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Abstract. We examine the minimal magnitude of perturbations necessary to
change the number N of static equilibrium points of a convex solid K. We

call the normalized volume of the minimally necessary truncation robustness

and we seek shapes with maximal robustness for fixed values of N . While the
upward robustness (referring to the increase of N) of smooth, homogeneous

convex solids is known to be zero, little is known about their downward ro-

bustness. The difficulty of the latter problem is related to the coupling (via
integrals) between the geometry of the hull bdK and the location of the center

of gravity G. Here we first investigate two simpler, decoupled problems by ex-
amining truncations of bdK with G fixed, and displacements of G with bdK

fixed, leading to the concept of external and internal robustness, respectively.

In dimension 2, we find that for any fixed number N = 2S, the convex solids
with both maximal external and maximal internal robustness are regular S-

gons. Based on this result we conjecture that regular polygons have maximal

downward robustness also in the original, coupled problem. We also show
that in the decoupled problems, 3-dimensional regular polyhedra have maxi-

mal internal robustness, however, only under additional constraints. Finally,

we prove results for the full problem in case of 3 dimensional solids. These
results appear to explain why monostatic pebbles (with either one stable, or

one unstable point of equilibrium) are found so rarely in Nature.

1. Introduction

Ever since the work of Archimedes [1], the study of equilibrium points of a convex
solid, with respect to its center of gravity G has been a fundamental question of
statics. The number N of equilibria is characteristic of the shape, it has been
applied to classify turtle shells [14] and beach pebbles [12]. These classifications
are based on the number and type of equilibrium points of a convex, homogeneous
solid; in 2 dimensions we have S stable and S = U unstable points, and it was
shown [11] that any equilibrium class {S} is non-empty if S > 1. In 3 dimensions
we have, in addition to the previous two types of equilibria, H saddle points; based
on the Poincaré-Hopf Theorem [2] we have S + U −H = 2. It is known [24] that
equilibrium classes {S,U} are non-empty for any S,U > 0. It is a natural question
to ask how difficult it is to change the equilibrium class of a convex solid; we call
this property robustness, and our aim is to introduce possible approaches to this
concept. The notion of robustness is physically motivated by erosion processes [3],
where small amounts of material are being abraded by collisions [13],[22],[17] and
friction [8].
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The full mathematical problem can be defined by asking for the minimal nor-
malized volume of a truncation of a convex, homogeneous solid K, under which N
will change; we call this scaled volume the robustness of K and denote it by ρ(K).
(To avoid confusion, we sometimes will refer to this quantity as the full robustness.)
Depending on the sign of the change, we may define upward and downward robust-
ness. A recent result [10] shows that the upward robustness of generic, smooth
convex bodies (i.e. convex Morse functions on the sphere, cf. [18]) is zero. This
phenomenon is related to the existence of additional numbers of equilibria on finely
discretized curves and surfaces [9] and is also distantly related to Zamfirescu’s result
[25] on the existence of infinitely many equilibria on the boundary of a typical (and
thus neither smooth nor polyhedral) convex body. Nevertheless, the downward
robustness (i.e. the relative volume of the smallest trunction of a smooth convex
body decreasing N) is apparently not zero. We call the supremum of the downward
robustness in any equilibrium class the robustness of the equilibrium class and de-
note it by ρS and ρS,U in 2 and 3 dimensions, respectively. Finding the robustness
of an arbitrary equilibrium class appears to be a nontrivial problem. Beyond being
mathematically challenging, it also looks rather interesting from the point of view
of natural abrasion processes. Our goal in this paper is to deliver some partial
results which may serve as a basis for the intuition about the solution of the full
problem.

The main difficulty of the latter lies in the nontrivial coupling via integrals be-
tween the hull bdK and the center of gravity G. In the first part of this paper we
solve two simpler, decoupled problems. In the first case we seek internal robust-
ness, defined as the minimal (normalized) distance necessary to move G at fixed
bdK leading to a change in N . The concept of internal robustness is phyiscally
motivated by material inhomogeneities. From the mathematical point of view, this
problem is closely related to the geometry of caustics [19], and has attracted re-
cent interest in the context of inhomogeneous polyhedra (cf. [6] and [16]). Here
we do not distinguish between upward/downward robustness, rather we compute
their minimum. The other decoupled problem leads to the concept of external ro-
bustness, defined as the minimal (scaled) truncation of K at fixed G, leading to
a change in N . Similarly to the full problem, (in fact, as a consequence of the
same theorem [10]) here again the upward robustness is zero. We show that in the
plane, both decoupled problems lead to the same result: for any fixed N = 2S, the
convex shapes with maximal internal or external (downward) robustness are reg-
ular S-gons, thus we determine the internal and external robustness for all planar
equilibrium classes. This result suggests that regular polygons may have maximal
robustness in the original, full problem as well. In the case of internal robustness,
we show also that platonic solids have maximal robustness, however, only under an
additional constraint. After exploring the decoupled problems we investigate the
full (downward) robustness of some selected equilibrium classes in 3 dimensions, in
particular, we show that if S,U < 3 then ρS,U = 1. We also explore the partial
robustness of convex 3D solids, measuring the difficulty to either reduce S or U .
Our results offer one plausible explanation to the geological puzzle, why monostatic
pebbles (with either S = 1 or U = 1) are found so extremely rarely in Nature.

After introducing basic notions and notations in Section 2, we investigate exter-
nal and internal robustness in the plane in Sections 3 and 4, respectively. Subse-
quently, we discuss internal robustness in the 3-dimensional space in Section 5 and
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explore the robustness of some selected equilibrium classes in Section 6. Finally, in
Section 7 we make additional remarks about smoothness and structural stability
and use the previous results to formulate conjectures about the full (downward)
robustness of equilibrium classes in 3 dimensions.

2. Basic notations

In this paper, we deal with convex bodies in the Euclidean spaces R2 and R3,
of dimension 2 or 3, respectively, where, by a convex body, we mean a compact
convex set with nonempty interior. For a point p, we let |p| be the Euclidean norm
of p, and denote the Euclidean unit ball of the ambient space by B.

We distinguish three subclasses of convex bodies: by Pn, On and Kn, we denote
the families of n-dimensional convex polytopes, convex bodies with smooth (C∞-
class) boundary, and convex bodies with piecewise smooth boundary, respectively.

Let K ∈ K2 be a convex body, and p ∈ intK. We say that q ∈ bdK is
an equilibrium point of K with respect to p, if the line passing through q and
perpendicular to q − p, supports K. Clearly, if bdK is smooth at q, then this
condition is equivalent to saying that q is a critical point of the Euclidean distance
function z 7→ |z − p|, z ∈ bdK.

We call the equilibrium at q nondegenerate, if one of the following holds:

• if bdK is smooth at q, then the second derivative of z 7→ |z − p|, z ∈ bdK
at q is not zero,

• if bdK is not smooth at q, then both angles between p− q and one of the
two one-sided tangent half lines of bdK at q are acute.

Note that if K ∈ O2 or K ∈ P2, then this definition reduces to the usual concept
of nondegeneracy in these classes. In the case of a smooth point, we call the
nondegenerate equilibrium point q stable or unstable, if the second derivative at q
is positive or negative, respectively. In the nonsmooth case, we call the equilibrium
point unstable. The fact that the numbers of the stable and unstable equilibrium
points of any K ∈ K2 are equal if K has only nondegenerate equilibrium points,
follows from the Poincaré-Hopf Theorem (cf. [2]). These two types of points form
an alternating sequence in bdK.

These definitions can be naturally adapted to convex bodies in O3 using the Eu-
clidean distance function, (distinguishing three types of nondegenerate equilibrium
points: unstable, saddle and stable points; depending on the number of negative
eigenvalues of the Hessian) and also to convex polytopes in R3. We note that in the
latter case, unstable, saddle and stable points are vertices, relative interior points
of edges and of faces, respectively. For the definition of nondegeneracy in the piece-
wise smooth case in higher dimensions, the reader is referred to [21]. If K has only
nondegenerate equilibrium points, then the Poincaré-Hopf Theorem yields that

S −H + U = 2,

where S, H and U denote the numbers of the stable, saddle and unstable points of
the body.

Throughout the paper, we deal with bodies that have only nondegenerate equi-
librium points.
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For simplicity, we denote the family of plane convex bodies K ∈ K2, with S
stable points with respect to their centers of gravity, by {S}. For convex bodies in
O3 or in P3, we may define the class {S,U} similarly, where S and U denote the
numbers of the stable and the unstable points with respect to the center of gravity
of the body.

If K has S stable points with respect to some p ∈ intK, let F<(K, p) be the
family of (convex) subsets of K such that any K ′ ∈ F<(K, p) has strictly less than
S stable points with respect to p. We obtain a similar notion, which we denote by
F<(K), if the reference point is not fixed, but in the cases of both K and K ′ it is
the center of gravity of the corresponding body. We define the (full) robustness of
a planar convex body K ∈ K2 as follows.

Definition 1. Let K ∈ {S}. Then we define the downward robustness (or simply
robustness) of K as the quantity

ρ(K) =
min{area(K \K ′) : K ′ ∈ F<(K)}

area(K)
.

In R3, we may define ρ(K) in an analogous way. For brevity, we set ρS = sup{ρ(K) :
K ∈ {S}} and ρS,U = sup{ρ(K) : K ∈ {S,U}}.

In Section 3, our aim is to investigate robustness with the reference point fixed,
which we define below. Note that in this definition the reference point need not be
the center of gravity of the body.

Definition 2. Let K ∈ K2 and p ∈ intK. Assume that K has S stable points with
respect to p. We define the downward external robustness of K (or simply external
robustness) with respect to p as the quantity

ρex(K, p) =
min{area(K \K ′) : K ′ ∈ F<(K, p)}

area(K)
.

For simplicity, we set

ρexS = sup{ρex(K,G) : K ∈ {S}},

where G denotes the center of gravity of K. In R3, we may define ρex(K, p) and
ρexS,U in an analogous way.

In Sections 4 and 5, we examine internal robustness, which we define below.

Definition 3. Let K ∈ K2 and p ∈ intK. Assume that K has S stable points
with respect to p. Let R(K, p) ⊆ R2 denote the set of the points such that K has
S stable points with respect to any point of R(K, p). The internal robustness of K
with respect to p is

ρin(K, p) =
min {|q − p| : q /∈ R(K, p)}

perimK
,

where perimK is the perimeter of K.

Remark 1. By compactness, it is easy to see that if K has S stable points with
respect to p, then p has a neighborhood U such that with respect to any z ∈ U , K
has S stable points with respect to z. Thus, ifK has only nondegenerate equilibrium
points with respect to p, then ρin(K, p) > 0.
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Remark 2. Definition 3 does not distinguish between upward and downward ro-
bustness. If the latter are understood as the minimal distance necessary to move p
to achieve increase/decrease of N then our definition refers to their minimum.

Similarly like for full and external robustness, we set

ρinS = sup{ρin(K,G) : K ∈ {S}},

wher G is the center of gravity of K. In R3, we define ρin(K, p) and ρinS,U similarly,
by replacing perimK by the square root of the surface area surf K of the body.

We note that it is easy to show that for each S and U the infimum of ρ(K, p),
ρex(K, p) and ρin(K, p) is zero in any class {S} and {S,U}.

3. External robustness

Our main result in this section is the following.

Theorem 1. Let K ∈ K2 contain the origin in its interior, and assume that K
has S ≥ 3 stable points with respect to o. Then

ρex(K, o) ≤
tan π

S −
π
S

S tan π
S

,

with equality if, and only if K is a regular S-gon and o is its center.

In light of the notations introduced in the previous section, we may reformulate
this statement in the following way, for the special case that o is the center of
gravity of K.

Corollary 1. For any S ≥ 3, we have

ρexS =
tan π

S −
π
S

S tan π
S

,

and the planar convex bodies in {S} with maximal external robustness are the
regular S-gons.

First, we prove Lemma 1.

Lemma 1. Let Q be a convex quadrangle with vertices a, b, c, d in counterclockwise
order. Let the angles of Q at b and d be right angles, and let α ∈ (0, π) denote the
angle at a. Set r = max{|b − a|, |d − a|}, and for any plane convex body C ⊆ Q
containing [a, b] ∪ [a, d], let X(Q,C) = {z ∈ C : |z − a| ≥ r}. Then, the quantity

µ(Q,C) = area(X(Q,C))
area(C) is maximal over the convex quadrilaterals Q, with given

angles, and over plane convex bodies C ⊆ Q containing [a, b]∪ [a, d] if, and only if,
C = Q and Q is symmetric about [a, c].

Proof. It is easy to see that (if we permit Q to be a degenerate quadrangle) the
maximum of µ(Q,C) is attained for some Q and C, hence, we show that if |b−a| 6=
|d− a| or C 6= Q, then µ(Q,C) is not maximal.

Without loss of generality, let r = |b − a| ≥ |d − a|, and assume that XC 6= ∅.
Let z be the point of C with |z − a| = r and farthest from b, and let H denote the
closed half plane containing [d, z] on its boundary, and a in its interior.
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If [d, z] /∈ bdC, then we may remove a part of C \ XC , and thus increase µ.
If XC 6= (XQ ∩ H) then we may increase area(X(Q,C)), and thus, increase µ.
Consequently, it suffices to examine the case that [d, z] ⊂ bdC and X(Q,C) =
X(Q,Q) ∩H.

Consider the case that C 6= Q, which yields that z /∈ [c, d]. Let L be the line
passing through z and parallel to [c, d], and H ′ be the closed half plane bounded
by L and containing b. Let c′ and d′ denote the intersection point of L with [b, c]
and [d, a] ∪ [a, b], respectively. Set Q′ = conv{a, b, c′, d′} if d′ ∈ [d, a], and Q′ =
conv{d′, b, c′} if d′ ∈ [a, b] (cf. Figure 1). Furthermore, set C ′ = Q′ ∩H ′. Observe
that area(X(Q′, C ′)) > area(X(Q,C)) and area(C ′ \ X(Q′, C ′)) < area(C \ XC).
Thus, µ(Q,C) < µ(Q′, C ′), which yields that if µ(Q,C) is maximal, then C = Q.

Figure 1. An illustration for the proof of Lemma 1

Finally, we examine the case that C = Q and |b − a| > |d − a|. Let [a′, d′] be
defined by the properties

• a′ ∈ [a, b] and d′ ∈ [c, d],
• [a′, d′] and [a, d] are parallel, and
• |d′ − a′| = |b− a′|.

Let Q′ = C ′ = conv{a′, b, c, d′}. Observe that X(Q,C) ( X(Q′, C ′) and Q′ ( Q.
Hence, µ(Q,C) is not maximal, and the assertion readily follows. �

Proof of Theorem 1. Let the stable points of K be s1, s2, . . . , sS in counterclockwise
order in bdK. Let Ki be the closed set of points z of K such that the position
vectors si, z and si+1 are in counterclockwise order around o. For any i = 1, 2, . . . , n,
let ri = max{|si|, |si+1|} and set Xi = {z ∈ Ki : |z| > ri}.

We observe that if K ′ ⊂ K has less than S stable points with respect to o, then
for some value of i, K ′ ∩ Xi = ∅. Indeed, any such K ′ has at most S − 1 stable
points. On the other hand, if there is some point zi ∈ K ′ ∩Xi for every value of i,
then the sequence |z1| − |s1|, |s2| − |z1|, |z2| − |s2|, . . . , |s1| − |zS | alternates, which
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yields that the Euclidean distance function, defined on the points of bdC, has at
least S local minima; a contradiction. Thus, noting that o /∈ Xi for any value of i,
we obtain that

ρex(K, o) =
min{area(Xi) : i = 1, 2, . . . , S}

area(K)
.

We intend to maximize this quantity over K ∈ K2.

First, observe that if area(Xi) is not minimal for some value of i, then we may
truncate Xi and thus decrease area(K). Hence, we may assume that area(Xi) is
the same quantity for every value of i. Now, let αi = ∠(si, o, si+1).

For each i with αi < π, let K ′i = conv{xi, o, yi, wi} be the right kite such that

• xi and yi are on the half lines, starting at o, that contain si and si+1,
respectively,
• area(X ′i) = area(Xi), where X ′i = {z ∈ K ′i : |z| ≥ |si|}.

Note that by Lemma 1, we have area(Ki) ≥ area(K ′i) for every i, with equality if,
and only if Ki = K ′i.

Case 1, if αi < π for every value of i. We let K ′ =
⋃S
i=1K

′
i, x = area(X ′i), and

note that K ′ is not necessarily convex, and that area(X ′i) is independent of i.

Observe that ρex(K, o) ≤ x
area(K′) , with equality if, and only if K = K ′. Thus,

it suffices to show that x
area(K′) is maximal if, and only if K ′ is a regular S-gon,

or in other words, if αi = 2π
S for every i. Since the maximum of x

area(K′) is clearly

attained, we show only that if αi 6= αi+1 for some i, then this quantity is not
maximal.

Assume that αi 6= αi+1 for some i. Set ri = |xi| and ri+1 = |xi+1|. Then

x = r2
i

(
tan

αi
2
− αi

2

)
= r2

i+1

(
tan

αi+1

2
− αi+1

2

)
,

and

area(Ki) + area(Ki+1) = r2
i tan

αi
2

+ r2
i+1 tan

αi+1

2
.

Using the notation α = αi

2 and β = αi+1

2 , the first condition can be transformed
into the form (

ri+1

ri

)2

=
tanα− α
tanβ − β

,

which yields that

A =
area(Ki) + area(Ki+1)

x
=

tanα−α
tan β−β tanβ + tanα

tanα− α
=

tanα

tanα− α
+

tanβ

tanβ − β
.

We need only show that under the constraint that α+β is constant, A is minimal
if and only if α = β. But this indeed holds, since for the function f(α) = tanα

tanα−α ,
we have

f ′′(α) =
2 tanα(α2 − sin2 α)

cos2 α(tanα− α)3
> 0

for every α ∈
(
0, π2

)
, which yields that f is strictly convex.

Case 2, if αi ≥ π for some value of i. Observe that in this case αi ≥ π for exactly

one value of i. Let this value be S, and set
∑S−1
i=1 αi = ω ≤ π. Let K ′ = KS ∪
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i=1 K ′i

)
, and x = area(X ′i) for some i 6= S. Then ρex(K, o) ≤ x

area(K′) . Using

the argument of Case 1, we have that if x
area(K′) is maximal, then K ′1,K

′
2, . . . ,K

′
S−1

are congruent right kites, with their angles at o equal to ω
n−1 . According to our

consideration, we have area(XS) = area(X ′i) and area(KS) ≥ area(K ′i) for any
i 6= S. Thus, in this case we have

ρex(K, o) ≤
tan ω

2(S−1) −
ω

2(S−1)

S tan ω
2(S−1)

<
tan π

S −
π
S

S tan π
S

= ρex(P, o),

where P is a regular S-gon, with the origin as its center. �

From the proof of Theorem 1, one can easily deduce Corollary 2.

Corollary 2. Assume that K ∈ K2 has S stable points with respect to p ∈ intK.
Then there exists ε = ε(K) such that if K ′ ⊂ K has less than S stable points with
respect to p ∈ intK ′, and area(K \K ′)− ρex(K, p) area(K) ≤ ε, then ρex(K ′, p) ≥
ρex(K, p).

4. Internal robustness in the plane

Our main theorem is the following:

Theorem 2. For any K ∈ K2 and p ∈ intK, if K has S ≥ 3 stable points with
respect to p, then ρin(K, p) ≤ 1

2S , with equality if, and only if, K is a regular S-gon,
and p is its center.

Similarly like in Section 3, we may reformulate Theorem 2 in terms of ρinS .

Corollary 3. For any S ≥ 3, we have

ρinS =
1

2S
,

and the plane convex bodiesK ∈ {S} with maximal internal robustness with respect
to their centers of gravity are the regular S-gons.

In the proof we use Definition 4 and Lemmas 2 and 3.

Definition 4. Let F be a family of closed segments in R2, and A ⊂ R2 a set. If
for every [a, b] ∈ F there is a closed infinite strip, containing A and bounded by a
pair of parallel lines La and Lb such that a ∈ La and b ∈ Lb, then we say that A
admits a strip cover by the elements of F .

Lemma 2. Let P ⊂ R2 be an S-gon of unit perimeter. If B = q + ρB admits
a strip cover by the sides of P , then ρ ≤ 1

2S with equality if, and only if, P is a
regular S-gon, and q is its center.

Lemma 3. Let K ∈ K2 have S ≥ 3 stable points with respect to p ∈ intK. Let
P denote the convex hull of the unstable points of K. Then B = p + ρin(K, p)B
admits a strip cover by the sides of P .

First, we prove Theorem 2, and then the two lemmas.
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Proof of Theorem 2. Let K ∈ K2 be of unit perimeter and let p ∈ intK. Assume
that K has S ≥ 3 stable points with respect to p. Let P denote the convex hull
of the unstable points of K. Since P ⊂ K, perimP ≤ perimK = 1, with equality
if, and only if, P = K. Thus, applying Lemmas 2 and 3, we immediately have
ρin(K, p) ≤ 1

2S . On the other hand, if ρin(K, p) = 1
2S , then perimP = 1, and by

Lemma 2, P is a regular S-gon, and p is its center. From this, it readily follows
that P = K is a regular S-gon, and p is its center. �

Proof of Lemma 2. Observe that, for any side [a, b] of P , the width of any infinite
strip, bounded by the lines La and Lb with a ∈ La and b ∈ Lb, is at most |b−a|, and
here we have equality if, and only if La and Lb are perpendicular to [a, b]. Thus, 2ρ
is not greater than the length of a shortest side of P . Since perimP = 1, it readily
implies the inequality ρ ≤ 1

2S .

Assume that ρ = 1
2S . Then P is an equilateral S-gon, and for any side [a, b] of P ,

the strip conv(La, Lb), containing B, is perpendicular to [a, b] and is circumscribed
about B. Thus, the center q of B is on the bisector of the side. Since this holds for
the bisector of each side of P , it follows that q is the center of the circle circumscribed
about P . Note that if each vertex of an equilateral polygon lies on the same circle,
then the polygon is regular, which immediately implies the assertion. �

Proof of Lemma 3. Let K ∈ K2 be of unit diameter with S ≥ 2 stable points with
respect to the origin o. Recall that the caustic of a smooth curve (also called evolute,
cf. [7]) is the locus of the centers of curvature of the curve. It is well-known (cf.
[19]), that a plane convex body with smooth boundary has degenerate equilibria
only with respect to a point of its caustic, and that otherwise the number 2S of
the equilibria of K changes (and in this case it changes by two) if, and only if,
the reference point transversally crosses the caustic (in 3-dimensional space one of
the two caustics). We use this observation in the following, more general form:
ρin(K, o) is the largest number ρ > 0 such that

(1) ρ int B contains no center of curvature at any smooth point of bdK,
(2) ρ int B contains no point of any one-sided inner normal half line at any

nonsmooth point of bdK.

We parametrize bdK as t 7→ r(t), where t ∈ [0, 1]. For i = 1, 2, . . . , S, we denote
the stable and unstable points of K by ui = r(t′i) and si = r(ti), labelling them in
such a way that 0 < t1 < t′1 < . . . < tn < t′n < 1. Let P = conv{u1, u2, . . . , uS}.

Clearly, for every i,

(1) the tangent lines of bdK at ui = r(ti) and at si = r(t′i) are perpendicular
to the position vectors ui and si, respectively if ui is a smooth point of
bdK (note that si is a smooth point by definition), and

(2) the angle between ui and any of the two one-sided tangent lines is acute, if
ui is not a smooth point.

Thus, the angles of the triangle conv{o, , ui, ui+1} at ui and ui+1 are acute, from
which it follows that each side of P contains a stable point with respect to o.

Observe also that as bdK is piecewise smooth and K has only nondegenerate
equilibria, 〈r(t), ṙ(t)〉 < 0 at any smooth point with t ∈ (ti, t

′
i) (that is, |r(t)|

strictly increases), and it is positive at any smooth point with t ∈ (t′i, ti+1) (|r(t)|
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decreases). This observation holds also for nonsmooth points, if we replace ṙ(t) by
any of the two one-sided derivatives of r(t).

Let αi = ∠(ui, o, si), βi = ∠(si, o, ui+1) and li = |ui+1 − ui|. We distinguish
three cases.

Case 1, αi <
π
2 and βi <

π
2 .

For simplicity, we imagine the segment [ui, ui+1] as ‘horizontal’, and assume that
o is ‘below’ this segment (cf. Figure 2). Let L and L′ denote the two lines, parallel
to [o, si], that pass through the points ui and ui+1, respectively. Let B and B′

be the closed disks, with o as their centers, that touch L and L′, respectively. We
show that both disks contain a center of curvature, or intersect a one-sided inner
normal half line at a nonsmooth point of the arc r([ti, ti+1]). This clearly implies
that ρin(K, o)B is contained in a strip between two parallel lines passing through
ui and ui+1, respectively.

Figure 2. The region in Case 1 of the proof of Lemma 3

We show only that B contains a point of the caustic or a one-sided inner normal
half line, as for B′ we may repeat the same argument.

First, note that if ui is not a smooth point of bdK, then the right-sided inner
normal half line at ui intersects B. Thus, we may assume that ui is a smooth point
of bdK.

Let w denote the tangent point of B on L. Observe that since αi <
π
2 , ui is

upwards from w. Let D denote the region, containing ri, that is bounded by the
union of the following arcs:

• the closed half line in L, emanating from ui and containing w;
• the points r(t) with t ∈ [ti, t

′
i];

• the segment [o, si];
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• the closed half ray in the line containing [o, ui], starting at o and not con-
taining ui.

This region is shown as a dotted domain in Figure 2.

Let Rt denote the inner normal half line of gi = r([ti, t
′
i]) at r(t), if it exists. Since

〈r(t), ṙ(t)〉 < 0 for every t ∈ (ti, t
′
i), we have that in this interval Rt ∩ [o, si] = ∅.

Thus, Rt ⊂ D for every t ∈ [ti, t
′
i]. Thus, the assertion readily follows if gi contains

a nonsmooth point.

Now, consider the case that gi is a smooth curve, and let qi and ri denote the
centers of curvature at ui and si, respectively. Observe that qi ∈ relint[ui, o] and
o ∈ relint[si, ri]. Furthermore, we have qi ∈ B, or ri ∈ B, or that qi and ri
are not in the same connected component of D \ B. Since in the first two cases
the assertion readily follows, we may assume that qi and ri are not in the same
connected component.

If the curvature of bdC is not zero at any point of gi, then, as in this case the
caustic of gi is a continuous curve in D that connects qi and ri, B contains a center
of curvature of gi. Consider the case that the curvature of gi is zero at some point.
Let t̄ ∈ [ti, t

′
i] be the smallest value such that the curvature of gi is zero at r(t̄).

Then, the caustic of r([ti, t̄)) is a continuous curve in D that connects ui to a point
in the unbounded component of D \ B, and thus, contains a point in B. This
finishes the proof in Case 1.

Case 2, αi +βi < π, but one of the two angles is at least π
2 . Let, say, αi ≥ π

2 (cf.
Figure 3), which readily implies that βi <

π
2 . Let d denote the distance of o and the

line through ui+1 and parallel to [o, si]. This distance is the length of the segment
[ui+1, y], where y is the orthogonal projection of ui+1 on the line containing [o, si].
Let x be the intersection point of [ui, ui+1] and [o, si].

Figure 3. An illustration for Case 2 of the proof of Lemma 3

Observe that by the argument in Case 1, we have that d ≥ ρin(K, o). On the
other hand, ρin(K, o) ≤ |ui|. Indeed, if ui is a smooth point of bdK, then |ui|B
contains the center of curvature at ui, and if ui is not a smooth point, then it
intersects the right-hand side inner normal half line at ui.

Consider the case that |ui+1−x| ≤ |ui−x| (cf. Figure 3). Then, since ρin(K, o) ≤
d, choosing L and L′ parallel to [o, si] and satisfying ui ∈ L, ui+1 ∈ L′, we have
that ρin(K, o)B ⊂ conv(L ∪ L′).
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Now we examine the case that |ui+1 − x| > |ui − x|. Let L and L′ be the lines
perpendicular to ui such that ui ∈ L and ui+1 ∈ L′. We show that ρin(K, o)B ⊂
conv(L ∪ L′). Let z be the intersection point of [ui, ui+1] with the line containing
o and parallel to L. Observe that since αi >

π
2 , we have z ∈ [x, ui]. Thus,

|ui+1− z| > |ui− z|, which yields that |ui|B ⊂ conv(L∪L′). Since |ui| ≥ ρin(K, o),
it readily implies that ρin(K, o) ⊂ conv(L ∪ L′).

Case 3, αi + βi ≥ π. From this condition, (using the terminology of Case 1) it
immediately follows that o is ‘not below’ the segment [ui, ui+1], and thus, o /∈ intP
(cf. Figure 4). Observe that the condition of Case 3 may hold for at most one value
of i. According to the previous cases, we have that for every j 6= i, ρin(K, o)B is
contained in a strip bounded by two parallel lines passing through uj and uj+1,
respectively. We may even observe that p is contained in the halves of these strips,
bounded by the corresponding sides of P , that overlap P .

Figure 4. An illustration for Case 3 of the proof of Lemma 3

We show that there is such a strip for [ui, ui+1] as well. Indeed, let Hi−1 denote
the half of the infinite strip, belonging to [ui−1, ui], that is bounded by [ui−1, ui]
and contains o. Define Hi+1 similarly for [ui+1, ui+2]. Let Li denote the ray in
bdHi starting at ui, and Li+1 denote the ray in bdHi+1 starting at ui+1.

If ui /∈ Hi+1, then the strip, bounded by Li+1 and its translate starting at ui,
contains Hi+1, and thus also ρin(K, o)B2. If ui+1 /∈ Hi, we may apply a similar
argument. Thus, we may assume that [ui, ui+1] ⊂ Hi ∩Hi+1 (cf. Figure 4). Let φi
and φi+1 denote the angle between Li and [ui, ui+1], and the angle between Li+1 and
[ui, ui+1], respectively. Note that since ui+1 ∈ Hi, we have φi ≤ ∠(ui−1, ui+1, ui) ≤
∠(ui+2, ui+1, ui) ≤ π

2 . We may obtain similarly that φi+1 ≤ π
2 . Hence, the strip

bounded by the lines perpendicular to [ui, ui+1] and passing through its endpoints
contains Hi ∩Hi+1, and thus, also ρin(K, o)B2. �

5. Internal robustness for 3-dimensional convex bodies

In this section we partly generalize the results of Section 4 for convex polyhedra.
Our main result is as follows:
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Theorem 3. Let P be a regular polyhedron with S faces, U vertices and H =
S + U − 2 edges, and let o be the center of P . Let P ′ be a convex polyhedron with
S faces, U vertices and H edges, each containing an equilibrium point with respect
to some q ∈ intP ′. Then

ρin(P ′, q) ≤ ρin(P, o),

with equality if, and only if P ′ is a similar copy of P , with q as its center.

Remark 3. Clearly, we do not need to require formally that the numbers of faces,
edges and vertices, stable, saddle and unstable points of P ′ are equal to the corre-
sponding quantities of P . We leave it to the reader to show that if, say, P ′ has S
stable points, U unstable points and H edges, then it has S faces, U vertices and
H saddle points.

In the proof we use the following theorem of Dowker (cf. [15]).

Theorem 4 (Dowker). Let C be a unit circle, and G be an n-gon circumscribed
about (equivalently, containing) C. Then:

• area(G) is minimal if, and only if, G is a regular n-gon circumscribed about
C,
• denoting by an the area of a regular n-gon circumscribed about C, the se-
quence {an} is strictly convex; namely, for any n−2 > k > 0, an−k+an+k >
2an.

Proof of Theorem 3. For simplicity, assume that surf(P ′) = surf(P ) = 1, and let
R denote the radius of a circle inscribed in a face of P . Furthermore, for any face
F of P ′, let rF denote the inradius of F , and let F denote the family of the faces
of P ′. Clearly, ρex(P ′, q) ≤ r = min{rF : F ∈ F}.

By Theorem 4, we have that r ≤ R, with equality if, and only if, all the faces
of P contain a stable point, and the faces of P are congruent regular polygons.
We note that since replacing an n-gon by a regular n-gon, and replacing a regular
(n − k)-gon and a regular (n + k)-gon by two regular n-gons does not change the
total number of edges, we have that, in the case that r = R, the faces of P ′ are
congruent to the faces of P as well.

On the other hand, ρin(P ′, q) = r implies also that all the lines, orthogonal to a
face and passing through its incenter, meet at q. Furthermore, if the faces F and
F ′ are joined by an edge, then, clearly, the distances of q from the centers of F
and F ′ are equal. Thus, q is at the same distance from any face, which means that
the face angles between any two faces joined by an edge are equal. From this, we
obtain that the vertex figures of P are congruent, which yields that P ′ is a regular
polyhedron. Hence, the assertion readily follows. �

The following example shows that Theorem 3 is false without the condition that
the numbers of the edges of P and P ′ are equal.

Example. Let P be a regular tetrahedron of unit surface area with center o.
Truncate P near a vertex, in such a way that does not change the numbers of the
three types of equilibria of P , and the truncated part does not intersect the incircle
of any face of P , and denote the truncated polyhedron by P ′. Then P ′ has the
same numbers of stable, saddle and unstable points with respect to any point of
int(ρin(P, o)B), but surf(P ′) < surf(P ) = 1. Thus, ρin(P ′, o) > ρin(P, o).
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6. Full robustness, and its variants, in 3 dimensions

In this section, first, we show that the full robustness of equilibrium classes
{S,U} with S,U < 3 is maximal, and then we apply our method for some other
types of robustness.

Theorem 5. We have ρ12 = ρ21 = ρ22 = 1.

We start by introducing a definition and proving some lemmas.

Definition 5. For a convex body K in R3, a bounding box of K is a brick circum-
scribed about K.

Lemma 4. If for some bounding box of a convex body K ⊂ R3 with edge lengths
a ≤ b ≤ c

• we have 6b ≤ c, then K has at least two unstable points with respect to its
center of gravity, and if

• we have 3a < b, then K has at least two stable points.

Proof. Let B be a bounding box of K with edge lengths a ≤ b ≤ c.
First, we show that the distance of the center of gravity of K from any face of

K is at least one quarter of the width of B in that direction. Consider two parallel
faces of B, say those at the distance c from each other. For simplicity, we assume
that the center of gravity of K is the origin o, and these two faces are in the planes
z = z1 > 0, and z = −z2 < 0 for some z1, z2 ∈ R with z1 + z2 = c.

Let K0 be the intersection of K with the (x, y)-plane and let p1 be a point of
K in the plane z = z1. Let C be the infinite cone with p as its apex and K0 as
its base, and let K ′ be the intersection of C with the infinite strip bounded by the
planes z = z1 and z = −z2. Then, by the definition of the center of gravity of K,
we have

0 =

∫
(x,y,z)∈K

z dx dy dz ≥
∫

(x,y,z)∈K′
z dx dy dz = z1 −

3

4
c.

From this z2 ≥ c
4 (and similarly z1 ≥ c

4 ) readily follows.

Now, assume that for the edge lengths of B we have 6a ≤ 6b ≤ c. Observe that

for any q ∈ relbdK0, we have |q| ≤ 3
4

√
a2 + b2 ≤

√
2

8 c. On the other hand, for any

point p ∈ K in z = z1 or in z = −z2, we have |p| ≥ c
4 . Since c

4 >
√

2
8 c, it means that

the Euclidean distance function has at least two local maxima, one with a positive
and one with a negative z-coordinate.

If 3a < b, then we may apply a similar argument. �

Lemma 5. There is some µ > 0 such that for any λ ∈ R, there are convex bodies
K12(λ) ∈ {1, 2}, K21(λ) ∈ {2, 1} and K22(λ) ∈ {2, 2}, and their bounding boxes
Bij(λ) with edge lengths aij(λ) ≤ bij(λ) ≤ cij(λ), where ij ∈ {12, 21, 22}, such that

• λ < c12(λ)
b12(λ) and vol(K12(λ))

vol(B12(λ)) ≥ µ,
• λ < b21(λ)

a21(λ) and vol(K21(λ))
vol(B21(λ)) ≥ µ, and

• λ < c22(λ)
b22(λ) , λ <

b21(λ)
a21(λ) and vol(K22(λ))

vol(B22(λ)) ≥ µ.
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Figure 5. Examples of convex bodies in classes {1, 2} and {2, 1}.

Proof. Figure 5 shows two convex bodies in {1, 2} and {2, 1} with bounding boxes of
edge lengths a = b = 2r and c = d+4r and a = 2r and c > b > d, respectively. The
body in {1, 2} is a suitably truncated cylinder. We construct the body in {2, 1} by
tilting two, originally coincident circular discs by a small angle. The section of the
two tilted discs with the plane containing their centers are two straight line segments
and we connect those by tangentially attached circular arcs. We remark that the
convex hull of a Dupin ‘needle’ Cyclide appears to be in the same equilibrium class.

Let K̄12(λ) and K̄21(λ) be these bodies, respectively, with some d > 2rλ. Then
the edge lengths of the given bounding boxes of the bodies satisfy the conditions
of the lemma. To obtain the bodies K12(λ) and K21(λ) with smooth boundaries,
we may apply the standard smoothing algorithm, described, for instance, in [10].

Then it is an elementary computation to show that the limits of vol(K12(λ))
vol(B12(λ)) and

vol(K21(λ))
vol(B21(λ)) are strictly greater than zero.

As K21(λ), we may simply select an ellipsoid with semi-axes a = 1, b = 2λ,
c = 4λ2. �

Now we return to proving Theorem 5.

Proof. We start with the obvious remark that if any equilibrium class {S,U} con-
tains, for every ε > 0, a convex body with downward robustness at least 1−ε, then
ρS,U = 1. Hence, using the notation of Lemma 5, we need only show that

lim
λ→∞

ρ(K12(λ)) = lim
λ→∞

ρ(K21(λ)) = lim
λ→∞

ρ(K22(λ)) = 1.

We start with the class {1, 2}. The only way to reduce the number of the equi-
librium points of K12(λ) is to truncate the body in such a way that the remaining
object is in class {1, 1}. For brevity, we let K11(λ) denote a convex body obtained
in this way by a truncation of “almost” minimal relative volume (note that a trun-
cation of minimal relative volume may yield a body with degenerate equilibrium
points). Observe that at least one bounding box of K11(λ) fits inside the bounding

box of K12(λ) described in Lemma 5. Thus, by Lemma 4 and as vol(K12(λ))
vol(B12(λ)) ≥ µ for
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every value of λ, we have

lim
λ→∞

ρ(K12(λ)) = 1− lim
λ→∞

vol(K11(λ))

vol(K12(λ))
= 1.

The argument for the class {2, 1} runs in an analogous manner.

In case of the class {2, 2}, there are three alternative ways to produce a convex
body with less than six equilibrium points: we may obtain a truncated body in one
of the classes {1, 2}, {2, 1} or {2, 2}. By Lemma 4, for any bounding box of the
truncation with edge lengths a ≤ b ≤ c, we have 6b > c or 3a ≥ b. Thus, applying
an argument similar to the one in the previous cases, we have limλ→∞ ρ(K22(λ)) =
1. �

Until this point we treated stable and unstable points in a similar manner, ro-
bustness corresponded to truncation resulting in the reduction of the number N
of equilibria, regardless of their type. It is natural, and, as we will see, also useful
to ask for partial robustness, i.e. the (relative) volume of a truncation necessary
to reduce either S or U, (the numbers of stable and unstable points, respectively,)
resulting in the notion of S-robustness and U -robustness, denoted by ρs, ρu, respec-
tively. Naturally, we have

ρ = min{ρs, ρu}.
We can define the S- and U -robustness of equilibrium classes, denoted by ρsi,j , ρ

u
i,j ,

respectively, in a natural way, and we can immediately see that

ρs1,n = ρun,1 = 1,

because it is not possible to further reduce the number of stable and unstable
equilibria in these classes. Beyond this trivial comment, with ideas very similar
to the ones in the proof of Theorem 5, it is easy to obtain one additional result
about the partial robustness of two infinite families of equilibrium classes which we
formulate in the following theorem.

Theorem 6. If n > 2 then ρs2,n = ρun,2 = 1.

Proof. Let K2n and Kn2 be a regular, planar n-gon, and a straight, infinite prism
with a regular n-gon as its base. We leave it to the reader to show for every λ > 0
the existence of the convex bodies K2n(λ) ∈ {2, n} and Kn2(λ) ∈ {n, 2} with some
bounding boxes satisfying the conditions in the first two parts of Lemma 5. These
convex bodies approach K2n and Kn2, respectively, as λ→∞. Then, to prove the
assertion, we may apply Lemma 4 and follow the idea of Theorem 5. �

Theorem 6 leads to the following Corollary.

Corollary 4. If n > 2 then ρ2,n = ρu2,n ρn,2 = ρsn,2.

7. Remarks and open problems

In this paper we investigated the robustness of a convex solid with N equilibrium
points. Beyond the original definition of ‘full’ robustness we also defined internal
and external, in the latter case also upward and downward robustness.
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7.1. Smoothness and structural stability. Before formulating conjectures and
raising questions we make some remarks about smoothness and structural stability.

Remark 4. We have examined convex bodies with piecewise C∞-class bound-
aries. Nevertheless, all our results (and proofs) can be applied also for bodies with
piecewise C2-class boundaries.

Remark 5. Let S ≥ 3. For every ε > 0, there is a δ = δ(ε, S) > 0, with
limε→0+0 δ = 0, such that if K ∈ K2 has n stable points with respect to p ∈ intK,
and ρin(K, p) > 1

2S −ε, then the Hausdorff distance of K and a regular S-gon, with
p as its centre, is less than δ.

Remark 6. Remark 5 holds also if we replace ρin(K, p) with ρex(K, p).

Remark 7. For every S ≥ 3, the maximum of ρin(K, p) over K2 can be approached
by regions with smooth boundaries as well; or in other words, 1

2S = sup{ρin(K, p) :
K ∈ O2, p ∈ intK}. To show this, it suffices to replace the boundary of a regular
S-gon near the vertices by suitable elliptic arcs. This provides a C2-class curve as
the boundary of a convex region, which, after applying a smoothing algorithm like
in [10], yields a convex region K ∈ O2, with internal robustness “almost” equal to
1

2S .

7.2. Conjectures and open questions. Since we know [11] that the first nonempty
class in the plane is {2}, trivially we have

ρ2 = 1.

Based on Theorems 1 and 2, we can formulate the next conjecture.

Conjecture 1. ρn = ρ(regular n-gon) if n > 2.

In 3 dimensions the situation is less transparent, however, there are many inter-
esting questions. As a modest generalization of Theorem 3 we propose the following.

Conjecture 2. Theorem 3 is also valid for downward external robustness, and also
for downward full robustness.

A bolder generalization of Theorem 3 refers to equilibrium classes. We call the
equilibrium classes containing platonic solids (classes {4, 4}, {6, 8}, {8, 6}, {20, 12}
and {12, 20}) briefly platonic classes. An affirmative answer for Conjecture 2 would
suggest that in the platonic classes platonic solids have maximal downward full
robustness. This we pose as an open question:

Problem 1. Prove or disprove that in the platonic classes platonic solids have
maximal downward full robustness.

So far we addressed the robustness of nine classes in R3: in Section 6 we dis-
cussed the four with indices less than 3 (Theorem 5), and here we formulated a
conjecture related to the five platonic ones. In addition, Theorem 6 and Corol-
lary 4 we addressed the S- and U -robustness of two infinite class families; here we
complement the latter results with

Conjecture 3. ρ2,n = ρn,2 = ρn.
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The underlying geometric idea is that in classes {2, n} and {n, 2} the very same
solids (described in the proof of Theorem 6) which have ‘maximal’ S- and U -
robustness, also have ‘maximal’ overall robustness. In general, one would expect
that a ‘uniform distribution’ of equilibrium points is associated with maximal ro-
bustness. If all equilibrium points were of the same type, this would resemble the
Tammes Problem [23], however, since we have different types of equilibria, this
analogy is incomplete. While our understanding of the robustness of general equi-
librium classes is rather limited, the following conjecture is strongly suggested by
Corollary 2 and is consistent with all our previous findings and conjectures:

Conjecture 4. If i ≥ k and j ≥ l then ρi,j ≤ ρk,l.

In general, it is an interesting question whether ρi,j = ρj,i. From the point of
view of applications and numerical experiments it might be of interest to study
partial robustness, measuring the difficulty of reducing separately either S or U .
For example, based on the above arguments and conjectures, we expect in classes
{2, n} the partial S-robustness to be much smaller then the partial U -robustness
and the inverse statement applies for classes {n, 2}.

Another ‘reduced’, however potentially important version of robustness can be
defined by admitting only truncations by planes (or straight lines in 2 dimensions).
This case is not only interesting because numerical experiments appear feasible
but also this is the only truncation of a convex body where both resulting objects
remain (weakly) convex. This naturally leads to the statistical study of the evolu-
tion of numbers of equilibria in a population of convex solids which are generated
by subsequent planar truncations and where both convex solids resulting from a
trucation are considered.

This idea also suggests an alternative definition of robustness. So far we consid-
ered minimal truncations changing the number of equilibria, nevertheless it is also
possible to regard the average magnitude of such truncations. While it is not clear
how to define a measure directly on the space of general convex truncations, we
can obtain a possible approximation by admitting successive truncations by (hy-
per)planes. The space of the latter is a special type affine Grassmannian manifold
with a natural measure µ, invariant under the motions of the embedding Euclidean
space (cf. [20]), and can be extended in a natural way to a measure µn on the space
of n successive planar truncations. We call a truncation nontrivial if it intersects
K and we call it neutral, if it leaves the equilibrium class invariant. Then we can
define the n-th order average robustness ρn(K) associated with a convex solid K as
the measure of the set of n, subsequent neutral truncations divided by the measure
of the set of n, subsequent nontrivial truncations. Such a concept may be useful in
computations and practical applications, also, it would be of interest to see whether
solids with maximal average robustness also have maximal (downward) robustness
in the original sense.

One possible, practical choice for visualizing average robustness is to assume
the above-mentioned natural measure on the space of truncations and then plot
the percentage of truncations resulting in a given change ∆N of the number of
equilibrium points versus the relative volume corresponding to the truncation. This
visualization admits the representation of an arbitrary convex solid of arbitrary
dimension on the unit square. The area on the unit square corresponding to neutral
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truncations (∆N = 0) could also serve as a definition of average robustness. In
Figure 6 we show this plot for the square: the lower, middle and upper regions
represent the truncations resulting in a polygon with S = 3, S = 4 and S = 5
stable points, corresponding to ∆N = −1, 0, 1, respectively.

DN=0

DN=1

DN=-1

Figure 6. Truncations of a unit square with one line.

As pointed out in the introduction, our results may help to understand natural
abrasion processes. Theorems 5 and 6 indicate that if we study the statistical
outcome of a natural abrasion process, the fraction of solids in classes {1, n}, {n, 1}
would be rather low as transition from neighbour classes {2, n}, {n, 2} is prohibited
by the maximal S- and U -robustness of the latter. Indeed, field studies [24, 12]
appear to confirm this: in coastal reagions the percentage of pebbles in classes
{1, n}, {n, 1} was found to be below 0.1%.
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[20] Santaló, L. A., Integral Geometry and Geometric Probability, Addison-Wesley, Reading, MA,

1976.

[21] Simsek, A., Ozdaglar, A. and and Acemoglu, D.,Generalized Poincaré-Hopf Theorem for
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[22] Sipos A.Á., Domokos G., Wilson A. and Hovius N. A Discrete Random Model Describing
Bedrock Erosion, Math. Geosci. 43 (2011), 583-591.

[23] Tammes P.M.L. On the origin of number and arrangement of the places of exit on pollen

grains. Diss. Groningen (1930).
[24] Várkonyi, P.L. and Domokos, G., Static equilibria of rigid bodies: dice, pebbles and the
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sity of Technology, Műegyetem rakpart 1-3., Budapest, Hungary, 1111

E-mail address: domokos@iit.bme.hu

Zsolt Lángi, Dept. of Geometry, Budapest University of Technology, Egry József
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