For original version see:

Specziár A., Erős T.: Dietary variability in fishes: the roles of taxonomic, spatial, temporal and ontogenetic factors. Hydrobiologia (2014) 724:109-125. DOI 10.1007/s10750-013-1728-x

Dietary variability in fishes: the roles of taxonomic, spatial, temporal and ontogenetic factors

András Specziár*, Tibor Erős

Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg K. u. 3., H-8237 Tihany, Hungary
*Corresponding author. Tel.: +3687448244 ; email: specziar.andras@okologia.mta.hu

Abstract

In spite of the general use of diet data in ecological research, still very little is known about the relative roles of spatial, temporal and biotic (e.g. taxonomic identity, size, sex) factors in dietary variability of fishes. Here, we applied canonical correspondence analysis and variation partitioning to examine the roles of taxonomic, annual, seasonal, lake basin, habitat and ontogenetic (standard length, L_{S}) factors in the dietary variation of fishes in large and shallow Lake Balaton, Hungary. The analyses were performed at the assemblage (15 fish species) and the individual species levels, and based on high (24 fine resource categories) and low resolution (nine broad resource categories) diet data. As hypothesized, most of the explained variation related to interspecific differences, while the roles of sampling year, season, lake area, habitat and L_{S} proved to be unexpectedly low at the assemblage level. In addition, no regularity was found in how the relative roles of these factors change between fish species. The high ratio of the unexplained variation suggests that individual variations in foraging strategies and resource use of fishes and unascertained stochastic processes had a strong influence on dietary variability both at the assemblage and the individual species levels.

Keywords Fish assemblage, Food resource, Individual feeding strategy, Size-dependent pattern, Spatio-temporal variability, Variation partitioning.

Introduction

Analysis of feeding relationships forms a fundamental part of ecological research. For fishes the direct analysis of the stomach (gut) content is frequently used to provide information about their food resource use, suitability of the habitat, potential biotic interactions and individual feeding strategies (e.g. Bergman, 1990; Kakareko et al., 2005; Gliwicz et al., 2006; Adámek et al., 2007; Ginter et al., 2012a). In a wider, ecosystem level context, diet data helps to more directly quantify functional composition and food web organization and in general the role of fishes in aquatic ecosystems (Power, 1990).

Separating the components of the dietary variation provide information about how different environmental (e.g. seasonality and habitat) and/or biological factors (i.e. any morphological, biological and behavioural traits) determine diet composition (Hovde et al., 2002; Chassot et al., 2008; Quevedo et al., 2009; Pusey et al., 2010). Diet of fishes varies due to a diversity of factors. At the assemblage level, interspecific differences in the feeding behaviour and food preference generally have predominant role in dietary variability (Piet et al., 1999; Mérona \& Rankin-de-Mérona, 2004; Pusey et al., 2010). At the species level, ontogenetic changes are one of the most characteristic components of the dietary variability. For fishes, shifting between resources is one way to follow the increasing energy requirement during growth (Werner \& Gilliam, 1984). Moreover, ontogenetic diet shifts decrease intraspecific competition for food between the adults and their offspring (Werner \& Gilliam, 1984; Persson, 1988; Mittelbach \& Persson, 1998). The diet of fishes varies considerably with time primarily due to the heterogeneity of food resources along seasonal and annual scales (Warburton et al., 1998; Mérona \& Rankin-de-Mérona, 2004; Ginter et al., 2012b; Nunn et al., 2012). Diet of fish can also vary between habitat types (Vinni et al., 2000; Svanbäck \& Eklöv, 2002; Platell et al., 2007) and along spatial resource gradients (Mittelbach et al., 1992;

Francis \& Schindler, 2009). In addition, it has been shown that variations among individuals may comprise a large proportion of the population's niche breath, especially for some species which exhibit generalized feeding at the population level (Bolnick et al., 2003; 2007). Interindividual dietary variation has two major components. The stochastic component is related to the small-scale heterogeneity in the density and taxonomic composition of food resources. This component is responsible for the short-term individual specialization and for the observed dietary differences between individuals of a fish species that forage in the same habitat but among different resource patches (Malone \& McQueen, 1983; Downes et al., 1993; Ritchie, 1998). The persistent component is related to phenotypic or behavioural differences of individuals (Bolnick et al., 2003). Finally, results of diet analyses are inherently variable because stomach or gut content provide only a snap shot picture of what a fish has been eating in a very short time period (i.e. from 1 hour to one day). In spite of the general use of diet data in ecological research, still very little is known about the relative roles spatial, temporal and biotic (e.g. taxonomic identity, size, sex) factors play in dietary variability of fishes. The few studies performed on marine (Hovde et al., 2002; Chassot et al., 2008) and tropical lotic fish species and assemblages (Pusey et al., 2010) identified low to moderate explainable proportion of dietary variation. However, to the best of our knowledge no comprehensive work has been published for temperate freshwater fish assemblages.

This study aims to investigate the main components of intra- and interspecific dietary variability of fishes in Lake Balaton, Hungary. Feeding ecology of fishes has been extendedly studied in Lake Balaton (Specziár \& Rezsu, 2009), and by now, there is a significant data base providing a perfect opportunity for analysing dietary variability and its components. Previous investigations showed that the diet of cyprinids vary considerably between the main littoral habitats (i.e. macrophyte free zone, macrophyte covered area and ripraps - lake bank sections stabilised with rocks) due to the differences in the food resources they provide
(Specziár et al., 1998; Specziár, 1999). The characteristic trophic gradient along the longitudinal axis of the lake influences the diet composition of several fish species (Bíró et al., 1991; Simonian et al., 1995; Rezsu \& Specziár, 2006). Seasonal differences are evident in the diet of most fish species (Bíró, 1973, 1974; Bíró et al., 1991; Simonian et al., 1995), and year-to-year changes in the abundance of some food organisms were also proved to affect the feeding of fishes (Bíró, 1973 and references therein; Bíró, 1974). Recent studies focused on ontogenetic diet patterns (Bíró et al., 1991; Bíró \& Muskó, 1995; Specziár \& Bíró, 2003; Specziár, 2005; Rezsu \& Specziár, 2006; Specziár \& Rezsu, 2009; Specziár 2011), and it was found that 13 out of the 15 fish species investigated showed marked size-related dietary changes in the lake (Specziár \& Rezsu, 2009). However, it was also proved that individuals of different species do not unequivocally separate based on their diet composition (e.g. for five cyprinid species, see Fig. 4 in Specziár et al., 1997), and feeding guilds are organized from specific size groups of more than one fish species (Specziár \& Rezsu, 2009). Although, the above studies provide important information about the dietary variation among fish species and along specific spatial, temporal and ontogenetic scales, the relative importance of these scales still remained unknown.

Particular goals of the present study were to quantify the importance of taxonomic (i.e. between species), temporal (i.e. year and season), spatial (i.e. lake basin and habitat), and ontogenetic factors in the dietary variation of fishes in Lake Balaton, and to explore how the relative importance of these factors (except the taxonomic factor) vary among fish species. It was hypothesized that (i) at the assemblage level (i.e. all fish species analysed together), the largest fraction of the total variance would be related to interspecific differences, and (ii) at the species level, the relative importance of different explanatory factors would vary markedly among species according to their taxonomic relationship and guild membership. Additionally, since ecological studies consider diet composition at variable resolution levels (i.e. taxonomic
level to which food items are identified), it was investigated how the observed patterns change between high (i.e. 24 fine resource categories) and low resolution (i.e. nine broad resource categories) diet composition data.

Materials and methods

Study area

Balaton is the largest shallow lake (surface area: $593 \mathrm{~km}^{2}$; mean depth: 3.2 m) in Central Europe, situated at $46^{\circ} 42^{\prime}-47^{\circ} 04^{\prime} \mathrm{N}, 17^{\circ} 15^{\prime}-18^{\circ} 10^{\prime} \mathrm{E}$ and 104.8 m above sea level. The lake is meso-eutrophic with mean annual chlorophyll-a concentrations of $3.6-18.7 \mathrm{mg} \mathrm{m}^{-3}$ (Istvánovics et al., 2007). The lake is slightly alkaline ($400 \mathrm{mg} \mathrm{l}^{-1}$ of Ca^{2+} and $\left.\mathrm{Mg}^{2+}\left(\mathrm{HCO}_{3}^{-}\right)_{2}\right)$, pH ranges 8.2-9.1, and has a conductivity of $550-671 \mathrm{\mu s} \mathrm{~cm}^{-1}$. In general the lake is turbid with a Secchi disc depth varying between 0.2 m and 0.8 m . Oxygen deficiency has never been registered in the lake, and concentrations of pollutants are low or insignificant. Forty-seven percents of the lake shore is covered by reed grass Phragmites australis. Submerged macrophytes occur sparsely in the littoral zone. Significant part of the lake shore was stabilized with stones, and these riprap habitats are covered by filamentous algae (mainly Cladophora spp.) and inhabited by dense invertebrate community (Muskó et al., 2007; Balogh et al., 2008). There are also several boat harbours along the lake, which provide specific habitat because they are sheltered from swash. Detailed information on the limnology and fish fauna of the lake can be found in studies of Herodek et al. (1988), Bíró (1997), Specziár et al. (2009, 2013) and Istvánovics et al. (2007).

Sampling

Explanatory factors for this study were the sampling parameters. Fish samples representing wide (i.e. lifespan in most species) size ranges of 15 species (Table 1) were collected between 1995 and 2007, from three seasons (spring, summer and autumn) and in three lake basins (Keszthely, Zánka and Siófok basins; Fig. 1.) along the longitudinal axis of the lake. Five habitats were distinguished as follows: 1) offshore area, sampled at $>2 \mathrm{~km}$ distance off the nearest shore, 2) macrophyte-free inshore area, sampled at 50 to 200 m distance off the shore, 3) reed grass stand, 4) riprap, sampled at 1 to 5 m distance off the shore, and 5) boat harbour (Fig. 1). Applied sampling techniques included multi-mesh gillnetting (5 to 80 mm mesh sizes), battery powered electrofishing (1 and 6 mm anode ring mesh sizes), benthic sledging (2 mm mesh size), surface trawling (2 mm mesh size) and dip netting (1 mm mesh size). Gillnets were set for half to two hours in the morning. With gillnet most fish species could be collected effectively at sizes $>50 \mathrm{~mm}$ standard length $\left(L_{\mathrm{S}}\right)$. Sampling of the littoral species, especially of those hiding among macrophytes or living along the ripraps (i.e. pumpkinseed sunfish Lepomis gibbosus, monkey goby Neogobius fluviatilis, perch Perca fluviatilis and rudd Scardinius erythrophthalmus) was supplemented with electrofishing using a battery powered Smith-Root 12-B POW type equipment (www.smith-root.com) from a small rubber boat. Electrofishing proved to be an appropriate tool for catching all size-groups of littoral species, except the earliest life stages. To capture the earliest life stages ($L_{\mathrm{S}} \leq 20 \mathrm{~mm}$) of littoral species a dip net with 1 mm mesh-size was used, while the earliest life stages ($L_{\mathrm{S}} \leq 50$ mm) of offshore species were captured with a benthic sledge being 1 m wide and 0.34 m high, and a framed surface trawl 1 m wide and 0.5 high. Both the benthic sledge and the framed surface trawl had a 2 mm mesh and were towed with a boat at $5.4-5.8 \mathrm{~km} \mathrm{~h}^{-1}$ for 5 to 10 min . per haul.

Diet analysis

Just after the capture, small fishes ($L_{\mathrm{S}} \leq 100 \mathrm{~mm}$) were euthanized in an overdose of tricaine methanesulfonate (MS 222; $1.0 \mathrm{~g} \mathrm{l}^{-1}$) or clove oil ($0.4 \mathrm{~g} \mathrm{l}^{-1}$; more recently) and then preserved in $4-10 \%$ formalin (depending on the mass of the sample). Larger specimens were instantly killed by severing the central nerve system. Then they were measured for L_{S} to the nearest 1 mm , dissected and their stomachs or guts (in cyprinids) were also preserved in 4-10\% formalin.

Protocol of the diet analysis was the same as described in Specziár \& Rezsu (2009). Samples were generally stored for few weeks before being leached in water and analysed. Diet remains were removed from the stomachs or guts and analysed in the laboratory under a microscope, a stereo microscope or by eye (in large piscivores) depending on the size of the diet components. The present study is based on altogether 8756 examined guts and stomachs containing food remains (Table 1). Since the goal of the present study was to investigate components of the dietary variability of fishes, empty stomachs and guts were not considered in the analysis. Although, empty stomachs and guts could provide very useful information on resource availability of specialized predators, still their inclusion in the analysis can yield uncontrollable bias derived from the unknown feeding period of fishes. For example, it is impossible to differentiate between non-feeding periods and resource limitation from empty stomachs or guts. Food items were classified into taxonomic groups and prey $>0.5 \mathrm{mg}$ were weighted to the nearest 0.1 mg , while in other cases their biomasses were calculated from length-weight relationships (Vuille, 1991; Kawabata \& Urabe, 1998; Benke et al., 1999; Johnston \& Cunjak, 1999; Specziár, 2011; Specziár, unpublished data).

Food items were grouped into 24 fine and nine broader resource categories to represent cases of high and low resolution diet analyses, respectively. High resolution resource
categories were: (1) Dreissena polymorpha larvae, (2) Rotatoria, (3) Copepoda, (4) Cladocera except Leptodora kindtii, (5) L. kindtii, (6) Ostracoda, (7) Oligochaeta, (8) benthic Chironomidae larvae (species which typically inhabit in or on the sediment, see also Specziár \& Bíró, 1998), (9) non-benthic Chironomidae larvae (all other species), (10) Chironomidae pupae, (11) Chelicorophium curvispinum, (12) Dikerogammarus spp., (13) Limnomysis benedeni, (14) Isopoda, (15) D. polymorpha adults, (16) Gastropoda, (17) other soft-bodied aquatic Arthropoda (e.g. Collembola, Ephemeroptera, Odonata, Heteroptera, Coleoptera, Trichoptera, Acaridea), (18) 'surface Arthropoda’ (including flying imagos of aquatic insects and all non-aquatic arthropods occurring in the diet of fishes), (19) diatoms, (20) filamentous (green) algae, (21) macrophytes, (22) detritus, (23) fishes, and (24) others (e.g. fish eggs and bait material used by anglers). While, low resolution resource categories were as follows: zooplankton (including high resolution categories: 1-5), soft-bodied benthic (i.e. organisms living in and on the sediment) macroinvertebrates (6-8), soft-bodied non-benthic (i.e. invertebrates using algae, macrophytes and artificial structures, concrete buildings and ripraps as substrate, and including Chironomidae pupae) macroinvertebrates (9-14, 17), molluscs (1516), surface arthropods (18), live plant material (19-21), detritus (22), fishes (23) and others (24). Individual diet composition of fish was expressed in mass percentages based on both high and low resolution diet data. For brevity, diet composition data of the 15 fish species is not presented here, but some basic information is available in Table 1 and Appendix A.

Statistical analysis

Diet composition data and their dependence on fish species, place (i.e. lake basin and habitat) and time (i.e. year and season) of sampling, and ontogeny (i.e. fish size, L_{S}) were investigated by performing canonical correspondence analysis (CCA) using CANOCO version 4.5
software (ter Braak \& Šmilauer, 2002). Ordination techniques are widely used to investigate patterns in multivariate species-environmental data sets, especially when the distribution of data do not support the application of general linear models (e.g. multivariate analysis of variance, MANOVA) requiring samples for all possible factor state \times species combinations (Lepš \& Šmilauer, 2003). The method of CCA was chosen because preliminary detrended correspondence analysis (DCA) indicated relatively long gradient length at both the assemblage and most species level data sets (≥ 4 in standard deviation units; Lepš \& Šmilauer, 2003). The CCA analysis was performed at both the entire assemblage level (the entire database where all 15 fish species were analysed together and where the 15 fish species were included to explanatory variables) and at the level of individual fish species. The analyses were based on both the high and the low resolution diet data. Correspondingly, 32 sets of CCA analyses were performed, two (high and low diet resolution) at the assemblage level and 30 (15 species \times high and low diet resolution) at the species level. Individual diet data (i.e. each fish represented a separate diet sample) were used throughout the analysis. In each analysis, rare food categories (i.e. $<0.5 \%$ total representation or $<2 \%$ frequency of occurrence in the concerning data set) were merged with the resource category called others. Response variables (i.e. relative diet composition data) were $\arcsin \left(x^{0.5}\right)$ transformed prior to analysis according to the most preferred method of handling proportional data ranging between 0 and 1 (Podani, 2000; but see Warton \& Hui, 2011). This transformation gives more weight to food items with low (i.e. with values close to 0) and high (i.e. with values close to 1) relative abundances. Of the explanatory variables, fish species (in the assemblage level analysis only), lake basin, habitat, sampling year and season were treated as categorical factors and re-coded into binary dummy variables (Lepš \& Šmilauer, 2003); whereas L_{S} was treated as quantitative variable. Since we assumed that a unit change in the L_{S} has much less effect on the diet of fishes at the higher end (i.e. in adults) than at the lower end (i.e. at the early of the ontogeny)
of its range (e.g. see L_{S} intervals for identified ontogenetic species size groups in Specziár \& Rezsu, 2009), the data were $\log _{10}(x)$ transformed prior to analysis.

In each analysis (i.e. assemblage \times diet resolution or fish species \times diet resolution), first, a preliminary overall CCA model was built, which included all potential explanatory variables (Lepš \& Šmilauer, 2003). The relative contribution of each variable to the model was assessed by using the forward stepwise selection procedure, and their significance was studied by Monte-Carlo permutation test with 9999 permutations under the full model. On the basis of this selection procedure, only significant explanatory variables $(P<0.05)$ were retained in the final CCA model. Similarly, statistical significance of ordination axes and the whole model (i.e. including all axes) were studied using the Monte-Carlo permutation test with 9999 permutations. Next, a series of CCA and partial CCAs were conducted to partition the effects of taxonomic (i.e. fish species; only in the assemblage level analyses), temporal (year and season), spatial (lake basin and habitat) and fish size $\left(L_{\mathrm{S}}\right)$ on diet composition (Cushman \& McGarigal, 2002).

Relative position of fish species in a multidimensional space based on the importance of temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and ontogenetic (i.e. L_{S}) factors in the variation of their diet composition was done using hierarchical cluster analysis (CA) and principal component analysis (PCA). Prior to analyses, variation partition data (\%) extracted from diet composition matrixes were $\arcsin \left(x^{0.5}\right)$ transformed (Podani, 2000). CA was based on the unweighted-pair-group method with arithmetic mean (UPGMA) and the Euclidean distance. Significant groups of species in the cluster diagrams were identified according to the randomization method described by Jaksić \& Medel (1990). This method employs a bootstrap randomization of the raw data (fish species \times variation partitions extracted from diet data) to generate a distribution of Euclidean distances reflecting the null hypothesis of no ordinate source of variation in the diet among the investigated fish species
(Gotelli \& Graves, 1996). Data were iterated 10000 times and their distributions were used to find the critical value of distance below which the probability of occurrence by chance is $<5 \%$ (Jaksić \& Medel, 1990). CA was performed in Statistica 8.0 (www.statsoft.com) while the bootstrapping procedure was done with a macro written for Excel 2010 (www.office.microsoft.com). Finally, main trends in the distribution of the identified partitions of dietary variability among the 15 fish species investigated were explored with PCA in Statistica 8.0 (www.statsoft.com).

Results

Assemblage level variation in the diet

At the assemblage level, total identified variation (i.e. eigen value, a measure of the explanatory power of each ordination axis; Table 2) was 16.3 in the high and 6.8 in the low resolution diet data, and 20.8% and 36.9% of them could be explained, respectively. Most of the explained variation in the individual diet composition data belonged to between species differences (Fig. 2). This factor explained alone 10.3% and 18.2%, and as shared effect mainly with the sampling year and the habitat additional 3.4% and 8.0% of the total variation in the high and low resolution diet data, respectively. A moderate part of the variation was explained by spatial and temporal factors, mainly by the sampling year and the habitat, while, effect of the L_{S} was small.

Species level variation in the diet

Similarly to assemblage level patterns, total identified variation (i.e. eigen value; Table 2) was significantly lower at low (mean: 3.0; range: 1.6-5.2) than at high (mean: 6.8; range: 4.413.5) diet resolution for all species, and the explained proportion of the variation was higher in the low (mean: 29.3%; range: $14.3 \%-54.8 \%$) than in the high (mean: 20.2%; range 13.3% 30.6%) resolution data in all species except the S. erythrophthalmus. However, both the portion and the source of the explained variation in the diet data varied markedly between fish species (Fig 3 and Table 2). On average, temporal factors accounted for most of the explained variation in both the high and the low resolution diet data (7.9% and 8.4% as pure and 3.9% and 6.1% as shared effect, respectively), followed by fish size ($L_{\mathrm{S}} ; 3.7 \%$ and 6.9% as pure and 3.7% and 6.9% as shared effect, respectively) and spatial factors (3.8% and 5.6% as pure and 3.3% and 6.0% as shared effect, respectively) (Fig. 3).

Based on the high resolution diet data, CA identified three multi-species groups and four separate species according to the importance of the investigated factors in the variation of the diet. Pikeperch Sander lucioperca separated from other species mainly due to the high influence of habitat and asp Aspius aspius due to the high proportion of shared effect of L_{S}. Diet of razor fish Pelecus cultratus and bleak Alburnus alburnus were relatively strongly influenced by sampling season and lake basin, while diet of P. fluviatilis, S. erythrophthalmus and ruffe Gymnocephalus cernuus by pure effect of L_{S}. The other eight species formed two less interpretable clusters (Fig. 4). Results of the PCA were highly congruent with that of the CA and supported the separation of two obligate piscivores S. lucioperca and A. aspius, and two zooplanktivores P. cultratus and A. alburnus from the other species and also from each other. The first three principal components (PC) explained 61.1% of between species variation, and PC 1 represented a gradient based on the importance of different spatial and temporal scales, PC 2 a gradient mainly based on the importance of L_{S} and PC 3 a gradient primarily based on season and lake basin (Fig. 5).

For the low resolution data the explained variation proportions were highest in fishes with marked ontogenetic resource shift (either diet or habitat), such in A. aspius, G. cernuus, S. lucioperca, Volga pikeperch Sander volgensis, P. fluviatilis and L. gibbosus (Fig. 3b and Table 2). CA identified only one cluster with six non-piscivorous, benthic species, while, the other nine species separated significantly from this cluster and from each other (Fig. 6). PC 1 in the PCA represented a gradient from the planktivorous P. cultratus and A. alburnus, which are species with no marked ontogenetic habitat and diet shifts, to the piscivorous S. lucioperca, which could be characterized with a marked ontogenetic diet shift and diverse resource use. While, PC 2 correlated positively with L_{S} and negatively with the importance of the shared effect of lake basin and habitat, and PC 3 correlated positively with the influence of sampling year and the shared effect of temporal and habitat factors and negatively with the importance of season in dietary variability (Fig. 7).

Discussion

The present study showed that the larger part of the dietary variability observed among individuals of 15 fish species could not be explained by between species and the considered temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and ontogenetic (i.e. L_{S}) factors. As hypothesized, most of the explained variation related to interspecific differences at the assemblage level. This result is similar to the finding of Pusey et al. (2010) who examined a tropical fish assemblage in Australia and found that species identity accounted for 31% of the total dietary variance. Although the explanatory power of their data set was twofold higher than what we found in the present study. According to the niche concept, differences between species facilitate their long term coexistence (Whittaker et al., 1973; Leibold, 1995; Piet et al., 1999), although on a short time or habitat scale, especially when one or more food
resources are abundant, interspecific dietary differences may decrease (Baker-Dittus, 1978; Feyrera et al., 2003). Moreover, interspecific deviations are generally weaker at the onset of larval feeding and increase with development (Nunn et al., 2007; Specziár \& Rezsu, 2009), which may result in a stronger taxonomic component in the dietary variability in studies concentrating on adult fishes. Our results thus revealed that taxonomic identity provides only a very rough picture on the diet for an individual fish, because diet composition depends on individual or instantaneous feeding strategies (Ritchie, 1998; Bolnick et al., 2003; Reid et al., 2010) and also can be highly variable in both time and space (Svanbäck \& Eklöv, 2002; Platell et al., 2007; Ginter et al., 2012b; Nunn et al., 2012). Note that further part of the discussion is based primarily on the results obtained from the high resolution data, using the same food item categories that were successfully used in most previous studies in Lake Balaton.

Many fishes reveal pronounced size-dependent trend in their diet composition (Bergman, 1990; Mittelbach \& Persson, 1998; Specziár \& Rezsu, 2009). Recently, Specziár \& Rezsu (2009) found that 13 out of the 15 fish species investigated here showed significant ontogenetic dietary changes. In the light of this, it is a bit surprising that the proportion of mean variation explained by the L_{S} was low in the present study. However, the relative importance of L_{S} was high in some species (e.g. P. fluviatilis, G. cernuus, S. erythrophthalmus, A. aspius), at least compared with the importance of temporal and spatial factors. Conversely, in some typical ontogenetic diet switchers (e.g. S. lucioperca, S. volgensis, L. gibbosus), influence of temporal (i.e. year and season) and spatial (i.e. lake basin and habitat) factors on dietary variability exceeded that of the L_{S}, suggesting a versatile feeding behaviour in these species. In addition, L_{S} is closely correlated with season in younger age classes (most evidently in $0+$ and $1+$ age classes) and the habitat use of some fish species is also size-specific (Table 1), and therefore, part of the variance related to ontogenetic
changes were shared with the effect of these (i.e. season and habitat) factors. For example, these shared effects were important in three typical ontogenetic diet switchers, A. aspius, S. lucioperca and S. volgensis, and accounted for 7.5% to 9.7% of the dietary variation. Discrepancy between the results of Specziár \& Rezsu (2009) and the present study may also be due to the difference in the study question and the statistical approach used. Specziár \& Rezsu (2009) concentrated only on ontogenetic patterns in the diet of 15 fish species and used cluster analysis based on average data of each species size group. That approach characterized trends of ontogenetic dietary changes at the population level in the 15 fish species, but without estimating their significances compared to other factors. In turn, the direct ordination method (CCA) used in the present study retained among individual variance as well, and quantified the relative importance of temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and ontogenetic (i.e. L_{S}) factors in dietary variability for the 15 fish species.

The role of sampling year was evident in most fish species suggesting that the quality and quantity of the food resource can significantly vary between years in Lake Balaton. This finding is in accordance with the results of previous studies on the temporal dynamics of several invertebrate groups, including zooplankton (G.-Tóth et al., 2011), benthic chironomids (Specziár \& Vörös, 2001), littoral molluscs (Balogh et al., 2008) and amphipods (Muskó et al., 2007).

Season and lake basin accounted for $>3 \%$ of the dietary variability only for A. alburnus and P. cultratus, both of which are offshore living, non-benthic planktivores. These species consume mainly zooplankton and periodically the swarming imagos of chironomids. Availability of chironomid imagos, in turn, varies primarily between seasons and basins (Specziár \& Vörös, 2001; Specziár, 2008). In shared effect with predator L_{S}, lake basin also influenced the diet of A. aspius and L. gibbosus, indicating that the response of these species to the trophic gradient (i.e. between basins) was size-dependent. While, considerable joint
effect of L_{S} and temporal factors suggested some size-dependent temporal variability in the diet ontogeny of S. lucioperca, A. aspius and common bream Abramis brama.

It is interesting that the habitat itself affected only weakly the diet composition of most fish species, given that there are numerous examples that show how between habitat differences in food resource can significantly influence the diet of fishes (e.g. Mittelbach et al., 1992; Vinni et al., 2000; Svanbäck \& Eklöv, 2002). For example, Platell et al. (2007) found that in yellowfin seabream Acanthopagrus latus dietary differences were related more to the habitat than to the season and fish size. In Lake Balaton, both the diversity and the abundance of potential food resources vary significantly among habitats. This difference is most pronounced between the offshore and the littoral areas, the former characterised by highly homogeneous planktonic (G.-Tóth et al., 2011) and benthic chironomid (Specziár \& Vörös, 2001) food resources, whereas the four littoral habitats (i.e. macrophyte-free inshore zone, reed grass stand, riprap and boat harbour) with more abundant and diverse food resources including also molluscs, amphipods, isopods and macrophytes (Muskó, 1990; Specziár \& Bíró, 1998; Muskó et al., 2007; Balogh et al., 2008). In Lake Balaton, the highest habitat effect was found in S. lucioperca. Juveniles of S. lucioperca fed on different food resource in the offshore (dominantly Leptodora kindtii) than in the littoral zone (dominantly Limnomysis benedeni). Previous studies showed that the diet of five abundant cyprinids (i.e. roach Rutilus rutilus, A. brama, white bream Blicca bjoerkna, gibel Carassius gibelio and common carp Cyprinus carpio) differed between the main habitats of the littoral zone in Lake Balaton (Specziár et al., 1998; Specziár, 1999). Why the habitat seemed to be relatively unimportant in the present study could be explained by at least three reasons. Most fish species did not occur in all habitats sampled (Table 1), and their habitat choice likely included a filtering for available food resources as well. Therefore, species-specific habitat use resulted in some overlap (i.e. shared effect) between the dietary variance related to taxonomic and
habitat factors. Second, in some fish species ontogenetic diet shift is coupled with a habitat shift that could result in a shared effect between the L_{S} and the habitat factors. Third, the relatively weak effect of the habitat may also suggest that the investigated fishes have highly similar ranges of food preferences and feeding strategies over their habitats at both the species and the individual levels.

As showed above, a significant amount of the explained variance could be related to two or more explanatory factors. Overall, the relatively high importance of shared factor effects in the dietary variability indicated the presence of complex processes, such as species- and sizespecific habitat choice, seasonality of the presence of the earliest life stages, coupled ontogenetic diet and habitat shifts, between habitats differences in the diet ontogeny and likely several other phenomenon which are hard to disentangle based purely on field observations.

Unexplained variation in the diet composition data was high at both the assemblage and the species levels suggesting that unmeasured factors also contributed to the observed patterns. Explainable variance was similarly low in individual diet data of Northeast Arctic Greenland halibut, Reinhardtius hippoglossoides (Walbaum) (Hovde et al., 2002) and in Celtic Sea fish predators (Chassot et al., 2008), but bit higher in the fish assemblage of a tropical Australian river (Pusey et al., 2010). In field datasets, it is usual that a large proportion of the variation remains unexplained due to the presence of unidentified effects and/or factors (including stochastic) which are hard to quantify. In this case, for example, within season changes were not discriminated. Further, the present study concentrated on factors affecting dietary variability primarily at the group level (i.e. species, species size groups or guilds), while individual level effects were not (practically, could not be) discriminated. The importance of individual feeding strategies has been recognized in many animal taxa including fish (Bolnick et al., 2003; Quevedo et al., 2009; Smith et al, 2011).

Considering the high proportion of the unexplained variation in the diet data, it is likely that individual level processes could be important in the present study as well.

Heterogeneous (patchy) food resource (Luo et al., 1996; Lehtiniemi et al., 2007) and/or temporal search image (Werner et al., 1981) may result in temporal individual specialization in fishes. For example, observations of Specziár (1999) showed that there is a marked duality in the feeding strategy of individual R. rutilus, especially in the littoral zone, where they exhibited short-term specialization either for molluscs or filamentous algae. Temporality of this specialization could be proved by that in some individuals the first part of the gut contained only one, while the second part of the gut only the other of the above food items. Temporal individual specialization is sometimes highly stochastic; the diet of individual fish foraging for unevenly distributing food resource is strongly influenced by the stochastic order different food items are encountered (Luo et al., 1996; Lehtiniemi et al., 2007). Similarly, water turbidity in shallow Lake Balaton changes stochastically in space and time (Herodek et al., 1988) that contributes to variability of prey encounter rate, and therefore, the prey selectivity of fishes (Shoup \& Wahl, 2009; Carter et al., 2010).

Another type of individual specialization is when individuals of a species persistently differ in their feeding strategy due to consistence in phenotypic and behavioural variability (Bolnick et al, 2003; Quevedo et al., 2009; Reid et al., 2010; Kim et al., 2012). For example, persistence individual differences can be observed in $0+S$. lucioperca. This fish species may reveal an ontogenetic shift during the first growing season from zooplankton either to macroinvertebrates (i.e. L. kindtii in the offshore and L. benedeni in the inshore habitats) or straight to fish prey (Specziár, 2005). Such individual deviations in the timing of ontogenetic diet switching were described for other species as well (Post, 2003).

The present study showed that due to the high intraspecific dietary variation the total dietary niche ranges of the 15 fish species considerably overlapped in Lake Balaton. This
finding supports recent arguments that modelling of population level processes should consider individual level variation of organism functioning (Bolnick et al., 2003). However, the effects of short-term (including stochastic processes) and persistence individual differences in the feeding strategy, unfortunately, cannot really be separated in large-scale field studies, and can only be limitedly addressed by stable isotopic analysis, specific experiments and modelling. High individual variability in resource use should have a significant effect on intra- and interspecific resource partitioning and also on individual level growth rate and survival of fish that, in turn, influence population and community level processes. Moreover, high individual variability and wide niche breath at the population level support the adaptive generalization in the investigated fishes (Bolnick et al, 2003). Future studies should thus concentrate on quantifying the importance of individual level variations on the population's niche breath and total dietary variability, and their influence on population and community level interactions.

One would suppose some regularity in how the relative role of different factors influencing dietary variability change between fish species, but the present study could not identify any general pattern. CA and PCA did not show any consequent grouping of fish species neither based on their taxonomic relationships nor on their feeding mode, maximum size or any evident ecological traits. Since most species belong to more than one feeding guilds during their life-span (Specziár \& Rezsu, 2009), it is likely that such patterns, if exist, might be organized rather based on species size groups than on species. Moreover, since most fish species show high plasticity in their resource use, these patterns probably also vary between habitats and in time.

Similarly to the findings of Chassot et al. (2008), we showed that data resolution influenced the amount of the dietary variability detected. Both the total variation identified and the proportion of variation explained differed between the high and low resolution diet
composition data. Lower detected variability indicates that food resource use of fishes is relatively stable at the level of broad compared to fine resource categories. Results also suggest that individual feeding strategies (both the short-term and the persistent variations) differentiate mainly at the fine resource scale. How the proportion of the explained variation changes with diet resolution likely also depends on the nature of the explanatory factors considered, and supposedly follows a bump shape pattern (i.e. it will be highest at a specific level of diet resolution). When the resolution of the diet categories is too low, important relationships may remain hidden. Conversely, when the precision of the diet analysis significantly exceeds the analytical limit of the sampling design, the high amount of the unexplainable variance might be confusing. It is suggested thus that the optimal level of diet resolution (i.e. taxonomic composition or size distribution) applied in particular studies should be set to the descriptive power of the explanatory variables investigated.

In conclusion, this study showed that taxonomic (i.e. between species), temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and ontogenetic factors (i.e. L_{S}) explained only a moderate part of the total dietary variability of fishes in a large and shallow lake ecosystem. Moreover, no regularity was found in how the relative roles of these factors change between fish species. Considering the high ratio of the unexplained variation, it is likely that short-term and persistence variations in individual foraging strategies and resource use of fishes and unascertained stochastic processes had a strong influence on dietary variability.

Acknowledgements We are grateful to G. Dobos for his indispensable assistance in the fieldwork and for E. T. Rezsu for processing part of the diet samples. The study was supported by grants from the Hungarian Scientific Research Fund (OTKA K 104279 and

OTKA CNK 80140). The work of T. Erős was supported by the Bolyai János fellowship of the Hungarian Academy of Sciences.

References

Adámek, Z., J. Andreji \& J. J. Gallardo, 2007. Food habits of four bottom-dwelling Gobiid species at the confluence of the Danube and Hron Rivers (South Slovakia). International Review of Hydrobiology 92: 554-563.

Baker-Dittus, A. M., 1978. Foraging patterns of three sympatric killifish. Copeia 1978: 383389.

Balogh, Cs., I. B. Muskó, L. G.-Tóth \& L. Nagy, 2008. Quantitative trends of zebra mussels in Lake Balaton (Hungary) in 2003-2005 at different water levels. Hydrobiologia 613: 57-69.

Benke, A. C., A. D. Huryn, L. A. Smock \& J. B. Wallace, 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18: 308-343.

Bergman, E., 1990. Effects of roach Rutilus rutilus on two percids, Perca fluviatilis and Gymnocephalus cernua: importance of species interactions for diet shifts. Oikos 57: 241-249.

Bíró, P., 1973. The food of pike-perch (Lucioperca lucioperca L.) in Lake Balaton. Annales Instituti Biologici (Tihany) 40: 159-183.

Bíró, P., 1974. Observations on the food of eel (Anguilla anguilla L.) in Lake Balaton. Annales Instituti Biologici (Tihany) 41: 133-152.

Bíró, P., 1997. Temporal variation in Lake Balaton and its fish populations. Ecology of Freshwater Fish 6: 196-216.

Bíró, P. \& I. B. Muskó, 1995. Population dynamics and food of bleak (Alburnus alburnus L.) in the littoral zone of Lake Balaton, Hungary. Hydrobiologia 310: 139-149.

Bíró, P., S. E. Sadek \& G. Paulovits, 1991. The food of bream (Abramis brama L.) in two basins of Lake Balaton of different trophic status. Hydrobiologia 209: 51-58.

Bolnick, D. I., R. Svanbäck, J. A. Fordyce, L. H. Yang, J. M. Davis, C. D. Hulsey \& M. L. Forister, 2003. The ecology of individuals: incidence and implications of individual specialization. The American Naturalist 161: 1-28.

Bolnick, D. I., R. Svanbäck, M. S. Araújo \& L. Persson, 2007. Comparative support for niche variation hypothesis that more generalized populations also are more heterogeneous. Proceedings of the National Academy of Sciences of the United States of America 104: 10075-10079.

Carter, M. W., D. E. Shoup, J. M. Dettmers \& D. H. Wahl, 2010. Effects of turbidity and cover on prey selectivity of adult smallmouth bass. Transactions of the American Fisheries Society 139: 353-361.

Chassot, E., T. Rouyer, V. M. Trenkel \& D. Gascuel, 2008. Investigating trophic-level variability in Celtic Sea fish predators. Journal of Fish Biology 73: 763-781.

Cushman, S. A. \& K. McGarigal, 2002. Hierarchical, multi-scale decomposition of speciesenvironment relationships. Landscape Ecology 17: 637-646.

Downes, B. J., P. S. Lake \& E. S. G. Schreiber, 1993. Spatial variation in the distribution of stream invertebrates: implications of patchiness for models of community organization. Freshwater Biology 30: 119-132.

Feyrera, F., B. Herboldb, S. A. Maternc \& P. B. Moylec, 2003. Dietary shifts in a stressed fish assemblage: Consequences of a bivalve invasion in the San Francisco Estuary. Environmental Biology of Fishes 67: 277-288.

Francis, T. B. \& D. E. Schindler, 2009. Shoreline urbanization reduces terrestrial insect subsidies to fishes in North American lakes. Oikos 118: 1872-1882.

Ginter, K., K. Kangur, A. Kangur, P. Kangur \& M. Haldna, 2012a. Diet niche relationships among predator and prey fish species in their early life stages in Lake Vörtsjärv (Estonia). Journal of Applied Ichthyology 28: 713-720.

Ginter, K., K. Kangur, A. Kangur, P. Kangur \& M. Haldna, 2012b. Shifts in prey selection and growth of juvenile pikeperch (Sander lucioperca) over half a century in a changing Lake Vörtsjärv. Open Journal of Applied Sciences 2: 168-176.

Gliwicz, Z. M., J. Slon, \& I. Szynkarczyk, 2006. Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge. Freshwater Biology 51: 823-839.

Gotelli, N. J. \& Graves, G. R. (1996). Null Models in Ecology. Smithsonian Institution Press, Washington and London.
G.-Tóth, L., L. Parpala, Cs. Balogh, I. Tátrai \& E. Baranyai, 2011. Zooplankton community response to enhanced turbulence generated by water-level decrease in Lake Balaton, the largest shallow lake in Central Europe. Limnology and Oceanography 56: 2211-2222.

Herodek, S., L. Laczkó \& Á. Virág, 1988. Lake Balaton: Research and Management. Nexus, Budapest.

Hovde, S. C., O. T. Albert \& E. M. Nilssen, 2002. Spatial, seasonal and ontogenetic variation in the diet of Northeast Arctic Greenland halibut (Reinhardtius hippoglossoides). ICES Journal of Marine Science 59: 421-437.

Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G.-Tóth \& J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia 581: 305-318.

Jaksić, F. M. \& R. G. Medel, 1990. Objective recognition of guilds: testing for statistically significant species clusters. Oecologia 82: 87-92.

Johnston, T. A. \& R. A. Cunjak, 1999. Dry mass-length relationships for benthic insects: a review with new data from Catamaran Brook, New Brunswick, Canada. Freshwater Biology 41: 653-674.

Kakareko T., J. Żbikowski \& J. Żytkowicz, 2005. Diet partitioning in summer of two syntopic neogobiids from two different habitats of the lower Vistula River, Poland. Journal Applied Ichthyology 21: 292-295.

Kawabata, K. \& J. Urabe, 1998. Length-weight relationships of eight freshwater planktonic crustacean species in Japan. Freshwater Biology 39: 199-205.

Kim, S. L., M. T. Tinker, J. A. Estes \& P. L. Koch, 2012. Ontogenetic and among-individual variation in foraging strategies of northeast Pacific white sharks based on stable isotope analysis. PLoS ONE 7: e45068.

Legendre, P., J. Oksanen \& C. J. F. ter Braak, 2011. Testing the significance of canonical axes in redundancy analysis. Methods in Ecology and Evolution 2: 269-277.

Lehtiniemi, M., T. Hakala, S. Saesmaa \& M. Viitasalo, 2007. Prey selection by the larvae of three species of littoral fishes on natural zooplankton assemblages. Aquatic Ecology 41: 85-94.

Leibold, M. A., 1995. The niche concept revisited: mechanistic models and community context. Ecology 76: 1371-1382.

Lepš, J. \& P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, New York.

Luo, J., S. B. Brandt \& M. J. Klebasko, 1996. Virtual reality of planktivores: a fish's perspective of prey size selection. Marine Ecology Progress Series 140: 271-283.

Malone, B. J. \& D. J. McQueen, 1983. Horizontal patchiness in zooplankton populations in two Ontario kettle lakes. Hydrobiologia 99: 101-124.

Mittelbach, G. G. \& L. Persson, 1998. The ontogeny of piscivory and its ecological consequences. Canadian Journal of Fisheries and Aquatic Sciences 55: 1454-1465.

Mittelbach, G. G., G. W. Osenberg, \& P. C. Wainwright, 1992. Variation in resource abundance affects diet and feeding morphology in the pumpkinseed sunfish (Lepomis gibbosus). Oecologia 90: 8-13.

Mérona, B. de \& J. Rankin-de-Mérona, 2004. Food resource partitioning in a fish community of the central Amazon floodplain. Neotropical Ichthyology 2: 75-84.

Muskó, I. B., 1990. Qualitative and quantitative relationships of Amphipoda (Crustacea) living on macrophytes in Lake Balaton (Hungary). Hydrobiologia 191: 269-274.

Muskó, I. B., Cs. Balogh, Á. P. Tóth, É. Varga \& Gy. Lakatos, 2007. Differential response of invasive malacostracan species to lake level fluctuations. Hydrobiologia 590: 65-74.

Nunn, A. D., J. P. Harvey \& I. G. Cowx, 2007. The food and feeding relationships of larval and $0+$ year juvenile fishes in lowland rivers and connected waterbodies. I. Ontogenetic shifts and interspecific diet similarity. Journal of Fish Biology 70: 726-742.

Nunn, A. D., L. H. Tewson \& I. G. Cowx, 2012. The foraging ecology of larval and juvenile fishes. Reviews in Fish Biology and Fisheries 22: 377-408.

Persson, L., 1988. Asymmetries in competitive and predatory interactions in fish populations. In Ebenman, B. \& L. Persson (eds), Size-structured Populations: Ecology and Evolution Springer-Verlag, Berlin: 203-218.

Piet, G. J., J. S. Pet, W. A. H. P. Guruge, J. Vijverberg \& W. L. T. Van Densen, 1999. Resource partitioning along three niche dimensions in a size-structured tropical fish assemblage. Canadian Journal of Fisheries and Aquatic Sciences 56: 1241-1254.

Platell, M. E., H. P. Ang, S. A. Hesp \& I. C. Potter, 2007. Comparisons between the influences of habitat, body size and season on the dietary composition of the sparid Acanthopagrus latus in a large marine embayment. Estuarine, Costal and Shelf Science 72: 626-634.

Podani, J., 2000. Introduction to the exploration of multivariate biological data. Backhuys, Leiden, The Netherlands.

Post, D. M., 2003. Individual variation in the timing of ontogenetic niche shifts in largemouth bass. Ecology 84: 1298-1310.

Power, M. E., 1990. Effects of fish in river food webs. Science 250: 811-814.
Pusey, B. J., A. H. Arthington, B. Stewart-Koster, M. J. Kennard \& M. G. Read, 2010. Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australian river. Journal of Fish Biology 77: 731-753.

Quevedo, M., R. Svanbäck \& P. Eklöv, 2009. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90: 2263-2274.

Reid, A. L., F. Seebacher \& A. J. W. Ward, 2010. Learning to hunt: the role of experience in predator success. Behaviour 147: 223-233.

Rezsu, E. \& A. Specziár, 2006. Ontogenetic diet profiles and size-dependent diet partitioning of ruffe Gymnocephalus cernuus, perch Perca fluviatilis and pumpkinseed Lepomis gibbosus in Lake Balaton. Ecology of Freshwater Fish 15: 339-349.

Ritchie, M. E., 1998. Scale-dependent foraging and patch choice in fractal environments. Evolutionary Ecology 12: 309-330.

Shoup, D. E. \& D. H. Wahl, 2009. The effects of turbidity on prey selection by piscivorous largemouth bass. Transactions of the American Fisheries Society 138: 1018-1027.

Simonian, A., I. Tátrai, P. Bíró, G. Paulovits, L. G.-Tóth \& Gy. Lakatos, 1995. Biomass of planctonic crustaceans and the food of young cyprinids in the littoral zone of Lake Balaton. Hydrobiologia 303: 39-48.

Smith, J. A., L. J. Baumgartner, I. M. Suthers \& M. D. Taylor, 2011. Generalist niche, specialist strategy: the diet of an Australian percichthyid. Journal of Fish Biology 78: 1183-1199.

Specziár, A., 1999. Food habits and feeding strategy of five cyprinids in the main habitats of Lake Balaton. Halászat 92: 124-132 (in Hungarian with an English summary).

Specziár, A., 2005. First year ontogenetic diet patterns in two coexisting Sander species, S. lucioperca and S. volgensis, in Lake Balaton. Hydrobiologia 549: 115-130.

Specziár, A., 2008. Life history patterns of Procladius choreus, Tanypus punctipennis and Chironomus balatonicus in Lake Balaton. Annales de Limnologie - International Journal of Limnology 44: 181-188.

Specziár, A., 2011. Size-dependent prey selection in piscivorous pikeperch Sander lucioperca and Volga pikeperch S. volgensis shaped by bimodal prey size distribution. Journal of Fish Biology 79: 1895-1917.

Specziár, A. \& P. Bíró, 1998. Spatial distribution and short-term changes of benthic macrofauna in Lake Balaton (Hungary). Hydrobiologia 389: 203-216.

Specziár, A. \& P. Bíró, 2003. Population structure and feeding characteristics of Volga pikeperch, Sander volgensis (Pisces, Percidae), in Lake Balaton. Hydrobiologia 506509: 503-510.

Specziár, A. \& E. Rezsu, 2009. Feeding guilds and food resource partitioning in a lake fish assemblage: an ontogenetic approach. Journal of Fish Biology 75: 247-267.

Specziár, A. \& L. Vörös, 2001. Long term dynamics of Lake Balaton's chironomid fauna and its dependence on the phytoplankton production. Archiv für Hydrobiologie 152: 119142.

Specziár, A., L. Tölg \& P. Bíró, 1997. Feeding strategy and growth of cyprinids in the littoral zone of Lake Balaton. Journal of Fish Biology 51: 1109-1124.

Specziár, A., P. Bíró \& L. Tölg, (1998). Feeding and competition of five cyprinid fishes in different habitats of the Lake Balaton littoral zone, Hungary. Italian Journal of Zoology 65 (Suppl.): 331-336.

Specziár, A., T. Erős, Á. I. György, I. Tátrai \& P. Bíró, 2009. A comparison between the Nordic gillnet and whole water column gillnet for characterizing fish assemblages in the shallow Lake Balaton. Annales de Limnologie - International Journal of Limnology 45: 171-180.

Specziár, A., Á. I. György \& T. Erős, 2013. Within-lake distribution patterns of fish assemblages: the relative roles of spatial, temporal and random environmental factors in assessing fish assemblages using gillnets in a large and shallow temperate lake. Journal of Fish Biology 82: 840-855.

Svanbäck, R. \& P. Eklöv, 2002. Effects of habitat and food resource on morphology and ontogenetic growth trajectories in perch. Oecologia 131: 61-70.
ter Braak, C. J. F. \& P. Šmilauer, 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York.

Vinni, M., J. Horppila, M. Olin, J. Ruuhijärvi \& K. Nyberg, 2000. The food, growth and abundance of five co-existing cyprinids in lake basins of different morphometry and water quality. Aquatic Ecology 34: 421-431.

Vuille, T., 1991. Abundance, standing crop and production of microcrustacean populations (Cladocera, Copepoda) in the littoral zone of Lake Biel, Switzerland. Archiv für Hydrobiologie 123: 165-185.

Warburton, K., S. Retif \& D. Hume, 1998. Generalists as sequential specialists: diets and prey switching in juvenile silver perch. Environmental Biology of Fishes 51: 445-454.

Warton, D. I. \& F. K. C. Hui, 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3-10.

Werner, E. E. \& J. F. Gilliam, 1984. The ontogenetic niche and species interactions in sizestructured populations. Annual Reviews of Ecology and Systematics 15: 393-425.

Werner, E. E., G. G. Mittelbach \& D. J. Hall, 1981. The role of foraging profitability and experience in habitat use of the bluegill sunfish. Ecology 62: 116-125.

Whittaker, R. H., S. A. Levin \& R. B. Root, 1973. Niche, habitat, and ecotope. The American Naturalist 107: 321-338.

Table 1 List of species, their ontogenetic food resource and habitat use, number of stomachs or guts with food analysed (n) and explanatory
variables and their ranges investigated

	Investigated ranges of the explanatory variables							
	Ontogenetic guild memberships*	Ontogenetic habitat use (juvenile/adult)	n	Year	Season	Lake basin	Habitat	L_{S} range (mm)
Assemblage level	I-XI	all/all	8756	1995-2007	spring, summer, autumn	$\mathrm{K}, \mathrm{Z}, \mathrm{~S}$	reed, riprap, harbour, inshore, offshore	4-750
Species level								
Cyprinidae								
Alburnus alburnus	I	all/all	364	2005-2007	spring, summer, autumn	K, Z, S	inshore, offshore	7-129
Aspius aspius	I, XI, VII, VIII	littoral/all	311	1997, 2002-2007	spring, summer, autumn	K, Z, S	reed, harbour, inshore, offshore	8-530
Abramis brama	I, VI	offshore/all	831	$\begin{aligned} & 1995-2000,2002, \\ & 2004,2005 \end{aligned}$	spring, summer, autumn	K, Z, S	reed, riprap, inshore, offshore	8-345
Blicca bjoerkna	I, II, V	littoral/littoral, rarely offshore	602	$\begin{aligned} & \text { 1995-1998, 2004- } \\ & 2007 \end{aligned}$	spring, summer, autumn	K, Z, S	reed, inshore, offshore	7-269
Cyprinus carpio	V	littoral/littoral, rarely	361	1995-1998, 2004-	spring, summer,	K, Z, S	reed, harbour,	155-680

		offshore		2006	autumn		inshore, offshore	
Carassius gibelio	III	littoral/littoral, rarely	514	1995-1998, 2000,	spring, summer,	K, Z, S	reed, harbour,	22-349
		offshore		2003-2006	autumn		inshore, offshore	
Pelecus cultratus	X, VII	offshore/offshore,	261	1997-1998, 2003,	spring, summer,	K, Z, S	inshore, offshore	105-336
		rarely inshore		2006-2007	autumn			
Rutilus rutilus	I, II, III, V	littoral/all	772	1995-2000, 2004-	spring, summer,	K, Z, S	reed, riprap,	6-282
				2006	autumn		harbour, inshore,	
							offshore	
Scardinius	I, IV	reed, harbour/reed,	413	2004-2006	spring, summer,	K, Z, S	reed, harbour	16-260
erythrophthalmus		harbour			autumn			
Centrarchidae								
Lepomis gibbosus	I, IX, X	$L_{\mathrm{S}} \leq 15 \mathrm{~mm}$	463	2002-2004, 2006	spring, summer, autumn	K, S	harbour, offshore	7-172
		offshore $/ L_{\mathrm{S}}>15 \mathrm{~mm}$						
		reed, harbour						
Percidae								
Gymnocephalus	I, VI	all/all	718	1998, 2001-2002,	spring, summer,	K, Z, S	inshore, offshore	4-115
cernuus				2004, 2006	autumn			
Perca fluviatilis	I, IX, X	reed, harbour/reed,	274	2001-2002, 2004,	spring, summer,	K, S	reed, harbour	15-225
		harbour		2006-2007	autumn			

1453	$1999-2007$
1018	$1997-2002,2004$
	2007

spring, summer, $\quad K, Z, S$
reed, harbour,
6-750
autumn

Sander volgensis
I, VIII
mainly offshore/
mainly inshore
2007
autumn
Gobiidae
Neogobius fluviatilis VI
littoral/littoral
401 2003-2007
spring, summer, K, S riprap, inshore 6-127
autumn
*Main resources utilized by ontogenetic guilds identified by Specziár \& Rezsu (2009) are as follows: I, zooplankton; II, cladocerans, benthic chironomids and other invertebrates; III, detritus and diatoms; IV, macrophytes and filamentous algae; V, molluscs; VI, benthic chironomids; VII, fishes, Leptodora kindtii and Limnomysis benedeni; VII, fishes; IX, non-benthic chironomids and crustaceans; X, Dikerogammarus spp.; XI, imagos of chironomids.
L_{S}, standard length of fish; littoral, all littoral habitats including inshore macrophyte-free area, reed-grass stands, ripraps and boat-harbours; inshore, inshore macrophyte-free area; K, Keszthely-basin; Z, Zánka-basin; S, Siófok-basin.

Table 2 Results of the canonical correspondence analyses describing the relationship between the diet compositions of fishes and forward
selected, significant (at $P<0.05$) explanatory variables in Lake Balaton, for high and low resolution diet data

Species level

Alburnus	4.4	7	7	17.7	8.6	49	2492	<0.001	1.8	3	6	17.7	9.9	18	1071	<0.001
alburnus																
Aspius aspius	4.7	7	6	30.6	16.7	42	2128	<0.001	3.3	5	6	42.3	27.8	30	1520	<0.001
Abramis brama	5.8	15	13	18.3	10.5	195	12255	<0.001	2.8	6	10	20.6	15.9	60	4920	<0.001
Blicca bjoerkna	9.0	15	11	18.3	6.1	165	8850	<0.001	5.2	8	11	21.1	7.3	88	4720	<0.001
Cyprinus carpio	5.1	14	10	13.7	7.5	140	4900	<0.001	3.7	8	8	14.3	4.6	64	2816	<0.001
Carassius gibelio	6.3	13	14	21.2	6.2	182	6487	<0.001	2.9	6	12	25.0	9.0	72	3006	<0.001
Pelecus cultratus	6.1	8	9	25.4	5.7	72	2008	<0.001	2.8	4	7	29.9	9.3	28	1012	<0.001
Rutilus rutilus	13.5	17	13	18.2	9.7	221	12886	<0.001	4.4	6	14	28.4	16.0	84	4542	<0.001

Scardinius	6.5	12	7	16.2	6.5	84	4860	<0.001	3.2	5	3	14.8	19.2	15	2045	<0.001
erythrophthalmus																
Lepomis gibbosus	9.1	15	8	21.3	11.9	120	6810	<0.001	2.8	5	4	36.6	51.4	20	2290	<0.001
Gymnocephalus	4.8	8	6	18.6	11.0	48	5688	<0.001	1.6	3	5	42.8	83.1	15	2136	<0.001
cernuиs																
Perca fluviatilis	6.4	10	6	17.8	7.5	60	2670	<0.001	1.7	3	5	28.9	16.8	15	804	<0.001
Sander	6.2	9	13	30.3	32.7	117	12951	<0.001	2.7	4	14	54.8	84.5	56	5752	<0.001
lucioperca																
Sander volgensis	6.1	10	13	21.6	17.5	130	10040	<0.001	2.9	5	12	39.3	44.5	60	5025	<0.001
Neogobius	8.4	12	6	13.3	8.8	72	4728	<0.001	3.5	5	6	22.5	16.7	30	1970	<0.001
fluviatilis																

level data
d.f.num., degrees of freedom of the numerator; d.f.den, degrees of freedom of the denominator. Note, that CANACO version 4.5 software do not list degrees of freedom data, these were calculated independently according to Legendre et al. (2011).

* denotes significant differences between species level eigen values and explained variation proportions between the high and the low diet resolution data according to the Student t-test at $P<0.05$.

Figure captions

Fig. 1 Distribution of sampling sites in Lake Balaton, Hungary. O, offshore sites; O, inshore macrophyte-free sites; Δ, reed-grass stands; \square boat harbours and ripraps

Fig. 2 Result of the variation partitioning of the influence of taxonomic, temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and ontogenetic (i.e. standard length, L_{S}) factors on the diet of fishes at the assemblage level (i.e. all 15 fish species examined together) in Lake Balaton, Hungary, at high (a) and low (b) diet resolution. The area of each rectangular cell is proportional to the variance accounted for by that component. The total explained variance proportion was 20.8% for the high and 36.9% for the low diet resolution data. Note that variance partitions $<0.5 \%$ are not specified on the figure.

Fig. 3 Result of the variation partitioning of the influence of temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and ontogenetic (i.e. standard length, L_{S}) factors on the diet of 15 fish species in Lake Balaton, Hungary, at high (a) and low (b) diet resolution. \square, year; 盛, season; \square, year \times season (shared effect); \square, basin; 园, habitat; \square, basin \times habitat; \square, size (i.e. L_{S}); \square, temporal \times spatial; \square, temporal \times size; \square, spatial \times size; $\boldsymbol{\square}$, temporal \times spatial \times size

Fig. 4 Unweighted-pair-group clustering of 15 fish species based on the importance of temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and size (i.e. L_{S}) related factors in their dietary variability at high diet resolution in Lake Balaton, Hungary. Broken line at 53.3\% distance indicates the existence of seven clusters at $P<$
$0 \cdot 05$ probability level based on the bootstrap method of Jaksić \& Medel (1990). Explanatory variable groups separating the particular dendogram branch are indicated

Fig. 5 Principal component (PC) analysis plots of 15 fish species based on the importance of temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and size (i.e. L_{S}) related factors in their dietary variability in Lake Balaton, Hungary, at high diet resolution along PC 1 and PC 2 (a) and PC 1 and PC 3 (b). Score of each fish species is indicated by a pictogram (explained in the down right corner of the figure) showing the pure (dark grey) and shared (light grey) influences of year, season, lake basin, habitat and L_{S} on dietary variability. Percentage variances represented by PCs are shown in parentheses after the axis name. Arrows indicate the characteristic gradients represented by the axes based on the significant $(P<0.05)$ factor correlations $(r$; given in parentheses)

Fig. 6 Unweighted-pair-group clustering of 15 fish species based on the importance of temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and size (i.e. L_{S}) related factors in their dietary variability at low diet resolution in Lake Balaton, Hungary. Broken line at 28.4% distance indicates the existence of 10 clusters at $P<$ $0 \cdot 05$ probability level based on the bootstrap method of Jaksić \& Medel (1990). Explanatory variable groups separating the particular dendogram branch are indicated

Fig. 7 Principal component (PC) analysis plots of 15 fish species based on the importance of temporal (i.e. year and season), spatial (i.e. lake basin and habitat) and size (i.e. L_{S}) related factors in their dietary variability in Lake Balaton, Hungary, at low diet resolution along PC 1 and PC 2 (a) and PC 1 and PC 3 (b). Score of each fish species is
indicated by a pictogram (explained in the down right corner of the figure) showing the pure (dark grey) and shared (light grey) influences of year, season, lake basin, habitat and L_{S} on dietary variability. Percentage variances represented by PCs are shown in parentheses after the axis name. Arrows indicate the characteristic gradients represented by the axes based on the significant $(P<0.05)$ factor correlations (r; given in parentheses)

a)

Unexplained: 79.2\%
b)

