A characterization of multiple (n - k)-blocking sets in projective spaces of square order

S. Ferret L. Storme P. Sziklai^{*} Zs. Weiner

Abstract

In [10], it was shown that small t-fold (n - k)-blocking sets in $PG(n,q), q = p^{h}, p$ prime, $h \ge 1$, intersect every k-dimensional space in t (mod p) points. We characterize in this article all t-fold (n - k)-blocking sets in PG(n,q), q square, $q \ge 661, t < c_p q^{1/6}/2, |B| < tq^{n-k} + 2tq^{n-k-1}\sqrt{q}$, intersecting every k-dimensional space in t (mod \sqrt{q}) points.

1 Introduction

Throughout this paper, PG(n,q) will denote the *n*-dimensional projective space over the Galois field GF(q), where $q = p^h$, p prime.

A *t*-fold (n - k)-blocking set B of PG(n, q), with 0 < k < n, is a set of points of PG(n, q) intersecting every k-dimensional subspace of PG(n, q) in at least t points.

A 1-fold (n-k)-blocking set B of PG(n,q) containing an PG(n-k,q) is called *trivial*.

A point r of B is called *essential* if there is a k-dimensional subspace through r intersecting B in precisely t points. The t-fold blocking set B is called *minimal* if all of its points are essential. A 1-fold (n - k)-blocking set is also called an (n - k)-blocking set. A t-fold 1-blocking set in PG(2, q) is also called a t-fold blocking set, or a t-fold planar blocking set.

These latter *t*-fold planar blocking sets have been studied in great detail.

Theorem 1.1 (Blokhuis *et al.* [8]) Let B be a t-fold blocking set in PG(2,q), $q = p^h$, p prime, of size t(q+1) + c. Let $c_2 = c_3 = 2^{-1/3}$ and $c_p = 1$ for

^{*}The third author is grateful for the partial support of OTKA T049662, T067867 and Bolyai grants.

p > 3.

(1) If $q = p^{2d+1}$ and $t < q/2 - c_p q^{2/3}/2$, then $c \ge c_p q^{2/3}$, unless t = 1 in which case B, with $|B| < q + 1 + c_p q^{2/3}$, contains a line.

(2) If 4 < q is a square, $t < c_p q^{1/6}$ and $c < c_p q^{2/3}$, then $c \ge t\sqrt{q}$ and B contains the union of t pairwise disjoint Baer subplanes, except for t = 1 in which case B contains a line or a Baer subplane.

(3) If $q = p^2$, p prime, and $t < q^{1/4}/2$ and $c , then <math>c \ge t\sqrt{q}$ and B contains the union of t pairwise disjoint Baer subplanes, except for t = 1 in which case B contains a line or a Baer subplane.

Theorem 1.2 (Ball [1]) A t-fold blocking set in PG(2,q) which does not contain a line has at least $tq + \sqrt{tq} + 1$ points.

If B is a t-fold blocking set in PG(2, p), where p > 3 is prime, and if 1 < t < p/2, then $|B| \ge (t+1/2)(p+1)$, while if t > p/2, then $|B| \ge (t+1)p$.

In the theory of 1-fold planar blocking sets, 1 (mod p) results for *small* 1-fold planar blocking sets play an important role.

Definition 1.3 A blocking set of PG(2,q) is called small when it has less than 3(q+1)/2 points.

If $q = p^h$, p prime, $h \ge 1$, the exponent e of the minimal blocking set B of PG(2,q) is the maximal integer e such that every line intersects B in 1 (mod p^e) points.

Theorem 1.4 Let B be a small minimal 1-fold blocking set in PG(2,q), $q = p^h$, p prime, $h \ge 1$. Then B intersects every line in 1 (mod p) points, so for the exponent e of B, we have $1 \le e \le h$. (Szőnyi [18]) In fact, this exponent e is a divisor of h. (Sziklai [17])

This result was extended by Szőnyi and Weiner [19] to 1-fold (n-k)blocking sets in PG(n,q).

Definition 1.5 A 1-fold (n-k)-blocking set of PG(n,q) is called small when it has less than $3(q^{n-k}+1)/2$ points.

If $q = p^h$, p prime, $h \ge 1$, the exponent e of the minimal 1-fold (n - k)blocking set B is the maximal integer e such that every hyperplane intersects B in 1 (mod p^e) points.

A most interesting question of the theory of blocking sets is to classify the small blocking sets. A natural construction (blocking the k-subspaces of PG(n,q)) is a subgeometry $PG(h(n-k)/e, p^e)$, if it exists (recall $q = p^h$, so $1 \le e \le h$ and $e|h\rangle$. It is easy to see that the projection of a blocking set, w.r.t. k-dimensional subspaces, from a vertex V onto an r-dimensional subspace of PG(n,q), is again a blocking set, w.r.t. the (k+r-n)-dimensional subspaces of PG(r,q) (where $\dim(V) = n - r - 1$ and V is disjoint from the blocking set).

A blocking set of PG(r,q), which is a projection of a subgeometry of PG(n,q), is called *linear*. (Note that the trivial blocking sets are linear as well.) Linear blocking sets were defined by Lunardon, and they were first studied by Lunardon, Polito and Polverino [12], [13].

Conjecture 1.6 (Linearity Conjecture [17]) In PG(n,q), every small minimal blocking set, with respect to k-dimensional subspaces, is linear.

There are some cases of the Conjecture that are proved already.

Theorem 1.7 For $q = p^h$, p prime, $h \ge 1$, every small minimal non-trivial blocking set w.r.t. k-dimensional subspaces is linear, if

- (a) n = 2, k = 1 (so we are in the plane) and:
 - (i) (Blokhuis [5]) h = 1 (i.e. there is no small non-trivial blocking set at all);
 - (ii) (Szőnyi [18]) h = 2 (the only non-trivial example is a Baer subplane with $p^2 + p + 1$ points);
 - (iii) (Polverino [14]) h = 3 (there are two examples, one with $p^3 + p^2 + 1$ and another with $p^3 + p^2 + p + 1$ points);
 - (iv) (Blokhuis, Ball, Brouwer, Storme, Szőnyi [6], Ball [2]) if p > 2and there exists a line ℓ intersecting B in $|B \cap \ell| = |B| - q$ points (so a blocking set of Rédei type);
- (b) for general k:
 - (i) (Szőnyi and Weiner [19]) if $h(n-k) \leq n, p > 2$, and B is not contained in an (h(n-k)-1)-dimensional subspace;
 - (ii) (Storme and Weiner [16] (for k = n 1), Bokler [9] and Weiner [20]) $h = 2, q \ge 16$;
 - (iii) (Storme and Sziklai [15]) if p > 2 and there exists a hyperplane H intersecting B in $|B \cap H| = |B| q^{n-k}$ points (so a blocking set of Rédei type).

The following \pmod{p} result is known.

Theorem 1.8 (Szőnyi and Weiner [19]) A minimal 1-fold (n - k)-blocking set in PG(n,q), $q = p^h$, p > 2 prime, of size less than $\frac{3}{2}(q^{n-k}+1)$ intersects every subspace in zero or in 1 (mod p) points.

There is an even more general version of the Conjecture. A t-fold blocking set w.r.t. k-dimensional subspaces is a point set which intersects each kdimensional subspace in at least t points. Multiple points may be allowed as well.

Conjecture 1.9 (Linearity Conjecture for multiple blocking sets [17]) In PG(n,q), any t-fold minimal blocking set B, with respect to k-dimensional subspaces, is the union of some (not necessarily disjoint) linear point sets $B_1, ..., B_s$, where B_i is a t_i -fold blocking set w.r.t. k-dimensional subspaces and $t_1 + \cdots + t_s = t$; provided that t and |B| are small enough ($t \le T(n, q, k)$ and $|B| \le S(n, q, k)$ for two suitable functions T and S).

Again, some cases of this conjecture have been proved already; in this paper, we cover many new cases which provide "evidence" to the Linearity Conjecture for multiple blocking sets.

Note that there exists a $(\sqrt[4]{q}+1)$ -fold blocking set in PG(2, q), constructed by Ball, Blokhuis and Lavrauw [3], which is *not* the union of smaller blocking sets. (This multiple blocking set is a linear point set.)

The 1 (mod p) result in PG(2, q), $q = p^h$, p prime, was extended by Blokhuis *et al.* to a $t \pmod{p}$ result on *small* minimal t-fold blocking sets in PG(2, q) [7].

Definition 1.10 A t-fold blocking set of PG(2,q) is called small when it has less than (t + 1/2)(q + 1) points.

If $q = p^h$, p prime, the exponent e of the minimal t-fold blocking set B in PG(2,q) is the maximal integer e such that every line intersects B in t (mod p^e) points.

Theorem 1.11 (Blokhuis *et al.* [7]) Let B be a small minimal t-fold blocking set in PG(2,q), $q = p^h$, p prime, $h \ge 1$. Then B intersects every line in t (mod p) points.

Regarding characterization results on small minimal 1-fold (n-k)-blocking sets in PG(n,q), we mention the following results.

In the next theorem, θ_m denotes the size of an *m*-dimensional space PG(m,q).

Theorem 1.12 (Bokler [9]) The minimal (n-k)-blocking sets of cardinality at most $\theta_{n-k} + \theta_{n-k-1}\sqrt{q}$ in projective spaces PG(n,q) of square order q, $q \ge 16$, are Baer cones with an m-dimensional vertex PG(m,q) and base a Baer subgeometry $PG(2(n-k-m-1),\sqrt{q})$, for some m with $\max\{-1, n-2k-1\} \le m \le n-k-1$.

In the following theorem, s(q) denotes the size of the smallest blocking set in PG(2, q), q square, not containing a line or Baer subplane.

Theorem 1.13 (Storme and Weiner [16]) Let K be a minimal 1-blocking set in PG(n,q), q square, $q = p^h$, $h \ge 1$, p > 3 prime, $n \ge 3$, with $|K| \le s(q)$. Then K is a line or a minimal planar blocking set of PG(n,q).

Theorem 1.14 (Storme and Weiner [16]) In $PG(n,q^3)$, $q = p^h$, $h \ge 1$, p prime, $p \ge 7$, $n \ge 3$, a minimal 1-blocking set K of cardinality at most $q^3 + q^2 + q + 1$ is either:

(1) a line;

(2) a Baer subplane when q is a square;

(3) a minimal blocking set of cardinality q^3+q^2+1 in a plane of PG (n, q^3) ;

(4) a minimal blocking set of cardinality $q^3 + q^2 + q + 1$ in a plane of $PG(n, q^3)$;

(5) a subgeometry PG(3,q) in a 3-dimensional subspace of $PG(n,q^3)$.

The following result was the first characterization result to use the 1 \pmod{p} result of Theorem 1.8.

Theorem 1.15 (Weiner [20]) Let B be a 1-fold (n-k)-blocking set in PG $(n, q = p^{2h})$, p > 2 prime, $q \ge 81$, of size $|B| < 3(q^{n-k} + 1)/2$ and intersecting every k-space in 1 (mod \sqrt{q}) points. Then B is a Baer cone with an m-dimensional vertex PG(m,q) and base a Baer subgeometry PG $(2(n - k - m - 1), \sqrt{q})$, for some m with max $\{-1, n - 2k - 1\} \le m \le n - k - 1$.

Regarding characterizations of small minimal t-fold (n-k)-blocking sets in PG(n,q), we mention the following result.

Theorem 1.16 (Barát and Storme [4]) Let B be a t-fold 1-blocking set in PG(n,q), $q = p^h$, p prime, $q \ge 661$, $n \ge 3$, of size $|B| < tq + c_p q^{2/3} - (t-1)(t-2)/2$, with $c_2 = c_3 = 2^{-1/3}$, $c_p = 1$ when p > 3, and with $t < \min(c_p q^{1/6}, q^{1/4}/2)$. Then B contains a union of t pairwise disjoint lines and/or Baer subplanes.

Recently, in [10], the following $t \pmod{p}$ result on weighted t-fold (n-k)-blocking sets in PG(n, q) has been obtained.

Theorem 1.17 (Ferret *et al.* [10]) Let *B* be a minimal weighted *t*-fold (n - k)-blocking set of PG(n, q), $q = p^h$, p prime, $h \ge 1$, of size $|B| = tq^{n-k} + t + k'$, with $t + k' \le (q^{n-k} - 1)/2$.

Then B intersects every k-dimensional space in $t \pmod{p}$ points.

We now use this $t \pmod{p}$ result to characterize multiple blocking sets. We present in this article characterization results on small t-fold (n - k)blocking sets in PG(n,q), q square, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points.

2 Intervals for minimal *t*-fold (n-k)-blocking sets

The following interval theorems on the size of minimal t-fold (n-k)-blocking sets in PG(n, q) will play a crucial role in our arguments.

Theorem 2.1 (Ferret *et al.* [10]) Let *B* be a minimal *t*-fold (n-k)-blocking set in PG(n,q), $n \ge 2$, $|B| = tq^{n-k}+t+k'$, with $t+k' \le (q^{n-k}-1)/2$. Assume that $q = p^h$, *p* prime, $h \ge 1$, and that *B* intersects every *k*-dimensional space in *t* (mod *E*) points, with $E = p^e$, and with *e* the largest integer for which this is true.

If 2t < E, then

$$tq^{n-k} + \frac{q^{n-k}}{p^e + 1} - 1 \le |B| \le tq^{n-k} + \frac{2tq^{n-k}}{E}$$

Theorem 2.2 (Ferret *et al.* [10]) Let *B* be a *t*-fold (n - k)-blocking set in PG(n,q). Assume that $q = p^h$, *p* prime, $h \ge 1$, and that *B* intersects every *k*-dimensional space in *t* (mod *E*) points, with $E = p^e$, and with *e* the largest integer for which this is true.

If $\max\{2t, 4\} < E$, then

$$|B| \le tq^{n-k} + \frac{2tq^{n-k}}{E} \quad or \quad |B| \ge Eq^{n-k} + t.$$

3 *t*-Fold 1-blocking sets

In Theorem 1.16, see also [4], Barát and Storme presented characterization results on *t*-fold 1-blocking sets in PG(n,q). These results were obtained before the *t* (mod *p*) results (Theorems 1.11 and 1.17) were known.

Repeating their arguments, but now including the $t \pmod{p}$ results, leads to the following theorem.

Theorem 3.1 Let B be a t-fold 1-blocking set in PG(n,q), $q = p^h$, p prime, $q \ge 661$, $n \ge 3$, of size $|B| < tq + c_p q^{2/3}$, with $c_2 = c_3 = 2^{-1/3}$, $c_p = 1$ when p > 3, and with $t < c_p q^{1/6}/2$. Then B contains a union of t pairwise disjoint lines and/or Baer subplanes.

The following result, which relies on the preceding classification of t-fold 1-blocking sets, plays an important role in the proofs of the characterization results which will follow.

From now on, let *B* be a minimal *t*-fold (n-k)-blocking set in PG(n,q), $q = p^h$, *p* prime, $q \ge 661$, $n \ge 3$, of size $|B| < tq^{n-k} + c_p q^{n-k-1/3}$, with $c_2 = c_3 = 2^{-1/3}$, $c_p = 1$ when p > 3, and with $t < c_p q^{1/6}/2$, intersecting every *k*-dimensional space in *t* (mod \sqrt{q}) points.

Lemma 3.2 Let B be a minimal t-fold (n - k)-blocking set in PG(n,q), $k \ge 2$, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points.

If Π is a (k+1)-dimensional space intersecting B in a non-minimal t-fold 1-blocking set, then

$$|\Pi \cap B| \ge q\sqrt{q} + t.$$

Proof: Since $\Pi \cap B$ intersects every k-dimensional space in Π in $t \pmod{\sqrt{q}}$ points, either $|\Pi \cap B| \le tq + 2t\sqrt{q}$ or $|\Pi \cap B| \ge q\sqrt{q} + t$ (Theorem 2.2). Assume that $|\Pi \cap B| \le tq + 2t\sqrt{q}$, then by Theorem 3.1, $\Pi \cap B$ contains a union of t pairwise disjoint lines and/or Baer subplanes. Let S_1 be the minimal part of $\Pi \cap B$, consisting of those t pairwise disjoint lines and/or Baer subplanes, and let S_2 be the remaining part of $\Pi \cap B$.

Let $r \in S_2$. Consider a line L of Π through r only intersecting B in r. We now prove that it is possible to find a (k-1)-dimensional space Π_{k-1} of Π through L only intersecting B in r. This is immediately true for k = 2. Let $k \geq 3$, then there are $q^{n-2} + q^{n-3} + \cdots + q + 1$ planes through L. Since there are at most $tq^{n-k} + q^{n-k-1/3} < q^{n-2} + \cdots + q + 1$ points in B, it is possible to find a plane Π_2 through L only intersecting B in r. Repeating this argument, a 3-dimensional space Π_3 through Π_2 only intersecting B in r can be found, a 4-dimensional space Π_4 through Π_3 only intersecting B in r can be found, \ldots , a (k-1)-dimensional space Π_{k-1} through Π_{k-2} only intersecting B in rcan be found since there are $q^{n-k+1} + \cdots + q + 1$ (k-1)-dimensional spaces through Π_{k-2} and $|B| < tq^{n-k} + q^{n-k-1/3}$.

There are q + 1 k-dimensional spaces in Π through Π_{k-1} , all intersecting S_1 in $t \pmod{\sqrt{q}}$ points. Since these k-dimensional spaces intersect B in $t \pmod{\sqrt{q}}$ points, every such hyperplane intersects S_2 in r and in at least $\sqrt{q} - 1$ other points. So $|\Pi \cap B| \ge 1 + (q+1)(\sqrt{q}-1) + t(q+1)$. This contradicts $|\Pi \cap B| \le tq + 2t\sqrt{q}$.

4 *t*-Fold 2-blocking sets

Let B be a minimal t-fold 2-blocking set in PG(n,q) intersecting every (n-2)dimensional space in t (mod \sqrt{q}) points. Assume that

$$|B| \le tq^2 + 2tq\sqrt{q} < tq^2 + c_p q^{5/3},$$

with $q \ge 661$ and with $t < c_p q^{1/6}/2$.

The t (mod \sqrt{q}) assumption implies that every (n-1)-dimensional space intersects B in at most $tq + 2t\sqrt{q}$ points or in at least $q\sqrt{q} + t$ points (Lemma 3.2).

We will show that B is the union of t pairwise disjoint planes, Baer cones with a point as vertex and a Baer subplane $PG(2, \sqrt{q})$ as base, or subgeometries $PG(4, \sqrt{q})$.

Remark 4.1 (1) In this article, when we state that a Baer subline L is contained in B, then we mean that this Baer subline is effectively contained in B, but that the line \hat{L} , defined over GF(q), defined by L is not completely contained in B.

(2) In the next lemma, we state that a subset S of points on a line L can be written in a unique way as a union of at most t pairwise disjoint points and Baer sublines. This has the following meaning. If S contains a Baer subline, then, first of all, the $\sqrt{q} + 1$ points of this Baer subline must be considered in this description as a Baer subline and not as $\sqrt{q} + 1$ distinct points, secondly, these Baer sublines and points contained in S are all pairwise disjoint, and thirdly, if you consider the different Baer sublines contained in S and then the remaining points of S, the total number of these different Baer sublines and remaining points is at most t.

(3) Consider a Baer subline L, then \widehat{L} will always denote the line, over GF(q), containing the Baer subline L.

Lemma 4.2 A line L not contained in B shares at most $t(\sqrt{q} + 1)$ points with B. This intersection $L \cap B$ can be written in a unique way as a union of at most t pairwise disjoint points and Baer sublines.

Proof: By using the same arguments as in the proof of Lemma 3.2, it is possible to find an (n-3)-dimensional space through L containing no other points of B. It is then possible to select an (n-2)-dimensional space through this (n-3)-dimensional space containing at most t extra points of B since there are $q^2 + q + 1$ (n-2)-dimensional spaces through a given (n-3)-dimensional space, and $|B| < tq^2 + q^{5/3}$. Similarly, it is then possible to

select a hyperplane π through this (n-2)-dimensional space containing at most $tq + 2t\sqrt{q}$ other points of B.

Then $|\pi \cap B| \leq q + t + tq + 2t\sqrt{q} < q\sqrt{q} + t$, so by Theorem 2.2, $|\pi \cap B| \leq tq + 2t\sqrt{q}$, and then Theorem 3.1 and Lemma 3.2 imply that π intersects B in a union of t pairwise disjoint lines and Baer subplanes.

This implies that L intersects B in a number of points and/or Baer sublines.

Assume that L shares at least one Baer subline with B. Since $t < q^{1/6}/2$, and since two distinct Baer sublines share at most two points, it is only possible to partition the points of a Baer subline in $L \cap B$ over other Baer sublines in $L \cap B$ if $t \ge (\sqrt{q} + 1)/2$.

This is not the case, so $L \cap B$ can be written in a unique way as a union of at most t pairwise disjoint points and Baer sublines.

Lemma 4.3 Every hyperplane Π intersects B in a union of t pairwise disjoint lines and/or Baer subplanes, or intersects B in at least $q\sqrt{q} + t$ points.

Proof: By Theorem 2.2, since every (n-2)-dimensional space intersects B in $t \pmod{\sqrt{q}}$ points, B intersects every hyperplane in at most $tq + 2t\sqrt{q}$ points or in at least $q\sqrt{q} + t$ points. Assume that a hyperplane Π intersects B in at most $tq + 2t\sqrt{q}$ points, then this intersection $\Pi \cap B$ must be a minimal t-fold 1-blocking set in Π , since for a non-minimal intersection, $|\Pi \cap B| \ge q\sqrt{q} + t$ (Lemma 3.2).

Since for the case $|\Pi \cap B| \leq tq + 2t\sqrt{q}$, the intersection must be a minimal *t*-fold 1-blocking set, Theorem 3.1 implies that $B \cap \Pi$ is a union of *t* pairwise disjoint lines and/or Baer subplanes.

We know from Lemma 4.3 that every hyperplane Π intersects B in a union of t lines and/or Baer subplanes, or intersects B in at least $q\sqrt{q} + t$ points. Consequently, for every hyperplane Π , $|\Pi \cap B| \ge t(q+1)$.

Consider an (n-2)-dimensional space Δ sharing t distinct points with B. The q+1 hyperplanes through Δ all contain at least tq+t points of B, so if we subtract (q+1)tq from the size of B, at most $2tq\sqrt{q} - tq$ points in B remain. Dividing this number by $q\sqrt{q} - tq$ then implies that at most 2t hyperplanes through Δ contain at least $q\sqrt{q} + t$ points of B. The other, at least q+1-2t, hyperplanes through Δ share at most $tq+2t\sqrt{q}$ points with B, and therefore intersect B in a union of t pairwise disjoint lines and/or Baer subplanes (Lemma 4.3).

This shows that every point of $\Delta \cap B$ lies on at least q + 1 - 2t lines and/or Baer subplanes, contained in B.

Lemma 4.4 Let $r \in \Delta \cap B$ and suppose that r lies in two Baer subplanes B_1 and B_2 , contained in B, in distinct hyperplanes through Δ .

Then B_1 and B_2 define a 4-dimensional Baer subgeometry completely contained in B.

Proof: Consider a Baer subline L_2 of B_2 through r. Then the line L_2 , defined over GF(q), through L_2 shares at most $t(\sqrt{q} + 1)$ points with B (Lemma 4.2). By using the same arguments as in the proof of Lemma 3.2, it is possible to find an (n-3)-dimensional space Π_{n-3} through L_2 containing no other points of B, and intersecting the plane of B_1 only in r.

There are $q^2 + q + 1$ (n - 2)-dimensional spaces through Π_{n-3} . Precisely q + 1 of those (n - 2)-dimensional spaces through Π_{n-3} intersect the plane PG(2,q) containing the Baer subplane B_1 in a line through r, so q^2 of these (n - 2)-dimensional spaces through Π_{n-3} only intersect the plane of B_1 in r. It is therefore possible to select an (n - 2)-dimensional space Δ' through Π_{n-3} containing at most t extra points of B, and only intersecting the plane of B_1 in r. Then $|\Delta' \cap B| \leq t(\sqrt{q} + 1) + t$ since there are at most $t(\sqrt{q} + 1)$ points of B belonging to $\widehat{L_2}$ (Lemma 4.2).

Since $|\Delta' \cap B| \equiv t \pmod{\sqrt{q}}$, necessarily $|\Delta' \cap B| \leq t(\sqrt{q}+1)$.

Every hyperplane through Δ' contains at least $tq - t\sqrt{q}$ other points of B since every hyperplane shares at least t(q+1) points with B (Lemma 4.3). If we subtract $(q+1)(tq - t\sqrt{q})$ from the size of B, at most $3tq\sqrt{q} - tq + t\sqrt{q}$ points in B remain. A hyperplane through Δ' containing at least $q\sqrt{q} + t$ points of B still contains at least $q\sqrt{q} - tq$ other points of B, so at most 3t hyperplanes through Δ' contain at least $q\sqrt{q} + t$ points of B.

This implies that at least $\sqrt{q} + 1 - 3t$ hyperplanes through Δ' intersect B_1 in a Baer subline, and intersect B in a union of $t < q^{1/6}/2$ pairwise disjoint lines and/or Baer subplanes. Since such a hyperplane shares a Baer subline with B_1 and with B_2 , both passing through the same point r, these two latter Baer sublines must be contained in a Baer subplane contained in B.

The preceding arguments show that at least $\sqrt{q} + 1 - 3t$ Baer subplanes of the 3-dimensional Baer subgeometry $\langle B_1, L_2 \rangle$, passing through L_2 , are contained in B.

Assume that the Baer subgeometry $\langle B_1, L_2 \rangle$ is not contained in B. Select a Baer subline N of $\langle B_1, L_2 \rangle$ skew to L_2 which is not contained in B. Then this Baer subline N shares at least $\sqrt{q} + 1 - 3t$ and at most \sqrt{q} points with B.

By Lemma 4.2, it is possible to describe $N \cap B$ in a unique way as a union of at most $t < q^{1/6}/2$ pairwise disjoint points and Baer sublines.

Since $\sqrt{q} + 1 - 3t > t$, some of the points of $N \cap B$ lying in $\langle B_1, L_2 \rangle$ must lie in Baer sublines contained in $N \cap B$. Two distinct Baer sublines share at most two points. Since $\sqrt{q} + 1 - 3t > 2t$, this is impossible, so the Baer subline $N \cap \langle L_2, B_1 \rangle$ is completely contained in B.

This shows that the 3-dimensional Baer subgeometry $\langle L_2, B_1 \rangle$ is completely contained in B. By letting vary L_2 over all Baer sublines of B_2 through r, the 4-dimensional Baer subgeometry $\langle B_1, B_2 \rangle$ is completely contained in B.

This latter 4-dimensional Baer subgeometry $\langle B_1, B_2 \rangle$ is either a Baer cone with a point as vertex and a Baer subplane as base, or a Baer subgeometry $PG(4, \sqrt{q})$.

In both cases, they are 1-fold 2-blocking sets, and the $t \pmod{\sqrt{q}}$ result implies that $B \setminus \langle B_1, B_2 \rangle$ is a (t-1)-fold 2-blocking set intersecting every (n-2)-dimensional space in $(t-1) \pmod{\sqrt{q}}$ points.

Since we know from the calculations preceding Lemma 4.4 that every point of $\Delta \cap B$ lies on at least q + 1 - 2t lines or Baer subplanes contained in B, the preceding lemma and observations now imply that we can assume that every point of $\Delta \cap B$ lies on at least q - 2t lines contained in B. Since B is minimal, it is possible to assume that every point of B lies on at least q - 2t lines of B. We now show that there is a plane contained in B.

Lemma 4.5 If every point of B lies on at least q - 2t lines contained in B, then there is a plane contained in B.

Proof: Consider an (n-2)-dimensional space Δ intersecting B in exactly t points. The calculations preceding Lemma 4.4 indicate that at least q + 1 - 2t hyperplanes through Δ intersect B in a union of t lines and/or Baer subplanes. But none of the t points of $\Delta \cap B$ lies on two Baer subplanes of B in those hyperplanes. So, at least q + 1 - 2t - t hyperplanes Π through Δ intersect B in t pairwise disjoint lines L_1, \ldots, L_t .

Let r be a point of $B \setminus \Pi$. This point r lies on at least q-2t lines completely contained in B. These lines intersect Π in a point of $B \cap \Pi = L_1 \cup \cdots \cup L_t$. So at least one of the lines L_i is intersected by at least (q-2t)/t lines of B passing through r.

Then the plane $\langle r, L_i \rangle$ intersects B in at least (q - 2t)/t lines passing through r. Then every line of this plane, not passing through r, shares already (q - 2t)/t points with B. If such a line is not contained in B, it shares at most $t(\sqrt{q} + 1)$ points with B (Lemma 4.2).

Since $(q-2t)/t > t(\sqrt{q}+1)$, every line of $\langle L_i, r \rangle$, not passing through r, is contained in B, and so this plane $\langle L_i, r \rangle$ is contained in B.

The $t \pmod{\sqrt{q}}$ result again implies that $B \setminus \Pi$, Π a plane contained in B, is a (t-1)-fold blocking set intersecting every (n-2)-dimensional space in $(t-1) \pmod{\sqrt{q}}$ points.

Repeating the preceding lemmas for this (t-1)-fold blocking set, the following characterization theorem is obtained.

Theorem 4.6 Let B be a minimal t-fold 2-blocking set, of size at most $tq^2 + 2tq\sqrt{q} < tq^2 + c_pq^{5/3}$, in PG(n,q), $q \ge 661$, $t < c_pq^{1/6}/2$, intersecting every (n-2)-dimensional space in t (mod \sqrt{q}) points.

Then B is the union of t pairwise disjoint planes, Baer cones with a point as vertex and a Baer subplane as base, and 4-dimensional Baer subgeometries $PG(4, \sqrt{q}).$

5 *t*-Fold (n-k)-blocking sets in PG(n,q)

We now will present the characterization result on minimal t-fold (n - k)blocking sets in PG(n, q), with $1 \le k < n-2$, intersecting every k-dimensional space in t (mod \sqrt{q}) points. The results of the preceding two sections will be the induction bases for the general characterization results.

The general induction hypothesis (IH) we rely on for classifying the minimal *t*-fold (n-k)-blocking sets in PG(n,q), intersecting every *k*-dimensional space in $t \pmod{\sqrt{q}}$ points, is as follows.

Induction hypothesis (IH): For $1 \leq j \leq n-k-1$, let B_j be a minimal t-fold (n-k-j)-blocking set in PG(n,q), q square, $q \geq 661$, $t < c_p q^{1/6}/2$, of size at most $|B_j| \leq tq^{n-k-j} + 2tq^{n-k-j-1}\sqrt{q} < tq^{n-k-j} + c_p q^{n-k-j-1/3}$, intersecting every (k+j)-dimensional space in $t \pmod{\sqrt{q}}$ points.

Then B_j is a union of t pairwise disjoint cones $\langle \pi_{m_i}, \operatorname{PG}(2(n-k-m_i-j-1), \sqrt{q}) \rangle$, $-1 \leq m_i \leq n-k-j-1$, $i = 1, \ldots, t$.

In the above description, if $m_i = n - k - j - 1$, then $\langle \pi_{m_i}, \operatorname{PG}(2(n - k - m_i - j - 1), \sqrt{q}) \rangle$ is a subspace $\operatorname{PG}(n - k - j, q)$, and if $m_i = -1$, then $\langle \pi_{m_i}, \operatorname{PG}(2(n - k - m_i - j - 1), \sqrt{q}) \rangle$ is a Baer subgeometry $\operatorname{PG}(2(n - k - j), \sqrt{q})$.

The goal is to prove the following similar characterization result for t-fold (n-k)-blocking sets.

Let B be a minimal t-fold (n - k)-blocking set in PG(n,q), q square, $q \ge 661$, $t < c_p q^{1/6}/2$, of size at most $|B| \le tq^{n-k} + 2tq^{n-k-1}\sqrt{q} < tq^{n-k} + c_p q^{n-k-1/3}$, intersecting every k-dimensional space in t (mod \sqrt{q}) points. Then B is a union of t pairwise disjoint cones $\langle \pi_{m_i}, \operatorname{PG}(2(n-k-m_i-1), \sqrt{q}) \rangle$, $-1 \leq m_i \leq n-k-1$, $i = 1, \ldots, t$.

So, from now on, we assume that B is a minimal t-fold (n-k)-blocking set in PG(n,q), q square, $q \ge 661$, $t < c_p q^{1/6}/2$, of size at most $|B| \le tq^{n-k} + 2tq^{n-k-1}\sqrt{q} < tq^{n-k} + c_p q^{n-k-1/3}$, intersecting every k-dimensional space in $t \pmod{\sqrt{q}}$ points.

We first present some analogous lemmas to lemmas of Section 4.

Lemma 5.1 Every (k + 1)-dimensional space Π intersects B in a union of t pairwise disjoint lines and/or Baer subplanes, or intersects B in at least $q\sqrt{q} + t$ points.

Proof: By Theorem 2.2, since every k-dimensional space intersects B in $t \pmod{\sqrt{q}}$ points, B intersects every (k + 1)-dimensional space in at most $tq + 2t\sqrt{q}$ points or in at least $q\sqrt{q} + t$ points. Assume that a (k + 1)-dimensional space Π intersects B in at most $tq + 2t\sqrt{q}$ points, then this intersection $\Pi \cap B$ must be a minimal t-fold 1-blocking set in Π , since for a non-minimal intersection, $|\Pi \cap B| \ge q\sqrt{q} + t$ (Lemma 3.2).

Since for the case $|\Pi \cap B| \leq tq + 2t\sqrt{q}$, the intersection must be a minimal *t*-fold 1-blocking set, Theorem 3.1 implies that $B \cap \Pi$ is a union of *t* pairwise disjoint lines and/or Baer subplanes.

For the description of the next lemma, we again rely on Remark 4.1 (2).

Lemma 5.2 A line L, not contained in B, intersects B in at most $t(\sqrt{q}+1)$ points. This intersection can be described in a unique way as a union of at most t pairwise disjoint points and Baer sublines.

Proof: We know that $|B| \le tq^{n-k} + 2tq^{n-k-1}\sqrt{q}$.

By using the same arguments as in the proof of Lemma 3.2, it is possible to construct a (k-1)-dimensional space Π_{k-1} through L containing no other points of B. It is then possible to construct a k-dimensional space Π_k through Π_{k-1} containing at most t other points of B. So $|\Pi_k \cap B| \leq q + t$.

There are at most $tq^{n-k} + 2tq^{n-k-1}\sqrt{q}$ points in *B* left. By the induction hypothesis (IH), the smallest *t*-fold 1-blocking sets which are the intersection of a (k + 1)-dimensional space with *B* are the union of *t* pairwise disjoint lines, see also Lemma 4.3. Hence, every (k + 1)-dimensional space through Π_k contains at least (t - 1)q extra points of *B*. So we observe that at most $tq^{n-k} + 2tq^{n-k-1}\sqrt{q} - (t - 1)q(q^{n-k-1} + q^{n-k-2} + \cdots + q + 1)$ other points of *B* can remain. If a (k + 1)-dimensional space Π_{k+1} through Π_k contains at least $q\sqrt{q} + t$ points of B (Theorem 2.2 and Lemma 3.2), then it still contains at least $q\sqrt{q}-tq$ other points of $B \setminus \Pi_k$. Since $(q^{n-k-1}+q^{n-k-2}+\cdots+q+1)(q\sqrt{q}-tq) >$ $tq^{n-k}+2tq^{n-k-1}\sqrt{q}-(t-1)q(q^{n-k-1}+q^{n-k-2}+\cdots+q+1)$, there is at least one (k+1)-dimensional space Π_{k+1} through Π_k with at most $tq + 2t\sqrt{q} + t$ points of B. Then $|\Pi_{k+1} \cap B| \leq tq + 2t\sqrt{q}$ (Theorem 2.2 and Lemma 3.2). This intersection $\Pi_{k+1} \cap B$ is a minimal t-fold 1-blocking set in Π_{k+1} (Lemma 3.2), so it is a union of t pairwise disjoint lines and/or Baer subplanes (Theorem 3.1). The line L shares zero or one points with the lines of $\Pi_{k+1} \cap B$, and zero, one, or $\sqrt{q} + 1$ points with the Baer subplanes of $\Pi_{k+1} \cap B$. This proves the lemma.

Lemma 5.3 Let r be a point of B lying on two lines L_0 and L_1 contained in B.

Then the plane $\langle L_0, L_1 \rangle$ is either contained in B, or $\langle L_0, L_1 \rangle \cap B$ contains a cone with r as vertex and a Baer subline as base, containing L_0 and L_1 .

Proof: Consider the plane $\langle L_0, L_1 \rangle$. Whatever its intersection with B is, the intersection size is at most $q^2 + q + 1$.

By using the same arguments as in the proof of Lemma 3.2, construct a (k-1)-dimensional space Π_{k-1} through $\langle L_0, L_1 \rangle$ containing no other points of B. Since $|B| < tq^{n-k} + q^{n-k-1/3}$, and since there are $q^{n-k} + \cdots + q + 1$ different k-dimensional spaces through Π_{k-1} , it is possible to construct a k-dimensional space Π_k through Π_{k-1} containing at most t extra points of B. Similarly, since $|B| \leq tq^{n-k} + 2tq^{n-k-1}\sqrt{q}$, it is possible to find a (k+1)-dimensional space Π_{k+1} through Π_k containing at most $tq+2t\sqrt{q}$ other points of B.

So, $|B \cap \Pi_{k+1}| \le q^2 + q + 1 + tq + 2t\sqrt{q} + t$.

Consider all $q^{n-k-2} + \cdots + q + 1$ (k+2)-dimensional spaces through Π_{k+1} . Since $|B| < tq^{n-k} + q^{n-k-1/3}$, it is possible to find a (k+2)-dimensional space Π_{k+2} through Π_{k+1} containing at most $tq^2 + 2tq\sqrt{q}$ other points of B. This certainly implies that $|\Pi_{k+2} \cap B| \le (t+2)q^2$.

Since $|\Pi_{k+2} \cap B| \leq tq^2 + 2tq\sqrt{q}$ or $|\Pi_{k+2} \cap B| \geq q^2\sqrt{q} + t$ (Theorem 2.2 and Lemma 3.2), necessarily $|\Pi_{k+2} \cap B| \leq tq^2 + 2tq\sqrt{q}$.

Theorem 4.6 implies that $\Pi_{k+2} \cap B$ is a union of t pairwise disjoint planes, cones with a point as vertex and a Baer subplane as base, and Baer subgeometries $PG(4, \sqrt{q})$.

Since L_0 and L_1 are intersecting lines of this intersection, the plane $\langle L_0, L_1 \rangle$ either is contained in B, or its intersection with B contains a cone with $L_0 \cap L_1$ as vertex and a Baer subline as base, which contains the lines

 L_0 and L_1 .

The following two lemmas are proven in exactly the same way as the preceding lemma. In the following lemma, a Baer cone with vertex s and base the Baer subline L_2 , $s \notin \widehat{L_2}$, is the set of $\sqrt{q} + 1$ lines through the point s and the points of the Baer subline L_2 . We also recall Remark 4.1 (1); with a Baer subline L contained in B, we mean a Baer subline contained in B whose corresponding line \widehat{L} over $\operatorname{GF}(q)$ is not contained in B.

Lemma 5.4 Suppose that the point r of B lies on a line L_0 contained in B and on a Baer subline L_2 contained in B.

Then there is a Baer cone completely contained in B, with a point of $L_0 \setminus \{r\}$ as vertex and with L_2 as base.

Lemma 5.5 Suppose that the point $r \in B$ lies on two Baer sublines L_0 and L_1 contained in B, then the Baer subplane $\langle L_0, L_1 \rangle$ is completely contained in B.

Lemma 5.6 Let L_2 be a Baer subline contained in B. Let v be a point not lying on the line \widehat{L}_2 , defined over GF(q), by L_2 . Suppose that the cone with vertex v and with base the Baer subline L_2 is contained in B.

Let r be a point of L_2 and suppose that L_1 is an other Baer subline of B through r, not lying in the plane $\langle v, L_2 \rangle$.

Then the Baer cone Ω with vertex v and with base the Baer subplane $\langle L_1, L_2 \rangle$ is contained in B.

Proof: Let L'_2 be a second Baer subline of the Baer cone $\langle v, L_2 \rangle$ passing through r. Then the Baer subplane $\langle L_1, L'_2 \rangle$ is contained in B (Lemma 5.5). This Baer subplane $\langle L_1, L'_2 \rangle$ is projected from v onto the Baer subplane $\langle L_1, L_2 \rangle$.

Letting vary L'_2 over all Baer sublines of the Baer cone $\langle v, L_2 \rangle$ through r, the preceding arguments prove that the Baer cone Ω with vertex v and with base $\langle L_1, L_2 \rangle$ is completely contained in B, up to maybe some points on the line rv.

But let r' be an arbitrary point of the line $rv \setminus \{r, v\}$, and let L_3 be an arbitrary Baer subline of the Baer cone Ω through r'. This Baer subline is completely contained in B, up to maybe the point r'. So, L_3 contains \sqrt{q} or $\sqrt{q} + 1$ points of B. We prove that the Baer subline L_3 is completely contained in B. Let \widehat{L}_3 be the line over GF(q) defined by L_3 , then the intersection of \widehat{L}_3 with B can be described in a unique way as the union of at most t pairwise disjoint points and Baer sublines (Lemma 5.2). If the Baer

subline L_3 contains exactly \sqrt{q} points of B, then these \sqrt{q} points need to be partitioned over at most $t < q^{1/6}/2$ pairwise disjoint points and Baer sublines (Lemma 5.2). Since two distinct Baer sublines share at most two points, this is impossible. So the Baer subline L_3 is completely contained in B.

This proves that the Baer cone Ω with vertex v and with base the Baer subplane $\langle L_1, L_2 \rangle$ is completely contained in B.

Consider a point r from B and select a subspace $\Delta_k \simeq PG(k,q)$ through r sharing t points with B.

There is at least one (k+1)-dimensional subspace through Δ_k sharing at most $tq + 2t\sqrt{q}$ points, not in Δ_k , with B, since these (k+1)-dimensional spaces through Δ_k cannot all contain $q\sqrt{q}$ other points of B (Theorem 2.2).

Then such a (k+1)-dimensional subspace Δ_{k+1} through Δ_k shares at most $tq + 2t\sqrt{q} + t$ points with B. By Theorem 2.2 and Lemma 3.2, $|\Delta_{k+1} \cap B| \leq tq + 2t\sqrt{q}$. Hence, Δ_{k+1} intersects B in t pairwise disjoint lines and/or Baer subplanes (Lemma 5.1). So Δ_{k+1} shares at most $tq + t\sqrt{q}$ other points with B. Select $\Delta_{k+1} \simeq PG(k+1,q)$ through Δ_k sharing at most $tq + t\sqrt{q} + t$ points with B.

We now prove that we can find an (n-2)-dimensional space Δ_{n-2} through Δ_{k+1} sharing at most $t(q^{n-k-2}+q^{n-k-3}\sqrt{q}+q^{n-k-3}+\cdots+\sqrt{q}+1)$ points with B. We heavily rely on the bounds of Theorem 2.2. Since B intersects every kdimensional space in t (mod \sqrt{q}) points, this theorem states that B intersects every (k+i)-dimensional space in either at most $tq^i + 2\sqrt{q}q^{i-1}$ points or in at least $\sqrt{q}q^i + t$ points. Consider all the $q^{n-k-2} + \cdots + q + 1$ different (k+2)dimensional spaces through Δ_{k+1} . As $|\Delta_{k+1} \cap B| \leq tq + t\sqrt{q} + t$, it is impossible that all these (k+2)-dimensional spaces share at least $\sqrt{qq^2}+t$ points with B since $|B| < tq^{n-k} + q^{n-k-1/3}$, so there is at least one (k+2)-dimensional space Δ_{k+2} through Δ_{k+1} sharing at most $tq^2 + 2\sqrt{q}q$ points with B. Repeating this argument by induction on i, it is possible to find a (k+i+1)-dimensional space Δ_{k+i+1} , sharing at most $tq^{i+1} + 2\sqrt{q}q^i$ points with B, through a given (k+i)-dimensional space Δ_{k+i} , sharing at most $tq^i + 2\sqrt{q}q^{i-1}$ points with B. This leads us eventually to the (n-2)-dimensional space Δ_{n-2} through Δ_{k+1} sharing at most $t(q^{n-k-2} + q^{n-k-3}\sqrt{q} + q^{n-k-3} + \dots + \sqrt{q} + 1)$ points with B. The upper bound on $|\Delta_{n-2} \cap B|$ follows from the induction hypothesis (IH), which states that $\Delta_{n-2} \cap B$ is a union of t pairwise disjoint cones $\langle \Pi_{m_i}, \mathrm{PG}(2(n-k-2-m_i-1), \sqrt{q}) \rangle$, with $-1 \le m_i \le n-k-3, i=1,\ldots,t$.

Now it is possible to find at least two hyperplanes H_1, H_2 through Δ_{n-2} containing at most $t(q^{n-k-1} + q^{n-k-2}\sqrt{q} + q^{n-k-2} + \cdots + \sqrt{q} + 1)$ points of B, since it is not possible that all hyperplanes through Δ_{n-2} share at least $q^{n-k-1}\sqrt{q} + t$ points with B (Theorem 2.2). By the induction hypothesis (IH), these two hyperplanes meet B in a union of t pairwise disjoint cones

$$\langle \Pi_{m'_i}, \mathrm{PG}(2(n-k-1-m'_i-1), \sqrt{q}) \rangle$$
, with $-1 \le m'_i \le n-k-2, i = 1, \dots, t$.

We now prove a first major part of the characterization result for the t-fold (n-k)-blocking sets in PG(n,q). Our goal is to prove that small minimal t-fold (n-k)-blocking sets in PG(n,q), q square, are a union of t pairwise disjoint Baer cones $\langle \pi_m, PG(2(n-k-m-1), \sqrt{q}) \rangle$, $-1 \leq m \leq n-k-1$. For m = n - k - 1, such a Baer cone is in fact an (n-k)-dimensional subspace PG(n-k,q), and for m < n-k-1, such a Baer cone is a cone with an m-dimensional subspace PG(m,q) as vertex and a base $PG(2(n-k-m-1) \geq 2, \sqrt{q})$ which is a non-projected Baer subgeometry. For m < n-k-1, such a Baer cone contains Baer sublines. The following lemma shows that if there is a line not contained in B, sharing at least one Baer subline with B, then this implies that B contains a Baer cone $\langle \pi_m, PG(2(n-k-m-1), \sqrt{q}) \rangle$, $-1 \leq m < n-k-1$.

Lemma 5.7 Let Δ be an (n-2)-dimensional space intersecting B in a union of t pairwise disjoint Baer cones $\langle \Pi_{m_i}, \operatorname{PG}(2(n-k-2-m_i-1), \sqrt{q}) \rangle$, $-1 \leq m_i \leq n-k-3, i = 1, \ldots, t.$

Assume that $m_i < n - k - 3$ for at least one value $i \in \{1, \ldots, t\}$.

Then B contains a Baer cone $\langle \pi_{m''}, \operatorname{PG}(2(n-k-m''-1), \sqrt{q}) \rangle, -1 \leq m'' < n-k-1.$

Proof: It is possible to find at least two hyperplanes H_1, H_2 through Δ containing at most $t(q^{n-k-1} + q^{n-k-2}\sqrt{q} + q^{n-k-2} + \cdots + \sqrt{q} + 1)$ points of B, since it is not possible that q hyperplanes through Δ share at least $q^{n-k-1}\sqrt{q}+t$ points with B (Theorem 2.2). By the induction hypothesis (IH), these two hyperplanes H_1, H_2 through Δ respectively intersect B in unions of t pairwise disjoint cones $\langle \Pi'_{m'_i}, \operatorname{PG}(2(n-k-1-m'_i-1), \sqrt{q}) \rangle$, with $-1 \leq m'_i \leq n-k-2$, and t pairwise disjoint cones $\langle \Pi''_{m''_i}, \operatorname{PG}(2(n-k-1-m'_i-1), \sqrt{q}) \rangle$, with $-1 \leq m''_i \leq n-k-2$.

Since we assume that one of the t Baer cones of $\Delta \cap B$ is a cone $\langle \Pi_m, \mathrm{PG}(2(n-k-2-m-1), \sqrt{q}) \rangle$, with m < n-k-3, so with base a Baer subspace $\mathrm{PG}(s = 2(n-k-2-m-1) \geq 2, \sqrt{q})$, at least one of these Baer cones in $B \cap \Delta$ contains a Baer subline L_2 .

Then H_1 , and similarly H_2 , shares with B a cone of type either $\langle \Pi_m, \mathrm{PG}(s+2,\sqrt{q})\rangle$ or $\langle \Pi_{m+1}, \mathrm{PG}(s,\sqrt{q})\rangle$, intersecting Δ in this Baer cone $\langle \Pi_m, \mathrm{PG}(s,\sqrt{q})\rangle$. We denote this particular Baer cone in H_1 by $\langle \Pi_{m_1}, \mathrm{PG}(s_1,\sqrt{q})\rangle$, and this particular Baer cone in H_2 by $\langle \Pi_{m_2}, \mathrm{PG}(s_2,\sqrt{q})\rangle$.

Up to equivalence, there are three possibilities. The first possibility is $m = m_1 = m_2$, $s_1 = s_2 = s + 2$. Then $\langle \Pi_{m_1}, \operatorname{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \operatorname{PG}(s_2, \sqrt{q}) \rangle$ define a Baer cone with vertex Π_m and base $\operatorname{PG}(s + 4, \sqrt{q})$, or with an

(m + 1)-dimensional vertex and base $\operatorname{PG}(s + 2, \sqrt{q})$. Up to equivalence, the second possibility is $m_1 = m + 1$ and $m_2 = m$, which then means that $s = s_1$ and $s_2 = s + 2$. The smallest Baer cone containing $\langle \Pi_{m_1}, \operatorname{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \operatorname{PG}(s_2, \sqrt{q}) \rangle$ is the Baer cone with vertex Π_{m_1} and base $\operatorname{PG}(s_2, \sqrt{q})$. The last possibility is that $m_1 = m_2 = m + 1$ and that $s = s_1 = s_2$. In this case, the smallest Baer cone containing $\langle \Pi_{m_1}, \operatorname{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \operatorname{PG}(s_2, \sqrt{q}) \rangle$ is the Baer cone with vertex the (m + 2)-dimensional space $\langle \Pi_{m_1}, \Pi_{m_2} \rangle$ and with base $\operatorname{PG}(s, \sqrt{q})$.

The following arguments will show for all three cases that this smallest Baer cone B_0 containing $\langle \Pi_{m_1}, \mathrm{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \mathrm{PG}(s_2, \sqrt{q}) \rangle$ lies completely in B. In the first part of this proof, we prove our crucial result for proving that B_0 is contained in B.

Part 1. Consider a non-singular point x of $\langle \Pi_{m_1}, \mathrm{PG}(s_1, \sqrt{q}) \rangle$, not lying in Δ . Let $L_1 \subset B$ be a Baer subline of $\langle \Pi_{m_1}, \mathrm{PG}(s_1, \sqrt{q}) \rangle$, passing through x and containing a point r of the base $\mathrm{PG}(s, \sqrt{q})$ of the Baer cone $\langle \Pi_m, \mathrm{PG}(s, \sqrt{q}) \rangle$ in Δ . We show that the Baer subgeometry defined by L_1 and $\langle \Pi_{m_2}, \mathrm{PG}(s_2, \sqrt{q}) \rangle$ lies completely in B.

Lemma 5.6 proves that if you have a Baer cone $\langle v, L_2 \rangle$ of B, where $L_2 \simeq PG(1, \sqrt{q})$, L_1 a Baer subline of B not in the plane of v and L_2 , and $L_1 \cap L_2 \neq \emptyset$, then the cone with vertex v and base $\langle L_1, L_2 \rangle \simeq PG(2, \sqrt{q})$ lies completely in B.

By letting vary v over Π_{m_2} and by letting vary L_2 over all Baer sublines through r in $\langle \Pi_{m_2}, \mathrm{PG}(s_2, \sqrt{q}) \rangle$, we reach all points of $\langle \Pi_{m_2}, \mathrm{PG}(s_2, \sqrt{q}) \rangle$; the cone with vertex v and base $\langle L_1, L_2 \rangle \simeq \mathrm{PG}(2, \sqrt{q})$ lies in B, hence the Baer subgeometry defined by Π_{m_2}, L_1 , and $\mathrm{PG}(s_2, \sqrt{q})$ lies completely in B.

Part 2. The Baer cones $\langle \Pi_{m_1}, \mathrm{PG}(s_1, \sqrt{q}) \rangle$ and $\langle \Pi_{m_2}, \mathrm{PG}(s_2, \sqrt{q}) \rangle$ define a (projected) Baer subgeometry B_0 over $\mathrm{GF}(\sqrt{q})$.

Consider in B_0 an arbitrary Baer subgeometry Ω of dimension one larger than the Baer subgeometry $B_0 \cap H_2 = \langle \Pi_{m_2}, \mathrm{PG}(s_2, \sqrt{q}) \rangle$, passing through the Baer subgeometry $B_0 \cap H_2 = \langle \Pi_{m_2}, \mathrm{PG}(s_2, \sqrt{q}) \rangle$. Then Ω intersects H_1 in a Baer cone of dimension at least one larger than $\langle \Pi_m, \mathrm{PG}(s, \sqrt{q}) \rangle$, so Ω contains points of B_0 in $\langle \Pi_{m_1}, \mathrm{PG}(s_1, \sqrt{q}) \rangle$, not lying in Δ . This intersection $\Omega \cap H_1$ contains non-singular points of the Baer cone $\langle \Pi_{m_1}, \mathrm{PG}(s_1, \sqrt{q}) \rangle$, not lying in Δ . For, if there were only such singular points in $H_1 \cap \Omega$, then let r be a point of $\Pi_{m_1} \setminus \Delta$ lying in Ω . Consider the line rr' through r and a point r' of the base $\mathrm{PG}(s, \sqrt{q})$ of the Baer cone $B_0 \cap \Delta = \langle \Pi_m, \mathrm{PG}(s, \sqrt{q}) \rangle$. This line already contains two points r and r' of Ω , so contains at least one Baer subline of Ω . Hence, Ω contains at least one non-singular point x of $\langle \Pi_{m_1}, \mathrm{PG}(s_1, \sqrt{q}) \rangle$, not lying in Δ . So $\Omega \cap H_1$ intersects $\langle \Pi_m, \mathrm{PG}(s_1, \sqrt{q}) \rangle$. This intersection can be defined uniquely by $\langle \Pi_m, \mathrm{PG}(s, \sqrt{q}) \rangle$ and a Baer subline L_1 joining x to a non-vertex point in $\langle \Pi_m, \mathrm{PG}(s, \sqrt{q}) \rangle$. We have proven in Part 1 that L_1 together with $\langle \Pi_{m_2}, \mathrm{PG}(s_2, \sqrt{q}) \rangle$ defines a unique Baer cone, completely lying in B. This Baer cone is in fact Ω . Hence, Ω lies in B.

So we conclude that an arbitrary Baer cone in B_0 , of dimension one larger than $\dim \langle \Pi_{m_2}, \operatorname{PG}(s_2, \sqrt{q}) \rangle$, passing through the Baer subgeometry $B_0 \cap H_2 = \langle \Pi_{m_2}, \operatorname{PG}(s_2, \sqrt{q}) \rangle$, lies completely in B. This shows that $B_0 \subseteq B$. Hence, B contains a Baer cone $B_0 = \langle \pi_{m''}, \operatorname{PG}(2(n-k-m''-1), \sqrt{q}) \rangle$, $-1 \leq m'' < n-k-1$. \Box

Assume that the conditions of the preceding lemma are valid, then using the $t \pmod{\sqrt{q}}$ assumption, $B \setminus B_0$ is a (t-1)-fold (n-k)-blocking set, intersecting every k-dimensional space in $(t-1) \pmod{\sqrt{q}}$ points.

Assume that there is a line L defined over $\operatorname{GF}(q)$ intersecting B in a set of at most $t(\sqrt{q}+1)$ points, containing a Baer subline L_1 . Then, by using the same arguments as in the proof of Lemma 3.2, it is first of all possible to find a (k-1)-dimensional space $\prod_{k=1}$ through L containing no other points of B. Since $|B| < tq^{n-k} + q^{n-k-1/3}$, there is a k-dimensional space Δ_k through Δ_{k-1} containing at most t other points of B. Similarly, there is a (k+1)dimensional space through Δ_k sharing at most tq + 2tq points with B since it is impossible that all these (k+1)-dimensional spaces through Δ_k contain at least $\sqrt{q}q + t$ points of B (Theorem 2.2). The same arguments as in the proof of Lemma 5.6 then prove that it is possible to find an (n-2)-dimensional space Δ through L intersecting B in a union of t pairwise disjoint Baer cones $\langle \pi_{m_i}, \operatorname{PG}(2(n-k-2-m_i-1), \sqrt{q}) \rangle, -1 \leq m_i \leq n-k-3, i = 1, \ldots, t$, where for at least one such Baer cone in $\Delta \cap B, m_i < n-k-3$.

Then the conditions of the preceding lemma are met, and it is possible to find a 1-fold (n - k)-blocking set B_0 in B, such that $B \setminus B_0$ is a (t - 1)-fold (n - k)-blocking set.

To obtain the complete characterization of t-fold (n-k)-blocking sets in PG(n,q) of size at most $tq^{n-k} + 2tq^{n-k-1}\sqrt{q}$, it suffices to consider the case that lines are either completely contained in B, or intersect B in at most t distinct points, since it is no longer necessary to assume that Baer sublines are contained in B.

We now show that this implies that B contains an (n - k)-dimensional space over GF(q).

Let Δ be an (n-2)-dimensional space intersecting B in at most $tq^{n-k-2} + 2tq^{n-k-3}\sqrt{q}$ points, so by the induction hypothesis (IH) and also using the fact that there are no Baer sublines contained in B, Δ shares t pairwise disjoint spaces PG(n-k-2,q) with B. Consider again two hyperplanes H_1 and H_2 through Δ intersecting B in at most $tq^{n-k-1} + 2tq^{n-k-2}\sqrt{q}$ points. By

the induction hypothesis, and again using that no Baer sublines are contained in B, these two hyperplanes H_1 and H_2 intersect B in t pairwise disjoint subspaces PG(n - k - 1, q).

Let Π_1 and Π_2 be two (n - k - 1)-dimensional spaces in respectively H_1 and in H_2 , both contained in B, and intersecting Δ in the same (n - k - 2)dimensional space Π . We now show that Π_1 and Π_2 define an (n - k)dimensional space Π_{n-k} completely contained in B.

Let r be a point of Π and consider two lines L_1 and L_2 , through r, lying in respectively Π_1 and in Π_2 , but not lying in Δ . Then the plane $\langle L_1, L_2 \rangle$ lies completely in B (Lemma 5.3).

Letting vary the point r in Π and letting vary the lines L_1 and L_2 in Π_1 and in Π_2 , the (n-k)-dimensional space $\Pi_{n-k} = \langle \Pi_1, \Pi_2 \rangle$ lies completely in B.

By using the $t \pmod{\sqrt{q}}$ assumption, $B \setminus \prod_{n-k}$ is a (t-1)-fold (n-k)blocking set of PG(n,q), intersecting every k-dimensional space in (t-1) $(\mod \sqrt{q})$ points.

The preceding arguments now lead to the desired characterization result.

Theorem 5.8 Let B be a minimal t-fold (n-k)-blocking set in PG(n,q), q square, $q \ge 661$, $t < c_p q^{1/6}/2$, of size at most $|B| \le tq^{n-k} + 2tq^{n-k-1}\sqrt{q} < tq^{n-k} + c_p q^{n-k-1/3}$, intersecting every k-dimensional space in t (mod \sqrt{q}) points.

Then B is a union of t pairwise disjoint cones $\langle \pi_{m_i}, \operatorname{PG}(2(n-k-m_i-1), \sqrt{q}) \rangle$, $-1 \leq m_i \leq n-k-1$, $i = 1, \ldots, t$.

Proof: Let Δ be an (n-2)-dimensional space intersecting B in at most $tq^{n-k-2} + 2tq^{n-k-3}\sqrt{q}$ points.

The preceding lemma and arguments show that it is possible to find a 1-fold (n-k)-blocking set B_0 in B such that $B \setminus B_0$ is a (t-1)-fold (n-k)-blocking set, intersecting every k-dimensional space in $(t-1) \pmod{\sqrt{q}}$ points.

By induction on t, this proves the theorem.

The preceding result is not the end of the classification since such unions of $t \ge 2$ pairwise disjoint cones $\langle \pi_{m_i}, \operatorname{PG}(2(n-k-m_i-1), \sqrt{q}) \rangle$ only exist if $k \ge n/2$.

Theorem 5.9 Let B be a minimal t-fold (n-k)-blocking set in PG(n,q), q square, $t \ge 2$, which is a union of t pairwise disjoint cones $\langle \pi_{m_i}, PG(2(n-k-m_i-1),\sqrt{q}) \rangle$, $\max\{-1, n-2k-1\} \le m_i \le n-k-1$. Then k > n/2 if B contains at least one (n-k)-dimensional space PG(n-k,q) and $k \ge n/2$ in the other cases.

Proof: If B contains at least two (n-k)-dimensional spaces PG(n-k,q) which are disjoint, then k > n/2. If B contains an (n-k)-dimensional space and a cone $\langle \pi_m, PG(2(n-k-m-1), \sqrt{q}) \rangle$, max $\{-1, n-2k-1\} \leq m < n-k-1$, then since the Baer cone intersects every k-dimensional space, necessarily n-k < k, and again k > n/2.

We now assume that B does not contain (n - k)-dimensional spaces PG(n-k,q). A Baer cone $\langle \pi_m, PG(2(n-k-m-1),\sqrt{q}) \rangle$, max $\{-1, n-2k-1\} \leq m < n-k-1$, is in fact a projected Baer subgeometry $PG(2n-2k,\sqrt{q})$. This defines a vector space $V(2n-2k+1,\sqrt{q})$.

The projective space PG(n,q) defines a vector space $V(2n+2,\sqrt{q})$ over $GF(\sqrt{q})$. If this (2n+2)-dimensional vector space over $GF(\sqrt{q})$ contains two disjoint (2n-2k+1)-dimensional subspaces, necessarily $2(2n-2k+1) \leq 2n+2$, leading to $k \geq n/2$.

Remark 5.10 The lower bound $k \ge n/2$ is sharp as the following examples of *t*-fold (n - k)-blocking sets in PG(n, q) show.

Let n = 2n'. Consider t pairwise disjoint subgeometries $PG(n, \sqrt{q})_i$, i = 1, ..., t, of PG(n = 2n', q). They are t pairwise disjoint 1-fold n'-blocking sets, so they form together a t-fold n'-blocking set.

If n = 2n' + 1, then the lower bound on k is $k \ge n' + 1$. Consider the example of the preceding paragraph, lying in PG(2n', q), and embed this 2n'-dimensional space into a (2n' + 1)-dimensional space. Then the example of the preceding paragraph forms a t-fold n'-blocking set in PG(n = 2n' + 1, q), so a t-fold (n - k)-blocking set with k = n' + 1.

References

- S. Ball, Multiple blocking sets and arcs in finite planes. J. London Math. Soc. 54 (1996), 581–593.
- [2] S. Ball, The number of directions determined by a function over a finite field. J. Combin. Theory, Ser. A 104 (2003), 341–350.
- [3] S. Ball, A. Blokhuis, and M. Lavrauw, Linear (q + 1)-fold blocking sets in PG $(2, q^4)$. *Finite Fields Appl.* **6** (2000), 294–301.
- [4] J. Barát and L. Storme, Multiple blocking sets in PG(n,q), $n \ge 3$. Des. Codes Cryptogr. **33** (2004), 5–21.

- [5] A. Blokhuis, On the size of a blocking set in PG(2, p). Combinatorica 14 (1994), 273–276.
- [6] A. Blokhuis, S. Ball, A.E. Brouwer, L. Storme, and T. Szőnyi, On the number of slopes determined by a function on a finite field. J. Combin. Theory, Ser. A 86 (1999), 187–196.
- [7] A. Blokhuis, L. Lovász, L. Storme, and T. Szőnyi, On multiple blocking sets in Galois planes. Adv. Geom. 7 (2007), 39–53.
- [8] A. Blokhuis, L. Storme, and T. Szőnyi, Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. (2) 60 (1999), 321–332.
- [9] M. Bokler, Minimal blocking sets in projective spaces of square order. Des. Codes Cryptogr. 24 (2001), 131–144.
- [10] S. Ferret, L. Storme, P. Sziklai, and Zs. Weiner, A $t \pmod{p}$ result on weighted multiple (n k)-blocking sets in PG(n, q). Innov. Incidence Geom. 6-7 (2007-2008), 169-188.
- [11] L. Lovász and T. Szőnyi, Multiple blocking sets and algebraic curves. Abstract from *Finite Geometry and Combinatorics* (Third International Conference at Deinze (Belgium), May 18-24, 1997).
- [12] G. Lunardon, Normal spreads. Geom. Dedicata 75 (1999), 245–261.
- [13] P. Polito and O. Polverino, On small blocking sets. Combinatorica 18 (1998), 133–137.
- [14] O. Polverino, Small minimal blocking sets and complete k-arcs in $PG(2, p^3)$. Discrete Math. **208/9** (1999), 469–476.
- [15] L. Storme and P. Sziklai, Linear point sets and Rédei type k-blocking sets in PG(n,q). J. Algebraic Combin. 14 (2001), 221–228.
- [16] L. Storme and Zs. Weiner, Minimal blocking sets in $PG(n,q), n \ge 3$. Des. Codes Cryptogr. **21** (2000), 235–251.
- [17] P. Sziklai, On small blocking sets and their linearity. J. Combin. Theory, Ser. A 115 (2008), 1167-1182.
- [18] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes. *Finite Fields Appl.* 3 (1997), 187–202.

- [19] T. Szőnyi and Zs. Weiner, Small blocking sets in higher dimensions. J. Combin. Theory, Ser. A 95 (2001), 88–101.
- [20] Zs. Weiner, Small point sets of PG(n,q) intersecting each k-space in 1 modulo \sqrt{q} points. Innov. Incidence Geom. 1 (2005), 171–180.

Address of the authors:

(S. Ferret: saferret@cage.ugent.be, http://cage.ugent.be/~saferret) Ghent University, Dept. of Mathematics, Krijgslaan 281-S22, 9000 Gent, Belgium

(L. Storme: ls@cage.ugent.be, http://cage.ugent.be/~ls) Ghent University, Dept. of Mathematics, Krijgslaan 281-S22, 9000 Gent, Belgium

(P. Sziklai: sziklai@cs.elte.hu, http://www.cs.elte.hu/~sziklai)
Eötvös Loránd University Budapest, Dept. of Computer Science, Pázmány
P. s. 1/c, Budapest, Hungary H-1117

(Zs. Weiner: weiner@cs.elte.hu) Eötvös Loránd University Budapest, Dept. of Computer Science, Pázmány P. s. 1/c, Budapest, Hungary H-1117