
PHYSICAL REVIEW B 89, 205439 (2014)

Probing individual split Cooper pairs using the spin qubit toolkit
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A superconductor is a natural source of spin-entangled spatially separated electron pairs. Although the first
Cooper-pair splitter devices have been realized recently, an experimental confirmation of the spin state and the
entanglement of the emitted electron pairs has been lacking up to now. In this paper, a method is proposed
to confirm the spin-singlet character of individual split Cooper pairs. Two quantum dots (QDs), each of them
holding one spin-prepared electron, serve as the detector of the spin state of a single Cooper pair that is forced
to split when it tunnels out from the superconductor to the QDs. The number of charges on the QDs, measured
at the end of the procedure, carries information on the spin state of the extracted Cooper pair. The method relies
on the experimentally established toolkit of QD-based spin qubits: resonant spin manipulation, Pauli blockade,
and charge measurement.
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I. INTRODUCTION

Generation and control over entangled quantum states is a
first step toward the development of future quantum machines.
Electron spin is a promising candidate to represent quantum
information in such systems [1]. A superconductor is a natural
source of spin-entangled electron pairs, since in the BCS
ground-state electrons form Cooper pairs, which are entangled
spin singlet pairs.

With the extraction of individual Cooper pairs and sepa-
ration of the consisting electrons to two normal leads, two
streams of mobile entangled electrons could be generated [2].
This principle is implemented in the so-called Cooper-pair
splitter device (CPS), which contains quantum dots (QDs) at
the interface of the superconductor (SC) and the two normal
leads [3]. Due to Coulomb repulsion on the dots, the two
electrons of a Cooper pair cannot enter the same dot, thereby
the desired spatial separation of the electron pairs can be
achieved.

The original scheme of Recher et al. [3] motivated intensive
theoretical [4–18] and experimental [19–26] efforts to analyze
the Cooper-pair splitting process. The first CPS devices were
fabricated very recently based on semiconductor nanowires
(NWs) [19,21] and carbon nanotubes (CNTs) [20]. The
Cooper-pair splitting process was analyzed at finite bias
condition [22] and was demonstrated even in current cross
correlation [23,24]. Furthermore, splitting efficiency up to 90%
has also been demonstrated [25].

So far the performed measurements have focused on the
charge correlation of the two outputs of the CPS device.
The natural next step is to address the spin character and
the level of entanglement of the spatially separated electron
pairs. Theoretical proposals exist for such tests, such as
adding ferromagnetic detectors [4] at the outputs of the CPS,
combining it with a beam mixer unit [27], or placing the
CPS in a cavity [9]. However, their experimental realization is
quite challenging, since, e.g., the first scheme requires highly
spin-polarized and rotatable ferromagnetic contacts, while the
other two are based on demanding sample geometry.

In this work, we propose a way to confirm the spin-singlet
character of individual split Cooper pairs based on the
toolkit of spin qubits [28], i.e., on experimental techniques
developed in the past decade to coherently manipulate and
read out localized electronic spins in solids. In our proposed
experiment, the spin character is tested directly on the two
QDs of the CPS. First, one electron is placed in each QD,
and their spins are prepared in known quantum states. Then
a Cooper pair is forced to split from the superconductor to
the QDs. Due to Pauli’s exclusion principle, the probability
of a successful splitting event is determined by the spin
state of the prepared electrons as well as on the spin state of
the split Cooper pair. This probability can be measured by
charge readout on the QDs at the end of the procedure. By
performing this measurement for various initial spin states of
the QD electrons, the spin-singlet character of the split Cooper
pairs can be confirmed. The building blocks of the proposed
scheme were all demonstrated before, therefore our proposal
can be realized using state-of-the-art experimental techniques.

II. SETUP

The proposed device geometry is shown in Fig. 1. From the
normal CPS geometry, we focus on the SC electrode and two
neighboring QDs, L and R. The charge occupation of each
QD can be measured by a nearby charge sensor (CS). The CSs
can be realized by, e.g., quantum point contacts or additional
QDs, which are capacitively coupled to QDs L and R [29]. In
the present proposal, the tunneling from the QDs to the normal
leads (N ) is switched off and the normal leads are not used.
The level positions of the QDs can be manipulated with the
voltages of the gate electrodes (G). Independent manipulation
of the spins residing in the two dots can be performed via
electrically driven spin resonance (EDSR) [30,31], using extra
local gates (not shown). (Alternatively, the plunger gates G
themselves can be used to control the spins [32,33].)

EDSR is an important ingredient in the proposed ex-
periment outlined in Sec. IV. This mechanism of coherent
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FIG. 1. (Color online) The suggested Cooper-pair splitter geom-
etry. The main part is the superconducting electrode (SC) tunnel-
coupled to two, separated quantum dots (QD) L and R. The energy
levels of the electrons on QD L and R are manipulated with voltage
of the gate (G) electrodes. Independent manipulation of the electron
spins can be performed via electrically driven spin resonance using
extra local gates (not shown). The charge state of the dots is measured
by capacitively coupled charge sensors (CSs). Note that normal leads
(N , dashed) of the usual Cooper-pair splitter geometry have no role
in the proposed measurement.

single-spin control has been experimentally demonstrated,
among other systems, in QDs in semiconductor nanowires
[32–35] and carbon nanotubes [36,37], both being important
platforms for Cooper-pair splitters. In these materials, coherent
Rabi oscillations with Rabi frequencies up to 100 MHz,
corresponding to spin-flop times of the order of 10 ns, have
been measured under electrical excitation. As discussed below,
local addressability of the spin qubits is required in our
present proposal, which is relatively easily satisfied by EDSR,
where the spins are controlled via ac voltages applied to local
gates. In addition to the experimental advances, the theoretical
understanding of the microscopic mechanisms underlying
EDSR in QDs has also been developing rapidly [30,31,38–43].
It seems certain that in semiconductors, a strong spin-orbit
interaction is beneficial for fast EDSR. As a combined effect
of the electrical drive and spin-orbit interaction, the spin qubit
feels an effective ac magnetic field !!(t) that induces Rabi
oscillations. The orientation of the effective ac field might
be linked to a certain crystallographic direction of the crystal
lattice, but it can also be influenced by the sample design
and the electrostatic potential landscape used to form the QD
[33,44].

In summary, the ingredients of the proposed device ge-
ometry, such as coupling QDs on the two sides of a SC
[19,20], performing EDSR on the spin state of QDs [32,45],
and readout the charge state of the QDs with CS [46,47],
have all been demonstrated in semiconductor nanowires or
carbon-nanotube-based devices.

III. THE MODEL

For the sake of simplicity, we consider the case in which
the occupation of a single orbital level is allowed in both QDs
[see Fig. 2(c)], and the on-site energies εL and εR of the two
QDs are controlled simultaneously, εL = εR = ε. Coulomb
interaction between electrons in different QDs is effectively

screened by the superconductor in between, and therefore
we disregard it. On-site electron-electron interaction is taken
into account via the Coulomb energy U . The energy scale
characterizing the tunneling between each QD and the SC is
the tunnel amplitude t ; see also Appendix A. We consider the
weak-tunneling regime,

t ! ",U, (1)

where " is the energy gap of the superconductor.
In the experiment proposed below, the dynamics is essen-

tially restricted to the states with no quasiparticles in SC, and
QD charge configurations (0,0), (1,1), and (2,2). Here (n,m)
denotes the class of states where QD L (R) is occupied by
n (m) electrons. States with other charge configurations and
states including a finite number of quasiparticles in SC might
be involved in the dynamics only perturbatively. In the absence
of SC-QD tunneling, the energies of the (0,0), (1,1), and (2,2)
charge configurations of the two dots are 0, 2ε, and 4ε + 2U ,
respectively.

In the presence of weak SC-QD tunneling, transitions via
virtual intermediate states, consisting of an odd number of
electrons in the two QDs and a single quasiparticle in the
superconductor, induce coherent coupling between different
even-electron charge configurations of the QDs. The coupling
is especially effective between the (0,0) and (1,1) [(2,2) and
(1,1)] charge states in the vicinity of ε = 0 [ε = −U ], where
the energies of the (0,0) and the (1,1) [(2,2) and (1,1)] charge
states would coincide in the absence of SC-QD tunneling.
Using the BCS Hamiltonian for the superconductor, and
assuming spin-conserving and left-right symmetric SC-QD
tunneling [see (A9)], we derive effective Hamiltonians for the
QD states from quasidegenerate perturbation theory. For the
case of the (0,0) − (1,1) anticrossing at ε ≈ 0, we find

Heff(ε ≈ 0) = 2ε
∑

σ

|σ (1,1)〉〈σ (1,1)|

+ ("̃|S(1,1)〉〈(0,0)| + H.c.), (2)

where the sum is for the four spin states of the (1,1) charge
configuration, σ ∈ (S,T+,T0,T−). The value of the coupling
parameter "̃ and the validity of the perturbative treatment
depend on the geometry of the device, the SC-QD tunnel
amplitudes, the superconducting gap, and the band structure of
the superconductor (see Appendix A for details). The effective
Hamiltonian at the (1,1) − (2,2) anticrossing at ε ≈ −U reads

Heff(ε ≈ −U ) = 2ε
∑

σ

|σ (1,1)〉〈σ (1,1)|

+ (4ε + 2U )|(2,2)〉〈(2,2)|
− ("̃|S(1,1)〉〈(2,2)| + H.c.). (3)

Note that energy shifts of second order in the SC-QD tunneling,
determining the precise position of the anticrossings, as well
as higher-order terms in the SC-QD tunneling strength t , are
omitted from the above effective Hamiltonians.

The states of the (1,1) charge configuration are sensitive
to the presence of real or effective magnetic fields. These
interactions are described by the Zeeman Hamiltonian

Hm =
∑

D∈{L,R}
[BD + !!D(t)] · SD, (4)
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FIG. 2. (Color online) (a) Energy spectrum of the tunnel-coupled QD-SC-QD system as a function of the level position of the QDs, ε, with
µBgBext = 1.5"̃ and U = 7"̃. The levels T+ and T− are split from S and T0 due to the Zeeman effect induced by the external B field. Due to
the tunnel coupling at ε = 0 [ε = −U ], the states (0,0) [(2,2)] and the singlet state S hybridizes. (b) Gate voltage sequence for the proposed
detection scheme. (c) Energy levels of the QDs and the SC electrode, where U is the charging energy, " is the SC gap, BD represents the
Zeeman splitting, εD is the level position of QD D, and D = L,R. Charge configuration (2,1) is shown. (d)–(f) Schematic representations of
the steps of the measurement scheme. The corresponding points are marked in parts (a) and (b).

where BD is the time-independent field and !!D(t) is the
ac field, both having the dimension of energy, and SD is the
spin vector operator of the electrons in QD D. The dc effective
magnetic field BD incorporates the effects of the static external
magnetic field Bext and the Overhauser-field BN,D induced by
the nuclear spins residing in QD D:

BD = µBĝD Bext + BN,D. (5)

The g-tensors ĝD might differ on the two dots. The ac effective
magnetic field !!D(t) can arise from, e.g., ac electrical
excitation via EDSR [30–32,45]. For clarity, we first treat the
simple, idealized case of ĝL = ĝR and BN,D = 0 in this section
and Sec. IV, and then we discuss the effect of deviations from
this idealized case in Sec. V.

Figure 2(a) summarizes the effect of the SC-QD tunnel
coupling on the QDs energy levels in the presence of a static
external magnetic field. Due to the Zeeman effect, the T+,
S,T0, and T− levels split, while the S-QD tunnel coupling
induces anticrossing of the S(1,1) and (0,0) [and (2,2)] states
at ε ≈ 0 [ε ≈ −U ]. The triplet subspace remains uncoupled
to the (0,0) − S(1,1) − (2,2) subspace. The hybridization of
the S(1,1) and (0,0) at ε ≈ 0 implies that if the two QDs are
prepared in the (0,0) charge configuration (ε > 0) and the level
positions of the QDs are lowered adiabatically, e.g., to ε ≈
−U/2, the system ends up in the S(1,1) state. This gate voltage

sweep results in the extraction of a single Cooper pair from
the superconductor. In the following, a measurement scheme
is described that uses the other anticrossing (at ε ≈ −U ) to
address the spin character of an individual split Cooper pair.

IV. THE PROPOSED EXPERIMENT

In this section, we outline the proposed experiment that
allows the demonstration of the spin-singlet character of the
Cooper pairs extracted from the SC. Here we consider an
idealized case in which unwanted perturbations influencing
spin dynamics are absent. The effects of such perturbations
(such as hyperfine interaction and the different g-tensors on
the two QDs) are discussed in the subsequent section.

Figures 2(d)–2(f) show the steps of the detection scheme.
A finite, static magnetic field Bext induces a Zeeman spin
splitting in both QDs. As a starting point, the common on-site
energy ε of the QDs is set at an initial position in the vicinity of
ε = −U/2, where the S(1,1) and T0(1,1) are (approximately)
degenerate. Waiting longer than the spin relaxation time, T1 of
the QDs, the system relaxes to the T− state [Fig. 2(d)].

Since the SC-QD tunnel coupling t is weak compared to
U and ", the level structure of the (1,1) sector is almost
unaffected by the tunnel coupling at ε ≈ −U/2 [see Fig. 2(a)].
Therefore, the spin state of the two QDs can be manipulated
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independently. By applying EDSR pulses on QDs L and R,
an arbitrary nonentangled spin state of the two electrons can
be prepared [see Fig. 2(e)]. This prepared state is denoted
as |θL,φL(t); θR,φR(t)〉, where θD and φD are the polar and
azimuth angles of the electron spin on QD D on the Bloch
sphere with respect to Bext. Due to the Larmor precession
around the external field, this state evolves in time, but as
the magnetic fields are the same on the two QDs, the speed
of Larmor precession are equal, hence the difference of the
azimuth angles φL(t) − φR(t) is steady in time.

In general, the state |θL,φL(t); θR,φR(t)〉 contains contribu-
tion from all four spin states of the (1,1) charge configuration
[defined after Eq. (2)]. This prepared state serves to detect the
spin character of an individual split Cooper pair. Adiabatically
lowering the level positions to ε < −U , a Cooper pair tries
to tunnel from the superconductor to the QDs. According
to Fig. 2(a), the (2,2) state hybridizes only with S(1,1),
therefore the Cooper pair can only leave the SC if the
prepared (1,1) state has a singlet contribution. Thus at the
end of the sequence, the probability P2,2 to find the QDs
in the (2,2) charge configuration, that is, the probability
of the successful tunneling event of the Cooper pair, is
equal to

P2,2 = |〈S(1,1) | θL,φL(t); θR,φR(t)〉|2. (6)

(Note that P2,2 is not time-dependent.) When a single sequence
is finished, the charge state of the QDs is read out by the
charge detectors, which show either the (1,1) or the (2,2)
states [48]. Then the QDs are set back to ε ≈ −U/2, and the
whole sequence is repeated several times to determine P2,2.

The result of Eq. (6) can also be interpreted as a direct
consequence of the Pauli-exclusion principle and spin conser-
vation during the tunneling events: In the (2,2) state, both ↑
and ↓ spin states are occupied on both QDs, thus the total
spin of the four electrons is zero. The magnitude of the spin
of the extracted Cooper pair is also zero, therefore the QDs
can absorb the Cooper pair only if the prepared (1,1) state has
zero spin as well. The probability P2,2 corresponds to those
cases; otherwise, the tunneling of the Cooper pair is blocked.
This mechanism is similar to the conventional Pauli-blockade
effect in double QD systems [49], however in the present case
the spin state of two separated QDs has to match with the spin
state of two outgoing electrons, thus the Pauli blockade has to
be fulfilled simultaneously on both QDs of the CPS.

As long as the ac effective magnetic field pulses !L(t) and
!R(t) are parallel, in phase, and started synchronously, the
relation

φL(t) = φR(t) (7)

holds. For this case, the probability P2,2 to find the system in
the (2,2) charge state at the end of the measurement sequence
is shown in Fig. 3. P2,2 is plotted as a function of θL and
θR , i.e., the polar rotation angles of the EDSR pulses on the
two QDs. The value of P2,2 varies between 0 and 0.5. P2,2
takes its maximum, e.g., at θL = 0 and θR = π ; in this case,
the prepared (1,1) state is |↓,↑〉, on which a single Cooper-
pair state can tunnel out with probability of 1/2. P2,2 has its
minimum along the diagonal, i.e., when θL = θR . For these
angles, the prepared spins on the two QDs are parallel to
each other, therefore these states have a pure triplet character.

FIG. 3. (Color online) The probability P2,2 of detecting (2,2)
charge configuration at the end of the manipulation sequence as a
function of θL and θR polar rotation angles. The azimuth angles φL

and φR are assumed to be equal.

According to the simultaneous Pauli blockade on the two QDs,
a Cooper pair can only tunnel out from the SC if the prepared
(1,1) state has a singlet character [see Eq. (6)], which leads
to P2,2 equal to zero along the diagonal. The zero probability
along the diagonal line is a benchmark of the singlet character
of the split Cooper pair: Let us assume for a moment that the
electron pairs coming from the middle “superconductor” lead
would have triplet contribution as well (e.g., either the middle
lead is not a singlet source or the electron pair loses the singlet
character during tunneling to the QDs). In this case, the T (1,1)
states also hybridize with the (2,2) charge state and thus the
probability to extract an electron pair (P2,2) would be finite
for a certain prepared pure T (1,1) state as well. Thus P2,2 = 0
would not hold along the entire diagonal.

In conclusion, a spin-sensitive manipulation sequence was
outlined to analyze the spin character of split Cooper pairs.
First the spin state of the QDs is prepared by EDRS, then
the QDs energy levels are lowered adiabatically, finally the
charge state of the dots is read out. At the end of the sequence,
the probability P2,2 of finding both QDs doubly occupied,
as a function of the rotation angles θL and θR , shows a
characteristic pattern, which is a direct consequence of the
singlet character of Cooper pairs. Therefore, performing the
outlined manipulation sequence and evaluating P2,2(θL,θR),
the singlet character of individual split Cooper pairs can be
determined.

V. DISCUSSION

In the previous section, we discussed the proposed exper-
iment in an idealized case with the following simplifications:
(A) nuclear spins are absent, BN,D = 0; (B) the g-factors are
identical on the two QDs, gL = gR; (C) the gate voltage sweep
between the preparation measurement points is adiabatic; (D)
the ac effective magnetic fields are parallel, !L ‖ !R; and
(E) the microwave pulses for spin control are started exactly
at the same time. In a real experiment, at least some of
these conditions are relaxed, potentially leading to important
differences in the result with respect to the idealized case. In
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this section, we discuss such differences: after a brief account
of the role of (D) and (E), we discuss (A), (B), and (C) in
detail.

(D) A well-suited mechanism for local spin control is the
spin-orbit mediated EDSR, which allows for inducing coherent
Rabi oscillations with ac voltage pulses on the gate electrodes
defining the QDs. In practice, the directions of the effective ac
fields !L and !R [see Eq. (4)] driving these Rabi oscillations
depend on the electrostatic potential landscape of the QD as
well as on the character of spin-orbit interaction in the material.
As the two QDs in a CPS device are not necessarily identical,
the directions of the corresponding effective ac fields might
also differ.

Let us consider a specific example to illustrate the effect
of different ac field directions, i.e., of !L ∦ !R . Assume the
directions of !L and !R are known, and that the dc magnetic
field vectors are the same on the two dots. In the rotating frame,
the spin rotation axis corresponding to the Rabi oscillation in
each dot is determined by (i) the direction of the projections
of the ac field vectors to the plane transversal to the dc field,
and (ii) the phase of the microwave voltage pulse driving the
spin rotation. If the phases of the microwaves are the same in
the two dots, then the misalignment between the transversal
projection of !L and !R implies misaligned Rabi rotation
axes in the rotating frame, which translates to a finite relative
phase difference of the Larmor precession of the two spins
(in the laboratory frame). Hence Eq. (7) does not hold, there-
fore the outcome of the measurement of P2,2 will be different
from the pattern shown in Fig. 3. However, since the misalign-
ment angle of !L and !R is known, an appropriate phase dif-
ference in the microwave pulses can be applied in order to align
the Rabi rotation axes of the two spins in the rotating frame,
hence to bring the Larmor precession of the two spins back
in phase [i.e., to restore Eq. (7)], and thereby to allow for the
observation of the pattern of P2,2 shown in Fig. 3.

(E) Perfect timing of the spin-controlling microwave
voltage pulses is probably impossible. If the typical random
uncertainty in the start time of the pulses is δt , then the
typical phase lag of the Larmor precession of the two spins
is δφ = gµBBextδt/!. The condition δφ ! 1 should hold in
order to observe the pattern of Fig. 3. For a g-factor of
g = 2 and magnetic field Bext = 50 mT, the latter condition
approximately translates to δt ! 100 ps. Note that the effect
of a deterministic, reproducible lag between the starting time
of the pulses can be compensated by adjusting the phase of
one of the pulses.

A. Nuclear spins

If the material hosting the QDs has nuclear spins, then
hyperfine interaction is present, giving rise to two random and
independent effective magnetic fields (“Overhauser fields”)
for the electrons in the two QDs. The Overhauser field in
QD D, in energy units, is denoted by BN,D; see Eq. (5).
Although these fields average to zero, their standard deviations
are finite and they induce different Zeeman-type splittings
on the two dots with values of BN,D , and therefore they
influence the corresponding Larmor precession frequencies.
Thus this random contribution of magnetic field causes a finite
inhomogeneous spin dephasing time T ∗

2 , which is of the order

of 10 ns for InAs [32] and InSb [34] NW QDs. Here we
assume that the standard deviations of the Overhauser-field
components in the two dots are identical. The standard
deviation of the Overhauser-field component parallel to the
external magnetic field, expressed in energy units, is denoted
by BN . The latter quantity is related to the inhomogeneous
dephasing time as [28] T ∗

2 =
√

2!/BN .
Consider the case in which, in our proposed experiment, the

g-tensors are isotropic and equal, the EDSR drive frequency is
set to the nominal resonance frequency (!ω = gµBBext), the
rotating-wave approximation holds (gµBBext , !)L,!)R),
and the EDSR Rabi frequency exceeds the hyperfine-induced
Zeeman splitting (!)L,!)R , BN ). The latter condition has
two consequences. The first one is that the EDSR pulse
induces complete Rabi oscillations for practically any value
of the Overhauser field; the second one is that the Overhauser
field is unable to induce a significant Larmor-phase difference
between the two spins during a Rabi cycle. Right after the
spin manipulation is completed, a sufficiently fast sweep of ε
toward the measurement point [red points in Fig. 2(a)] switches
off the hyperfine-induced dephasing, hence the measurement
result is expected to be close to the ideal case shown in Fig. 3.

In a material with many nuclear spins, it is possible that the
hyperfine-induced Zeeman splitting exceeds the EDSR Rabi
frequency, BN , !). In this case, the resonance frequency is
strongly shifted by the instantaneous value of the Overhauser
field, therefore driving at the frequency matching the nominal
Zeeman splitting (!ω = gµBBext) is unlikely to cause Rabi
oscillations. (Numerical results for P2,2 and their explanations
for the intermediate regime BN ∼ !)L,!)R can be found
in Appendix B.) As a consequence, materials with weak
hyperfine interaction, or devices with large effective ac fields,
are preferred for our proposed experiment.

Taking the example of a semiconductor nanowire based
n-type QD [34], the manipulation time of a 2π rotation of θ is
possible within ∼10 ns. This time scale is comparable to the
T ∗

2 time, therefore the experimental observation of the main
features of the pattern shown in Fig. 3 seems only feasible in
III-V NW devices if the dephasing time can be prolonged or
the spin-flip time can be decreased. Considering systems with
weaker hyperfine interaction, such as hole-based QDs with
p-type wave function or nuclear-spin free systems, such as
isotopically purified Si/Ge nanowires or carbon-based QDs,
T ∗

2 might be further increased [50,51], potentially allowing
for the observation of the ideal-case result of P2,2 shown
in Fig. 3.

B. Different g-tensors on the two QDs

In typical semiconducting nanowire or carbon nanotube
QDs, the g-tensor is anisotropic [33,52]. As the g-tensor
can be strongly influenced by the local electrostatic potential
landscape via spin-orbit coupling, the two g-tensors in a double
QD (DQD) might differ significantly. Hence, in a general
case, for a given Bext, the magnitude and the direction of
the effective fields BD = µBĝD Bext are different on the two
QDs. In the following, the expected outcome of the proposed
experiment is discussed for two cases: (a) when the effective
fields are parallel, but their magnitudes are different; (b) when
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the magnitudes of the effective fields are the same, but their
direction encloses an angle.

(a) A large g-factor difference of the two dots usually
implies different Zeeman splittings, making it necessary to
independently tune the frequencies of the microwave pulses
driving EDSR in the two QDs.

Furthermore, the g-factor difference of the QDs gen-
erates different Larmor precession. For instance, taking a
typical tburst ≈ 5 ns and gL − gR = 2 at Bext = 50 mT, a
large phase difference "φ = tburstµB(gL − gR)Bext/! ≈ 15π
accumulates between the azimuthal angle of the two spins
during the preparation. A fix "φ is not a problem for the
proposed measurement sequence, since its influence can be
taken into account upon calculating P2,2. However, even a
small uncertainty of the pulse length smears the characteristic
features of P2,2. If the uncertainty of "φ reaches ≈π , then the
relative weights of the S and T0 components of the prepared
(1,1) state become randomized. Therefore, the scheme loses
its ability to identify the singlet character of the Cooper pairs.
Accordingly, one should try to reduce the difference of the
g-factors.

(b) The anisotropic nature of the g-tensors can help to
reduce the unwanted difference of the Zeeman splittings on
the two QDs. As described in Appendix C1, if the surfaces
corresponding to the g-tensors of the two QDs have an
intersection, the direction of the external magnetic field can
be chosen so that the Zeeman splitting is the same for the two
QDs, i.e., |BL| = |BR|. For instance, in the double-dot NW
sample used in Ref. [33], the Zeeman splittings in the two
dots can be tuned equal [see the intersection of surfaces in
Fig. 6(e)]. In this situation, the same Larmor frequency is set
for the spins in the two QDs, but the Larmor precession takes
place around the two different axes, defined by the directions
of BL and BR , enclosing an angle β.

Due to the different Larmor-precession axes, the angle
between the spin polarization vectors of the two QDs changes
periodically in time with the Larmor period. This implies that
the singlet component of the prepared spin state, and hence
the measurement outcome P2,2, will depend on the protocol
of the spin preparation, e.g., on the length and the strength of
the applied Rabi pulses. This is in contrast to the ideal-case
scenario detailed in Sec. IV, where P2,2 depends only on the
spin rotation angles θL and θR , and is insensitive to any other
detail of the spin manipulation protocol.

It is natural to expect that for β ! 1, the P2,2 probability
map obtained at the end of our scheme is very similar to the
ideal-case (β = 0) result shown in Fig. 3, irrespective of the
parameters specifying the Rabi pulses. Here, we use numerical
simulation to demonstrate that even for a relatively large angle,
up to β ! π/6 ≡ 30◦, the features of the P2,2 probability map
show strong similarities to the ideal-case result of Fig. 3.

The parameter values used in our numerical simulations are
given in Table I (see the Appendix B), and the methodological
details can be found in Appendix C2. In the example discussed
below, the angle enclosed by the dc effective magnetic fields
BL and BR is β = 32◦, and the Rabi frequencies (i.e., the
amplitudes of the ac effective magnetic fields) are set to the
same value in the two QDs. The pulse sequence considered in
the simulations is shown in Fig. 4(a). To achieve different spin-
rotation angles θL and θR in the two QDs, different Rabi-pulse

FIG. 4. (Color online) Different g-tensors in the two dots: pulse
sequence and simulation results. (a) Schematic representation of the
pulse sequence used in the simulation of the proposed experiment.
(b),(c) Simulation results (for details, see Appendix C2) for the
probability map P2,2(θL,θR), in the case of different g-tensors in
the two dots. Zeeman splittings in the two dots are equal, but there is
a finite angle β = 32◦ enclosed by the effective dc magnetic fields in
the two dots. (b) P2,2 map for twait = 23 ps. (c) P2,2 maps averaged
for twait for one Larmor period, twait ∈ [0,42] ps. Results (b) and (c)
should be compared to the ideal-case result of Fig. 3.

lengths, tburst,L and tburst,R , are applied. In Fig. 4(a), tburst,2π
denotes the pulse length corresponding to a 2π spin rotation.
The Rabi pulses are started simultaneously on the two QDs,
and their lengths are adjusted to the desired spin rotation angles
θD according to tburst,D = tburst,2πθD/2π . The ε sweep toward
the charge measurement point is started simultaneously on
the two QDs, once the time tburst,2π + twait elapsed after the
switch-on moment of the Rabi pulses.

Figure 4(b) shows the P2,2 map resulting from the numerical
simulation, for the parameter values given in Table I and
twait = 23 ps, when the asymmetry is significant. Deviations
from the ideal-case result of Fig. 3, i.e., an enhanced
[a suppressed] P2,2 around (θL,θR) = (3π/2,π/2) [around
(θL,θR) = (π/2,3π/2)], are relatively small, though clearly
visible.

As mentioned above, the P2,2 probability map depends
on twait as the Larmor-precession axes of the two spins are
different. Deviations of the P2,2 map from the ideal-case
results can be reduced by averaging the probability map
for twait in a single Larmor period. Figure 4(c) shows such
a twait-averaged P2,2 map, which is obtained numerically
using the same parameters as for Fig. 4(b), but averaged
for twait ∈ [0 ps,42 ps], with 1 ps resolution. The qualitative
features of this result are the same as those of the ideal-case
result (Fig. 3); even the mirror symmetry of the latter with
respect to the θL = θR diagonal line is retained.

Performing the simulation for smaller β values, the P2,2
map approaches the result of the idealized ĝL = ĝR case.
Therefore, the angle β should be minimized by choosing an
optimized B-field orientation within the range allowed by the
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requirement of equal Zeeman splittings. For the InAs NW
double QD of Ref. [33], β can be tuned below 4◦. In this case,
the expected result P2,2 is almost identical to the ideal case
shown in Fig. 3. Note that since the g-tensor in a NW QD
strongly depends on the electrostatic confinement potential
defining the dot [32,33,44], the former can be tuned in situ
by reshaping the latter by tuning the gate voltages. This can
be a helpful feature for optimizing the effective Zeeman fields
in the two dots, i.e., to achieve equal Zeeman splittings and
parallel effective B fields.

We conclude that the proposed method could work even
if the two QDs have different and anisotropic g-tensors. If
the two Zeeman splittings can be tuned equal, and β ! 30◦,
then the singlet character of the Cooper pair is reflected in the
measured P2,2(θL,θR), similar to the ideal case. Based on the
available experimental data on NW QDs [33], these conditions
can be fulfilled.

We note that the anisotropy of the g-tensor might also
serve as a resource in identifying the spin state of the split
Cooper pair. By varying the direction of Bext along the
intersection of the surfaces associated with the two g-tensors
(see Appendix C1), the value of the angle β enclosed by the
local effective fields can be varied. By optimizing the relative
orientation of the two g-tensors (e.g., by defining the QDs
in a bent carbon nanotube [42,53]), the range in which β
can be varied can be maximized. The in situ tunability of
β with confinement gates and varying the direction of the
external field Bext suggests the possibility of Bell-type tests or
tomography of the spin state of individual split Cooper pairs.
A related idea of a Bell-type test based on dc transport was
explored recently in detail by Braunecker et al. [54].

C. Adiabaticity

As discussed in Sec. IV, the purpose of the proposed exper-
iment demands that the sweep of the on-site energy ε between
the preparation point (ε ≈ −U/2) and the measurement point
[ε < −U ; see Fig. 2(a)] should be adiabatic: an S(1,1) initial
state in the preparation point should evolve during the sweep
along the lower branch of the S(1,1) − (2,2) anticrossing in
Fig. 2(a), and end up in the (2,2) state when ε arrives at the
measurement point.

Assuming a constant sweep rate α = dε
dt

, the probability Pd

of the diabatic [S(1,1) 0→ (2,2)] transition at the anticrossing
ε = −U can be approximated by the Landau-Zener formula
[55,56]:

Pd = e− 2π |"̃|2
!α . (8)

To keep Pd below a certain small threshold P max
d ! 1, the

sweep rate α should be kept below

αmax = 2π |"̃|2

!
(
− log P max

d

) . (9)

Denoting the distance between the preparation and measure-
ment points by "ε, the shortest time period tmin

sweep to meet the
required threshold P max

d can be estimated as

tmin
sweep ≈ "ε !(− log P max

d )
2π |"̃|2

. (10)

For "̃ = 50 µeV, sweep range "ε = 10"̃, and diabatic
transition probability threshold P max

d = 0.1, we find tmin
sweep ≈

50 ps. A sweep time longer than tmin
sweep implies a smaller

diabatic transition probability than P max
d .

In the presence of nuclear spins or different g-tensors on
the two QDs, an anticrossing might open at the level crossing
of T−(1,1) and the low-energy hybrid state formed by S(1,1)
and (2,2). We refer to the value of ε corresponding to this
level crossing as ε− [see ε− at the x axis of Fig. 2(a)]. If
the charge measurement is carried out at a point ε < ε−, as
shown in Fig. 2(a), then it is required to pass through the
anticrossing at ε = ε− diabatically during the gate voltage
sweep. This requirement, together with an expected minimal
diabatic transition probability P min

d ≈ 1, imposes an explicit
lower bound αmin on the sweep rate α via the Landau-Zener
formula. If a time-independent sweep rate is applied between
the preparation and manipulation points, then it has to fulfill
both requirements, which is possible only if αmax > αmin. In
terms of the size of the Hamiltonian matrix element δ causing
the anticrossing at ε−, the latter condition translates to

|δ| < |"̃|
√

log P min
d

log P max
d

. (11)

Note that this requirement is stronger than |δ| < |"̃|. Alter-
natively, “tailored” gate voltage pulses with time-dependent
sweep rates [57,58] might also be used, or, if the Zeeman
splitting exceeds "̃, the charge measurement can be carried
out at an ε between the two anticrossings, ε− < ε < −U .

Even for a relatively large angle β = π/6, the condition
(11) can be fulfilled. To demonstrate this with a numerical
example, we set the diabatic transition thresholds to P min

d =
0.9 and to P max

d = 0.1. With these choices, Eq. (11) translates
to |δ| < 0.21|"̃|. Consider the case of |ĝDµBBext| > "̃, which
ensures that the matrix element opening the anticrossing at ε−
is well approximated by the matrix element between (2,2) and
the ground state of the (1,1) sector. The latter matrix element
is δ = "̃ sin(β/2)/

√
2, as can be shown within the framework

outlined in Sec. III, after incorporating the effect of different
anisotropic g-tensors in Eq. (5). In the case β = π/6, this is
δ ≈ 0.18"̃. This fulfills the above requirement, ensuring the
possibility to use a constant sweep rate between the preparation
and the measurement points and still respect both diabatic
probability thresholds.

Note that the above discussion on the gate voltage sweep
process is based on a simplified model of two independent
Landau-Zener processes. We think that this approach is
reliable if either |δ| ! |"̃| or if the two anticrossings are
well-separated along the ε axis, i.e., if |ε− + U | ! |"̃|,|δ|.

VI. CONCLUSION

A detection method is proposed to demonstrate the singlet
character of individual split Cooper pairs. The QDs coupled
to the SC lead are used as a detector of the spin character.
First the spin state of the electrons is prepared using the
EDSR technique in the (1,1) charge configuration of the
QDs, and then an attempt is made to extract a Cooper pair
from the SC adiabatically. The Pauli principle establishes a
constraint for whether the system could evolve to the (2,2)
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charge configuration. By measuring the probability of finding
the system in the (2,2) configuration at the end of the procedure
for different initial spin settings, the signature of the singlet
character of split Cooper pair can be demonstrated.

The effects of material parameters were also discussed. It
was shown that the proposed experiment can also be carried
out in the case of strong g-factor anisotropy of the QDs, if
the effective magnetic field can be set to the same absolute
value on the two QDs. However, the presence of strong
hyperfine interaction does not allow us to demonstrate the
singlet character. The ingredients of the detection method, such
as the required device geometry, the steps of the manipulation
scheme, or the way in which the measurement is performed,
were all demonstrated before, which makes the realization
of the proposal feasible with state-of-the-art experimental
techniques.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE HAMILTONIANS

1. The Hamiltonian

The system considered in the main text consists of a
BCS superconductor (SC) and two quantum dots (QDs), L
and R, which are both tunnel-coupled to SC. The corre-
sponding Hamiltonian in the absence of any magnetic field
reads

H = HL + HR + HS + Ht. (A1)

Here the quantum dots are modeled by (D ∈ {L,R})

HD = εnD + U

2
nD(nD − 1), (A2)

where ε is the on-site energy that is assumed to be identical
on the two QDs, U is the on-site Coulomb energy, and nD

is the electron number operator on dot D. We assume that
the orbital level spacing "E on the QDs is large, therefore the
orbital levels lying above the ground-state one are disregarded.
Therefore, in our simple model the maximum number of
electrons per dot is two. Tunnel coupling as well as capacitive
coupling between the two dots are disregarded.

The superconductor is modeled by the BCS Hamiltonian
[59]:

HS =
∑

ks

ξkc
†
kscks +

∑

k

("c
†
k↑c

†
−k↓ + H.c.), (A3)

=
∑

ks

Ekγ
†

ksγks , (A4)

where ξk is the dispersion relation of the electrons in the
superconductor in the absence of superconductivity, " is
the superconducting gap, c

†
ks (cks) is an operator creating

(annihilating) an electron in the superconductor with wave
number k and spin quantum number s, Ek =

√
ξ 2
k + "2 is

the dispersion relation of the quasiparticles, and γ
†
ks (γks)

is an operator creating (annihilating) a quasiparticle. The
connection between the electron (c) and quasiparticle (γ )
operators is

(
ck↑

c
†
−k↓

)

=
(

u∗
k vk

−v∗
k uk

) (
γk↑

γ
†
−k↓

)

. (A5)

A further useful relation follows from Eq. (A5):

cks = u∗
kγks + svkγ

†
−k,−s . (A6)

We disregard the phase of the superconducting order parame-
ter, hence we have

uk = 1√
2

√
1 + ξk/Ek, (A7)

vk = − 1√
2

√
1 − ξk/Ek. (A8)

Tunneling processes between the QDs and the superconduc-
tor are assumed to be spin-conserving and equal for the two
dots. Tunneling between SC and the QD D is assumed to be
restricted to the single spatial point rD of the superconductor.
Hence the tunneling Hamiltonian reads

Ht = t
∑

Dks

(d†
Dsψs(rD) + H.c.), (A9)

where ψs(r) =
∑

k eik·rcks .

2. Effective Hamiltonian at ε ≈ 0

We use a perturbative approach to determine the rele-
vant part of the energy spectrum of the considered SC-
DQD hybrid system. We assume that the tunnel coupling
t between SC and the QDs is weak, i.e., smaller than the
superconducting gap and the on-site Coulomb energy on the
QDs:

t ! ",U. (A10)

Hence we can separate the Hamiltonian H to an “unperturbed”
part H0 = HS + HL + HR , and treat the tunneling as a
perturbation H ′ = Ht .

The measurement protocol described in the main text makes
use of the low-energy electronic states that consist of an even
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number of electrons in the two QDs and zero quasiparticles in
the SC. At ε ≈ 0, these states are

|(0,0)〉 = |0〉, (A11)

|S(1,1)〉 = 1√
2

(d†
L↑d

†
R↓ − d

†
L↓d

†
R↑)|0〉, (A12)

|T+(1,1)〉 = d
†
L↑d

†
R↑|0〉, (A13)

|T0(1,1)〉 = 1√
2

(d†
L↑d

†
R↓ + d

†
L↓d

†
R↑)|0〉, (A14)

|T−(1,1)〉 = d
†
L↓d

†
R↓|0〉, (A15)

where the two numbers refer to the electron occupation of the
L and R dots, respectively, the preceding label (S, T+, T0, T−)
refers to the spin state in the case of the two-electron states,
and |0〉 denotes the state in which the electron occupancies of
both QDs are zero and the superconductor is in its BCS ground
state. States with more electrons as well as states in the (0,2)
and (2,0) charge configurations are far above in energy due to
the large Coulomb repulsion U . States with finite quasiparticle
occupation are at an energy distance " above the five relevant
(0,0) and (1,1) states.

Restricting the unperturbed Hamiltonian H0 to the five-
dimensional relevant subspace, we have

H0r = 2ε
∑

σ

|σ (1,1)〉〈σ (1,1)|, (A16)

where σ ∈ {S,T+,T0,T−}. This Hamiltonian H0r is diagonal
in the chosen basis. However, second-order virtual processes
mediated by tunneling Ht , where each intermediate state con-
sists of a single electron in one QD and a single quasiparticle
in the superconductor, induce a weak coupling between the
(0,0) and S(1,1) states, as shown below.

Second-order quasidegenerate perturbation theory (see,
e.g., Appendix B of Ref. [60]) implies that the effective
Hamiltonian representing the above-mentioned second-order
virtual processes have the form

[
H (2)

r

]
m,m′ = 1

2

∑

l

H ′
mlH

′
lm′

(
1

Em − El

+ 1
Em′ − El

)
,

(A17)

where the summation goes for every eigenstate of H0 that lies
outside of the relevant subspace and is coupled to the relevant
states via tunneling H ′ ≡ Ht , and m and m′ refer to the five
relevant states. In our case, the virtual states have the form
|Ds,ks ′〉 = d

†
Dsγ

†
ks ′ |0〉.

Straightforward calculation shows that the two nonzero ma-
trix elements of H (2)

r are [H (2)
r ]S(1,1),(0,0) and [H (2)

r ](0,0),S(1,1) =
[H (2)

r ]∗S(1,1),(0,0), where

[
H (2)

r

]
S(1,1),(0,0) = 2

√
2t2

∑

k

Eku
∗
kvk cos(k · δ)
ε2 − E2

k

, (A18)

where δ = rL − rR is the relative position of the two points
where the electrons tunnel between SC and the QDs. As long

as ε ! ", the matrix element can be safely approximated
as
[
H (2)

r

]
S(1,1),(0,0) ≈ −2

√
2t2

∑

k

u∗
kvk cos(k · δ)

Ek

≡ "̃. (A19)

This result implies that the effective Hamiltonian describing
the dynamics of the relevant five-dimensional subspace,
including the second-order virtual transitions, has the form
shown in Eq. (2). The interpretation of this result is straight-
forward: Cooper pairs forming the BCS ground state of the
superconductor are allowed to cotunnel out onto the QDs (or
the other way around).

The value of the (0,0) − S(1,1) coupling matrix element
"̃ can in principle be evaluated if the electronic dispersion
ξk in the superconductor is known. The result (A19) suggests
that the value of "̃ can be controlled (i) upon fabrication by
controlling the distance of the two QDs, and (ii) in situ by
controlling the S-QD tunneling amplitude t by the voltage
on the confinement gate electrodes. We also note that the
perturbative approach used here loses its validity if "̃ ! "
does not hold.

3. Effective Hamiltonian at ε ≈ −U

If the QD on-site energy ε is tuned to the vicinity of
−U , then the five lowest-energy eigenstates of H0 are the
|(2,2)〉 = d

†
L↑d

†
L↓d

†
R↑d

†
R↓|0〉 state and the four (1,1) states

listed above, all of these having an energy ≈−2U . Tunneling
Ht induces a perturbative coupling between (2,2) and S(1,1),
in the same fashion as explained in the previous section.
In the present case, the virtual intermediate states consist
of three electrons distributed in the two QDs and a single
quasiparticle of the superconductor, which we denote as
|Ds,ks ′〉 = dDsγ

†
ks ′ |(2,2)〉.

A second-order perturbative calculation analogous to that
presented in the preceding section, together with the assump-
tion that |ε − U | ! ", yields the effective Hamiltonian shown
in Eq. (3).

APPENDIX B: NUCLEAR SPINS

In this appendix, we describe the effect of hyperfine
interaction on the proposed measurement scheme via numer-
ical simulations. Details of the simulations are provided in
Appendix B 1, and the results are given and discussed in
Appendix B 2. The results presented here extend those of
Sec. V A.

1. Simulation

In this appendix, we consider the case of isotropic g-tensors
that are identical on the two dots; they are characterized
by a single g-factor to be denoted by g. The reference
frame is chosen such that the external magnetic field is
applied along the z direction, which also coincides with the
spin quantization axis. Our simulations are performed in a
six-dimensional Hilbert space spanned by the states of the
(0,0), (1,1), and (2,2) charge configurations. The basis we use
is {|(0,0)〉,|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉,|(2,2)〉}.
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In this basis, the Hamiltonian used in our simulations is expressed as

H =





0 0 − "̃√
2

"̃√
2

0 0

0 BL+BR

2 + 2ε(t) !)R(t) !)L(t) 0 0

− "̃√
2

!)R(t) BL−BR

2 + 2ε(t) 0 !)L(t) "̃√
2

"̃√
2

!)L(t) 0 −BL−BR

2 + 2ε(t) !)R(t) − "̃√
2

0 0 !)L(t) !)R(t) −BL+BR

2 + 2ε(t) 0

0 0 "̃√
2

− "̃√
2

0 4ε(t) + 2U





. (B1)

In Eq. (B1), BD = gµBBext + BN,D,z (D = L,R). This
provides an accurate description of the dc effective magnetic
field as long as gµBBext , BN , since then the leading-order
expansion of Eq. (5) in the small quantity BN/gµBBext is
BD = gµBBextẑ + BN,D ≈ gµBBextẑ + BN,D,zẑ, with ẑ be-
ing the unit vector pointing in the z direction (i.e., along the
external B field).

The matrix elements proportional to "̃ are obtained from
Eqs. (2) and (3) after transforming from the singlet-triplet
basis used in Sec. III to the product-state basis used here. In
the simulation, the on-site energy ε(t) of the QDs is parked at
−U/2 for the spin preparation, and swept linearly in time to
the measurement point at −3U/2:

ε(t) =






−U
2 if 0 " t < 2π

)Rabi
,

−U
2 − αt if 2π

)Rabi
" t < 2π

)Rabi
+ U

α
,

− 3U
2 if 2π

)Rabi
+ U

α
" t,

(B2)

with the notation of the main text U
α

= tsweep. The EDSR
pulse applied for the spin preparation is assumed to be on
resonance with the Zeeman splitting induced by the external
magnetic field, and is also assumed to create an effective ac
magnetic field along the x axis, !D(t) = )D(t)x̂, and its effect
is included in the simulation via

)D(t) =
{
)Rabi cos

(
gµBBext

! t
)

if 0 < t " θD

)Rabi
= tburst,D,

0 otherwise
(B3)

and D = R,L.
Numerical values of the parameters used in the simulation

are given in Table I. We note that the matrix elements that
are proportional to "̃ in Eq. (B1) are ε-dependent. This
can be shown by extending the perturbative calculation of
Appendix A to ε values away from the (0,0)-(1,1) and
(1,1)-(2,2) anticrossings. Nevertheless, we disregard this ε

TABLE I. Numerical values of the parameters used in the
simulations.

Name Notation Value

Coulomb energy U 4 meV
Rabi frequency )Rabi 2π × 100 MHz
(0,0)-S(1,1) coupling "̃ 10 µeV
External B field |ĝµB Bext| 100 µeV
On-site energy, preparation εprep −U/2 = −2 meV
On-site energy, readout εreadout −3U/2 = −6 meV
On-site energy sweep rate α "̃2

! = 151.98 µeV
ns

dependence in our simulations, because this extra feature does
not lead to qualitative differences in the results.

In our simulations, the initial state is the ground state of the
(1,1) charge sector, i.e., ψ(t = 0) = |↑↑〉. The time evolution
of this initial state, governed by the Hamiltonian of (B1), is
computed numerically up to t = tf ≡ 2π

)Rabi
+ U

α
, cf. Eq. (B2).

For each run, the z component of the Overhauser field, BN,D,z,
is assumed to be frozen. The occupation probability P2,2
corresponding to the charge measurement is derived from the
final state ψ(tf ) as P2,2 = |〈(2,2)|ψ(tf )〉|2. The resulting P2,2
depends on the values of the Overhauser fields BN,L,z and
BN,R,z. We account for the random nature of the Overhauser
fields by averaging for those assuming a Gaussian distribution
with a standard deviation of BN , resulting in

P 2,2 = 1
2πB2

N

∫ ∞

−∞
dBN,L,z

∫ ∞

−∞
dBN,R,z

× e
−

B2
N,L,z

+B2
N,R,z

2B2
N P2,2(BN,L,z,BN,R,z). (B4)

We estimate this integral numerically, based on the rect-
angle rule, using a grid for (BN,L,z,BN,R,z) in the range
[−4BN,4BN ] × [−4BN,4BN ] with a resolution of BN/5 ×
BN/5.

The P2,2 probabilities and the P 2,2 averages were computed
on an 11 × 11 grid of (θL,θR) in the region [0,2π ] × [0,2π ].
The P 2,2 maps shown in Fig. 5 are 2D interpolations of these
numerical data.

2. Results

Figures 5(a)–5(c) show the results for the Overhauser-field-
averaged occupation probability P 2,2 as a function of the spin-
rotation angles θL and θR , for three different values of the
energy scale BN of the Overhauser fields. For comparison, we
note that the Rabi frequency )Rabi = 2π × 100 MHz we use
in the simulations (see Table I) corresponds to an energy scale
of !)Rabi ≈ 0.4 µeV. The key features of the results are as
follows.

(a) In this case, !)Rabi , BN , therefore the power broaden-
ing of the EDSR pulse is large enough to ensure that the pulse
is on resonance with the spins for essentially any value of the
Overhauser fields. For the same reason, the hyperfine-induced
shift of the spins’ Larmor phases during the spin manipulation,
which are of the order of BN/!)Rabi, are much smaller than
unity. These two facts together ensure that P 2,2 shows no
qualitative differences as compared to the ideal-case result
(obtained for the absence of hyperfine interaction) shown in
Fig. 3 of the main text.
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BN = 1µeV

BN = 0.01µeV

BN = 0.05µeV

P̄2,2

P̄2,2

P̄2,2

(c)

(a)

(b)

FIG. 5. (Color online) Deviations from the ideal-case result due
to hyperfine interaction. The plots show the probability (P2,2) of
measuring the (2,2) charge state at the end of the proposed experimen-
tal sequence, averaged over the random nuclear-spin configurations
(P 2,2). Subplots (a), (b), and (c) differ in the energy scale BN of the
hyperfine interaction. See Appendix B for details and interpretation,
and Table I for the values of the parameters used in the simulation.

(b) In this case, the Overhauser-field energy scale BN is
still too small to detune the spin splitting from resonance,
hence the spin control is still effective. This is demonstrated
by the feature that the maximal value of P 2,2 approaches 0.5,
as in the ideal case (Fig. 3). However, the simulation result
Fig. 5(b) also demonstrates that the hyperfine-induced shifts
of the spins’ Larmor phases, accumulated during the spin
manipulation, are of the order of unity for this parameter set. To
support this interpretation, let us focus on the special case of
θL = θR = π/2, where a saddle point at a height of ≈ 0.25
appears in P 2,2 in Fig. 5(b). The interpretation of this
value of P 2,2 is as follows. The EDSR pulse is effective in
creating an equal superposition of the ↑ and ↓ states for
both spins, implying that in the absence of the Overhauser

fields, the prepared state would have a probability of 1/4 of
occupying both |T−(1,1)〉 and |T+1,1〉, and a probability of
1/2 of occupying |T0(1,1)〉. However, the Overhauser fields are
typically different in the two dots, and thereby induce a mixing
between |T0(1,1)〉 and |S(1,1)〉. If this mixing is fast enough,
which seems to be the case for our parameter set, then it results
in a 1/4 probability of finding the two spins in the |S(1,1)〉 state
after the spin preparation. This interpretation explains the value
P2,2(π/2,π/2) ≈ 0.25 found in the simulation, and also all
further qualitative changes with respect to the ideal-case result.

(c) In this case, the typical Overhauser field exceeds the
power broadening of the EDSR pulse, i.e., hyperfine interac-
tion detunes the spin splittings from the resonance condition.
Therefore, the spin manipulation is rendered ineffective, i.e.,
after the pulses the two-electron spin state remains mostly in
the initial state |↓↓〉, leading to a nearly vanishing P2,2 upon
charge measurement.

APPENDIX C: DIFFERENT g-TENSORS
ON THE TWO QDS

In this appendix, we provide details of the analysis of
the case of different anisotropic g-tensors in the two QDs,
presented in Sec. V B.

1. Anisotropic g-tensors

In Sec. V B, we claim that even if the two g-tensors ĝL

and ĝR characterizing a DQD are different and anisotropic, it
might be possible to render the two Zeeman splittings equal by
appropriately adjusting the direction of the external magnetic
field Bext. Here, we provide two examples of such g-tensor
pairs; see Table II. Case I is a hypothetical example, whereas
case II is a g-tensor pair that was measured in a NW DQD [33].

Before discussing cases I and II, let us start with a
two-dimensional (2D) illustration; see Figs. 6(a) and 6(b). We
take ĝL = (2 0

0 1) and ĝR = 1
4 ( 5 −

√
3

−
√

3 7 ). In two dimensions,
the orientation n = Bext/|Bext| of the external magnetic field
is parametrized with the angle ϕB ∈ [0,2π [ as n(ϕB) =
(cos ϕB, sin ϕB). The dimensionless Zeeman splittings are
given by |ĝDn| (D = L,R). It is possible to visualize the field
orientations of equal Zeeman splittings by plotting the two
dimensionless Zeeman splittings on one 2D polar plot as a
function of ϕB ; see Fig. 6(a). In this figure, the red (green)
line corresponds to dot L (R). The intersection points (blue)
of the two lines indicate the field orientations of equal Zeeman
splittings. One of those field orientations is highlighted in
Fig. 6(a) with the vector n. Choosing the field along this n,
the effective magnetic fields BD enclose a nonzero angle β in

TABLE II. The g-tensors for the two examples shown in
Figs. 6(c)–6(f). Here, gi are the eigenvalues of the g-tensor, and γi are
the Euler angles, measured in radians, characterizing the orientation
of the eigenvectors of the g-tensor.

QD g1 g2 g3 γ1 γ2 γ3

I L 8 6 12 0.9 1.1 −0.75
R 5 19 10 −0.81 2 0.5

II L 9.1 7.8 7.5 1.9 2.1 −0.25
R 8.4 7.3 7 −0.81 2 1.5
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SCHERÜBL, PÁLYI, AND CSONKA PHYSICAL REVIEW B 89, 205439 (2014)

(c) (e)

(d) (f)

(a)

(b)

2 1 0 1 2

1
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1
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y

2 1 0 1 2

1

0

1

x

y

n

ĝRn

ĝLn

β

FIG. 6. (Color online) Equalizing Zeeman splittings in the two
dots. Red (green) corresponds to dot L (R). (a) 2D polar plot of the
dimensionless Zeeman splitting, as a function of the polar angle ϕB

of the external magnetic field. Intersections (blue points) correspond
to field orientations providing equal Zeeman splittings in the two
dots. (b) Dimensionless effective magnetic field ĝDn corresponding
to the field direction n drawn in (a). The ellipses are parametric plots,
showing ĝDn(ϕB ) as parametrized by ϕB ∈ [0,2π [. (c) 3D spherical
plot of the dimensionless Zeeman splitting for the g-tensor pair I
(see Table II), as a function of the angles θB ,ϕB of the external
magnetic field. Intersections (blue lines) correspond to the field
orientations providing equal Zeeman splittings in the two dots. (d)
The dimensionless effective magnetic field ĝDn(θB,ϕB ), shown in a
parametric plot. (e),(f) These correspond to (c),(d), with the difference
being that the g-tensor pair II of Table II was used.

general. This is illustrated in Fig. 6(b), where the dimensionless
effective magnetic fields ĝLn and ĝRn are shown. [The
ellipses in Fig. 6(b) are parametric plots, showing ĝDn(ϕB)
as parametrized by ϕB ∈ [0,2π [.]

Now take the three-dimensional (3D) case I in Table II.
The direction of the external magnetic field is characterized
by spherical coordinates θB , ϕB fulfilling

n(θB,ϕB) ≡ Bext

|Bext|
=




sin θB cos ϕB

sin θB sin ϕB

cos θB



 . (C1)

The field orientations of equal Zeeman splittings are again
visualized by plotting the two dimensionless Zeeman splittings
on one 3D spherical plot (in analogy with the 2D polar plot
above); see Fig. 6(c). The intersection lines of the two surfaces,
shown as blue lines in Fig. 6(c), indicate the field orientations
of equal Zeeman splittings. [The corresponding figure for case
II is Fig. 6(e).]

BL BR

ΩL(t) ΩR(t)

βx

z

FIG. 7. Orientation of the dc (BL, BR) and ac (!L, !R) effective
magnetic fields, as used in the numerical simulations addressing the
role of different g-tensors in the two QDs.

As demonstrated by the 2D example of Figs. 6(a) and 6(b),
for equal Zeeman splittings in the QDs, the angle β enclosed
by the effective dc magnetic fields BL and BR is generally
nonzero. In the 3D cases, however [see Figs. 6(c) and 6(e)],
the angle β can be changed via moving along the intersection
of the two surfaces (i.e., the blue lines), while the equality of
the Zeeman splittings is maintained. This degree of freedom
can, and for the purpose of the proposed experiment should,
be utilized to minimize β with the constraint that the Zeeman
splittings are equal. Our simulations, to be described below,
correspond to case I [Fig. 6(c)] with such a minimized angle
βmin ≈ 32◦.

2. Simulation

Here, we provide details of the numerical simulations
discussed in Sec. V B. As stated there, we disregard hyperfine
interaction and describe a case in which the effective dc
magnetic fields felt by the spins, i.e., BL = µBĝL Bext and
BR = µBĝR Bext, are equal in magnitude and enclose and
angle β = 32◦. As illustrated in Fig. 7, we use a reference
frame where the z axis is aligned with BL, and BR lies in the
x > 0 half-plane of the x-z plane. Furthermore, the effective
ac fields !L and !R are assumed to lie in the x-z plane,
perpendicular to their respective dc fields.

Our simulations are performed in the six-dimensional
Hilbert space defined in Sec. B 1. However, here we ad-
just the basis to our current problem by using differ-
ent spin quantization axes for the two dots: the local
quantization axes are aligned with the local dc effective
fields. The corresponding single-spin basis states in QD
L (R) are denoted by |↑〉 and |↓〉 (|⇑〉 ≡ cos β

2 |↑〉 +
sin β

2 |↓〉 and |⇓〉 ≡ − sin β
2 |↑〉 + cos β

2 |↓〉). Accordingly, the
basis we use here for the six-dimensional Hilbert space is
{|(0,0)〉,|↑⇑〉,|↑⇓〉,|↓⇑〉,|↓⇓〉,|(2,2)〉}.

In this basis, the Hamiltonian used in our simulations is
expressed as

H =





0 − "̃√
2

sin
(
β
2

)
− "̃√

2
cos

(
β
2

)
"̃√

2
cos

(
β
2

)
− "̃√

2
sin

(
β
2

)
0

− "̃√
2

sin
(
β
2

)
B + 2ε(t) !)R(t) !)L(t) 0 "̃√

2
sin

(
β
2

)

− "̃√
2

cos
(
β
2

)
!)R(t) 2ε(t) 0 !)L(t) "̃√

2
cos

(
β
2

)

"̃√
2

cos
(
β
2

)
!)L(t) 0 2ε(t) !)R(t) − "̃√

2
cos

(
β
2

)

− "̃√
2

sin
(
β
2

)
0 !)L(t) !)R(t) −B + 2ε(t) "̃√

2
sin

(
β
2

)

0 "̃√
2

sin
(
β
2

)
"̃√

2
cos

(
β
2

)
− "̃√

2
cos

(
β
2

)
"̃√

2
sin

(
β
2 ) 4ε(t) + 2U





, (C2)

where we introduced B = |BL| = |BR|
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Similarly to the case of Eq. (B1), the matrix elements
proportional to "̃ are again obtained from Eqs. (2) and (3) after
transforming from the singlet-triplet basis used in Sec. III to the
product-state basis used in this section. The terms ∝ "̃ in Eq.
(C2) express the fact that for a nonzero β, all four (1,1) states of
our current basis contain a finite amplitude of |S(1,1)〉, hence
the proximity effect couples all of them to |(0,0)〉 and |(2,2)〉.

As explained in Fig. 4(a), in these simulations the on-site
energy ε(t) of the QDs is parked at −U/2 for the spin
preparation, and swept linearly in time to the measurement
point at −3U/2:

ε(t) =






−U
2 if 0 " t < 2π

)Rabi
+ twait,

−U
2 − αt if 2π

)Rabi
+ twait " t < 2π

)Rabi
+ twait + U

α
,

− 3U
2 if 2π

)Rabi
+ twait + U

α
" t.

(C3)

Note that the difference between this Eq. (C3) and Eq. (B2) is
the appearance of the waiting time twait.

The EDSR pulses )D(t) used here are identical to those
given in Eq. (B3). Numerical values of the parameters
used for the simulations are given in Table I. The P2,2
probabilities were computed on an 11 × 11 grid of (θL,θR) in
the region [0,2π ] × [0,2π ]. The P2,2 probability maps shown
in Figs. 4(b) and 4(c) are 2D interpolations of the numerical
data.

3. Results

The results of the numerical simulations are shown in
Figs. 4(b) and 4(c), and their discussion is included in Sec. V B.
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