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Abstract Benchmarking optimization methods and meaningful characterization of optimization problems
have been the focal points of many research projects done in the field of global optimization. Our
approach aims at investigating this topic with the usage of the computational and mathematical
tools of network science. For a particular test problem a network formed by all the minima found
by an optimization method can be constructed. Given these networks the analysis of their partic-
ular properties (e.g. degree distribution, path lengths, centrality measures, etc.) can lead to novel
characterization of optimization problems and methods.
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1. Introduction

Let f : D ⊂ Rn → R be continuously differentiable. This work deals with optimization
problems of the type

min
x∈D

f(x)

together with optimization methods belonging to the class of incomplete and asymptotically
complete methods [1]. Several benchmarking techniques have been proposed already (see,
e.g. [2, 3]) with the goal of giving hints on which optimization methods should be used in
order to solve certain type of optimization problems in an efficient way. Our method comple-
ments these works with the help of the emerging field of network science.

2. Methodology

The proposed methodology takes inspirations from the early work of Stillinger and Weber
[4], in which potential energy landscapes of some atomic clusters were formed into networks.
The idea was that these landscapes can be divided into basins of attractions surrounding each
locally minimal energy level. This approach was later successfully applied to the analysis of
network topology of the potential function of small Lennard-Jones clusters [5]. In this case the
so-called inherent structure network can be built in which nodes correspond to the minima
and the edges link those minimum which are directly connected by a transition state. The
same idea can be used for combinatorial optimization problems [6]. We give here a possible
extension of these ideas to the space of continuous optimization problems and methods.

Given an optimization test problem, define a reasonable fine grid in its search space. Let
xS be a point on this grid. We take xS as the starting point of the investigated optimization
method. For each and every starting point the results of the optimization methods (i.e. the
stationary points found from that starting point) is recorded. Now the stationary point net-
work (SPN) can be constructed: the vertices of this graph are the stationary points found by
the optimization method, and two vertices are connected if they were found from the same
starting point. Note that in case of a deterministic solver this definition would never produce
any edge, so in that case the definition needs to be modified. A simple example is given in
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Section 3. Similar construction is used in [5] (and called inherent structure network) and in [6]
(called local optima network).

Once these SPN graphs are constructed for each method and for each test functions, their
properties could be used as comparison of the methods and problems in question.

Graph measures In the following we give an incomplete list of graph measures, taken from
network science, together with their interpretations in the local optima networks context.

Size of the network is defined as the number of nodes. Clearly, this represents the number
of local minima found by the optimizer.

Node degree is the number of edges a node has to other nodes. In our case this measures the
number of adjacent stationary points. Related to this, it is worth considering the nodes
degree distribution.

Average path length is defined as the average value of all shortest paths in the network. This
measure indicates that how many non-local jumps should be taken, on average, from
one basin to another to reach the one representing the global optimum value.

Diameter is the size of the longest of all shortest paths. This gives a worst-case scenario
regarding the number of non-local jumps to reach the global minimum.

Betweenness centrality for a given node is calculated as the fraction of paths connecting all
pairs of nodes and containing the node of interest. We hypothesize that the global op-
tima have the highest betweenness centrality value.

3. Preliminary results

Currently we have a prototype framework in which two methods (a simple steepest decent
(SD), and Differential Evolution (DE) [7]) are implemented along with some standard opti-
mization tests from the classical Dixon-Szegő problem sets. We choose these two methods
because their application in the proposed methodology must be clarified.

Firstly, SD is a simple example of the deterministic methods, i.e. it always produces the
same result if it is started from a single point. Thus, the corresponding SPN does not contain
any edge. In order to override this issue we propose here that upon starting from xS it is
checked if∇f(xS) = 0, e.g. whether we start from a stationary point. (Practically, this is tested
by checking if ‖∇f(xS)‖ < ǫ.) If xS is a stationary point then the following ’multistart’ type
procedure is applied: give a small perturbation to xS and start SD from there; repeat this for,
say, 10 times. The resulting graph is shown on Figure 1. Note that for better visualization we
do not show all the different points found by SD, only with those with positive degree.

Secondly, DE is a population based method, i.e. it uses more than one point during its
run. Our proposed solution here is that the starting point xS is always included in the first
population (and obviously the other points in the population are selected randomly, as it
is done in the standard DE). Regarding the result, the connected component of the graph
produced by DE contains 665 nodes and 3848 edges. This case shows that the resulting graph
contains much more vertices than the number of local/global minima of the function, which
indicates the need for the introduction of further properties in the SPN, for example node
weights.

Finally, we notice that the whole approach has particular relevance for problems with mul-
tiple local minima. In that case the resulting graph is expected to be large enough for the
analysis by the network science tools. Detailed results will be given in the full version of the
paper.
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Figure 1: Stationary point network of SHCB using Steepest Decent method. Larger nodes
represents higher betweenness centrality value.
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