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NOXA contributes to the sensitivity of PERK-deficient cells to ER stress
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a b s t r a c t

PKR-like ER kinase (PERK) deficient mouse embryonic fibroblasts (MEFs) are hypersensitive to ER
stress-induced apoptosis. However, the molecular determinants of increased sensitivity of PERK�/�

MEFs are not clearly understood. Here we show that induction of several Unfolded Protein Response
(UPR) target genes is attenuated in PERK�/� MEFs. We also report elevated expression of the BH3-
only protein, NOXA in PERK�/� MEFs. Further, shRNA-mediated knockdown of NOXA rescued the
hypersensitivity of PERK�/� MEFs to ER stress-induced apoptosis. Taken together our results suggest
that compromised induction of UPR and increased NOXA expression contributes to hypersensitivity
of PERK�/� MEFs to ER stress-induced apoptosis.

� 2012 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

The endoplasmic reticulum (ER) is the cellular site for Ca2+ stor-
age and for synthesis, folding and maturation of most secreted and
transmembrane proteins [1]. Accumulation of unfolded/misfolded
proteins in the ER is toxic to the cell and causes a condition referred
to as ER stress [2]. The cells’ response to ER stress is the activation a
set of signaling pathways termed the Unfolded Protein Response
(UPR) [3]. This concerted and complex cellular response is mediated
initially by at least three molecules, inositol requiring enzyme 1
(IRE1), activated transcription factor-6 (ATF6) and PKR-like-ER ki-
nase (PERK) which are kept in an inactive state by the binding of
the chaperone GRP78/BiP [1,4]. ER stress causes GRP78 to dissociate
leading to the activation of IRE1, ATF6 and PERK.

Activated PERK phosphorylates translation initiation factor 2a
(eIF2a), thereby reducing the rate of translation and the protein
load on the ER [5]. In addition to its translational regulatory func-
tion, PERK directly elicits the activation of the pro-survival tran-
scription factor NF-E2-related factor-2 (NRF2) [6]. PERK-mediated
phosphorylation of NRF2 causes it to dissociate from its cytoplas-
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mic regulator Kelch-like ECH-associated protein 1 (KEAP1) and mi-
grate to the nucleus where it induces the expression of a battery of
detoxifying enzymes that aim to restore redox homeostasis [7].
PERK activation during the UPR is transient and under a negative
feedback regulation; p58IPK, a UPR-target gene, binds to the kinase
domain of PERK and inhibits its activity [8]. In addition, protein
phosphatase 1 (PP1), activated by ATF4-induced GADD34, dephos-
phorylates eIF2a to remove the translational block [9]. Despite the
numerous reports on activation of cytoprotective signaling path-
ways downstream of PERK, the role of PERK in determining cell fate
during the ER stress and UPR is still controversial. It has been
shown that constitutive PERK signaling is in fact pro-apoptotic
[10]. This may be due to the enhanced expression of the transcrip-
tion factor C/EBP homologous protein (CHOP), whose induction
strongly depends on PERK signaling during ER stress [11]. CHOP
is thought to play an important role in ER stress-induced apoptosis
in many scenarios; however CHOP is not necessary for cell death
induced by ER stress. PERK�/� and catalytically inactive eIF2a
(Ser51Ala) knock-in MEFs are hypersensitive to ER stress-induced
apoptosis, although they fail to induce CHOP during ER stress [12].

The role for mitochondria in ER stress-induced apoptosis is well
accepted [13]. Here we set out to address the question regarding
the mechanisms by which PERK can promote cellular survival.
We demonstrate that in the absence of PERK the cells experience
constitutive oxidative stress that correlates with increased
expression of the BH3 only protein, NOXA. Knock down of NOXA
pean Biochemical Societies.
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expression in PERK�/� MEFs by shRNA rescues their hypersensitiv-
ity to ER stress-induced apoptosis. Our findings provide evidence
that the BH3-only protein, NOXA is the mediator of the apoptotic
signaling triggered by ongoing oxidative stress in absence of PERK.
2. Materials and methods

2.1. Cell culture and treatments

PERK+/+ and PERK�/�MEFs were a gift from Dr. David Ron (Insti-
tute of Metabolic Science, University of Cambridge, UK). Cells were
maintained in DMEM medium supplemented with 10% fetal bovine
Fig. 1. PERK�/� MEFs are sensitive to ER stress-induced apoptosis. PERK+/+ and PERK�

doxorubicin, etoposide, or staurosporine for 48 h. Left panel, Cells negative for annexin V-F
of Annexin V/PI staining of PERK+/+ (Green) and PERK�/� (Red) MEFs.
serum, 2 mM glutamine, 1 mM sodium pyruvate, non-essential
amino acid solution, 55 lM b-mercaptoethanol (bME), 1% penicil-
lin/streptomycin at 37 �C, 5% CO2 in a humidified incubator. To
induce apoptosis, cells were treated with 0.01–1 lM thapsigargin
(Tg), 0.01–1 lg/ml tunicamycin (Tm), 10–500 ng/ml doxorubicin,
0.01–1 lM etoposide, or 1–100 nM staurosporine for the time
periods indicated. All reagents were from Sigma–Aldrich unless
otherwise stated.

2.2. Annexin V and propidium iodide staining

Externalization of phosphatidylserine (PS) to the outer leaflet of
the plasma membrane of apoptotic cells was assessed with
/� MEFs were treated with indicated concentration of thapsigargin, tunicamycin,
ITC staining are shown as live cells (n = 3), ⁄= P < 0.05. Right panel, shows the dot plot
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annexin V-FITC or annexin V-PE (ImmunoTools) as described pre-
viously [14].

2.3. Western blotting

Cells were lysed in a buffer containing 10% glycerol, 200 mM
NaCl, 100 mM Tris pH 8.0, 5 mM EDTA, 1% Triton X-100, 100 lM
PMSF, 2 lg/ml pepstatin A, 25 lM ALLN, 2.5 lg/ml aprotinin,
10 lM leupeptin, 1 mM Na3VO4, 100 mM NaF and 17.5 mM
b-glycerophosphate. Cellular proteins were separated by electro-
phoresis on 8–12% SDS–PAGE and transferred onto nitrocellulose
membranes. After blocking in 5% non-fat milk and 0.05% Tween-20
in PBS, blots were incubated with rabbit polyclonal antibodies to
caspase-3 (1:1,000; Cell Signaling Technology), caspase-9
(1:1,000; Cell Signaling Technology), GRP78 (1:1,000; Stressgen),
CHOP (1:1,000; Santa Cruz Biotechnology), XBP1 (1:2,000; Santa
Cruz Biotechnology), actin (1:1,000) or mouse monoclonal
antibodies to PARP (1:1,000; Biomol). For detection, the appropri-
ate horseradish peroxidase-conjugated secondary antibodies
(Pierce) were used at a 1:5,000 dilution. Protein bands were visualized
with Super Signal Ultra Chemiluminescent Substrate (Pierce) on
X-ray film (Agfa).

2.4. RNA extraction, RT-PCR and real time RT-PCR

Total RNA was isolated using the RNeasy kit (Qiagen) or TRI
Reagent (Invitrogen) according to the manufacturers’ instructions
and has been previously described [15].

2.5. Analysis of caspase-3-like activity

DEVDase activity was determined using 50 lM of the caspase
substrate carbobenzoxy-Asp-Glu-Val-Asp-7-amino-4-methyl-
coumarin (DEVD-AMC) as described previously [14].
Fig. 2. Increased ER stress-induced caspase activation in PERK�/� MEFs. (A) PERK+/+ and
ng/ml) for 0–36 h. Immunoblotting of total protein was performed using indicated antibo
not side-by-side. (B–C) PERK+/+ and PERK�/� MEFs were treated with (B) Tg (25 nM) or
measured in whole cell extracts. The DEVDase activity was normalized to the amount o
2.6. Measurement of DWm

Mitochondrial membrane potential was determined by using
the fluorescent probe tetramethylrhodamine ethyl ester (TMRE,
Molecular Probes) as previously described [16].

2.7. Detection of ROS

PERK+/+ and PERK�/�MEFs were plated at 7.5 � 104 cells/ml in 6
well plates in complete medium in the presence or absence of
55 lM of b-ME. After 36 h, cells were trypsinized and resuspended
in 1 mL of complete medium and incubated with 25 lM of 20,70-
dichlorofluorescin diacetate (DCFDA) for 30 min at 37 �C in a 5%
CO2 humidified incubator. After incubation, DCF fluorescence was
measured by BD FACS Canto I using FITC channel.

2.8. Plasmid transfection

To generate cells expressing NOXA shRNA, PERK�/� MEFs (106

cells) were transfected with 2 lg pGIPZ lentiviral shRNAmir plas-
mid against NOXA (clone ID: V2LMM_41163, Open Biosystems)
or 2 lg pGIPZ lentiviral empty vector (Open Biosystems) using
MEF Nucleofector Kit 2 (Amaxa) and Nucleofector II device
(Amaxa) with program A23. The stably transfected cells were se-
lected using 2 lM puromycin. Individual clones expressing GFP
were picked at day 7 and the expression of NOXA was determined
with real time RT-PCR.

2.9. LDH-release assay

LDH release was determined from cell supernatant with the
CytoTox-1 kit (Promega) according to the manufacturer’s
instructions.
PERK�/� MEFs were treated with thapsigargin (Tg, 25 nM) or tunicamycin (Tm, 25
dies. The samples for caspase-3, caspase-9, and PARP were run on the same gel but
(C) Tm (25 ng/ml) for indicated time points, and DEVD-AMC cleavage activity was
f protein, as determined by c Bradford assay. (n = 3), ⁄= P < 0.05.
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2.10. Statistical analysis

Differences between the treatment groups were assessed using
one-way ANOVA with Tukey’s post hoc test with a significance of
P < 0.05. All statistics were carried out using SPSS 14.0 for Win-
dows (SPSS).
3. Results

3.1. PERK�/� MEFs are more susceptible to ER stress-induced apoptosis

Earlier studies have reported that MEFs lacking PERK are more
sensitive to ER stress-induced apoptosis [12]. In agreement with
these findings, we observed that PERK�/� MEFs are more suscepti-
ble to ER stress-induced cell death (Fig. 1A). However, to evaluate
whether this sensitisation is specific to ER stress, or PERK defi-
ciency also influences the sensitivity to other apoptosis inducers,
cells were treated with doxorubicin, etoposide, or staurosporine.
We observed that cell death induced by doxorubicin, etoposide,
or staurosporine was comparable in PERK+/+ and PERK�/� MEFs
(Fig. 1 B). The more pronounced apoptotic cell death in PERK�/�

MEFs after exposure to ER stress-inducing agents was further cor-
roborated by the earlier and increased processing of pro-caspase-3
and -9 and increased cleavage of PARP, a bona fide substrate of ac-
tive caspase-3 (Fig. 2A). Furthermore, PERK�/� MEFs showed in-
creased DEVDase activity as compared to PERK+/+ cells (Fig. 2B
Fig. 3. PERK�/� MEFs are defective in induction of mediators of UPR. (A) PERK+/+ and PERK
levels of the indicated genes were quantified by real-time RT-PCR analysis of total RNA, no
in arbitrary units ± SD with expression level from PERK+/+ untreated control set at 1. (n = 3
MEFs were treated with Tg and Tm for 0–24 h and immunoblotting of total protein was p
above and RT-PCR analysis of total RNA was performed to simultaneously detect both s
greater clarity.
and C). These results demonstrate that loss of PERK specifically
sensitizes cells to ER stress-induced apoptosis.

3.2. Loss of PERK abrogates optimal induction of the UPR

To investigate the effect of PERK deficiency on the UPR, we com-
pared the induction of key UPR target genes between PERK+/+ and
PERK�/� MEFs. A real-time RT-PCR analysis showed that induction
of GRP78, HERP and CHOP was significantly compromised in
PERK�/� MEFs as compared to PERK+/+ cells upon exposure to ER
stress (Fig. 3A; left panel). Furthermore, ER stress-mediated induc-
tion of other UPR-target genes such as p58IPK, WARS and HOX1
(Fig. 3A; right panel) was also mitigated in PERK�/� MEFs as com-
pared to PERK+/+ cells. We also observed reduced protein levels of
GRP78, spliced XBP1 and CHOP in PERK�/� MEFs as compared to
PERK+/+ cells (Fig. 3B). Further we observed a reduction in the
amount of total and spliced XBP1 mRNA in the PERK�/� MEFs
(Fig. 3C). This is in agreement with previous reports where reduced
levels of XBP1 mRNA and protein were reported in PERK�/� MEFs
[18]. Thus, PERK�/� MEFs are compromised in the optimal induc-
tion of several key mediators of the UPR.

3.3. Expression of NOXA is increased in PERK�/� MEFs and is
responsive to cellular redox state

Although the involvement of BCL-2 proteins in ER stress-
induced cell death is clear [19], how they are regulated during
�/� MEFs were treated with Tg (25 nM) or Tm (25 ng/ml) for 6 h and the expression
rmalizing against GAPDH expression. Ratios of indicated gene to GAPDH are plotted

); ⁄=vs. PERK+/+ untreated control; #=vs. PERK+/+ Tg; P < 0.05. (B) PERK+/+ and PERK�/�

erformed using indicated antibodies. (C) PERK+/+ and PERK�/� MEFs were treated as
pliced and unspliced XBP1 mRNA and GAPDH. The image is presented inverted for
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the UPR is less well understood. We reasoned that upregulation of
some BH3-only proteins at the transcriptional level may lead to the
increased sensitivity of PERK�/� MEFs. We determined the expres-
sion level of several BCL-2 family members by real-time quantita-
tive RT-PCR in PERK�/� MEFs compared to PERK+/+ cells
(Supplementary Table 1). We found that while most BCL-2 genes
were not regulated or even downregulated by mild ER stress in
PERK expressing MEFs, expression of NOXA, a pro-apoptotic BH3
only member of the BCL-2 family was upregulated in both
PERK+/+ and PERK�/� MEFs (Fig. 4A). Additionally, the basal and
ER stress-induced expression of NOXA was higher in PERK�/� MEFs
as compared to PERK+/+ MEFs. Despite repeated efforts with several
commercially available mouse anti-NOXA antibodies we were un-
able to reliably detect NOXA at the protein level in lysates from
MEFs and so we were limited to analyzing NOXA transcript levels.

It has been reported that PERK�/� cells experience increased lev-
els of reactive oxygen species (ROS) and reducing substances are
shown to counteract the accumulation of ROS in PERK�/� cells
[17]. While it has been reported that b-ME can itself induce ER stress
in the micromolar range [18], when added to PERK�/�MEFs at a con-
centration of 55 lM it has been shown to protect PERK�/� cells
against tunicamycin-induced cell death [17]. Thus, we hypothesized
Fig. 4. Expression of NOXA is increased in PERK�/�MEFs and is sensitive to cellular redox
treated with Tg (25 nM) or Tm (25 ng/ml) for 6 h and the expression level of NOXA was qu
control; �= vs. PERK+/+ tg; �= vs. PERK+/+ tm; P < 0.05. (B) FACS measurement of DCF fluo
presence or absence of b-mercaptoethanol for 36 h. A representative image of three ind
expression level of NOXA was quantified by real-time RT-PCR, normalizing against GAP
performed in triplicates.
that the higher levels of NOXA in PERK-deficient cells stem from
higher levels of ROS. First, using the fluorescent marker, DCFDA
we determined the levels of ROS in PERK+/+ and PERK�/�MEFs when
grown in the presence and absence of the reducing agent (55 lM b-
ME). We observed a high intensity of DCFDA fluorescence in PERK�/�

MEFs when grown in the absence of b-ME indicating high levels of
ROS (Fig. 4B) as compared to b-ME-supplemented medium.
However, there was no significant difference in DCFDA fluorescence
in PERK+/+ MEFs grown in the presence and absence of b-ME
(Fig. 4B). We then explored the link between increased oxidative
stress and increased expression of NOXA. We observed that
PERK�/� MEFs grown in the absence of b-ME (Fig. 4C) led to had
increased expression of NOXA compared to PERK�/� MEFs grown
in b-ME -supplemented medium, indicating that oxidative stress
in PERK�/�MEFs contribute to the higher expression levels of NOXA.

3.4. NOXA contributes to the sensitivity of PERK�/� MEFs to ER stress-
induced apoptosis

This study and others have shown induction of NOXA under ER
stress conditions [22]. We tested whether the increased expression
of NOXA seen in PERK�/� MEFs contributes to the increased ER
state. (A) Total RNA was isolated from PERK+/+ and PERK�/�MEFs either untreated or
antified by real-time RT-PCR, normalizing against GAPDH expression; ⁄= vs. PERK+/+

rescence in PERK+/+ (upper graph) and PERK�/� MEFs (lower graph) cultured in the
ependent experiments is shown. (C) PERK�/� MEFs were cultured as in B, and the

DH expression. Error bars represent mean ± SD from two independent experiments
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stress-induced cell death. For this purpose, we stably expressed
short hairpin RNA (shRNA) targeting NOXA in PERK�/� MEFs. After
generating stable clones, we selected a NOXA shRNA expressing
clone (PERK�/� NOXA shRNA), where the expression level of NOXA
was comparable to its level in PERK+/+ cells (Fig. 5A). The expres-
sion of NOXA-specific shRNA did not affect the viability of un-
treated cells, but it effectively reduced ER stress-induced cell
death in PERK�/� MEFs (Fig. 5B). As shown in Fig. 5C and D, ER
stress-induced cell death and caspase activity in NOXA shRNA
expressing PERK�/� MEFs was comparable to PERK expressing
MEFs, while ER stress-induced cell death and caspase activity in
control vector-transfected PERK�/� MEFs did not change. To test
Fig. 5. Knockdown of NOXA expression can rescue PERK�/� MEFs from ER stress-induced
and PERK�/� control MEFs and the expression level of NOXA was quantified by real-time
are plotted in arbitrary units ± SD with expression level of PERK+/+, untreated control set
were treated with Tm (25 ng/ml) for 48 h and cell death was assessed with annexinV-P
MEFs were treated as in B, and plasma membrane integrity was assessed with LDH rele
MEFs were treated as in B, and DEVD-AMC cleavage activity was measured in whole
determined by Bradford assay. (n = 3). (E) PERK+/+, PERK�/�, PERK�/� NOXA shRNA and PE
(25 ng/mL) for 24 h (open) and mitochondrial membrane potential was assessed using TM
shown; ⁄= vs. PERK+/+ control; �= vs. PERK�/� control, P < 0.05.
whether increased expression of NOXA leads to higher levels of
mitochondrial membrane depolarization in PERK�/� MEFs in re-
sponse to ER stress inducing stimuli, we performed cytofluorimet-
ric analysis after TMRE staining. We observed further dissipation of
mitochondrial transmembrane potential in PERK�/� MEFs as com-
pared to PERK+/+ MEFs upon exposure to ER stress. However, NOXA
shRNA-expressing PERK�/� MEFs were protected against ER
stress-induced loss of mitochondrial membrane potential
(Fig. 5E). Ectopic expression of wild-type mouse PERK into
PERK�/� MEFs, reduced the NOXA mRNA levels (Fig. 6A) and
rescued the hypersensitivity of PERK�/� MEFs to ER stress-induced
cell death (Fig. 6B).
apoptosis. (A) Total RNA was isolated from PERK+/+, PERK�/�, PERK�/� NOXA shRNA
RT-PCR, normalizing against GAPDH expression. Ratios of indicated gene to GAPDH
at 1 (n = 3). (B) PERK+/+, PERK�/�, PERK�/� NOXA shRNA and PERK�/� control MEFs

E staining (n = 3). (C) PERK+/+, PERK�/�, PERK�/� NOXA shRNA and PERK�/� control
ase assay (n = 3). (D) PERK+/+, PERK�/�, PERK�/� NOXA shRNA and PERK�/� control
cell extracts. The DEVDase activity was normalized to the amount of protein as

RK�/� empty vector MEFs were either untreated (filled) or treated with tunicamycin
RE and flow cytometry. A representative image of three independent experiments is



Fig. 6. Expression of wild type PERK can rescue PERK�/� MEFs from ER stress-induced apoptosis. (A) Total RNA was isolated from PERK�/� control and PERK�/� reconstituted
with wild type PERK (PERK�/� + WT PERK) MEFs and the expression level of NOXA was quantified by real-time RT-PCR, normalizing against GAPDH expression. Ratios of
indicated gene to GAPDH are plotted in arbitrary units. (B) Parental PERK+/+ and PERK�/�MEFs and PERK�/�MEFs transduced with wild type PERK were treated with 25 ng/ml
Tm for 24 h and apoptosis was quantified using Annexin V staining. Cells negative for annexin V-FITC staining are shown as live cells (n = 3); ⁄P < 0.005.
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4. Discussion

We have reported findings which better characterize the in-
creased sensitivity of PERK�/�MEFs to ER stress-induced apoptosis.
We confirm the role of PERK in maintaining redox homeostasis and
report a loss of optimal UPR in PERK�/� MEFs. Previous studies
have shown that PERK�/� cells are hypersensitive to ER stress
[12]. In the present study, we confirm these results and show that
PERK contributes to the maintenance of cellular homeostasis and
survival through the suppression of ROS-dependent NOXA expres-
sion. We show that higher levels of oxidative stress in PERK�/�

MEFs lead to elevated expression of NOXA, which contributes, in
part, to sensitizing PERK�/� MEFs to ER stress-induced cell death.
In support of these observations, NOXA has been show to play
important role in oxidative stress mediated apoptosis [19]. In
agreement with an important role for NOXA in facilitating apopto-
sis induced by ER stress, our results show that reduction of NOXA
expression restored the sensitivity of PERK�/� MEF cells to ER
stress-induced apoptosis to PERK+/+ levels.

How might loss of PERK lead to accumulation of NOXA? Oxida-
tive stress is intrinsic to the biosynthesis and posttranslational oxi-
dative processing of secreted proteins and is kept under control by
PERK-dependent pathways [6,17,20]. Our results suggest that in-
creased levels of ROS in PERK�/� MEFs contribute to increased
expression of NOXA. Although NOXA was first characterized as a
p53 target gene [21], FOXO3a has recently been implicated as a
transcriptional activator of NOXA expression [22]. It is noteworthy
that neither p53 nor FOXO3a appear to play an important role in
increased expression of NOXA and hypersensitivity to ER stress-
induced apoptosis in PERK�/� MEFs (Supplementary Figs. 1 and
2). Recently, ROS-mediated upregulation of NOXA in chronic
lymphocytic leukemia (CLL) was found to be mediated by p38
MAPK and independent of p53 [23]. Furthermore, in keratinocytes
NOXA upregulation following UVB irradiation was reported to be
mediated by p38 MAPK /HIF-1, in a p53-independent manner
[24]. An additional mechanism which has been described to
promote expression of NOXA mRNA is down regulation of ubiquiti-
nated histone H2A, which was shown to directly block transcription
of the NOXA gene [25].

Since NOXA is a key mediator of apoptosis, it is rather surprising
that PERK�/� MEFs are specifically hypersensitive to ER stress.
While NOXA is well known for its role as a pro-apoptotic member
of the BCL-2 family, it has become increasingly evident that NOXA
plays important roles in other cellular processes. NOXA expression
is upregulated upon estrogen stimulation and is required for cell
cycle progression in estrogen receptor-positive breast cancer cells
[26]. NOXA has also been shown to promote cell growth by stimu-
lating glucose consumption via the pentose phosphate pathway
[27]. These reports suggest multiple roles of NOXA, as a context-
dependent regulator of many different physiological processes.
We envisage that there are two key phenomena responsible for
the increased sensitivity of PERK�/� MEFs to ER stress, (i) the re-
duced induction of several key UPR target genes, and (ii) the in-
creased expression of NOXA. Our data suggest that a more
detailed understanding of NOXA’s regulation by PERK is required
in order to understand the hypersensitivity of PERK�/� cells to ER
stress-induced cell death.
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