section, we introduce the necessary background and notation. If V is a vectorspace, then we denote the corresponding projective space by $\mathrm{PG}(V)$. If V has dimension $n+1$ over the finite field \mathbb{F}_{q}, with q elements, $q=p^{t}, p$ prime, then we also write V as $\mathrm{V}(n+1, q)$ and $\mathrm{PG}(V)$ as $\mathrm{PG}(n, q)$.

A blocking set in $\mathrm{PG}(n, q)$ is a set B of points such that every hyperplane of $\mathrm{PG}(n, q)$ contains at least one point of B. Such a blocking set is sometimes called a 1-blocking set, or a blocking set with respect to hyperplanes. A blocking set B is called small if $|B|<3(q+1) / 2$ and minimal if no proper subset of B is a blocking set.

A point set S in $\operatorname{PG}(V)$, where $\mathrm{V}=\mathrm{V}\left(n+1, p^{t}\right)$ is called $\mathbb{F}_{q_{0}}$-linear if there exists a subset U of V that forms an $\mathbb{F}_{q_{0}}$-vector space for some $\mathbb{F}_{q_{0}} \subset \mathbb{F}_{p^{t}}$, such that $S=\mathcal{B}(U)$, where

$$
\mathcal{B}(U):=\left\{\langle u\rangle_{\mathbb{F}_{p^{t}}}: u \in U \backslash\{0\}\right\} .
$$

We have a one-to-one correspondence between the points of $\operatorname{PG}\left(n, q_{0}^{h}\right)$ and the elements of a Desarguesian $(h-1)$-spread \mathcal{D} of $\operatorname{PG}\left(h(n+1)-1, q_{0}\right)$. This gives us a different view on linear sets; namely, an $\mathbb{F}_{q_{0}}$-linear set is a set S of points of $\operatorname{PG}\left(n, q_{0}^{h}\right)$ for which there exists a subspace π in $\mathrm{PG}\left(h(n+1)-1, q_{0}\right)$ such that the points of S correspond to the elements of \mathcal{D} that have a nonempty intersection with π. We identify the elements of \mathcal{D} with the points of $\operatorname{PG}\left(n, q_{0}^{h}\right)$, so we can view $\mathcal{B}(\pi)$ as a subset of \mathcal{D}, i.e.

$$
\mathcal{B}(\pi)=\{R \in \mathcal{D} \mid R \cap \pi \neq \emptyset\} .
$$

For more information on this approach to linear sets, we refer to [5].
The linearity conjecture for blocking sets (see [11]) states that
(LC) All small minimal blocking sets in $\operatorname{PG}(n, q)$ are linear sets.
Up to our knowledge, this is the complete list of cases in which the linearity conjecture for blocking sets in $\mathrm{PG}\left(n, p^{t}\right)$, p prime, with respect to hyperplanes, has been proven.

- $t=1$ (for $n=2$, see [1]; for $n>2$, see [10])
- $t=2$ (for $n=2$, see [9]; for $n>2$, see [8])
- $t=3$, (for $n=2$, see [6]; for $n>2$, see [8])
- B is of Rédei-type, i.e., there is a hyperplane meeting B in $|B|-p^{t}$ points (for $n=2$, see [2]; for $n>2$, see [7])
- $\langle B\rangle=t($ see [10]).

In this paper, we show that if $\langle B\rangle=t-1$, and the characteristic of the field is sufficiently large, B is a linear set, as a corollary of the main theorem.

Main Theorem. A small minimal blocking set B in $\mathrm{PG}(n, q)$, with exponent $e, q=p^{t}$, p prime, $q_{0}:=p^{e}, q_{0} \geq 7, t / e=h$, spanning an ($h-1$)-dimensional space is an $\mathbb{F}_{q_{0}}$-linear set.

2 The intersection of a small minimal blocking set and a subspace

A subspace clearly meets an \mathbb{F}_{p}-linear set in 0 or $1 \bmod p$ points. The following theorem shows that for a small minimal blocking set, the same holds.

Theorem 1. [10, Theorem 2.7] If B is a small minimal blocking set in $\mathrm{PG}\left(n, p^{t}\right)$, p prime, then B intersects every subspace of $\mathrm{PG}\left(n, p^{t}\right)$ in $1 \bmod$ p or zero points.

From this theorem, we get that every small minimal blocking set B in $\mathrm{PG}\left(n, p^{t}\right)$, p prime, has an exponent $e \geq 1$, which is the largest integer for which every hyperplane intersects B in $1 \bmod p^{e}$ points.

2.1 The intersection with a line

The following theorem by Sziklai characterises the intersection of particular lines with a small minimal blocking set as linear sets.

Theorem 2. [11, Corollary 5.2] Let B be a small minimal blocking set with exponent e in $\mathrm{PG}(n, q), q=p^{t}$, p prime. If for a certain line $L,|L \cap B|=$ $p^{e}+1$, then $\mathbb{F}_{p^{e}}$ is a subfield of \mathbb{F}_{q} and $L \cap B$ is $\mathbb{F}_{p^{e}}$-linear.

Using the $1 \bmod p$-result (Theorem 1), it is not too hard to derive an upper bound on the size of a small minimal blocking set in $\operatorname{PG}(n, q)$ as done in [12]. This bound is a weaker version of the bound in Corrolary 5.2 of [11].

Lemma 3. [12, Lemma 1] The size of a small minimal blocking set B with exponent e in $\operatorname{PG}\left(n, q_{0}^{h}\right), q_{0}:=p^{e} \geq 7$, p prime is at most $q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+$ $3 q_{0}^{h-3}$.

In this paper, we will make use of the fact that we can find lower bounds on the number of secant lines to a small minimal blocking set. In the next lemma, one considers the number of $\left(q_{0}+1\right)$-secants to the blocking set B, which will give a linear intersection with the blocking set by Theorem 2.

Lemma 4. [12, Lemma 4] A point of a small minimal blocking set B with exponent e in $\mathrm{PG}\left(n, q_{0}^{h}\right), q_{0}:=p^{e} \geq 7$, p prime, lying on a $\left(q_{0}+1\right)$-secant, lies on at least $q_{0}^{h-1}-4 q_{0}^{h-2}+1\left(q_{0}+1\right)$-secants.

For the proof of Lemma 7, we will make use of the concept of point exponents of a blocking set and the well-known fact that the projection of a small minimal blocking set is a small minimal blocking set.

Lemma 5. [10, Corollary 3.2] Let $n \geq 3$. The projection of a small minimal blocking set in $\mathrm{PG}(n, q)$, from a point $Q \notin B$ onto a hyperplane skew to Q, is a small minimal blocking set in $\mathrm{PG}(n-1, q)$.

The exponent e_{P} of a point P of a small minimal blocking set B is the largest number for which every line through P meets in $1 \bmod p^{e_{P}}$ or zero points. The following lemma is essentially due to Blokhuis.

Lemma 6. See [3, Lemma 2.4(1)] If B is a small minimal blocking set in $\mathrm{PG}(2, q), q=p^{t}, p$ prime, with $|B|=q+\kappa$, and P is a point with exponent e_{P}, then the number of secants to B through P, is at least

$$
(q-\kappa+1) / p^{e_{P}}+1
$$

Lemma 7. A point P with exponent $e_{P}=2 e$ of a small minimal blocking set B in $\mathrm{PG}\left(n, q_{0}^{h}\right), q_{0}:=p^{e} \geq 7$, p prime, lies on at least $q_{0}^{h-2}-q_{0}^{h-3}-q_{0}^{h-4}-$ $3 q_{0}^{h-5}+1$ secant lines to B.

Proof. If $n=2$, Lemma 3, together with Lemma 6, shows that the number of secant lines to B is at least $\left(q_{0}^{h}-q_{0}^{h-1}-q_{0}^{h-2}-3 q_{0}^{h-3}+1\right) / q_{0}^{2}+1 \geq$ $q_{0}^{h-2}-q_{0}^{h-3}-q_{0}^{h-4}-3 q_{0}^{h-5}+1$.

If $n>2$, then let L be a line through P, meeting B in $q_{0}^{2}+1$ points. By Theorem 1, a plane through L, containing a point of B, not on L, contains at least q_{0}^{3} points of B, not on L. By Lemma 3, this implies that there is a plane Π through L with no points of B, outside L. Let Q be a point of $\Pi \backslash L$ and let \tilde{B} is the projection of B from Q onto a hyperplane through L. By Lemma $5, \tilde{B}$ is a small minimal blocking set in $\operatorname{PG}(n-1, q)$. It is clear that every line through P meets \tilde{B} in $1 \bmod q_{0}^{2}$ or 0 points, and that there is a line, namely L, meeting \tilde{B} in $1+q_{0}^{2}$ points, so $e_{P}=2 e$ in the blocking set \tilde{B}. It follows that the number of secant lines through a point P with exponent $2 e$ to B is at least the number of secant lines through the point P with exponent $2 e$ to \tilde{B} in $\operatorname{PG}\left(n-1, q_{0}^{h}\right)$. Continuing this process, we see that this number is at least the number of secant lines through the point P with exponent $2 e$ in a small minimal blocking set \tilde{B} in $\operatorname{PG}\left(2, q_{0}^{h}\right)$, and the statement follows.

2.2 The intersection with a plane

In the following lemma, we will distinguish planes acording to their intersection size with a small minimal blocking set. We will call a plane with $q_{0}^{2}+q_{0}+1$ non-collinear points of B a good plane, while all other planes will be called bad. Note that also planes meeting B in only points on a line, or skew to B are called bad. The following lemma shows that good planes meet a small minimal blocking set in a linear set.

Lemma 8. If Π is a plane of $\mathrm{PG}(n, q)$ containing at least 3 non-collinear points of a small minimal blocking set B in $\mathrm{PG}(n, q)$, with exponent e, $q=p^{t}$, p prime, $q_{0}:=p^{e}$, then
(i) $q_{0}^{2}+q_{0}+1 \leq|B \cap \Pi|$.
(ii) If $|B \cap \Pi|=q_{0}^{2}+q_{0}+1$, then $B \cap \Pi$ is $\mathbb{F}_{q_{0}}$-linear.
(iii) If $|B \cap \Pi|>q_{0}^{2}+q_{0}+1$, then $|B \cap \Pi| \geq 2 q_{0}^{2}+q_{0}+1$.

Proof. (i) By Lemma 1, every line meets B in $1 \bmod q_{0}$ or 0 points. Since we find 3 non-collinear points, it is easy to see that $|B \cap \Pi| \geq q_{0}^{2}+q_{0}+1$.
(ii) From the previous argument, we easily see that if $|B \cap \Pi|=q_{0}^{2}+q_{0}+1$, then every line in Π contains 0,1 or $q_{0}+1$ points of B. Suppose that there exist two $\left(q_{0}+1\right)$-secants that meet in a point, not in B, then the number of points in $\Pi \cap B$ is at least $q_{0}^{2}+q_{0}+1+q_{0}$. Hence, every two $\left(q_{0}+1\right)$-secants meet in a point of B. Moreover, through two points of $B \cap \Pi$, there is a unique $\left(q_{0}+1\right)$-secant, so B meets Π in an $\mathbb{F}_{q_{0}}$-subplane.
(iii) By Theorem 1 , if there is a line L of Π containing more than $\left(q_{0}+1\right)$ points of B, then $|L \cap B| \geq 2 q_{0}+1$, and $|\Pi \cap B| \geq 2 q_{0}^{2}+q_{0}+1$. So from now on, we may assume that every line meets B in 0,1 or $q_{0}+1$ points. If there is an $\mathbb{F}_{q_{0}}$-subplane strictly contained in $\Pi \cap B$, then clearly $|B \cap \Pi| \geq q_{0}^{3}+q_{0}^{2}+q_{0}+1$, so we may assume that there is no $\mathbb{F}_{q_{0}}$-subplane contained in $\Pi \cap B$.

Let L be a $\left(q_{0}+1\right)$-secant in Π, let P be a point of $B \cap L$, let Q be a point of $B \backslash L$ and let M be the line $P Q$. From Theorem 2, we know that $L \cap B$ and $M \cap B$ are sublines over $\mathbb{F}_{q_{0}}$. These sublines define a unique $\mathbb{F}_{q_{0}}$-subplane Π_{0}. Let N_{1} be a line, not through P, through a point of $L \cap B$, say R_{1} and $M \cap B$, say R_{2}. Let N_{2} be another line, not through R_{1} or R_{2}, meeting L in a point R_{3} of B and M in a point R_{4} of B. If T is the intersection point of N_{1} and N_{2}, then T belongs to the subplane Π_{0}.

Now suppose that T is a point of B, then N_{1} meets B in a subline, containing 3 points of the subline $\Pi_{0} \cap N_{1}$, hence, the subline $N_{1} \cap B$ is completely contained in B. The same holds for the subline $N_{2} \cap B$, and repeating the same argument, for every subline through T meeting L and M in points, different from P. Again repeating the same argument, for a point $T^{\prime} \neq T$ on N_{1}, not on L or M, yields that Π_{0} is contained in B, a contradiction. This implies that the $q_{0}-1$ points of B on the line N_{1}, not on L or M are different from the $q_{0}-1$ points of B on the line N_{2}, not on L or M. Varying N_{1} and N_{2} over all lines meeting L and M in points of B, we get that there are at least $q_{0}^{2}\left(q_{0}-1\right)+2 q_{0}+1$ points in $B \cap \Pi$.

To avoid abundant notation, we continue with the following hypothesis on B.
B is a small minimal blocking set in $\operatorname{PG}(n, q)$, with exponent $e, q=p^{t}$, p prime, $q_{0}:=p^{e}, t / e=h$, spanning an $(h-1)$-dimensional space.

Lemma 9. A plane of $\operatorname{PG}(n, q)$ contains at most $q_{0}^{3}+q_{0}^{2}+q_{0}+1$ points of B.

Proof. Suppose there exists a plane Π with more than $q_{0}^{3}+q_{0}^{2}+q_{0}+1$ points of B, then, by Theorem $1,|\Pi \cap B| \geq q_{0}^{3}+q_{0}^{2}+2 q_{0}+1$. We prove by induction that, for all $2 \leq k \leq h-1$ there is a k-space, containing at least $\left(q_{0}^{k+2}-\right.$ 1) $/\left(q_{0}-1\right)+q_{0}^{k-1}$ points of B. The case $k=2$ is already settled, so suppose there is a j-space $\Pi_{j}, j<h-1$, containing at least $\left(q_{0}^{j+2}-1\right) /\left(q_{0}-1\right)+q_{0}^{j-1}$ points of B. Since B spans an $(h-1)$-space and $j<h-1$, there is a point Q in B, not in Π_{j}. Because a line containing two points of B contains at least $q_{0}+1$ points of B, this implies that $\left|\left\langle Q, \Pi_{j}\right\rangle \cap B\right| \geq\left(q_{0}^{j+3}-1\right) /\left(q_{0}-1\right)+q_{0}^{j}$. By induction, we obtain that B contains at least $\left(q_{0}^{h+1}-1\right) /\left(q_{0}-1\right)+q_{0}^{h-2}$ points, a contradiction, since $|B| \leq q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}$.

Lemma 10. Let L be a $\left(q_{0}+1\right)$-secant to B. Then either L lies on at least $q_{0}^{h-2}-4 q_{0}^{h-3}+1$ good planes, or L lies on bad planes only. In the latter case, all planes with points of B, outside L contain at least $q_{0}^{3}+q_{0}+1$ points of B.

Proof. Let Q be a point on L, not on B. We project B from Q onto a hyperplane H, not through Q, and denote the image of this projection by \tilde{B}. Let P be the point $L \cap H$. It follows from Lemma 5 , that \tilde{B} is a small minimal blocking set. Since every subspace meets B in $1 \bmod q_{0}$ or 0 points, every subspace meets \tilde{B} in $1 \bmod q_{0}$ or 0 points. Suppose that P has exponent $e_{P}=1$, then it follows from Lemma 4 that P lies on at least $q_{0}^{h-1}-4 q_{0}^{h-2}+1$ $\left(q_{0}+1\right)$-secants. This means that there are at least $q_{0}^{h-1}-4 q_{0}^{h-2}+1$ planes through L containing at least $q_{0}^{2}+q_{0}+1$ points of B, which implies that $|B| \geq q_{0}^{2}\left(q_{0}^{h-1}-4 q_{0}^{h-2}+1\right)$, a contradiction since $|B| \leq q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}$ by Lemma 3.

If P has exponent e_{P} at least 4, we get that the planes through L which contain a point of B, not on L, contain at least $q_{0}^{4}+q_{0}+1$ points, which is impossible by Lemma 9 . We conclude that P has exponent $e_{P}=2$ or $e_{P}=3$. If P has exponent $e_{P}=3$, then every plane through L that contains a point of B not on L, contains at least $q_{0}^{3}+q_{0}+1$ points, and hence, all planes through L are bad.

Finally, if P has exponent 2, we know from Lemma 7 that there are at least $s=q_{0}^{h-2}-q_{0}^{h-3}-q_{0}^{h-4}-3 q_{0}^{h-5}+1$ secant lines through P, which implies that there are at least s planes through L containing a point of B outside L. Suppose t of the s planes are bad, than, using Lemma 8(iii), B contains at least $t\left(2 q_{0}^{2}\right)+(s-t)\left(q_{0}^{2}\right)+q_{0}+1$ points. If we put $t=3 q_{0}^{h-3}-q_{0}^{h-4}-3 q_{0}^{h-5}+1$, we get a contradiction since $|B| \leq q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}$ by Lemma 3 .

Lemma 11. A point P of B lying on a $\left(q_{0}+1\right)$-secant, lies on at most one $\left(q_{0}+1\right)$-secant L that lies on only bad planes.

Proof. Let P be a point of B, lying on a $\left(q_{0}+1\right)$-secant and let L be a line through P that only lies on bad planes. From Lemma 9 and Lemma 10, we
get that $q_{0}^{3}+q_{0}+1 \leq|\Pi \cap B| \leq q_{0}^{3}+q_{0}^{2}+q_{0}+1$ for all planes Π through L, containing points of B outside L.

By Lemma 3, $|B| \leq q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}$, so there are at most $q_{0}^{h-3}+2 q_{0}^{h-4}$ planes through L containing points of B outside L. Since P lies on at least $q_{0}^{h-1}-4 q_{0}^{h-2}+1\left(q_{0}+1\right)$-secants, there are at least two planes Π_{1} and Π_{2} containing at least $q_{0}^{2}-6 q_{0}+1\left(q_{0}+1\right)$-secants through P. Suppose that L^{\prime} is a $\left(q_{0}+1\right)$-secant through P, different from L, lying on only bad planes. At least one of the planes Π_{1}, Π_{2}, say Π_{1}, does not contain L^{\prime}.

We will now show that for all $k \leq h-2$, there exists a k-space through Π_{1}, not containing L^{\prime}, containing at least $q_{0}^{k}-6 q_{0}^{k-1}\left(q_{0}+1\right)$-secants through P. For $k=2$, the statement is true, hence, suppose it holds for all $k \leq j<h-2$. Let Π^{\prime} be a j-space through Π_{1}, not containing L^{\prime} and containing at least $q_{0}^{j}-6 q_{0}^{j-1}\left(q_{0}+1\right)$-secants through P.

Let $\left|\Pi^{\prime} \cap B\right|=A$, then a $(j+1)$-space $\Pi^{\prime \prime}$ through Π^{\prime}, containing a point of B, not in Π^{\prime}, contains at least $\left(q_{0}-1\right) A+1$ points of B, not in Π^{\prime}, and we see that the number of $(j+1)$-spaces containing a point of B, not in Π^{\prime}, is maximal if the number of points in Π^{\prime} is minimal. Since $\left|B \cap \Pi_{1}\right| \geq q_{0}^{3}+q_{0}+1$, $\left|B \cap \Pi^{\prime}\right| \geq\left(q_{0}^{3}+q_{0}+1\right) q_{0}^{j-3}+1$. This implies that the number of points of B in such a $(j+1)$-space, outside Π^{\prime} is at least $q_{0}^{j+1}-p^{j}+q_{0}^{j-1}-q_{0}^{j-3}+p$. Since $|B| \leq q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}$, the number of such $(j+1)$-spaces is at most $q_{0}^{h-j-1}+2 q_{0}^{h-j-2}+4 q_{0}^{h-j-3}$. At most $\left(q_{0}^{j+1}-1\right) /\left(q_{0}-1\right)\left(q_{0}+1\right)$-secants through P lie in Π^{\prime}. Suppose that all $(j+1)$-spaces through Π^{\prime}, except possibly $\left\langle\Pi^{\prime}, L\right\rangle$ contain at most $q_{0}^{j}-6 q_{0}^{j-1}\left(q_{0}+1\right)$-secants through P, not in Π^{\prime}, then the number of $\left(q_{0}+1\right)$-secants through P is at most

$$
\left(q_{0}^{h-j-1}+2 q_{0}^{h-j-2}+4 q_{0}^{h-j-3}-1\right)\left(q_{0}^{3}-6 q_{0}^{2}\right)+\left(q_{0}^{j+1}-1\right) /\left(q_{0}^{j-1}-1\right),
$$

a contradiction if $j<h-2$, since there are at least $q_{0}^{h-1}-4 q_{0}^{h-2}+1\left(q_{0}+1\right)$ secants through P. We may conclude, by induction, that there exists an $(h-2)$-space $\Pi^{\prime \prime}$, not through L^{\prime}, that contains at least $q_{0}^{h-2}-6 q_{0}^{h-3}\left(q_{0}+1\right)$ secants through P. Since L^{\prime} does not lie in $\Pi^{\prime \prime}$, this implies that there are at least $q_{0}^{h-2}-6 q_{0}^{h-3}$ different planes through L^{\prime} that each have at least q_{0}^{3} points outside L, a contradiction since $|B| \leq q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}$. This implies that there is at most one line through P that lies on only bad planes.

3 The proof of the main theorem

Lemma 12. Assume $h>3$ and $q_{0}>5 h-11$. Denote the $\left(q_{0}+1\right)$-secants, not lying on only bad planes, through a point P of B that lies on at least one $\left(q_{0}+1\right)$-secant, by L_{1}, \ldots, L_{s}. Let x be a point of the spread element
corresponding to B in $\mathrm{PG}\left(h(n+1)+1, q_{0}\right)$ and let ℓ_{i} be the line through x such that $\mathcal{B}\left(\ell_{i}\right)=L_{i} \cap B$. Let $\mathcal{L}=\left\{\ell_{1}, \ldots, \ell_{s}\right\}$, then $\langle\mathcal{L}\rangle$ has dimension h.

Proof. From Lemma 4 and Lemma 11 we get that s is at least $q_{0}^{h-1}-4 q_{0}^{h-2}+$ $1-1=q_{0}^{h-1}-4 q_{0}^{h-2}$. From Lemmas 8(ii) and 10, we get that through every line $L_{i}, i=1, \ldots, s$, there are at least $q_{0}^{h-2}-4 q_{0}^{h-3}+1$ planes, say $\Pi_{i j}, j=1, \ldots, t$, such that $B \cap \Pi_{i j}=\mathcal{B}\left(\pi_{i j}\right)$, for a plane $\pi_{i j}$ through ℓ_{i}. Denote the set of planes $\left\{\pi_{i j}, 1 \leq i \leq s, 1 \leq j \leq t\right\}$ by \mathcal{V}, and the set of lines $\left\{\ell_{1}, \ldots, \ell_{s}\right\}$ by \mathcal{L}.

A fixed plane $\pi_{i j}$ of \mathcal{V}, say π_{11}, contains $q_{0}+1$ lines of \mathcal{L}, say $\ell_{1}, \ldots, \ell_{q_{0}+1}$. The lines $\ell_{1}, \ldots, \ell_{q_{0}+1}$ lie on a set of at least $\left(q_{0}+1\right)\left(q_{0}^{h-2}-4 q_{0}^{h-3}+1\right)+1$ different planes of \mathcal{V}. On these planes, there lie a set \mathcal{P} of at least $\left(q_{0}+\right.$ 1) $\left(q_{0}^{h-2}-4 q_{0}^{h-3}-1\right) q_{0}^{2}$ different points y_{1}, \ldots, y_{u}, not in π_{11}, such that $\mathcal{B}\left(y_{i}\right) \subset$ B.

We claim that $\mathcal{B}\left(y_{r}\right)=\mathcal{B}\left(y_{r}^{\prime}\right)$ implies that $y_{r}=y_{r}^{\prime}$ for y_{r} and y_{r}^{\prime} in \mathcal{P} $(*)$. We know that y_{r} lies on $\pi_{i j}$ and y_{r}^{\prime} lies on $\pi_{i^{\prime} j^{\prime}}$ for some $i, i^{\prime}, j, j^{\prime}$. Since $\mathcal{B}\left(\pi_{i j}\right)=B \cap \Pi_{i j}$ and $\mathcal{B}\left(\pi_{i^{\prime} j^{\prime}}\right)=B \cap \Pi_{i^{\prime} j^{\prime}}$, the lines $\left\langle\mathcal{B}\left(x y_{r}\right)\right\rangle$ and $\left\langle\mathcal{B}\left(x y_{r}^{\prime}\right)\right\rangle$ are $\left(q_{0}+1\right)$-secants to B. Since we assume that $\mathcal{B}\left(y_{r}\right)=\mathcal{B}\left(y_{r}^{\prime}\right)$, these $\left(q_{0}+1\right)$ secants coincide. Moreover, $\mathcal{B}\left(x y_{r}\right) \subset B$ and $\mathcal{B}\left(x y_{r}^{\prime}\right) \subset B$, so $x y_{r}$ and $x y_{r}^{\prime}$ are transversal lines through the same regulus, which forces $y_{r}=y_{r}^{\prime}$. This proves our claim, hence, different points of the pointset \mathcal{P} give rise to different points of B.

We will prove that, for all $2 \leq k \leq h$ there exists an k-space through x with at least $q_{0}^{k-1}-(5 k-11) q_{0}^{k-2}$ lines of \mathcal{L}. The existence of π_{11} proves this statement for $k=2$. Assume, by induction, that there exists a j-space through x, say ν, where $j<h-1$, containing at least $q_{0}^{j-1}-(5 j-11) q_{0}^{j-2}$ lines of \mathcal{L}.

We will now count the number of couples $(\ell \in \mathcal{L}$ contained in ν, r a point, not in ν with $\langle r, \ell\rangle \in \mathcal{V})$. The number of lines of \mathcal{L} in ν is at least $q_{0}^{j-1}-(5 j-11) q_{0}^{j-2}$, the number of points $r \notin \nu$ with $\langle r, \ell\rangle \in \mathcal{V}$ for some fixed ℓ, is at least $\left(q_{0}^{h-2}-4 q_{0}^{h-3}\right) q_{0}^{2}-\left(q_{0}^{j+1}-1\right) /\left(q_{0}-1\right)$. The number of points r with $\langle r, \ell\rangle \in \mathcal{V}$, is by $(*)$ at most $|B|$, hence, the number of points $r \notin \nu$ with $\langle r, \ell\rangle \in \mathcal{V}$ is at most $|B|-\left(q_{0}^{j-1}-(5 j-11) q_{0}^{j-2}\right) q_{0}-1$.

Hence, there is a point r, lying on (say) X different planes $\langle r, \ell\rangle$ of \mathcal{V} with

$$
X \geq \frac{\left(q_{0}^{j-1}-(5 j-11) q_{0}^{j-2}\right)\left(q_{0}^{h}-4 q_{0}^{h-1}-\left(q_{0}^{j+1}-1\right) /\left(q_{0}-1\right)\right)}{q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}-q_{0}^{j}+(5 j-11) q_{0}^{j-1}-1} .
$$

This last expression is larger than $q_{0}^{j-1}-(5(j+1)-11) q_{0}^{j-2}$, if $h>3$, for all $j \leq h-1$.

This implies that the $j+1$-space $\langle r, \nu\rangle$, contains at least $\left(q_{0}^{j-1}-(5(j+1)-\right.$
11) $\left.q_{0}^{j-2}\right) q_{0}+1$ lines of \mathcal{L}, hence, by induction, we find an h-dimensional-space through x containing at least $q_{0}^{h-1}-(5 h-11) q_{0}^{h-2}$ lines of \mathcal{L}.

Suppose now that there is a line of the ℓ_{i}, say ℓ_{s}, not in this h-space ξ. Since by Lemma 10, there are at least $q_{0}^{h-2}-4 q_{0}^{h-3}$ planes through ℓ_{s}, giving rise to $\left(q_{0}^{h-2}-4 q_{0}^{h-3}\right)\left(q_{0}^{2}-q_{0}\right)$ points z, which are not contained in ξ, such that $\mathcal{B}(z) \subset B$. By $(*)$, and the fact that there are at least $\left(q_{0}^{h-1}-\right.$ $\left.(5 h-11) q_{0}^{h-2}\right) q_{0}+1$ points y in ξ such that $\mathcal{B}(y) \subset B$, we get that $|B| \geq$ $q_{0}^{h}+q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}$, a contradiction.

This shows that the dimension of $\langle\mathcal{L}\rangle$ is h.
We now use the following theorem, which is an extension of $[9$, Remark 3.3].

Theorem 13. [4, Corollary 1] A blocking set of size smaller than $2 q$ in $\mathrm{PG}(n, q)$ is uniquely reducible to a minimal blocking set.

Main Theorem. A small minimal blocking set B in $\mathrm{PG}(n, q)$, with exponent $e, q=p^{t}$, p prime, $q_{0}:=p^{e}, q_{0} \geq 7, t / e=h$, spanning an ($h-1$)-dimensional space is an $\mathbb{F}_{q_{0}}$-linear set.

Proof. As seen in Lemma 12, there exists an h-dimensional space ξ in PG((n+ 1) $h-1, q_{0}$), such that $|\mathcal{B}(\xi) \cap B| \geq q_{0}^{h}-4 q_{0}^{h-1}+1$. Define \tilde{B} to be the union of $\mathcal{B}(\xi)$ and B and recall that $\mathcal{B}(\xi)$ is a small minimal $\mathbb{F}_{q_{0}}$-linear blocking set in $\mathrm{PG}(n, q)$. Clearly, \tilde{B} is a blocking set, and its size is equal to $|B|+|\mathcal{B}(\xi)|-|B \cap B(\xi)|$. Hence, $|\tilde{B}|$ is at most $\left(q_{0}^{h+1}-1\right) /\left(q_{0}-1\right)+q_{0}^{h}+$ $q_{0}^{h-1}+q_{0}^{h-2}+3 q_{0}^{h-3}-\left(q_{0}^{h}-4 q_{0}^{h-1}+1\right)<2 q_{0}^{h}$. Theorem 13 shows that $B=\mathcal{B}(\xi)$, so we may conclude that B is an $\mathbb{F}_{q_{0}}$-linear set.

By the fact that the exponent of a small minimal blocking set in $\operatorname{PG}(n, q)$ is at least one (see Theorem 1), we get the following corollary.

Corollary 14. All small minimal blocking sets in $\mathrm{PG}\left(n, p^{t}\right)$, p prime, $p>$ $5 t-11$ spanning a $(t-1)$-space, are \mathbb{F}_{p}-linear.

References

[1] A. Blokhuis. On the size of a blocking set in $\mathrm{PG}(2, p)$. Combinatorica 14 (1) (1994), 111-114.
[2] A. Blokhuis, S. Ball, A.E. Brouwer, L. Storme, and T. Szőnyi. On the number of slopes of the graph of a function defined on a finite field. J. Combin. Theory Ser. A 86 (1) (1999), 187-196.
[3] A. Blokhuis, L. Lovász, L. Storme, T. Szőnyi. On multiple blocking sets in Galois planes. Adv. Geom. 7 (1) (2007),39-53.
[4] M. Lavrauw, L. Storme, and G. Van de Voorde. On the code generated by the incidence matrix of points and k-spaces in $\mathrm{PG}(n, q)$ and its dual. Finite Fields Appl. 14 (4) (2008), 1020-1038.
[5] M. Lavrauw and G. Van de Voorde. On linear sets on a projective line. Des. Codes Cryptogr. 56 (2-3) (2010), 89-104.
[6] O. Polverino. Small blocking sets in $\mathrm{PG}\left(2, p^{3}\right)$. Des. Codes Cryptogr. 20 (3) (2000), 319-324.
[7] L. Storme and P. Sziklai. Linear pointsets and Rédei type k-blocking sets in PG(n,q). J. Algebraic Combin. 14 (3) (2001), 221-228.
[8] L. Storme and Zs. Weiner. On 1-blocking sets in $\operatorname{PG}(n, q), n \geq 3$. Des. Codes Cryptogr. 21 (1-3) (2000), 235-251.
[9] T. Szőnyi. Blocking sets in desarguesian affine and projective planes. Finite Fields Appl. 3 (3) (1997), 187-202.
[10] T. Szőnyi and Zs. Weiner. Small blocking sets in higher dimensions. J. Combin. Theory, Ser. A 95 (1) (2001), 88-101.
[11] P. Sziklai. On small blocking sets and their linearity. J. Combin. Theory, Ser. A 115 (7) (2008), 1167-1182.
[12] G. Van de Voorde. On the linearity of higher-dimensional blocking sets, Electron. J. Combin. 17 (1) (2010), Research Paper 174, 16 pp.

