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Abstract 9 

In altricial birds, parental feeding is essential and its amount may depend on the quality of 10 

both parents. A relationship between parental quality and feeding rate is generally attributed 11 

to an active adjustment by parents in order to retain good quality mates or ensure high fitness 12 

through raising high quality offspring. However, the behaviour and need of young may also 13 

change with parental quality, and this may affect parental behaviour. A further problem is that 14 

most studies have investigated post-hatching parental investment in relation to the secondary 15 

sexual signals of males, but not females. In a cross-fostering experiment, we examined the 16 

feeding rates of rearing parents in relation to the size and ornamentation of both original and 17 

rearing parents in collared flycatchers (Ficedula albicollis). Using this setup, we could 18 

examine whether the observed feeding patterns were the results of the decision of the parents 19 

based on their own and their partner’s traits or the constraints imposed by the behaviour or 20 

need of offspring. When correcting for clutch size and year, we found that feeding rate of both 21 

foster parents correlated with the wing patch size of the original female. This implies that 22 

original maternal quality had an offspring mediated indirect effect on investment of foster 23 

parents, that is intrinsic nestling quality may constrain parental feeding decisions. This 24 

explanation should not be overlooked in future studies on preferential parental investment and 25 

our results also point out that maternal ornaments deserve more attention in such studies.  26 

 27 

Keywords: attractiveness, collared flycatcher, female quality, Ficedula albicollis, maternal 28 

ornamentation, parental investment; parental quality, plumage traits, provisioning 29 

 30 

Introduction 31 

Life history theory suggests that the energy expenditure of animals is shared between 32 

self-maintenance and reproductive investment. Because nestlings of altricial birds are 33 

incapable of acquiring food for themselves, their survival depends entirely on their parents’ 34 

feeding. Parental investment requires enormous energy investment, thereby affecting parents’ 35 

survival (Cichoń et al. 1998) and reproductive success in future breeding attempts 36 

(Gustafsson and Sutherland 1988). Therefore, in order to maximize their lifetime reproductive 37 

success, parents may alter their investment based on the expected value of current and future 38 

breeding attempts. The quality of individuals or their mates could be important factors to 39 

predict the value of the current brood. 40 
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Ornamental traits may indicate the quality or attractiveness of individuals (Andersson 41 

1994), and as a consequence, the direct or indirect fitness benefits individuals may obtain by 42 

mating with a given partner. Potential indirect benefits include ‘good genes’, which result in 43 

high quality and viability of offspring and thereby increases the reproductive success of the 44 

parents (Petrie 1994; Sheldon et al. 1997). A mate with elaborate traits may provide direct 45 

benefits as well, such as high quality territory with abundant food or good breeding site 46 

(Keyser and Hill 2000). Secondary sexual traits may also signal the level of parental care (see 47 

below). 48 

Recently, many studies have focused on the relationship between plumage signals and 49 

parental investment (e.g. Sanz 2001; Limbourg et al. 2004; DeMory et al. 2010). The results 50 

are often contradictory, but this is not surprising given the opposing predictions of the 51 

prevailing hypotheses. For example, the ’good parent’ hypothesis suggests that good quality 52 

individuals with elaborate traits will invest more in their offspring because they are able to do 53 

so (Hoelzer 1989; Linville et al. 1998). On the other hand, highly ornamented males should 54 

invest less into their first brood if they have the opportunity to increase their reproductive 55 

success via extra-pair copulations or by obtaining more partners (Magrath and Komdeur 56 

2003; Mitchell et al. 2007). The situation is further complicated by the fact that the quality of 57 

the reproductive partner may also influence the decision of an individual about the investment 58 

in its current reproductive event. One may argue that an individual mated to a good quality 59 

partner should invest more in its offspring because they inherit the good genes of the partner 60 

and therefore have higher expected fitness (Mazuc et al. 2003; Johnsen et al. 2005). On the 61 

contrary, the ‘compensation hypothesis’ suggests that individuals mated to a less ornamented 62 

partner should compensate for the worse quality of their mates and enhance the viability of 63 

their nestlings by providing more care (Gowaty et al. 2007; Ratikainen and Kokko 2010). 64 

Finally, Burley’s original differential allocation hypothesis predicts that parents should adjust 65 

their investment according to their own attractiveness relative to that of the partners rather 66 

than according to their own or their partner’s attractiveness per se, that is individuals mated to 67 

a more attractive partner should invest more into the offspring to retain their mate (Burley 68 

1986).  69 

Despite the relatively large number of studies, we lack important information 70 

concerning the role of parental quality in parental feeding decisions. As we outlined above, 71 

most hypotheses argue that parents adjust their feeding rate to retain good quality mates or 72 

because the future reproductive success of the offspring may be related to parental quality. 73 
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However, the behaviour, growth rate and therefore energetic requirement of the offspring may 74 

also depend on parental quality (Silva et al. 2007), either due to genetic reasons or due to 75 

early maternal effects. Begging behaviour of the offspring is suggested to be a reliable signal 76 

of need (Cotton et al. 1996; Rodriguez-Girones et al. 2001), and parents of many species are 77 

known to respond to this signal in terms of both feeding rate (Ottosson et al. 1997; Moreno-78 

Rueda et al. 2009) and food allocation to individual offspring (Kölliker et al. 1998; Leonard 79 

and Horn 2001; Rosivall et al. 2005). Therefore it is quite plausible to assume that a 80 

correlation between a parental trait and feeding rate is the result of a correlation between this 81 

parental trait and nestling behaviour/need, rather than an active decision of parents based on 82 

their own or their partner’s traits. In other words, it is possible that parents do not adjust their 83 

investment directly to parental traits (along the lines of the aforementioned hypotheses), 84 

rather their investment is constrained by nestling behaviour/need (hereafter ‘offspring 85 

constraint hypothesis’) and the relationship between parental investment and the given 86 

parental traits is indirect. To our knowledge this hypothesis has not yet been tested 87 

A further problem with the literature on post-hatching parental investment is that 88 

despite biparental care in many bird species, most studies focused on parental investment in 89 

relation to male quality or attractiveness (e.g. Mazuc et al. 2003; Johnsen et al. 2005; Osorno 90 

et al. 2006), while only few have investigated the relationship between parental investment 91 

and ornamental traits of females. In addition, the outcome of these studies is quite mixed. 92 

Some studies have not found any correlation between paternal feeding rate and female 93 

ornaments (Pilastro et al. 2003; Matessi et al. 2009; Maguire and Safran 2010), while others 94 

have found positive association between female ornament and male brood defence (Griggio et 95 

al. 2003; Matessi et al. 2009) or male feeding rate (Mahr et al. 2012). 96 

We studied parental investment in a Hungarian population of the collared flycatcher. 97 

Collared flycatchers have two sexually selected plumage traits. In our population, both male 98 

and female quality is related to the condition-dependent wing patch size, a heritable plumage 99 

signal (Török et al. 2003; Hegyi et al. 2008b). This trait has been reported to play a role in the 100 

territorial aggression of males (Garamszegi et al. 2006), and the competitive interactions of 101 

females (Hegyi et al. 2008a). Males also have a conspicuous forehead patch. Its size is not 102 

condition dependent, but heritable (Hegyi et al. 2002; Hegyi et al. 2006) and might signal the 103 

quality of males. Males with larger forehead patches bred earlier in the season (Hegyi et al. 104 

2006) and after an immune challenge their song rate decreased less than that of small patched 105 

males (Garamszegi et al. 2004a). Furthermore, there was a positive association between the 106 
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forehead patch size of rearing males and the growth of nestling wing feathers (Szöllősi et al. 107 

2009), and between the forehead patch size of both original and foster fathers and nestling 108 

mass growth rate (Hegyi et al. 2011b). 109 

As we outlined above, male and female ornaments may correlate with feeding rate 110 

because (1) parents adjust their investment directly to their own or their partner’s traits (e.g. 111 

‘good parent’, ‘compensation’ and ‘differential allocation’ hypotheses) or (2) parental quality 112 

dependent nestling behaviour/need constrains parental investment (‘offspring constraint 113 

hypothesis’). The primary aim of this study was to investigate the relationship between 114 

parental investment and plumage signals of both males and females in a way that allows us to 115 

distinguish between these two main mechanisms. Therefore, we conducted a full-brood cross-116 

fostering experiment. As rearing parents had no information on the traits of original parents, 117 

any correlation between the feeding rate of rearing parents and the traits of original parents 118 

had to be mediated by intrinsic nestling quality and would support the second mechanism. 119 

Correlations between feeding rate and the traits of rearing parents, however, indicate parental 120 

decisions based on their own or their partner’s traits and would therefore support the first 121 

mechanism. 122 

Our secondary goal was to deepen our knowledge concerning the role of female 123 

ornaments in parental investment decisions after hatching, because only very few papers have 124 

been published on this issue.  125 

Finally, we aimed to find an explanation for the previously found positive associations 126 

between growth of nestlings and forehead patch size of males in our population (Szöllősi et al. 127 

2009; Hegyi et al. 2011b). We predicted a positive association between forehead patch size of 128 

males and feeding rate of either or both of the parents.  129 

 130 

Methods 131 

Study species and field methods 132 

Our study was conducted in a Hungarian population of collared flycatchers. Our 133 

nestbox plots are located in an oak-dominated woodland in the Pilis Mountains (47°43′N, 134 

19°01′E), a protected area of Duna-Ipoly National Park. The collared flycatcher is a small, 135 

hole-breeding, insectivorous species with wintering sites in Sub-Saharan Africa (Cramp and 136 

Perrins 1993). Males return to the breeding grounds and occupy nestboxes in the middle of 137 

April. Females arrive a few weeks later and, after mate choice, they build the nest, lay and 138 
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incubate the eggs (6-7 on average) alone. After hatching, both parents feed the nestlings, but 139 

the brooding of ectothermic (0-6 days old) young is the exclusive task of the female.  140 

Nestboxes were continuously monitored after the arrival of birds. Full broods with 141 

similar brood size were cross-fostered two days after hatching. Four days after hatching, 142 

approximately 1.5 hours (82.9 ± 16.8 min) long video recordings were taken inside the 143 

nestboxes to estimate parental feeding effort. One day before the video recording, we 144 

exchanged the nestboxes for special ones, which had the same inner sizes, but had a special 145 

back chamber (hidden from the parents) for the videocamera. This method had previously 146 

been successfully applied in this population (Rosivall et al. 2005). The video records were 147 

taken between 8:30 and 20:00, but we tried to avoid the midday time (12:00 to 15:30) when 148 

feeding activity may be reduced. There was no difference in the feeding rates between the 149 

morning and afternoon hours (female: t=0.78; df=23; p=0.45; male: t=-1.27; df=23; p=0.22), 150 

and feeding activity did not change within these periods either (morning/ female: df=1,8 151 

F=1.01; p=0.34; male: df=1,8; F=0.38; p=0.55; afternoon/ female: df=1,17; F=0.62; p=0.44; 152 

male: df=1,17; F=0.0; p=0.98). 153 

When the chicks became 10 days old, we caught the parents with spring traps and 154 

measured their morphological traits. The binary age of males (yearling or older) was 155 

determined based on the colour of remiges (Svensson 1992). The size of the forehead patch 156 

was estimated as the product of maximum width and maximum height (Hegyi et al. 2002). 157 

We estimated the wing patch size of both parents by the sum of the lengths of non-covered 158 

white bars on the 4th-8th primaries (Török et al. 2003). Body size was estimated by tarsus 159 

length. All of these traits were measured with caliper to the nearest 0.1 mm. 160 

 161 

Statistical analysis 162 

We used altogether 36 broods (16 in 2002 and 20 broods in 2003) in our experiment, 163 

but excluded 2 secondary broods of polygynous males, and 3 broods with five chicks, because 164 

of low sample size in this brood size category. One brood was removed to avoid 165 

pseudoreplication as the female was included in the experiment in both years. In 3 cases, 166 

brood-predation occurred before the chicks were 10 days old, therefore the parents were not 167 

caught. The sample size may differ between analyses, because some measurements were 168 

occasionally missing (in the final models it was 25). 169 

We used general linear models to investigate the effect of rearing and original parental 170 

traits on the feeding rate of rearing parents. The proportion of time females spent with 171 
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brooding during the videorecording varied considerably. Because our recording times were 172 

relatively short (82.9 ± 16.8 min), differences in the incubation times were more likely to be 173 

the result of mere chance than biologically meaningful differences between the females. 174 

Therefore, the feeding rates of females were calculated for the period when they were not 175 

incubating. Feeding rates of the males were calculated for the whole period. In both cases, 176 

feeding rate was calculated as the number of feedings per hour. Year-standardized laying date, 177 

tarsus length, forehead patch size of males and female wing patch size were used in our 178 

analyses as covariates (in case of laying date, used the deviation from the yearly median, for 179 

all other variables, we used the deviation from the yearly mean divided by SD). Wing patch 180 

size of males was year- and also age-standardized because it strongly differs between adults 181 

and yearlings (Török et al. 2003). Year, brood size and age of males were used as fixed 182 

factors.  183 

To avoid overparameterization, we performed two analyses with backward stepwise 184 

model selection. First, we analysed the effect of laying date, brood size and the traits of 185 

original parents on the feeding rate of rearing parents. Second, we added the traits of rearing 186 

parents to the final model (i.e. which included only significant variables) of the first analysis. 187 

Values indicated for the non-significant terms are derived from analyses, in which the given 188 

terms were reentered to the final model one by one (Hegyi and Garamszegi 2011). We also 189 

performed our analyses using an Information Theoretic approach, by calculating the AICc 190 

parameter weights of our independent variables (not shown). The parameter weight is 191 

analogous to the probability that the given variable is a component of the AICc best model 192 

(see details in Burnham and Anderson 2002; Symonds and Moussalli 2011). All variables 193 

included in the final models of the stepwise regressions received high parameter weights 194 

(ranging from 0.622 to 0.885), thereby confirming the results presented below.  195 

Given that the feeding strategy of a parent may depend on the feeding effort of its 196 

mate (Linville et al. 1998; Mitchell et al. 2007; Maguire and Safran 2010), we also 197 

investigated the relationship between the feeding rate of male and female parents. For this 198 

analysis, we used a general linear model. In each above mentioned analyses, model residuals 199 

were normally distributed. We used Statistica 6.1 (StatSoft, Inc. 2003.Tulsa, Oklahoma, 200 

U.S.A.), and SAS 9.1 (SAS Institute Inc., Cary, North Carolina, U.S.A.) for the statistical 201 

analyses. 202 

 203 

Results 204 
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The provisioning rate of rearing males increased with the wing patch size of original females 205 

(Table 1, Fig. 1). None of the remaining variables (traits of original males and rearing parents, 206 

brood parameters) correlated with the feeding activity of males (Table 1). The feeding rate of 207 

females was significantly higher when rearing more chicks (7 compared to 6; Table 1). It also 208 

differed between years (Table 1), and similarly to males, it was significantly positively 209 

correlated with the wing patch size of original females (Table 1, Fig. 1). However, just like in 210 

males, laying date, the traits of the original males, and that of the rearing parents did not 211 

correlate with the feeding activity (Table 1). There was no correlation between the feeding 212 

rates of males and females (F1,28= 0.09; P=0.927). 213 

 214 

Discussion 215 

In our whole-brood fostering experiment, we investigated whether the feeding activity 216 

of parents was related to ornamental traits of the original and rearing parents, while 217 

controlling for clutch size, laying date and study years. The experimental design allowed us to 218 

examine whether foster parents adjusted their feeding activity to their own or their partners’ 219 

traits or rather to nestling quality/behaviour which is dependent on the quality of the original 220 

parents. We found that the wing patch size of original females positively correlated with the 221 

feeding rate of both rearing parents. This result suggests a nestling-mediated indirect 222 

association between the ornamentation of the original female and feeding rate of the foster 223 

parents and thereby supports the ‘offspring constraint hypothesis’. Though in this study, we 224 

did not investigate the need or behaviour of nestlings, the offspring of more ornamented 225 

females might differ in behaviour from the chicks of small-patched mothers. Thus, one 226 

possible explanation would be that, as a result of inherited maternal genes, nestlings of high 227 

quality females were larger and begged more. However, the body mass of nestlings on the day 228 

of videorecording was not related to the wing patch size of the original female (our 229 

unpublished data). Nonetheless, this result does not preclude the possibility that inherited 230 

genes influence the begging intensity of nestlings per se or via their growth rate. Though there 231 

is so far no clear experimental evidence for genetic effects of female ornaments on offspring 232 

growth, a study of male ornaments suggests that such effects may exist (Parker 2003). 233 

Alternatively, females may allocate different amounts of nutrients or hormones into their eggs 234 

depending on their quality (Navara et al. 2006), which in turn may affect the begging intensity 235 

of nestlings and the feeding activity of rearing parents. For example, it is known of several 236 

yolk steroid hormones such as corticosterone (Loiseau et al. 2008), androgens (Eising and 237 
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Groothuis 2003) or specifically testosterone (Quillfeldt et al. 2006), that they affect the 238 

begging activity of nestlings. An earlier study in our collared flycatcher population found no 239 

correlation between female wing patch size and the concentration of testosterone in the eggs 240 

(Hegyi et al. 2011a). However, yolk androstenedione level significantly increased with laying 241 

order in small patched females, while it did not change in females with large wing patch 242 

(Hegyi et al. 2011a). When the interaction between laying order and wing patch size was 243 

removed from the model, the overall effect of wing patch size became significant: there was 244 

on average more androstenedione in eggs of females with smaller wing patches (Hegyi et al, 245 

unpublished results). The same study found that nestlings from eggs with less 246 

androstenedione hatched with smaller mass and grew faster (Hegyi et al. 2011a). If, in line 247 

with these results, nestlings of large patched females hatched with smaller mass and grew 248 

faster in our study, they may have required more food during early development, and this 249 

could explain our results. Unfortunately, we could not test this, because we had no 250 

information on hatching mass in this study.  251 

Though, as we have shown, female ornamentation may correlate with post-hatching 252 

parental investment, so far only very few studies have investigated this possibility. Even these 253 

are hard to compare because some of them focused on brood defence, while others on feeding 254 

rate. Two studies (Pilastro et al. 2003; Maguire and Safran 2010) found no correlation 255 

between female colouration and the feeding rate of males, while there was a non-significant 256 

tendency for female feeding rate to correlate positively with female attractiveness in the study 257 

of Pilastro et al. (2003). Griggio et al. (2003) found a positive relationship between male 258 

brood defence and female ornamentation. Interestingly, the two studies which estimated 259 

parental investment in both ways came to mixed results. Male rock sparrows (Petronia 260 

petronia) defended, but did not feed their chicks more when paired with reduced breast 261 

patched females (Matessi et al. 2009). On the contrary, a blue tit (Cyanistes caeruleus) study 262 

showed that males invested less in feeding, but did not defend the brood less, when paired to 263 

UV-reduced females (Mahr et al. 2012). Thus it seems (based on the above results) that the 264 

investment of males is either unrelated to or positively correlated with female ornaments and 265 

the authors suggested that the latter result supported the differential allocation hypothesis. 266 

However, as our results show, this is not necessarily the case. Positive correlation may also 267 

occur if males do not directly adjust their investment to female ornaments (as suggested e.g. 268 

by the ‘differential allocation hypothesis’), but rather respond to the need/behaviour of the 269 

nestlings (as suggested by the ‘offspring constraint hypothesis’).  270 
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Many more studies focused on the relationship between male ornamentation and 271 

parental feeding behaviour, though none of them considered the possibility that such a 272 

relationship may be constrained by nestling quality. The results are again quite mixed. Some 273 

studies showed a positive correlation between male attractiveness and male feeding rate 274 

(Buchanan and Catchpole 2000), others found a negative (Sanz 2001) or no relationship 275 

(Maguire and Safran 2010). In addition, in species with multiple colour signals, the two 276 

feather ornaments may show contrasting relationship with male feeding rate (Johnsen et al. 277 

2005). The association between male ornaments and female feeding rate also varies (positive: 278 

Maguire and Safran 2010; none: Mazuc et al. 2003; Sanz 2001; negative: Limbourg et al. 279 

2004) 280 

The fact that we found no correlation between the rearing parents’ feather ornaments 281 

and their feeding rate is still surprising for the following reasons. First, in a Swedish 282 

population of collared flycatchers, males with an experimentally enlarged forehead patch 283 

reduced their feeding rate because they had to defend their territory more intensively against 284 

other males (Qvarnström 1997). Given that in our population the wing patch size but not the 285 

forehead patch size has an important role in intrasexual competition (Garamszegi et al. 2006; 286 

Hegyi et al. 2008a), we expected a negative correlation between wing patch size and feeding 287 

rate, something we did not observe. Second, earlier studies in our population have found 288 

positive correlations between nestling growth and the forehead patch size of the original 289 

males (Szöllősi et al. 2009), or both original and rearing males (Hegyi et al. 2011b). Therefore 290 

we predicted that, contrary to results in the Swedish population, males with larger forehead 291 

patch (or their mates) would feed their nestlings more. However, in our study, feeding rate of 292 

the rearing parents did not change with the forehead patch size of rearing males. The earlier 293 

found growth patterns are therefore  the result of either attractive males or their partners 294 

feeding the chicks with higher quality prey (Sejberg et al. 2000; Grieco 2002), or the 295 

offspring of large patched males being of superior genetic quality (Petrie 1994). 296 

The feeding rate of females differed between years. The abundance of caterpillar, 297 

which is a major food type for developing chicks (Török 1986), was much higher in the year 298 

when females had higher feeding rates (our unpublished data). This suggests that females 299 

increased their feeding rate when surplus food was available, while this was not true for 300 

males. It is possible that, when chicks are young (feeding rate was recorded 4 days after 301 

hatching), males do not invest as much energy into parental care and do not respond as readily 302 

to environmental conditions as females do, because the value of the brood is not equal for 303 
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males and females. Though in our population less than 10% of males were socially 304 

polygynous (Garamszegi et al. 2004b), 55.7% of broods contained offspring sired by extra-305 

pair males (Rosivall et al. 2009). This means that males have a chance to mate with a 306 

secondary female or to sire extra-pair young when their primary brood is young (Magrath and 307 

Elgar 1997; Magrath and Komdeur 2003). For females, in contrast, the number of progeny in 308 

a breeding season is limited by the number of eggs laid and chicks reared (there is no 309 

evidence for intraspecific brood parasitism in this species). 310 

The brood value argument may apply also to the effect of brood size, because females 311 

rearing seven nestlings fed more frequently than those rearing six, while there was no 312 

relationship between brood size and feeding rate of the rearing males. However, our results 313 

are in contrast with an earlier brood-size manipulation experiment in the same population, 314 

which found that feeding rate of both parents were influenced by brood size (Török and Tóth 315 

1990). Nevertheless, it should be noted that in the previous study brood size was manipulated 316 

with two nestlings, and feeding rate was measured at an older nestling age when the value of 317 

the brood may be higher for the males (Michl et al. 2000). 318 

In summary, the main finding of our study is an association between a condition- 319 

dependent plumage ornament of the original mother and the provisioning rate of the rearing 320 

parents. This indirect effect is important to understand the factors shaping parental 321 

investment. Our results indicate that a relationship between parental traits and feeding rate 322 

may be explained not only by direct parental adjustment of feeding effort to these traits, but 323 

also by differences in the need or behaviour of the nestlings. Further studies should examine 324 

the generality of such offspring quality constraints, and explore their potential mechanisms. 325 

Our results also show that the role of female ornaments in parental investment decisions 326 

deserves more attention than it has received so far.  327 
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Table 1 Relationship between the provisioning rate of rearing parents and brood size, laying 494 

date and morphology of original and rearing parents. Values indicated for the non-significant 495 

terms are derived from analyses, in which the given terms were reentered to the final model 496 

one by one. The variables retained in the final model are indicated in bold. WPS stands for 497 

wing patch size, FPS stands for forehead patch size 498 

feeding rate of rearing male  feeding rate of rearing female 
variable  df F P df F P 
year 1;22 0.00 0.960 1;21 5.08 0.035 
brood size 1;22 0.09 0.770 1;21 5.32 0.031 
laying date 1;22 0.00 0.946 1;20 0.02 0.876 
original female’s tarsus 1;22 2.44 0.132 1;20 0.37 0.552 
                           WPS 1;23 4.83 0.038 1;21 5.13 0.034 
original male’s    age 1;22 0.15 0.702 1;20 1.23 0.281 
                           tarsus  1;20 0.14 0.715 1;18 2.83 0.110 
                           FPS 1;21 1.26 0.275 1;19 0.63 0.437 
                           WPS 1;21 1.26 0.275 1;19 0.22 0.642 
rearing female’s tarsus 1;22 0.75 0.397 1;20 0.13 0.722 
                           WPS 1;22 0.33 0.573 1;20 1.98 0.175 
rearing male’s    age 1;22 1.26 0.274 1;20 0.89 0.356 
                           tarsus 1;21 2.25 0.148 1;19 0.22 0.642 
                           FPS 1;22 0.92 0.349 1;20 1.71 0.206 
                           WPS 1;22 0.45 0.507 1;20 0.03 0.874 
 499 
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Fig. 1 Provisioning rate of rearing parents in relation to the year-standardized wing patch size 500 

of original females (rearing females - open circles, dashed line; rearing males - filled circles, 501 

solid line). 502 



 

19 

 

Fig. 1 503 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

wing patch size of original female

0

2

4

6

8

10

12

14

16

18

20

22

24

fe
ed

in
g

 r
at

e 
o

f 
re

ar
in

g
 p

ar
en

ts
 (

fe
ed

in
g

/h
o

u
r)

 504 


