A characterization of multiple ($n-k$)-blocking sets in projective spaces of square order

S. Ferret
L. Storme
P. Sziklai*
Zs. Weiner

Abstract

In [10], it was shown that small t-fold $(n-k)$-blocking sets in $\mathrm{PG}(n, q), q=p^{h}, p$ prime, $h \geq 1$, intersect every k-dimensional space in $t(\bmod p)$ points. We characterize in this article all t-fold ($n-k$)-blocking sets in $\operatorname{PG}(n, q), q$ square, $q \geq 661, t<c_{p} q^{1 / 6} / 2$, $|B|<t q^{n-k}+2 t q^{n-k-1} \sqrt{q}$, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points.

1 Introduction

Throughout this paper, $\mathrm{PG}(n, q)$ will denote the n-dimensional projective space over the Galois field $\operatorname{GF}(q)$, where $q=p^{h}, p$ prime.

A t-fold $(n-k)$-blocking set B of $\mathrm{PG}(n, q)$, with $0<k<n$, is a set of points of $\mathrm{PG}(n, q)$ intersecting every k-dimensional subspace of $\operatorname{PG}(n, q)$ in at least t points.

A 1-fold $(n-k)$-blocking set B of $\mathrm{PG}(n, q)$ containing an $\mathrm{PG}(n-k, q)$ is called trivial.

A point r of B is called essential if there is a k-dimensional subspace through r intersecting B in precisely t points. The t-fold blocking set B is called minimal if all of its points are essential. A 1-fold $(n-k)$-blocking set is also called an $(n-k)$-blocking set. A t-fold 1-blocking set in $\operatorname{PG}(2, q)$ is also called a t-fold blocking set, or a t-fold planar blocking set.

These latter t-fold planar blocking sets have been studied in great detail.
Theorem 1.1 (Blokhuis et al. [8]) Let B be a t-fold blocking set in $\mathrm{PG}(2, q)$, $q=p^{h}$, p prime, of size $t(q+1)+c$. Let $c_{2}=c_{3}=2^{-1 / 3}$ and $c_{p}=1$ for

[^0]$p>3$.
(1) If $q=p^{2 d+1}$ and $t<q / 2-c_{p} q^{2 / 3} / 2$, then $c \geq c_{p} q^{2 / 3}$, unless $t=1$ in which case B, with $|B|<q+1+c_{p} q^{2 / 3}$, contains a line.
(2) If $4<q$ is a square, $t<c_{p} q^{1 / 6}$ and $c<c_{p} q^{2 / 3}$, then $c \geq t \sqrt{q}$ and B contains the union of t pairwise disjoint Baer subplanes, except for $t=1$ in which case B contains a line or a Baer subplane.
(3) If $q=p^{2}$, p prime, and $t<q^{1 / 4} / 2$ and $c<p\left\lceil\frac{1}{4}+\sqrt{\frac{p+1}{2}}\right\rceil$, then $c \geq t \sqrt{q}$ and B contains the union of t pairwise disjoint Baer subplanes, except for $t=1$ in which case B contains a line or a Baer subplane.

Theorem 1.2 (Ball [1]) A t-fold blocking set in $\mathrm{PG}(2, q)$ which does not contain a line has at least $t q+\sqrt{t q}+1$ points.

If B is a t-fold blocking set in $\mathrm{PG}(2, p)$, where $p>3$ is prime, and if $1<t<p / 2$, then $|B| \geq(t+1 / 2)(p+1)$, while if $t>p / 2$, then $|B| \geq(t+1) p$.

In the theory of 1 -fold planar blocking sets, $1(\bmod p)$ results for small 1 -fold planar blocking sets play an important role.

Definition 1.3 A blocking set of $\mathrm{PG}(2, q)$ is called small when it has less than $3(q+1) / 2$ points.

If $q=p^{h}$, p prime, $h \geq 1$, the exponent e of the minimal blocking set B of $\operatorname{PG}(2, q)$ is the maximal integer e such that every line intersects B in 1 $\left(\bmod p^{e}\right)$ points.

Theorem 1.4 Let B be a small minimal 1-fold blocking set in $\operatorname{PG}(2, q)$, $q=p^{h}, p$ prime, $h \geq 1$. Then B intersects every line in $1(\bmod p)$ points, so for the exponent e of B, we have $1 \leq e \leq h$. (Szőnyi [18])

In fact, this exponent e is a divisor of h. (Sziklai [17])
This result was extended by Szőnyi and Weiner [19] to 1-fold $(n-k)$ blocking sets in $\operatorname{PG}(n, q)$.

Definition 1.5 A 1-fold $(n-k)$-blocking set of $\operatorname{PG}(n, q)$ is called small when it has less than $3\left(q^{n-k}+1\right) / 2$ points.

If $q=p^{h}$, p prime, $h \geq 1$, the exponent e of the minimal 1-fold $(n-k)$ blocking set B is the maximal integer e such that every hyperplane intersects B in $1\left(\bmod p^{e}\right)$ points.

A most interesting question of the theory of blocking sets is to classify the small blocking sets. A natural construction (blocking the k-subspaces of $\operatorname{PG}(n, q))$ is a subgeometry $\operatorname{PG}\left(h(n-k) / e, p^{e}\right)$, if it exists (recall $q=p^{h}$, so $1 \leq e \leq h$ and $e \mid h)$.

It is easy to see that the projection of a blocking set, w.r.t. k-dimensional subspaces, from a vertex V onto an r-dimensional subspace of $\operatorname{PG}(n, q)$, is again a blocking set, w.r.t. the $(k+r-n)$-dimensional subspaces of $\mathrm{PG}(r, q)$ (where $\operatorname{dim}(V)=n-r-1$ and V is disjoint from the blocking set).

A blocking set of $\mathrm{PG}(r, q)$, which is a projection of a subgeometry of $\mathrm{PG}(n, q)$, is called linear. (Note that the trivial blocking sets are linear as well.) Linear blocking sets were defined by Lunardon, and they were first studied by Lunardon, Polito and Polverino [12], [13].

Conjecture 1.6 (Linearity Conjecture [17]) In $\mathrm{PG}(n, q)$, every small minimal blocking set, with respect to k-dimensional subspaces, is linear.

There are some cases of the Conjecture that are proved already.
Theorem 1.7 For $q=p^{h}$, p prime, $h \geq 1$, every small minimal non-trivial blocking set w.r.t. k-dimensional subspaces is linear, if
(a) $n=2, k=1$ (so we are in the plane) and:
(i) (Blokhuis [5]) $h=1$ (i.e. there is no small non-trivial blocking set at all);
(ii) (Szőnyi [18]) $h=2$ (the only non-trivial example is a Baer subplane with $p^{2}+p+1$ points);
(iii) (Polverino [14]) $h=3$ (there are two examples, one with $p^{3}+p^{2}+1$ and another with $p^{3}+p^{2}+p+1$ points);
(iv) (Blokhuis, Ball, Brouwer, Storme, Szőnyi [6], Ball [2]) if $p>2$ and there exists a line ℓ intersecting B in $|B \cap \ell|=|B|-q$ points (so a blocking set of Rédei type);
(b) for general k :
(i) (Szőnyi and Weiner [19]) if $h(n-k) \leq n, p>2$, and B is not contained in an $(h(n-k)-1)$-dimensional subspace;
(ii) (Storme and Weiner [16] (for $k=n-1$), Bokler [9] and Weiner [20]) $h=2, q \geq 16$;
(iii) (Storme and Sziklai [15]) if $p>2$ and there exists a hyperplane H intersecting B in $|B \cap H|=|B|-q^{n-k}$ points (so a blocking set of Rédei type).

The following $(\bmod p)$ result is known.

Theorem 1.8 (Szőnyi and Weiner [19]) A minimal 1-fold $(n-k)$-blocking set in $\operatorname{PG}(n, q), q=p^{h}, p>2$ prime, of size less than $\frac{3}{2}\left(q^{n-k}+1\right)$ intersects every subspace in zero or in $1(\bmod p)$ points.

There is an even more general version of the Conjecture. A t-fold blocking set w.r.t. k-dimensional subspaces is a point set which intersects each k dimensional subspace in at least t points. Multiple points may be allowed as well.

Conjecture 1.9 (Linearity Conjecture for multiple blocking sets [17]) In $\mathrm{PG}(n, q)$, any t-fold minimal blocking set B, with respect to k-dimensional subspaces, is the union of some (not necessarily disjoint) linear point sets B_{1}, \ldots, B_{s}, where B_{i} is a t_{i}-fold blocking set w.r.t. k-dimensional subspaces and $t_{1}+\cdots+t_{s}=t$; provided that t and $|B|$ are small enough $(t \leq T(n, q, k)$ and $|B| \leq S(n, q, k)$ for two suitable functions T and $S)$.

Again, some cases of this conjecture have been proved already; in this paper, we cover many new cases which provide "evidence" to the Linearity Conjecture for multiple blocking sets.

Note that there exists a $(\sqrt[4]{q}+1)$-fold blocking set in $\operatorname{PG}(2, q)$, constructed by Ball, Blokhuis and Lavrauw [3], which is not the union of smaller blocking sets. (This multiple blocking set is a linear point set.)

The $1(\bmod p)$ result in $\operatorname{PG}(2, q), q=p^{h}, p$ prime, was extended by Blokhuis et al. to a $t(\bmod p)$ result on small minimal t-fold blocking sets in $\mathrm{PG}(2, q)[7]$.

Definition 1.10 A t-fold blocking set of $\mathrm{PG}(2, q)$ is called small when it has less than $(t+1 / 2)(q+1)$ points.

If $q=p^{h}$, p prime, the exponent e of the minimal t-fold blocking set B in $\mathrm{PG}(2, q)$ is the maximal integer e such that every line intersects B in t $\left(\bmod p^{e}\right)$ points.

Theorem 1.11 (Blokhuis et al. [7]) Let B be a small minimal t-fold blocking set in $\mathrm{PG}(2, q), q=p^{h}$, p prime, $h \geq 1$. Then B intersects every line in t $(\bmod p)$ points.

Regarding characterization results on small minimal 1-fold $(n-k)$-blocking sets in $\mathrm{PG}(n, q)$, we mention the following results.

In the next theorem, θ_{m} denotes the size of an m-dimensional space $\mathrm{PG}(m, q)$.

Theorem 1.12 (Bokler [9]) The minimal ($n-k$)-blocking sets of cardinality at most $\theta_{n-k}+\theta_{n-k-1} \sqrt{q}$ in projective spaces $\mathrm{PG}(n, q)$ of square order q, $q \geq 16$, are Baer cones with an m-dimensional vertex $\operatorname{PG}(m, q)$ and base a Baer subgeometry $\mathrm{PG}(2(n-k-m-1), \sqrt{q})$, for some m with $\max \{-1, n-$ $2 k-1\} \leq m \leq n-k-1$.

In the following theorem, $s(q)$ denotes the size of the smallest blocking set in $\mathrm{PG}(2, q), q$ square, not containing a line or Baer subplane.

Theorem 1.13 (Storme and Weiner [16]) Let K be a minimal 1-blocking set in $\mathrm{PG}(n, q)$, q square, $q=p^{h}, h \geq 1, p>3$ prime, $n \geq 3$, with $|K| \leq s(q)$. Then K is a line or a minimal planar blocking set of $\mathrm{PG}(n, q)$.

Theorem 1.14 (Storme and Weiner [16]) In $\operatorname{PG}\left(n, q^{3}\right), q=p^{h}, h \geq 1, p$ prime, $p \geq 7, n \geq 3$, a minimal 1-blocking set K of cardinality at most $q^{3}+q^{2}+q+1$ is either:
(1) a line;
(2) a Baer subplane when q is a square;
(3) a minimal blocking set of cardinality $q^{3}+q^{2}+1$ in a plane of $\mathrm{PG}\left(n, q^{3}\right)$;
(4) a minimal blocking set of cardinality $q^{3}+q^{2}+q+1$ in a plane of $\mathrm{PG}\left(n, q^{3}\right)$;
(5) a subgeometry $\mathrm{PG}(3, q)$ in a 3-dimensional subspace of $\mathrm{PG}\left(n, q^{3}\right)$.

The following result was the first characterization result to use the 1 $(\bmod p)$ result of Theorem 1.8.

Theorem 1.15 (Weiner [20]) Let B be a 1-fold $(n-k)$-blocking set in $\mathrm{PG}(n$, $\left.q=p^{2 h}\right)$, $p>2$ prime, $q \geq 81$, of size $|B|<3\left(q^{n-k}+1\right) / 2$ and intersecting every k-space in $1(\bmod \sqrt{q})$ points. Then B is a Baer cone with an m dimensional vertex $\mathrm{PG}(m, q)$ and base a Baer subgeometry $\mathrm{PG}(2(n-k-$ $m-1), \sqrt{q})$, for some m with $\max \{-1, n-2 k-1\} \leq m \leq n-k-1$.

Regarding characterizations of small minimal t-fold $(n-k)$-blocking sets in $\mathrm{PG}(n, q)$, we mention the following result.

Theorem 1.16 (Barát and Storme [4]) Let B be a t-fold 1-blocking set in $\mathrm{PG}(n, q), q=p^{h}$, p prime, $q \geq 661, n \geq 3$, of size $|B|<t q+c_{p} q^{2 / 3}-$ $(t-1)(t-2) / 2$, with $c_{2}=c_{3}=2^{-1 / 3}, c_{p}=1$ when $p>3$, and with $t<$ $\min \left(c_{p} q^{1 / 6}, q^{1 / 4} / 2\right)$. Then B contains a union of t pairwise disjoint lines and/or Baer subplanes.

Recently, in [10], the following $t(\bmod p)$ result on weighted t-fold $(n-k)$ blocking sets in $\operatorname{PG}(n, q)$ has been obtained.

Theorem 1.17 (Ferret et al. [10]) Let B be a minimal weighted t-fold ($n-$ $k)$-blocking set of $\mathrm{PG}(n, q), q=p^{h}$, p prime, $h \geq 1$, of size $|B|=t q^{n-k}+t+k^{\prime}$, with $t+k^{\prime} \leq\left(q^{n-k}-1\right) / 2$.

Then B intersects every k-dimensional space in $t(\bmod p)$ points.
We now use this $t(\bmod p)$ result to characterize multiple blocking sets. We present in this article characterization results on small t-fold $(n-k)$ blocking sets in $\mathrm{PG}(n, q), q$ square, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points.

2 Intervals for minimal t-fold $(n-k)$-blocking sets

The following interval theorems on the size of minimal t-fold $(n-k)$-blocking sets in $\mathrm{PG}(n, q)$ will play a crucial role in our arguments.

Theorem 2.1 (Ferret et al. [10]) Let B be a minimal t-fold ($n-k$)-blocking set in $\mathrm{PG}(n, q), n \geq 2,|B|=t q^{n-k}+t+k^{\prime}$, with $t+k^{\prime} \leq\left(q^{n-k}-1\right) / 2$. Assume that $q=p^{h}$, p prime, $h \geq 1$, and that B intersects every k-dimensional space in $t(\bmod E)$ points, with $E=p^{e}$, and with e the largest integer for which this is true.

If $2 t<E$, then

$$
t q^{n-k}+\frac{q^{n-k}}{p^{e}+1}-1 \leq|B| \leq t q^{n-k}+\frac{2 t q^{n-k}}{E}
$$

Theorem 2.2 (Ferret et al. [10]) Let B be a t-fold $(n-k)$-blocking set in $\operatorname{PG}(n, q)$. Assume that $q=p^{h}$, p prime, $h \geq 1$, and that B intersects every k-dimensional space in $t(\bmod E)$ points, with $E=p^{e}$, and with e the largest integer for which this is true.

If $\max \{2 t, 4\}<E$, then

$$
|B| \leq t q^{n-k}+\frac{2 t q^{n-k}}{E} \quad \text { or } \quad|B| \geq E q^{n-k}+t
$$

3 t-Fold 1-blocking sets

In Theorem 1.16, see also [4], Barát and Storme presented characterization results on t-fold 1-blocking sets in $\mathrm{PG}(n, q)$. These results were obtained before the $t(\bmod p)$ results (Theorems 1.11 and 1.17) were known.

Repeating their arguments, but now including the $t(\bmod p)$ results, leads to the following theorem.

Theorem 3.1 Let B be a t-fold 1-blocking set in $\operatorname{PG}(n, q), q=p^{h}$, p prime, $q \geq 661, n \geq 3$, of size $|B|<t q+c_{p} q^{2 / 3}$, with $c_{2}=c_{3}=2^{-1 / 3}, c_{p}=1$ when $p>3$, and with $t<c_{p} q^{1 / 6} / 2$. Then B contains a union of t pairwise disjoint lines and/or Baer subplanes.

The following result, which relies on the preceding classification of t-fold 1 -blocking sets, plays an important role in the proofs of the characterization results which will follow.

From now on, let B be a minimal t-fold $(n-k)$-blocking set in $\operatorname{PG}(n, q)$, $q=p^{h}, p$ prime, $q \geq 661, n \geq 3$, of size $|B|<t q^{n-k}+c_{p} q^{n-k-1 / 3}$, with $c_{2}=c_{3}=2^{-1 / 3}, c_{p}=1$ when $p>3$, and with $t<c_{p} q^{1 / 6} / 2$, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points.

Lemma 3.2 Let B be a minimal t-fold $(n-k)$-blocking set in $P G(n, q)$, $k \geq 2$, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points.

If Π is a $(k+1)$-dimensional space intersecting B in a non-minimal t-fold 1-blocking set, then

$$
|\Pi \cap B| \geq q \sqrt{q}+t
$$

Proof: Since $\Pi \cap B$ intersects every k-dimensional space in Π in $t(\bmod \sqrt{q})$ points, either $|\Pi \cap B| \leq t q+2 t \sqrt{q}$ or $|\Pi \cap B| \geq q \sqrt{q}+t$ (Theorem 2.2). Assume that $|\Pi \cap B| \leq t q+2 t \sqrt{q}$, then by Theorem 3.1, $\Pi \cap B$ contains a union of t pairwise disjoint lines and/or Baer subplanes. Let S_{1} be the minimal part of $\Pi \cap B$, consisting of those t pairwise disjoint lines and/or Baer subplanes, and let S_{2} be the remaining part of $\Pi \cap B$.

Let $r \in S_{2}$. Consider a line L of Π through r only intersecting B in r. We now prove that it is possible to find a $(k-1)$-dimensional space Π_{k-1} of Π through L only intersecting B in r. This is immediately true for $k=2$. Let $k \geq 3$, then there are $q^{n-2}+q^{n-3}+\cdots+q+1$ planes through L. Since there are at most $t q^{n-k}+q^{n-k-1 / 3}<q^{n-2}+\cdots+q+1$ points in B, it is possible to find a plane Π_{2} through L only intersecting B in r. Repeating this argument, a 3-dimensional space Π_{3} through Π_{2} only intersecting B in r can be found, a 4-dimensional space Π_{4} through Π_{3} only intersecting B in r can be found, \ldots. a ($k-1$)-dimensional space Π_{k-1} through Π_{k-2} only intersecting B in r can be found since there are $q^{n-k+1}+\cdots+q+1(k-1)$-dimensional spaces through Π_{k-2} and $|B|<t q^{n-k}+q^{n-k-1 / 3}$.

There are $q+1 k$-dimensional spaces in Π through Π_{k-1}, all intersecting S_{1} in $t(\bmod \sqrt{q})$ points. Since these k-dimensional spaces intersect B in t $(\bmod \sqrt{q})$ points, every such hyperplane intersects S_{2} in r and in at least $\sqrt{q}-1$ other points. So $|\Pi \cap B| \geq 1+(q+1)(\sqrt{q}-1)+t(q+1)$. This contradicts $|\Pi \cap B| \leq t q+2 t \sqrt{q}$.

4 t-Fold 2-blocking sets

Let B be a minimal t-fold 2-blocking set in $\mathrm{PG}(n, q)$ intersecting every ($n-2$)dimensional space in $t(\bmod \sqrt{q})$ points. Assume that

$$
|B| \leq t q^{2}+2 t q \sqrt{q}<t q^{2}+c_{p} q^{5 / 3}
$$

with $q \geq 661$ and with $t<c_{p} q^{1 / 6} / 2$.
The $t(\bmod \sqrt{q})$ assumption implies that every $(n-1)$-dimensional space intersects B in at most $t q+2 t \sqrt{q}$ points or in at least $q \sqrt{q}+t$ points (Lemma 3.2).

We will show that B is the union of t pairwise disjoint planes, Baer cones with a point as vertex and a Baer subplane $\operatorname{PG}(2, \sqrt{q})$ as base, or subgeometries $\mathrm{PG}(4, \sqrt{q})$.

Remark 4.1 (1) In this article, when we state that a Baer subline L is contained in B, then we mean that this Baer subline is effectively contained in B, but that the line \widehat{L}, defined over $\mathrm{GF}(q)$, defined by L is not completely contained in B.
(2) In the next lemma, we state that a subset S of points on a line L can be written in a unique way as a union of at most t pairwise disjoint points and Baer sublines. This has the following meaning. If S contains a Baer subline, then, first of all, the $\sqrt{q}+1$ points of this Baer subline must be considered in this description as a Baer subline and not as $\sqrt{q}+1$ distinct points, secondly, these Baer sublines and points contained in S are all pairwise disjoint, and thirdly, if you consider the different Baer sublines contained in S and then the remaining points of S, the total number of these different Baer sublines and remaining points is at most t.
(3) Consider a Baer subline L, then \widehat{L} will always denote the line, over $G F(q)$, containing the Baer subline L.

Lemma 4.2 A line L not contained in B shares at most $t(\sqrt{q}+1)$ points with B. This intersection $L \cap B$ can be written in a unique way as a union of at most t pairwise disjoint points and Baer sublines.

Proof: By using the same arguments as in the proof of Lemma 3.2, it is possible to find an $(n-3)$-dimensional space through L containing no other points of B. It is then possible to select an ($n-2$)-dimensional space through this $(n-3)$-dimensional space containing at most t extra points of B since there are $q^{2}+q+1(n-2)$-dimensional spaces through a given $(n-3)$ dimensional space, and $|B|<t q^{2}+q^{5 / 3}$. Similarly, it is then possible to
select a hyperplane π through this ($n-2$)-dimensional space containing at most $t q+2 t \sqrt{q}$ other points of B.

Then $|\pi \cap B| \leq q+t+t q+2 t \sqrt{q}<q \sqrt{q}+t$, so by Theorem $2.2,|\pi \cap B| \leq$ $t q+2 t \sqrt{q}$, and then Theorem 3.1 and Lemma 3.2 imply that π intersects B in a union of t pairwise disjoint lines and Baer subplanes.

This implies that L intersects B in a number of points and/or Baer sublines.

Assume that L shares at least one Baer subline with B. Since $t<q^{1 / 6} / 2$, and since two distinct Baer sublines share at most two points, it is only possible to partition the points of a Baer subline in $L \cap B$ over other Baer sublines in $L \cap B$ if $t \geq(\sqrt{q}+1) / 2$.

This is not the case, so $L \cap B$ can be written in a unique way as a union of at most t pairwise disjoint points and Baer sublines.

Lemma 4.3 Every hyperplane Π intersects B in a union of t pairwise disjoint lines and/or Baer subplanes, or intersects B in at least $q \sqrt{q}+t$ points.

Proof: By Theorem 2.2, since every ($n-2$)-dimensional space intersects B in $t(\bmod \sqrt{q})$ points, B intersects every hyperplane in at most $t q+2 t \sqrt{q}$ points or in at least $q \sqrt{q}+t$ points. Assume that a hyperplane Π intersects B in at most $t q+2 t \sqrt{q}$ points, then this intersection $\Pi \cap B$ must be a minimal t-fold 1-blocking set in Π, since for a non-minimal intersection, $|\Pi \cap B| \geq$ $q \sqrt{q}+t$ (Lemma 3.2).

Since for the case $|\Pi \cap B| \leq t q+2 t \sqrt{q}$, the intersection must be a minimal t-fold 1-blocking set, Theorem 3.1 implies that $B \cap \Pi$ is a union of t pairwise disjoint lines and/or Baer subplanes.

We know from Lemma 4.3 that every hyperplane Π intersects B in a union of t lines and/or Baer subplanes, or intersects B in at least $q \sqrt{q}+t$ points. Consequently, for every hyperplane $\Pi,|\Pi \cap B| \geq t(q+1)$.

Consider an $(n-2)$-dimensional space Δ sharing t distinct points with B. The $q+1$ hyperplanes through Δ all contain at least $t q+t$ points of B, so if we subtract $(q+1) t q$ from the size of B, at most $2 t q \sqrt{q}-t q$ points in B remain. Dividing this number by $q \sqrt{q}-t q$ then implies that at most $2 t$ hyperplanes through Δ contain at least $q \sqrt{q}+t$ points of B. The other, at least $q+1-2 t$, hyperplanes through Δ share at most $t q+2 t \sqrt{q}$ points with B, and therefore intersect B in a union of t pairwise disjoint lines and/or Baer subplanes (Lemma 4.3).

This shows that every point of $\Delta \cap B$ lies on at least $q+1-2 t$ lines and/or Baer subplanes, contained in B.

Lemma 4.4 Let $r \in \Delta \cap B$ and suppose that r lies in two Baer subplanes B_{1} and B_{2}, contained in B, in distinct hyperplanes through Δ.

Then B_{1} and B_{2} define a 4-dimensional Baer subgeometry completely contained in B.

Proof: Consider a Baer subline L_{2} of B_{2} through r. Then the line $\widehat{L_{2}}$, defined over GF (q), through L_{2} shares at most $t(\sqrt{q}+1)$ points with B (Lemma 4.2). By using the same arguments as in the proof of Lemma 3.2, it is possible to find an $(n-3)$-dimensional space Π_{n-3} through L_{2} containing no other points of B, and intersecting the plane of B_{1} only in r.

There are $q^{2}+q+1(n-2)$-dimensional spaces through Π_{n-3}. Precisely $q+1$ of those $(n-2)$-dimensional spaces through Π_{n-3} intersect the plane $\mathrm{PG}(2, q)$ containing the Baer subplane B_{1} in a line through r, so q^{2} of these ($n-2$)-dimensional spaces through Π_{n-3} only intersect the plane of B_{1} in r. It is therefore possible to select an $(n-2)$-dimensional space Δ^{\prime} through Π_{n-3} containing at most t extra points of B, and only intersecting the plane of B_{1} in r. Then $\left|\Delta^{\prime} \cap B\right| \leq t(\sqrt{q}+1)+t$ since there are at most $t(\sqrt{q}+1)$ points of B belonging to $\widehat{L_{2}}$ (Lemma 4.2).

Since $\left|\Delta^{\prime} \cap B\right| \equiv t(\bmod \sqrt{q})$, necessarily $\left|\Delta^{\prime} \cap B\right| \leq t(\sqrt{q}+1)$.
Every hyperplane through Δ^{\prime} contains at least $t q-t \sqrt{q}$ other points of B since every hyperplane shares at least $t(q+1)$ points with B (Lemma 4.3). If we subtract $(q+1)(t q-t \sqrt{q})$ from the size of B, at most $3 t q \sqrt{q}-t q+t \sqrt{q}$ points in B remain. A hyperplane through Δ^{\prime} containing at least $q \sqrt{q}+t$ points of B still contains at least $q \sqrt{q}-t q$ other points of B, so at most $3 t$ hyperplanes through Δ^{\prime} contain at least $q \sqrt{q}+t$ points of B.

This implies that at least $\sqrt{q}+1-3 t$ hyperplanes through Δ^{\prime} intersect B_{1} in a Baer subline, and intersect B in a union of $t<q^{1 / 6} / 2$ pairwise disjoint lines and/or Baer subplanes. Since such a hyperplane shares a Baer subline with B_{1} and with B_{2}, both passing through the same point r, these two latter Baer sublines must be contained in a Baer subplane contained in B.

The preceding arguments show that at least $\sqrt{q}+1-3 t$ Baer subplanes of the 3 -dimensional Baer subgeometry $\left\langle B_{1}, L_{2}\right\rangle$, passing through L_{2}, are contained in B.

Assume that the Baer subgeometry $\left\langle B_{1}, L_{2}\right\rangle$ is not contained in B. Select a Baer subline N of $\left\langle B_{1}, L_{2}\right\rangle$ skew to L_{2} which is not contained in B. Then this Baer subline N shares at least $\sqrt{q}+1-3 t$ and at most \sqrt{q} points with B.

By Lemma 4.2, it is possible to describe $N \cap B$ in a unique way as a union of at most $t<q^{1 / 6} / 2$ pairwise disjoint points and Baer sublines.

Since $\sqrt{q}+1-3 t>t$, some of the points of $N \cap B$ lying in $\left\langle B_{1}, L_{2}\right\rangle$ must lie in Baer sublines contained in $N \cap B$. Two distinct Baer sublines share
at most two points. Since $\sqrt{q}+1-3 t>2 t$, this is impossible, so the Baer subline $N \cap\left\langle L_{2}, B_{1}\right\rangle$ is completely contained in B.

This shows that the 3 -dimensional Baer subgeometry $\left\langle L_{2}, B_{1}\right\rangle$ is completely contained in B. By letting vary L_{2} over all Baer sublines of B_{2} through r, the 4-dimensional Baer subgeometry $\left\langle B_{1}, B_{2}\right\rangle$ is completely contained in B.

This latter 4-dimensional Baer subgeometry $\left\langle B_{1}, B_{2}\right\rangle$ is either a Baer cone with a point as vertex and a Baer subplane as base, or a Baer subgeometry $\operatorname{PG}(4, \sqrt{q})$.

In both cases, they are 1-fold 2-blocking sets, and the $t(\bmod \sqrt{q})$ result implies that $B \backslash\left\langle B_{1}, B_{2}\right\rangle$ is a $(t-1)$-fold 2-blocking set intersecting every $(n-2)$-dimensional space in $(t-1)(\bmod \sqrt{q})$ points.

Since we know from the calculations preceding Lemma 4.4 that every point of $\Delta \cap B$ lies on at least $q+1-2 t$ lines or Baer subplanes contained in B, the preceding lemma and observations now imply that we can assume that every point of $\Delta \cap B$ lies on at least $q-2 t$ lines contained in B. Since B is minimal, it is possible to assume that every point of B lies on at least $q-2 t$ lines of B. We now show that there is a plane contained in B.

Lemma 4.5 If every point of B lies on at least $q-2 t$ lines contained in B, then there is a plane contained in B.

Proof: Consider an ($n-2$)-dimensional space Δ intersecting B in exactly t points. The calculations preceding Lemma 4.4 indicate that at least $q+$ $1-2 t$ hyperplanes through Δ intersect B in a union of t lines and/or Baer subplanes. But none of the t points of $\Delta \cap B$ lies on two Baer subplanes of B in those hyperplanes. So, at least $q+1-2 t-t$ hyperplanes Π through Δ intersect B in t pairwise disjoint lines L_{1}, \ldots, L_{t}.

Let r be a point of $B \backslash \Pi$. This point r lies on at least $q-2 t$ lines completely contained in B. These lines intersect Π in a point of $B \cap \Pi=L_{1} \cup \cdots \cup L_{t}$. So at least one of the lines L_{i} is intersected by at least $(q-2 t) / t$ lines of B passing through r.

Then the plane $\left\langle r, L_{i}\right\rangle$ intersects B in at least $(q-2 t) / t$ lines passing through r. Then every line of this plane, not passing through r, shares already $(q-2 t) / t$ points with B. If such a line is not contained in B, it shares at most $t(\sqrt{q}+1)$ points with B (Lemma 4.2).

Since $(q-2 t) / t>t(\sqrt{q}+1)$, every line of $\left\langle L_{i}, r\right\rangle$, not passing through r, is contained in B, and so this plane $\left\langle L_{i}, r\right\rangle$ is contained in B.

The $t(\bmod \sqrt{q})$ result again implies that $B \backslash \Pi, \Pi$ a plane contained in B, is a $(t-1)$-fold blocking set intersecting every $(n-2)$-dimensional space in $(t-1)(\bmod \sqrt{q})$ points.

Repeating the preceding lemmas for this $(t-1)$-fold blocking set, the following characterization theorem is obtained.

Theorem 4.6 Let B be a minimal t-fold 2-blocking set, of size at most $t q^{2}+$ $2 t q \sqrt{q}<t q^{2}+c_{p} q^{5 / 3}$, in $\mathrm{PG}(n, q), q \geq 661, t<c_{p} q^{1 / 6} / 2$, intersecting every $(n-2)$-dimensional space in $t(\bmod \sqrt{q})$ points.

Then B is the union of t pairwise disjoint planes, Baer cones with a point as vertex and a Baer subplane as base, and 4-dimensional Baer subgeometries $\operatorname{PG}(4, \sqrt{q})$.

5 t-Fold $(n-k)$-blocking sets in $\operatorname{PG}(n, q)$

We now will present the characterization result on minimal t-fold $(n-k)$ blocking sets in $\mathrm{PG}(n, q)$, with $1 \leq k<n-2$, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points. The results of the preceding two sections will be the induction bases for the general characterization results.

The general induction hypothesis (IH) we rely on for classifying the minimal t-fold $(n-k)$-blocking sets in $\mathrm{PG}(n, q)$, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points, is as follows.

Induction hypothesis (IH): For $1 \leq j \leq n-k-1$, let B_{j} be a minimal t-fold ($n-k-j$)-blocking set in $\mathrm{PG}(n, q)$, q square, $q \geq 661, t<c_{p} q^{1 / 6} / 2$, of size at most $\left|B_{j}\right| \leq t q^{n-k-j}+2 t q^{n-k-j-1} \sqrt{q}<t q^{n-k-j}+c_{p} q^{n-k-j-1 / 3}$, intersecting every $(k+j)$-dimensional space in $t(\bmod \sqrt{q})$ points.

Then B_{j} is a union of t pairwise disjoint cones $\left\langle\pi_{m_{i}}, \mathrm{PG}\left(2\left(n-k-m_{i}-\right.\right.\right.$ $j-1), \sqrt{q})\rangle,-1 \leq m_{i} \leq n-k-j-1, i=1, \ldots, t$.

In the above description, if $m_{i}=n-k-j-1$, then $\left\langle\pi_{m_{i}}, \mathrm{PG}(2(n-\right.$ $\left.\left.\left.k-m_{i}-j-1\right), \sqrt{q}\right)\right\rangle$ is a subspace $\mathrm{PG}(n-k-j, q)$, and if $m_{i}=-1$, then $\left\langle\pi_{m_{i}}, \operatorname{PG}\left(2\left(n-k-m_{i}-j-1\right), \sqrt{q}\right)\right\rangle$ is a Baer subgeometry $\operatorname{PG}(2(n-k-j), \sqrt{q})$.

The goal is to prove the following similar characterization result for t-fold ($n-k$)-blocking sets.

Let B be a minimal t-fold $(n-k)$-blocking set in $\operatorname{PG}(n, q)$, q square, $q \geq 661, t<c_{p} q^{1 / 6} / 2$, of size at most $|B| \leq t q^{n-k}+2 t q^{n-k-1} \sqrt{q}<t q^{n-k}+$ $c_{p} q^{n-k-1 / 3}$, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points.

Then B is a union of t pairwise disjoint cones $\left\langle\pi_{m_{i}}, \mathrm{PG}\left(2\left(n-k-m_{i}-\right.\right.\right.$ 1), $\sqrt{q})\rangle,-1 \leq m_{i} \leq n-k-1, i=1, \ldots, t$.

So, from now on, we assume that B is a minimal t-fold $(n-k)$-blocking set in $\mathrm{PG}(n, q), q$ square, $q \geq 661, t<c_{p} q^{1 / 6} / 2$, of size at most $|B| \leq$ $t q^{n-k}+2 t q^{n-k-1} \sqrt{q}<t q^{n-k}+c_{p} q^{n-k-1 / 3}$, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points.

We first present some analogous lemmas to lemmas of Section 4.
Lemma 5.1 Every $(k+1)$-dimensional space Π intersects B in a union of t pairwise disjoint lines and/or Baer subplanes, or intersects B in at least $q \sqrt{q}+t$ points.

Proof: By Theorem 2.2, since every k-dimensional space intersects B in t $(\bmod \sqrt{q})$ points, B intersects every $(k+1)$-dimensional space in at most $t q+2 t \sqrt{q}$ points or in at least $q \sqrt{q}+t$ points. Assume that a $(k+1)-$ dimensional space Π intersects B in at most $t q+2 t \sqrt{q}$ points, then this intersection $\Pi \cap B$ must be a minimal t-fold 1-blocking set in Π, since for a non-minimal intersection, $|\Pi \cap B| \geq q \sqrt{q}+t$ (Lemma 3.2).

Since for the case $|\Pi \cap B| \leq t q+2 t \sqrt{q}$, the intersection must be a minimal t-fold 1-blocking set, Theorem 3.1 implies that $B \cap \Pi$ is a union of t pairwise disjoint lines and/or Baer subplanes.

For the description of the next lemma, we again rely on Remark 4.1 (2).
Lemma 5.2 A line L, not contained in B, intersects B in at most $t(\sqrt{q}+1)$ points. This intersection can be described in a unique way as a union of at most t pairwise disjoint points and Baer sublines.

Proof: We know that $|B| \leq t q^{n-k}+2 t q^{n-k-1} \sqrt{q}$.
By using the same arguments as in the proof of Lemma 3.2, it is possible to construct a $(k-1)$-dimensional space Π_{k-1} through L containing no other points of B. It is then possible to construct a k-dimensional space Π_{k} through Π_{k-1} containing at most t other points of B. So $\left|\Pi_{k} \cap B\right| \leq q+t$.

There are at most $t q^{n-k}+2 t q^{n-k-1} \sqrt{q}$ points in B left. By the induction hypothesis (IH), the smallest t-fold 1-blocking sets which are the intersection of a $(k+1)$-dimensional space with B are the union of t pairwise disjoint lines, see also Lemma 4.3. Hence, every $(k+1)$-dimensional space through Π_{k} contains at least $(t-1) q$ extra points of B. So we observe that at most $t q^{n-k}+2 t q^{n-k-1} \sqrt{q}-(t-1) q\left(q^{n-k-1}+q^{n-k-2}+\cdots+q+1\right)$ other points of B can remain.

If a $(k+1)$-dimensional space Π_{k+1} through Π_{k} contains at least $q \sqrt{q}+t$ points of B (Theorem 2.2 and Lemma 3.2), then it still contains at least $q \sqrt{q}-t q$ other points of $B \backslash \Pi_{k}$. Since $\left(q^{n-k-1}+q^{n-k-2}+\cdots+q+1\right)(q \sqrt{q}-t q)>$ $t q^{n-k}+2 t q^{n-k-1} \sqrt{q}-(t-1) q\left(q^{n-k-1}+q^{n-k-2}+\cdots+q+1\right)$, there is at least one ($k+1$)-dimensional space Π_{k+1} through Π_{k} with at most $t q+2 t \sqrt{q}+t$ points of B. Then $\left|\Pi_{k+1} \cap B\right| \leq t q+2 t \sqrt{q}$ (Theorem 2.2 and Lemma 3.2). This intersection $\Pi_{k+1} \cap B$ is a minimal t-fold 1-blocking set in Π_{k+1} (Lemma 3.2), so it is a union of t pairwise disjoint lines and/or Baer subplanes (Theorem 3.1). The line L shares zero or one points with the lines of $\Pi_{k+1} \cap B$, and zero, one, or $\sqrt{q}+1$ points with the Baer subplanes of $\Pi_{k+1} \cap B$. This proves the lemma.

Lemma 5.3 Let r be a point of B lying on two lines L_{0} and L_{1} contained in B.

Then the plane $\left\langle L_{0}, L_{1}\right\rangle$ is either contained in B, or $\left\langle L_{0}, L_{1}\right\rangle \cap B$ contains a cone with r as vertex and a Baer subline as base, containing L_{0} and L_{1}.

Proof: Consider the plane $\left\langle L_{0}, L_{1}\right\rangle$. Whatever its intersection with B is, the intersection size is at most $q^{2}+q+1$.

By using the same arguments as in the proof of Lemma 3.2, construct a ($k-1$)-dimensional space Π_{k-1} through $\left\langle L_{0}, L_{1}\right\rangle$ containing no other points of B. Since $|B|<t q^{n-k}+q^{n-k-1 / 3}$, and since there are $q^{n-k}+\cdots+q+1$ different k-dimensional spaces through Π_{k-1}, it is possible to construct a k dimensional space Π_{k} through Π_{k-1} containing at most t extra points of B. Similarly, since $|B| \leq t q^{n-k}+2 t q^{n-k-1} \sqrt{q}$, it is possible to find a $(k+1)$ dimensional space Π_{k+1} through Π_{k} containing at most $t q+2 t \sqrt{q}$ other points of B.

So, $\left|B \cap \Pi_{k+1}\right| \leq q^{2}+q+1+t q+2 t \sqrt{q}+t$.
Consider all $q^{n-k-2}+\cdots+q+1(k+2)$-dimensional spaces through Π_{k+1}. Since $|B|<t q^{n-k}+q^{n-k-1 / 3}$, it is possible to find a $(k+2)$-dimensional space Π_{k+2} through Π_{k+1} containing at most $t q^{2}+2 t q \sqrt{q}$ other points of B. This certainly implies that $\left|\Pi_{k+2} \cap B\right| \leq(t+2) q^{2}$.

Since $\left|\Pi_{k+2} \cap B\right| \leq t q^{2}+2 t q \sqrt{q}$ or $\left|\Pi_{k+2} \cap B\right| \geq q^{2} \sqrt{q}+t$ (Theorem 2.2 and Lemma 3.2), necessarily $\left|\Pi_{k+2} \cap B\right| \leq t q^{2}+2 t q \sqrt{q}$.

Theorem 4.6 implies that $\Pi_{k+2} \cap B$ is a union of t pairwise disjoint planes, cones with a point as vertex and a Baer subplane as base, and Baer subgeometries $\operatorname{PG}(4, \sqrt{q})$.

Since L_{0} and L_{1} are intersecting lines of this intersection, the plane $\left\langle L_{0}, L_{1}\right\rangle$ either is contained in B, or its intersection with B contains a cone with $L_{0} \cap L_{1}$ as vertex and a Baer subline as base, which contains the lines
L_{0} and L_{1}.
The following two lemmas are proven in exactly the same way as the preceding lemma. In the following lemma, a Baer cone with vertex s and base the Baer subline $L_{2}, s \notin \widehat{L_{2}}$, is the set of $\sqrt{q}+1$ lines through the point s and the points of the Baer subline L_{2}. We also recall Remark 4.1 (1); with a Baer subline L contained in B, we mean a Baer subline contained in B whose corresponding line \widehat{L} over GF (q) is not contained in B.

Lemma 5.4 Suppose that the point r of B lies on a line L_{0} contained in B and on a Baer subline L_{2} contained in B.

Then there is a Baer cone completely contained in B, with a point of $L_{0} \backslash\{r\}$ as vertex and with L_{2} as base.

Lemma 5.5 Suppose that the point $r \in B$ lies on two Baer sublines L_{0} and L_{1} contained in B, then the Baer subplane $\left\langle L_{0}, L_{1}\right\rangle$ is completely contained in B.

Lemma 5.6 Let L_{2} be a Baer subline contained in B. Let v be a point not lying on the line $\widehat{L_{2}}$, defined over $\mathrm{GF}(q)$, by L_{2}. Suppose that the cone with vertex v and with base the Baer subline L_{2} is contained in B.

Let r be a point of L_{2} and suppose that L_{1} is an other Baer subline of B through r, not lying in the plane $\left\langle v, L_{2}\right\rangle$.

Then the Baer cone Ω with vertex v and with base the Baer subplane $\left\langle L_{1}, L_{2}\right\rangle$ is contained in B.

Proof: Let L_{2}^{\prime} be a second Baer subline of the Baer cone $\left\langle v, L_{2}\right\rangle$ passing through r. Then the Baer subplane $\left\langle L_{1}, L_{2}^{\prime}\right\rangle$ is contained in B (Lemma 5.5). This Baer subplane $\left\langle L_{1}, L_{2}^{\prime}\right\rangle$ is projected from v onto the Baer subplane $\left\langle L_{1}, L_{2}\right\rangle$.

Letting vary L_{2}^{\prime} over all Baer sublines of the Baer cone $\left\langle v, L_{2}\right\rangle$ through r, the preceding arguments prove that the Baer cone Ω with vertex v and with base $\left\langle L_{1}, L_{2}\right\rangle$ is completely contained in B, up to maybe some points on the line $r v$.

But let r^{\prime} be an arbitrary point of the line $r v \backslash\{r, v\}$, and let L_{3} be an arbitrary Baer subline of the Baer cone Ω through r^{\prime}. This Baer subline is completely contained in B, up to maybe the point r^{\prime}. So, L_{3} contains \sqrt{q} or $\sqrt{q}+1$ points of B. We prove that the Baer subline L_{3} is completely contained in B. Let $\widehat{L_{3}}$ be the line over $\operatorname{GF}(q)$ defined by L_{3}, then the intersection of $\widehat{L_{3}}$ with B can be described in a unique way as the union of at most t pairwise disjoint points and Baer sublines (Lemma 5.2). If the Baer
subline L_{3} contains exactly \sqrt{q} points of B, then these \sqrt{q} points need to be partitioned over at most $t<q^{1 / 6} / 2$ pairwise disjoint points and Baer sublines (Lemma 5.2). Since two distinct Baer sublines share at most two points, this is impossible. So the Baer subline L_{3} is completely contained in B.

This proves that the Baer cone Ω with vertex v and with base the Baer subplane $\left\langle L_{1}, L_{2}\right\rangle$ is completely contained in B.

Consider a point r from B and select a subspace $\Delta_{k} \simeq \mathrm{PG}(k, q)$ through r sharing t points with B.

There is at least one ($k+1$)-dimensional subspace through Δ_{k} sharing at most $t q+2 t \sqrt{q}$ points, not in Δ_{k}, with B, since these $(k+1)$-dimensional spaces through Δ_{k} cannot all contain $q \sqrt{q}$ other points of B (Theorem 2.2).

Then such a $(k+1)$-dimensional subspace Δ_{k+1} through Δ_{k} shares at most $t q+2 t \sqrt{q}+t$ points with B. By Theorem 2.2 and Lemma 3.2, $\left|\Delta_{k+1} \cap B\right| \leq$ $t q+2 t \sqrt{q}$. Hence, Δ_{k+1} intersects B in t pairwise disjoint lines and/or Baer subplanes (Lemma 5.1). So Δ_{k+1} shares at most $t q+t \sqrt{q}$ other points with B. Select $\Delta_{k+1} \simeq \operatorname{PG}(k+1, q)$ through Δ_{k} sharing at most $t q+t \sqrt{q}+t$ points with B.

We now prove that we can find an $(n-2)$-dimensional space Δ_{n-2} through Δ_{k+1} sharing at most $t\left(q^{n-k-2}+q^{n-k-3} \sqrt{q}+q^{n-k-3}+\cdots+\sqrt{q}+1\right)$ points with B. We heavily rely on the bounds of Theorem 2.2. Since B intersects every k dimensional space in $t(\bmod \sqrt{q})$ points, this theorem states that B intersects every $(k+i)$-dimensional space in either at most $t q^{i}+2 \sqrt{q} q^{i-1}$ points or in at least $\sqrt{q} q^{i}+t$ points. Consider all the $q^{n-k-2}+\cdots+q+1$ different $(k+2)$ dimensional spaces through Δ_{k+1}. As $\left|\Delta_{k+1} \cap B\right| \leq t q+t \sqrt{q}+t$, it is impossible that all these $(k+2)$-dimensional spaces share at least $\sqrt{q} q^{2}+t$ points with B since $|B|<t q^{n-k}+q^{n-k-1 / 3}$, so there is at least one ($k+2$)-dimensional space Δ_{k+2} through Δ_{k+1} sharing at most $t q^{2}+2 \sqrt{q} q$ points with B. Repeating this argument by induction on i, it is possible to find a ($k+i+1$)-dimensional space Δ_{k+i+1}, sharing at most $t q^{i+1}+2 \sqrt{q} q^{i}$ points with B, through a given $(k+i)$-dimensional space Δ_{k+i}, sharing at most $t q^{i}+2 \sqrt{q} q^{i-1}$ points with B. This leads us eventually to the ($n-2$)-dimensional space Δ_{n-2} through Δ_{k+1} sharing at most $t\left(q^{n-k-2}+q^{n-k-3} \sqrt{q}+q^{n-k-3}+\cdots+\sqrt{q}+1\right)$ points with B. The upper bound on $\left|\Delta_{n-2} \cap B\right|$ follows from the induction hypothesis (IH), which states that $\Delta_{n-2} \cap B$ is a union of t pairwise disjoint cones $\left\langle\Pi_{m_{i}}, \mathrm{PG}\left(2\left(n-k-2-m_{i}-1\right), \sqrt{q}\right)\right\rangle$, with $-1 \leq m_{i} \leq n-k-3, i=1, \ldots, t$.

Now it is possible to find at least two hyperplanes H_{1}, H_{2} through Δ_{n-2} containing at most $t\left(q^{n-k-1}+q^{n-k-2} \sqrt{q}+q^{n-k-2}+\cdots+\sqrt{q}+1\right)$ points of B, since it is not possible that all hyperplanes through Δ_{n-2} share at least $q^{n-k-1} \sqrt{q}+t$ points with B (Theorem 2.2). By the induction hypothesis (IH), these two hyperplanes meet B in a union of t pairwise disjoint cones

$$
\left\langle\Pi_{m_{i}^{\prime}}, \mathrm{PG}\left(2\left(n-k-1-m_{i}^{\prime}-1\right), \sqrt{q}\right)\right\rangle, \text { with }-1 \leq m_{i}^{\prime} \leq n-k-2, i=1, \ldots, t .
$$

We now prove a first major part of the characterization result for the t fold $(n-k)$-blocking sets in $\operatorname{PG}(n, q)$. Our goal is to prove that small minimal t-fold $(n-k)$-blocking sets in $\mathrm{PG}(n, q), q$ square, are a union of t pairwise disjoint Baer cones $\left\langle\pi_{m}, \mathrm{PG}(2(n-k-m-1), \sqrt{q})\right\rangle,-1 \leq m \leq n-k-1$. For $m=n-k-1$, such a Baer cone is in fact an $(n-k)$-dimensional subspace $\mathrm{PG}(n-k, q)$, and for $m<n-k-1$, such a Baer cone is a cone with an m dimensional subspace $\operatorname{PG}(m, q)$ as vertex and a base $\operatorname{PG}(2(n-k-m-1) \geq$ $2, \sqrt{q})$ which is a non-projected Baer subgeometry. For $m<n-k-1$, such a Baer cone contains Baer sublines. The following lemma shows that if there is a line not contained in B, sharing at least one Baer subline with B, then this implies that B contains a Baer cone $\left\langle\pi_{m}, \operatorname{PG}(2(n-k-m-1), \sqrt{q})\right\rangle$, $-1 \leq m<n-k-1$.

Lemma 5.7 Let Δ be an ($n-2$)-dimensional space intersecting B in a union of t pairwise disjoint Baer cones $\left\langle\Pi_{m_{i}}, \mathrm{PG}\left(2\left(n-k-2-m_{i}-1\right), \sqrt{q}\right)\right\rangle$, $-1 \leq m_{i} \leq n-k-3, i=1, \ldots, t$.

Assume that $m_{i}<n-k-3$ for at least one value $i \in\{1, \ldots, t\}$.
Then B contains a Baer cone $\left\langle\pi_{m^{\prime \prime}}, \operatorname{PG}\left(2\left(n-k-m^{\prime \prime}-1\right), \sqrt{q}\right)\right\rangle,-1 \leq$ $m^{\prime \prime}<n-k-1$.

Proof: It is possible to find at least two hyperplanes H_{1}, H_{2} through Δ containing at most $t\left(q^{n-k-1}+q^{n-k-2} \sqrt{q}+q^{n-k-2}+\cdots+\sqrt{q}+1\right)$ points of B, since it is not possible that q hyperplanes through Δ share at least $q^{n-k-1} \sqrt{q}+t$ points with B (Theorem 2.2). By the induction hypothesis (IH), these two hyperplanes H_{1}, H_{2} through Δ respectively intersect B in unions of t pairwise disjoint cones $\left\langle\Pi_{m_{i}^{\prime}}^{\prime}, \mathrm{PG}\left(2\left(n-k-1-m_{i}^{\prime}-1\right), \sqrt{q}\right)\right\rangle$, with $-1 \leq m_{i}^{\prime} \leq$ $n-k-2$, and t pairwise disjoint cones $\left\langle\Pi_{m_{i}^{\prime \prime}}^{\prime \prime}, \mathrm{PG}\left(2\left(n-k-1-m_{i}^{\prime \prime}-1\right), \sqrt{q}\right)\right\rangle$, with $-1 \leq m_{i}^{\prime \prime} \leq n-k-2$.

Since we assume that one of the t Baer cones of $\Delta \cap B$ is a cone $\left\langle\Pi_{m}, \mathrm{PG}(2(n-\right.$ $k-2-m-1), \sqrt{q})\rangle$, with $m<n-k-3$, so with base a Baer subspace $\mathrm{PG}(s=2(n-k-2-m-1) \geq 2, \sqrt{q})$, at least one of these Baer cones in $B \cap \Delta$ contains a Baer subline L_{2}.

Then H_{1}, and similarly H_{2}, shares with B a cone of type either $\left\langle\Pi_{m}, \mathrm{PG}(s+\right.$ $2, \sqrt{q})\rangle$ or $\left\langle\Pi_{m+1}, \mathrm{PG}(s, \sqrt{q})\right\rangle$, intersecting Δ in this Baer cone $\left\langle\Pi_{m}, \mathrm{PG}(s, \sqrt{q})\right\rangle$. We denote this particular Baer cone in H_{1} by $\left\langle\Pi_{m_{1}}, \operatorname{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$, and this particular Baer cone in H_{2} by $\left\langle\Pi_{m_{2}}, \operatorname{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$.

Up to equivalence, there are three possibilities. The first possibility is $m=$ $m_{1}=m_{2}, s_{1}=s_{2}=s+2$. Then $\left\langle\Pi_{m_{1}}, \operatorname{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$ and $\left\langle\Pi_{m_{2}}, \operatorname{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$ define a Baer cone with vertex Π_{m} and base $\operatorname{PG}(s+4, \sqrt{q})$, or with an
$(m+1)$-dimensional vertex and base $\operatorname{PG}(s+2, \sqrt{q})$. Up to equivalence, the second possibility is $m_{1}=m+1$ and $m_{2}=m$, which then means that $s=s_{1}$ and $s_{2}=s+2$. The smallest Baer cone containing $\left\langle\Pi_{m_{1}}, \operatorname{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$ and $\left\langle\Pi_{m_{2}}, \operatorname{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$ is the Baer cone with vertex $\Pi_{m_{1}}$ and base $\operatorname{PG}\left(s_{2}, \sqrt{q}\right)$. The last possibility is that $m_{1}=m_{2}=m+1$ and that $s=s_{1}=s_{2}$. In this case, the smallest Baer cone containing $\left\langle\Pi_{m_{1}}, \operatorname{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$ and $\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$ is the Baer cone with vertex the $(m+2)$-dimensional space $\left\langle\Pi_{m_{1}}, \Pi_{m_{2}}\right\rangle$ and with base $\operatorname{PG}(s, \sqrt{q})$.

The following arguments will show for all three cases that this smallest Baer cone B_{0} containing $\left\langle\Pi_{m_{1}}, \mathrm{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$ and $\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$ lies completely in B. In the first part of this proof, we prove our crucial result for proving that B_{0} is contained in B.
Part 1. Consider a non-singular point x of $\left\langle\Pi_{m_{1}}, \mathrm{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$, not lying in Δ. Let $L_{1} \subset B$ be a Baer subline of $\left\langle\Pi_{m_{1}}, \mathrm{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$, passing through x and containing a point r of the base $\mathrm{PG}(s, \sqrt{q})$ of the Baer cone $\left\langle\Pi_{m}, \mathrm{PG}(s, \sqrt{q})\right\rangle$ in Δ. We show that the Baer subgeometry defined by L_{1} and $\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$ lies completely in B.

Lemma 5.6 proves that if you have a Baer cone $\left\langle v, L_{2}\right\rangle$ of B, where $L_{2} \simeq$ $\operatorname{PG}(1, \sqrt{q}), L_{1}$ a Baer subline of B not in the plane of v and L_{2}, and $L_{1} \cap L_{2} \neq$ \emptyset, then the cone with vertex v and base $\left\langle L_{1}, L_{2}\right\rangle \simeq \mathrm{PG}(2, \sqrt{q})$ lies completely in B.

By letting vary v over $\Pi_{m_{2}}$ and by letting vary L_{2} over all Baer sublines through r in $\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$, we reach all points of $\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$; the cone with vertex v and base $\left\langle L_{1}, L_{2}\right\rangle \simeq \operatorname{PG}(2, \sqrt{q})$ lies in B, hence the Baer subgeometry defined by $\Pi_{m_{2}}, L_{1}$, and $\mathrm{PG}\left(s_{2}, \sqrt{q}\right)$ lies completely in B.
Part 2. The Baer cones $\left\langle\Pi_{m_{1}}, \operatorname{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$ and $\left\langle\Pi_{m_{2}}, \operatorname{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$ define a (projected) Baer subgeometry B_{0} over $\mathrm{GF}(\sqrt{q})$.

Consider in B_{0} an arbitrary Baer subgeometry Ω of dimension one larger than the Baer subgeometry $B_{0} \cap H_{2}=\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$, passing through the Baer subgeometry $B_{0} \cap H_{2}=\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$. Then Ω intersects H_{1} in a Baer cone of dimension at least one larger than $\left\langle\Pi_{m}, \mathrm{PG}(s, \sqrt{q})\right\rangle$, so Ω contains points of B_{0} in $\left\langle\Pi_{m_{1}}, \mathrm{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$, not lying in Δ. This intersection $\Omega \cap H_{1}$ contains non-singular points of the Baer cone $\left\langle\Pi_{m_{1}}, \mathrm{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$, not lying in Δ. For, if there were only such singular points in $H_{1} \cap \Omega$, then let r be a point of $\Pi_{m_{1}} \backslash \Delta$ lying in Ω. Consider the line $r r^{\prime}$ through r and a point r^{\prime} of the base $\operatorname{PG}(s, \sqrt{q})$ of the Baer cone $B_{0} \cap \Delta=\left\langle\Pi_{m}, \mathrm{PG}(s, \sqrt{q})\right\rangle$. This line already contains two points r and r^{\prime} of Ω, so contains at least one Baer subline of Ω. Hence, Ω contains at least one non-singular point x of $\left\langle\Pi_{m_{1}}, \mathrm{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$, not lying in Δ. So $\Omega \cap H_{1}$ intersects $\left\langle\Pi_{m_{1}}, \mathrm{PG}\left(s_{1}, \sqrt{q}\right)\right\rangle$ in a Baer subgeometry of dimension one larger than $\operatorname{dim}\left\langle\Pi_{m}, \mathrm{PG}(s, \sqrt{q})\right\rangle$. This intersection can be defined uniquely by $\left\langle\Pi_{m}, \mathrm{PG}(s, \sqrt{q})\right\rangle$ and a Baer subline
L_{1} joining x to a non-vertex point in $\left\langle\Pi_{m}, \mathrm{PG}(s, \sqrt{q})\right\rangle$. We have proven in Part 1 that L_{1} together with $\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$ defines a unique Baer cone, completely lying in B. This Baer cone is in fact Ω. Hence, Ω lies in B.

So we conclude that an arbitrary Baer cone in B_{0}, of dimension one larger than $\operatorname{dim}\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$, passing through the Baer subgeometry $B_{0} \cap H_{2}=\left\langle\Pi_{m_{2}}, \mathrm{PG}\left(s_{2}, \sqrt{q}\right)\right\rangle$, lies completely in B. This shows that $B_{0} \subseteq B$.

Hence, B contains a Baer cone $B_{0}=\left\langle\pi_{m^{\prime \prime}}, \mathrm{PG}\left(2\left(n-k-m^{\prime \prime}-1\right), \sqrt{q}\right)\right\rangle$, $-1 \leq m^{\prime \prime}<n-k-1$.

Assume that the conditions of the preceding lemma are valid, then using the $t(\bmod \sqrt{q})$ assumption, $B \backslash B_{0}$ is a $(t-1)$-fold $(n-k)$-blocking set, intersecting every k-dimensional space in $(t-1)(\bmod \sqrt{q})$ points.

Assume that there is a line L defined over $\operatorname{GF}(q)$ intersecting B in a set of at most $t(\sqrt{q}+1)$ points, containing a Baer subline L_{1}. Then, by using the same arguments as in the proof of Lemma 3.2, it is first of all possible to find a $(k-1)$-dimensional space Π_{k-1} through L containing no other points of B. Since $|B|<t q^{n-k}+q^{n-k-1 / 3}$, there is a k-dimensional space Δ_{k} through Δ_{k-1} containing at most t other points of B. Similarly, there is a $(k+1)$ dimensional space through Δ_{k} sharing at most $t q+2 t q$ points with B since it is impossible that all these $(k+1)$-dimensional spaces through Δ_{k} contain at least $\sqrt{q} q+t$ points of B (Theorem 2.2). The same arguments as in the proof of Lemma 5.6 then prove that it is possible to find an $(n-2)$-dimensional space Δ through L intersecting B in a union of t pairwise disjoint Baer cones $\left\langle\pi_{m_{i}}, \operatorname{PG}\left(2\left(n-k-2-m_{i}-1\right), \sqrt{q}\right)\right\rangle,-1 \leq m_{i} \leq n-k-3, i=1, \ldots, t$, where for at least one such Baer cone in $\Delta \cap B, m_{i}<n-k-3$.

Then the conditions of the preceding lemma are met, and it is possible to find a 1-fold $(n-k)$-blocking set B_{0} in B, such that $B \backslash B_{0}$ is a $(t-1)$-fold ($n-k$)-blocking set.

To obtain the complete characterization of t-fold $(n-k)$-blocking sets in $\mathrm{PG}(n, q)$ of size at most $t q^{n-k}+2 t q^{n-k-1} \sqrt{q}$, it suffices to consider the case that lines are either completely contained in B, or intersect B in at most t distinct points, since it is no longer necessary to assume that Baer sublines are contained in B.

We now show that this implies that B contains an $(n-k)$-dimensional space over GF (q).

Let Δ be an ($n-2$)-dimensional space intersecting B in at most $t q^{n-k-2}+$ $2 t q^{n-k-3} \sqrt{q}$ points, so by the induction hypothesis (IH) and also using the fact that there are no Baer sublines contained in B, Δ shares t pairwise disjoint spaces $\mathrm{PG}(n-k-2, q)$ with B. Consider again two hyperplanes H_{1} and H_{2} through Δ intersecting B in at most $t q^{n-k-1}+2 t q^{n-k-2} \sqrt{q}$ points. By
the induction hypothesis, and again using that no Baer sublines are contained in B, these two hyperplanes H_{1} and H_{2} intersect B in t pairwise disjoint subspaces $\operatorname{PG}(n-k-1, q)$.

Let Π_{1} and Π_{2} be two ($n-k-1$)-dimensional spaces in respectively H_{1} and in H_{2}, both contained in B, and intersecting Δ in the same $(n-k-2)$ dimensional space Π. We now show that Π_{1} and Π_{2} define an $(n-k)$ dimensional space Π_{n-k} completely contained in B.

Let r be a point of Π and consider two lines L_{1} and L_{2}, through r, lying in respectively Π_{1} and in Π_{2}, but not lying in Δ. Then the plane $\left\langle L_{1}, L_{2}\right\rangle$ lies completely in B (Lemma 5.3).

Letting vary the point r in Π and letting vary the lines L_{1} and L_{2} in Π_{1} and in Π_{2}, the $(n-k)$-dimensional space $\Pi_{n-k}=\left\langle\Pi_{1}, \Pi_{2}\right\rangle$ lies completely in B.

By using the $t(\bmod \sqrt{q})$ assumption, $B \backslash \Pi_{n-k}$ is a $(t-1)$-fold $(n-k)$ blocking set of $\mathrm{PG}(n, q)$, intersecting every k-dimensional space in $(t-1)$ $(\bmod \sqrt{q})$ points.

The preceding arguments now lead to the desired characterization result.
Theorem 5.8 Let B be a minimal t-fold $(n-k)$-blocking set in $\mathrm{PG}(n, q), q$ square, $q \geq 661, t<c_{p} q^{1 / 6} / 2$, of size at most $|B| \leq t q^{n-k}+2 t q^{n-k-1} \sqrt{q}<$ $t q^{n-k}+c_{p} q^{n-k-1 / 3}$, intersecting every k-dimensional space in $t(\bmod \sqrt{q})$ points.

Then B is a union of t pairwise disjoint cones $\left\langle\pi_{m_{i}}, \mathrm{PG}\left(2\left(n-k-m_{i}-\right.\right.\right.$ 1), $\sqrt{q})\rangle,-1 \leq m_{i} \leq n-k-1, i=1, \ldots, t$.

Proof: Let Δ be an ($n-2$)-dimensional space intersecting B in at most $t q^{n-k-2}+2 t q^{n-k-3} \sqrt{q}$ points.

The preceding lemma and arguments show that it is possible to find a 1-fold ($n-k$)-blocking set B_{0} in B such that $B \backslash B_{0}$ is a $(t-1)$-fold $(n-k)$ blocking set, intersecting every k-dimensional space in $(t-1)(\bmod \sqrt{q})$ points.

By induction on t, this proves the theorem.
The preceding result is not the end of the classification since such unions of $t \geq 2$ pairwise disjoint cones $\left\langle\pi_{m_{i}}, \mathrm{PG}\left(2\left(n-k-m_{i}-1\right), \sqrt{q}\right)\right\rangle$ only exist if $k \geq n / 2$.

Theorem 5.9 Let B be a minimal t-fold $(n-k)$-blocking set in $\operatorname{PG}(n, q)$, q square, $t \geq 2$, which is a union of t pairwise disjoint cones $\left\langle\pi_{m_{i}}, \mathrm{PG}(2(n-\right.$ $\left.\left.\left.k-m_{i}-1\right), \sqrt{q}\right)\right\rangle, \max \{-1, n-2 k-1\} \leq m_{i} \leq n-k-1$. Then $k>n / 2$ if
B contains at least one $(n-k)$-dimensional space $\operatorname{PG}(n-k, q)$ and $k \geq n / 2$ in the other cases.

Proof: If B contains at least two $(n-k)$-dimensional spaces $\operatorname{PG}(n-k, q)$ which are disjoint, then $k>n / 2$. If B contains an $(n-k)$-dimensional space and a cone $\left\langle\pi_{m}, \mathrm{PG}(2(n-k-m-1), \sqrt{q})\right\rangle, \max \{-1, n-2 k-1\} \leq m<$ $n-k-1$, then since the Baer cone intersects every k-dimensional space, necessarily $n-k<k$, and again $k>n / 2$.

We now assume that B does not contain $(n-k)$-dimensional spaces $\mathrm{PG}(n-k, q)$. A Baer cone $\left\langle\pi_{m}, \mathrm{PG}(2(n-k-m-1), \sqrt{q})\right\rangle, \max \{-1, n-2 k-$ $1\} \leq m<n-k-1$, is in fact a projected Baer subgeometry $\operatorname{PG}(2 n-2 k, \sqrt{q})$. This defines a vector space $V(2 n-2 k+1, \sqrt{q})$.

The projective space $\operatorname{PG}(n, q)$ defines a vector space $V(2 n+2, \sqrt{q})$ over $\mathrm{GF}(\sqrt{q})$. If this $(2 n+2)$-dimensional vector space over $\mathrm{GF}(\sqrt{q})$ contains two disjoint $(2 n-2 k+1)$-dimensional subspaces, necessarily $2(2 n-2 k+1) \leq$ $2 n+2$, leading to $k \geq n / 2$.

Remark 5.10 The lower bound $k \geq n / 2$ is sharp as the following examples of t-fold $(n-k)$-blocking sets in $\mathrm{PG}(n, q)$ show.

Let $n=2 n^{\prime}$. Consider t pairwise disjoint subgeometries $\operatorname{PG}(n, \sqrt{q})_{i}$, $i=1, \ldots, t$, of $\mathrm{PG}\left(n=2 n^{\prime}, q\right)$. They are t pairwise disjoint 1-fold n^{\prime}-blocking sets, so they form together a t-fold n^{\prime}-blocking set.

If $n=2 n^{\prime}+1$, then the lower bound on k is $k \geq n^{\prime}+1$. Consider the example of the preceding paragraph, lying in $\operatorname{PG}\left(2 n^{\prime}, q\right)$, and embed this $2 n^{\prime}-$ dimensional space into a $\left(2 n^{\prime}+1\right)$-dimensional space. Then the example of the preceding paragraph forms a t-fold n^{\prime}-blocking set in $\mathrm{PG}\left(n=2 n^{\prime}+1, q\right)$, so a t-fold $(n-k)$-blocking set with $k=n^{\prime}+1$.

References

[1] S. Ball, Multiple blocking sets and arcs in finite planes. J. London Math. Soc. 54 (1996), 581-593.
[2] S. Ball, The number of directions determined by a function over a finite field. J. Combin. Theory, Ser. A 104 (2003), 341-350.
[3] S. Ball, A. Blokhuis, and M. Lavrauw, Linear $(q+1)$-fold blocking sets in PG(2, $\left.q^{4}\right)$. Finite Fields Appl. 6 (2000), 294-301.
[4] J. Barát and L. Storme, Multiple blocking sets in $\operatorname{PG}(n, q), n \geq 3$. Des. Codes Cryptogr. 33 (2004), 5-21.
[5] A. Blokhuis, On the size of a blocking set in PG(2,p). Combinatorica 14 (1994), 273-276.
[6] A. Blokhuis, S. Ball, A.E. Brouwer, L. Storme, and T. Szőnyi, On the number of slopes determined by a function on a finite field. J. Combin. Theory, Ser. A 86 (1999), 187-196.
[7] A. Blokhuis, L. Lovász, L. Storme, and T. Szőnyi, On multiple blocking sets in Galois planes. Adv. Geom. 7 (2007), 39-53.
[8] A. Blokhuis, L. Storme, and T. Szőnyi, Lacunary polynomials, multiple blocking sets and Baer subplanes. J. London Math. Soc. (2) 60 (1999), 321-332.
[9] M. Bokler, Minimal blocking sets in projective spaces of square order. Des. Codes Cryptogr. 24 (2001), 131-144.
[10] S. Ferret, L. Storme, P. Sziklai, and Zs. Weiner, A $t(\bmod p)$ result on weighted multiple $(n-k)$-blocking sets in $\operatorname{PG}(n, q)$. Innov. Incidence Geom. 6-7 (2007-2008), 169-188.
[11] L. Lovász and T. Szőnyi, Multiple blocking sets and algebraic curves. Abstract from Finite Geometry and Combinatorics (Third International Conference at Deinze (Belgium), May 18-24, 1997).
[12] G. Lunardon, Normal spreads. Geom. Dedicata 75 (1999), 245-261.
[13] P. Polito and O. Polverino, On small blocking sets. Combinatorica 18 (1998), 133-137.
[14] O. Polverino, Small minimal blocking sets and complete k-arcs in PG(2, $\left.p^{3}\right)$. Discrete Math. 208/9 (1999), 469-476.
[15] L. Storme and P. Sziklai, Linear point sets and Rédei type k-blocking sets in PG(n,q). J. Algebraic Combin. 14 (2001), 221-228.
[16] L. Storme and Zs. Weiner, Minimal blocking sets in $\operatorname{PG}(n, q), n \geq 3$. Des. Codes Cryptogr. 21 (2000), 235-251.
[17] P. Sziklai, On small blocking sets and their linearity. J. Combin. Theory, Ser. A 115 (2008), 1167-1182.
[18] T. Szőnyi, Blocking sets in Desarguesian affine and projective planes. Finite Fields Appl. 3 (1997), 187-202.
[19] T. Szőnyi and Zs. Weiner, Small blocking sets in higher dimensions. J. Combin. Theory, Ser. A 95 (2001), 88-101.
[20] Zs. Weiner, Small point sets of $\mathrm{PG}(n, q)$ intersecting each k-space in 1 modulo \sqrt{q} points. Innov. Incidence Geom. 1 (2005), 171-180.

Address of the authors:
(S. Ferret: saferret@cage.ugent.be, http://cage.ugent.be/~saferret)

Ghent University, Dept. of Mathematics, Krijgslaan 281-S22, 9000 Gent, Belgium
(L. Storme: ls@cage.ugent.be, http://cage.ugent.be/~ls)

Ghent University, Dept. of Mathematics, Krijgslaan 281-S22, 9000 Gent, Belgium
(P. Sziklai: sziklai@cs.elte.hu, http://www.cs.elte.hu/~sziklai)

Eötvös Loránd University Budapest, Dept. of Computer Science, Pázmány P. s. 1/c, Budapest, Hungary H-1117
(Zs. Weiner: weiner@cs.elte.hu)
Eötvös Loránd University Budapest, Dept. of Computer Science, Pázmány P. s. 1/c, Budapest, Hungary H-1117

[^0]: *The third author is grateful for the partial support of OTKA T049662, T067867 and Bolyai grants.

