1	Elek et al.	Page 1	fluctuating asymmetry in carabids
1	No increase in fluctuating asymmetry in gr	ound beetles	(Carabidae) as urbanisation
2	progresses		
3			
4	Zoltán Elek ^{1,2*} , Gábor L. Lövei ¹ and Márto	n Bátki³	
5			
6	¹ Department of Agroecology, Aarhus Univ	ersity, Flakk	ebjerg Research Centre, DK-4200
7	Slagelse, Denmark		
8	² MTA-ELTE-MTM Ecology Research Grou	p, Biologica	Institute, Eötvös Loránd University,
9	Pázmány Péter sétány 1C, H-1117 Budape.	st, Hungary	
10	³ Eötvös Loránd University, Department of	Systematic Z	Zoology and Ecology, Pázmány Péter
11	avenue 1C, H-1117 Budapest, Hungary		
12	* - corresponding author		
13			
14			
15			
16	Address for correspondence:		
17	Zoltán Elek		
18	MTA-ELTE-MTM Ecology Research Group	o, Biological	Institute, Eötvös Loránd University,
19	Pázmány Péter sétány 1C, H-1117 Budape.	st, Hungary,	tel.:+36305874787(mobile), e-mail:
20	zoltan.elek2@gmail.com		
21			
22			
23			
24	Keywords: developmental instability; fluct	uating asym	metry; ground beetles; urbanisation

34

35

39

42

43

27 Abstract

28 Environmental stress can lead to a reduction in developmental homeostasis, which could be

29 reflected in increased variability of morphological traits. Fluctuating asymmetry (FA) is one

30 possible manifestation of such a stress, and is often taken as a proxy for individual fitness.

31 To test the usefulness of FA in morphological traits as an indicator of environmental quality,

32 we studied the effect of urbanisation on FA in ground beetles (Carabidae) near a Danish city.

33 First, we performed a critical examination whether morphological character traits suggested in

the literature displayed true fluctuating asymmetry in three common predatory ground beetles,

Carabus nemoralis, Nebria brevicollis and Pterostichus melanarius. Eight metrical (length of

the second and third antennal segments, elytral length, length of the first tarsus segment, 36

37 length of the first and second tibiae, length of the proximal and distal spines on the first

38 femurs) and one meristic (the number of spines on the second tibiae) traits were examined.

Most of them showed FA but not consistently. Females generally displayed a higher level of

FA than males. Finally, we examined the changes in the level of FA in bilateral morphological 40

41 traits along an urbanisation gradient (forest - suburban forest - forest fragments in urban park)

to test whether environmental stress created by urbanisation is reflected in FA. Ground beetles

common along a Danish urbanisation gradient did not seem to indicate differences in habitat

quality by their level of FA. 44

45

Abbreviation: FA- fluctuating asymmetry; ANOVA- analysis of variance; R- right; L- left; 46

47 ME- measurement error

Nomenclature: Hurka, 1996 48

49 Introduction

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

Urban ecosystems are formed after the "colonising" human populations profoundly transform the original habitat; they remain under consistent and pervasive anthropogenic influence (McIntyre et al. 2001). During the process of urbanisation, many of the original plant and animal species disappear or become rare (Marzluff et al. 2001), and are often replaced by non-native species (Kowarik 1995, Blair 1996, 2004). The filters and drivers of this profound rearrangement are only partially known; and we do not yet have a detailed understanding of the effects of urbanisation on biodiversity nor its functioning. At the assemblage level, the effects of human activities on the abundance, species richness and diversity are not always negative (Magura et al. 2010a,b). Modified urban landscapes might have increased habitat diversity, resulting in higher species richness than in the less disturbed and more rural sites (Eversham et al. 1996, Elek and Lövei 2007). Habitat specialist species (i.e. forest specialists) are more affected by the urbanisation than generalists, and decline in urban habitats (Magura et al. 2010a). One of the most sophisticated body of evidence concerning the effects of urbanisation on invertebrate diversity arises from the Globenet Project (Niemelä et al. 2000) that uses a uniform methodology in terms of study group, experimental design and sampling regime. However, the focus of these studies is at supra-individual level with their inevitable time constraints: effects on populations and assemblages need one or more generations to unfold (Magura et al. 2008). However, organisms can react to conditions in their habitats at lower organisational levels, including behavioural or physiological characteristics, which are more immediate. One such potentially useful measure reflects particular changes experienced during the individual developmental process (Parsons 1992). Several morphological traits are symmetrical, and theoretically should display perfectly identical halves. Deviations from this ideal leads to different types of asymmetry (Palmer and Strobeck 1986, 1992). One of these,

the fluctuating asymmetry (FA) is a measure of developmental stability of an organism, and

75 refers to random and subtle deviations from perfect bilateral symmetry (Palmer and Strobeck 76 1986, 1992). FA can increase when environmental stress disturbs developmental processes 77 that normally promote symmetrical growth (Floate and Fox 2000), and as it is easy to 78 measure, FA was suggested as a cost-effective indicator of environmental quality or stress 79 (Valentine et al. 1973, Clarke and Ridsdill-Smith 1990, Clarke 1993, 1994). The applicability 80 of FA to assess habitat quality has been widely discussed (Clarke 1995, Møller 1995, Møller 81 and Thornhill 1997, Leung and Forbes 1996, Leung et al. 2000, Van Dongen and Lens 2000), 82 but remains controversial. While a wide range of organisms and characters show increased FA 83 due to exposure to a variety of environmental stressors (Hendrickx et al. 2003, Labrie et al. 84 2003, Weller and Ganzhorn 2004, Vilisics et al. 2005, Garnier et al. 2006, Henriquez et al. 85 2009), in some cases, the approach seems unsatisfactory (Floate and Coghlin 2010). 86 To extend the methodological toolkit examining the effects of urbanisation, we aimed 87 to test the usefulness of FA in bilateral traits to signal habitat quality in ground beetles living 88 in forested habitats in different urbanisation stages. First, we examined which of the 89 commonly suggested morphological characters showed fluctuating (or true) asymmetry in 90 ground beetles. Second, we examined the behaviour of these characters, whether these 91 showed consistency (sensu Soulé 1967) in their reaction to the different levels of disturbance. 92 Furthermore, we tested whether females were more sensitive than males to changes in habitat 93 quality (Bots et al. 2009). Females need more resources than males for reproduction, because 94 they have to successfully form and lay fertile eggs. Fitness in females is often size-related, 95 and is profoundly influenced by conditions during larval development (McCabe and Partridge 96 1997). We hypothesised that females will be more sensitive than males to changes in habitat 97 quality, stress or disturbance during their larval development, resulting in higher levels of FA 98 as adults. This hypothesis would predict a higher level of FA in females than males. Finally, 99 we tested if common ground beetle species showed a higher level of FA in more urbanised 100 habitats than in the original, rural one. This is a version the *Habitat Disturbance Hypothesis*

(Gray 1989), but our response parameter is different from Gray's. We assumed that habitat quality was highest in the forested area. With progressing urbanisation, general conditions for forest-associated species deteriorate (Magura et al. 2010b). However, for some species, conditions may remain favourable, and they can have a lower level of FA in urbanised habitats as hypothesised by Weller & Ganzhorn (2004).

We found that several (but not all) of the suggested morphological characters showed FA, but not all of these showed consistency. Females had a higher level of FA than males, but in general, the ground beetles studied did not show a consistent increase in FA (at least under Danish conditions) as urbanisation intensified.

Material and methods

112 Study area and sampling design

Our study area was in and around the town of Sorø a regional centre about 80 km west of Copenhagen, on the island of Zealand. The city arose from a medieval monastery established in 1140 in this extensively forested area, and was gradually carved out of the original forest. The chosen study habitat was dominated by beech (*Fagus sylvatica*), of which there are still extensive stands, as well as parcels of different size, and isolation in and around the town. The *rural stage* of the urbanisation gradient was represented by this forest, in parts now under non-intensive forestry management. The forested area extended to the shores of Lake Sorø, and continued for several kms in all directions. An area of 6000ha is under the ownership of the Sorø Akademi, the foundation currently managing the area. Our selected sites started ca. 3 km from the current town centre. There were only a few houses, with dirt access roads in the forest; covering < 3% of the total area. The *suburban stage* was represented by suburbia positioned northeast of the town centre, with an old cemetery, a weekend garden allotment zone, an old ditch, a dirt road and a marsh with trees. The edge of this area was ca. 1 km from the edge of the Sorø Akademi park complex. The built-up area

and covered road surface in this urbanisation stage was approximately 20%. The understory indicated nitrogen-rich soil (plenty of nettle, *Urtica dioica*). The *urban stage* was represented by forest patches in the park complex of the Sorø Akademi. The park is "softly" managed: there are only gravel paths, rotting logs are usually left in place, and the mown grass, litter and cut branches are returned to the understory of the forested patches; there is no fertilisation, and no use of herbicides (which is forbidden in public areas in Denmark). The built-up area was about 40%; the forest patches occupied about 15% of the park. The park complex was isolated: on one side, by Sorø Lake, on the other, by the city centre. At each urbanisation stage, four sites were selected, with 10 pitfall traps per site, according to the Globenet protocol (see Niemelä et al. 2000). In the urban (park) stage, traps were set only in the forest patches, and at least 5 m from an edge (as well as min. 10 m from each other). Due to these size and inter-trap distance constraints, no more than 5 traps were set in one forest patch. Here, we selected four pairs of forest patches; which were always closer to each other than the distance to the next pair of patches, at least by a factor of two.

The traps were operated every second fortnight, starting in April and ending in mid-October, 2005 (Sapia et al. 2006). Further details about the sampling, handling of material and identification are in Elek and Lövei (2005).

From the overall catch (details in Elek and Lövei 2005, 2007), we selected species that a) were common in the forested area, and b) min. 10 individuals were trapped in at least two of the three urbanisation stages during the first half of the season. Three predatory carabids fulfilled these criteria: *Carabus nemoralis* Müller 1764, *Nebria brevicollis* (F. 1792), and *Pterostichus melanarius* (Illiger, 1783). We selected individual beetles randomly from the catch in April - June 2005: 137 individuals of *C. nemoralis* (56 males, 81 females), 152 individuals of *N. brevicollis* (21 males, 131 females), and 176 individuals of *P. melanarius* (100 males, 76 females). This sample size was adequate to test FA differences (Smith et al.

152 1982, Palmer 1994). The selected beetles were kept at -18°C in individual containers until
153 measurements were taken.

The measurement of all morphological traits involved two independent mounting and photographing of the specimens (Palmer 1994). Before taking measurements, beetles were thawed, and individually put into a plastic Petri dish filled with small (diameter 0.08 mm) glass beads which allowed to arrange them into a standard, horizontal position using a plastic gauge. Beetles were placed under a stereomicroscope (Nikon SMZ 800, 10-63x magnification) mounted with a digital camera (Nikon Coolpix 4500); two photographs were taken using identical aperture and exposure, at maximum resolution (2272×1704 pixels, in JPEG format). These digital photos were used to measure (precision of 0.0001 mm) the studied morphological traits, with the assistance of the software ImageJ (Rasband 2003). We measured morphological characters used in earlier studies. These included eight metrical and one meristic characters (Fig.1):

- the length of the second (*antsegment2*) and third (*antsegment3*) segments of the left and right antennae (Labrie et al. 2003)
 - the lengths of the left and right elytrae (*elytra*, Weller and Ganzhorn 2004)
 - lengths of the first tarsi (*tarsus1*), the first (*tibia1*) and second tibiae (*tibia2*) on both sides (modified after Garnier et al. 2006)
 - the distance between the end of the femur and the proximal (*proxi*) and distal (*distal*) spines on the two first femurs (adapted from Hendrickx et al. 2003) the number of spines on the second tibia (*spine*, Labrie et al. 2003)

175 Data analysis

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Data analysis followed the procedure recommended by Palmer (1994). The measured specimens were grouped according to urbanisation stage (rural, suburban, urban) and sex (female, male).

The detection of outliers in the dataset is an important issue in the beginning of the analyses to control biases such as measurement error, directional- or antisymmetry. We estimated outliers by the Grubb and Dixon's test (corrected for small sample sizes) with the use of scatterplot for the average trait size. This protocol was applied for the raw data as well as for the estimated FA data. When consistency occurred in the two approaches, the data of that individual (a total of eight C. nemoralis, five N. brevicollis and four P. melanarius) were removed from the dataset. In order to exclude the developmental noise based on genomic stress, we tested if any of the traits showed directional asymmetry or antisymmetry. Directional asymmetry, (when bilateral variance is statistically significant among the sides, but the direction of the difference is consistent, i.e. the left side is consistently larger than the right one), was tested by factorial ANOVA for the overall samples and nested ANOVA (sides within individuals) for individuals as samples and for the estimation of skewness. Antisymmetry (when bilateral variance is statistically significant among the sides, but this variation is larger between the sides than between individuals, i.e. platykurtosis), was tested by calculating kurtosis. The true asymmetry (free from any biases) of a morphological trait was confirmed by the Shapiro test for normality. An estimate of measurement error (ME) is essential for FA analyses (Palmer 1994). Measurements of each trait were compared using a two-way analysis of variance (ANOVA) with sides (right versus left) and individuals as factors. These tests measured whether non-directional asymmetry (i.e., FA, antisymmetry) could be distinguished from ME (Palmer 1994). If the heterogeneity occur in ME (as in our case, see Table S4 in the Appendix), it should be partitioned out in order to properly estimate the degree of FA (Palmer 1994).

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

We tested the size dependence of FA within samples by a linear regression of the absolute difference of Right vs. Left (|R-L|) values against the elytral length as an independent measure of body size.

We calculated a size-corrected and unsigned FA index (FA = |R - L|/mean [(R + L)/2], Vilisics et al. 2005 after Palmer 1994), where the unsigned difference is divided by the sample mean of the average trait size, where the sample referred to the combination of urbanisation stages and sexes. General linear mixed-effect models were used to study the relationship between the response variables (FA), and the supposed explanatory variables (the urbanisation stages and sex, as well as their interaction) (GLMM, Bolker et al. 2009). We added a nested random effect to account for the variance structure among the replicates (measurements 1 and 2) and individuals, to control the heteroscedasticity (Table S4 in the Appendix) by measurement error: the individuals were nested in the replications. The differences among the levels of the tested factors (urbanisation stages, sexes) were evaluated by multiple comparisons (with Tukey computed contrast matrices for several multiple comparisons procedures) after a single argument ANOVA for the tested model. For the meristic trait, we used the G-test (log-likelihood ratio test) with Williams' correction to calculate the differences in the number of spines (i.e. frequencies) between the right and left side of the second tibia, using the R-scripts by Hurd (2010). When more than two morphological traits showed real asymmetry, a test of consistency in FA values was performed using the Kendall concordance analysis with a Bonferroni correction (Légendre 2005, Palmer, 1994). We estimated the model parameters by using *nlme* (Pinheiro et al. 2012). Graphs were created using the *gplots* package (Warnes 2012) in R 2.15.2 (R Development Core Team 2012).

223

224

225 Results

226 Usefulness of morphological traits for asymmetry studies

Seven of the examined characters showed real FA in at least one of the selected 227 228 carabid species (Table 1), but none of them was universally suitable. antsegment2 and antsegment3 showed directional asymmetry in one and three species respectively; elytra, 229 230 proxi, distal, tarsus I showed antisymmetry in two species, while tibia I for one species (Table 231 1). The *tibia2* showed antisymmetry and direction asymmetry for one species each. The 232 character *spine* did not show any variation, and was unsuitable as a potential FA character. 233 Consistency of the asymmetry profiles within species 234 The analysis of concordance for *C. nemoralis* showed that there was no relationship among 235 236 the traits showing real asymmetry (W=0.15, p=0.63). The test of the contribution of the traits to the overall concordance (Table 2) revealed that the asymmetries of the studied 237 238 morphological traits were independent of each other. 239 Assessment of fluctuating asymmetry among different species, urbanisation stages and sexes 240 241 Asymmetry for proximal distance of spines on the femur in C. nemoralis were 242 significantly influenced by the interaction of the urbanisation stage and sex (Tables 3 and S1). The degree of the asymmetry for forest females was lower than for females in the urban forest 243 fragment (T_{169} =2.269, p=0.024, Fig. 2). The asymmetry of the second tibia length was 244 different by urbanisation stage only (Table 3), and was higher in the forest than in the urban 245 forest fragments (T_{169} =-1.67, p=0.096, Fig. 2). 246 In the case of N. brevicollis, the asymmetry of the first tibia was higher (T_{277} =8.70, 247 p=0.000) in females than males. Females in suburban and urban sites had higher asymmetry 248 $(T_{277}=-2.30, p=0.02; T_{277}=-2.56, p=0.01 respectively)$ than males, while the forest males were 249 250 unaffected (i.e. confidence interval included zero, Fig.3). The interaction of sex and

urbanisation stage was also significant (Tables 3 and S2).

For P. melanarius, the asymmetry for first tarsus length was significantly influenced by the urbanisation stage; the interaction of urbanisation stage and sex was marginally significant (Tables 3 and S3). The FA value for males was higher in the suburban stage $(T_{245}=2.081, p=0.038)$ than either in the forest or urban forest fragment (Fig. 4).

256

257

259

260

261

262

263

264

265

266

267

252

253

254

255

Discussion

258 Usefulness of morphological traits for FA studies

Most of the published FA studies (Hendrickx et al. 2003, Labrie et al. 2003, Garnier et al. 2006, Henriquez et al. 2009) were performed on a single species, using one or several closely related traits. The relationship among the selected traits was not always analysed. We found that seven out of nine morphological traits showed true asymmetry in one or more of the common carabid species at our study site. The character tibia2 showed directional and antisymmetry in one species each, similar to another European ground beetle, Carabus soleri (Garnier et al. 2006). This suggests that this type of asymmetry may have a genetic background. Two morphological traits (antsegment2, tibia1) that showed real asymmetry in two studied species could be useful in further FA studies.

268

269

270

271

272

273

274

275

276

Sex-specific differences in fluctuating asymmetry

Fitness in females is often size-related, and is profoundly influenced by conditions during larval development (McCabe and Partridge 1997). Most of the published studies on FA (Hendrickx et al. 2003, Labrie et al. 2003, Weller and Ganzhorn 2004, Garnier et al. 2006) did not consider sex as a factor in their analysis. Vilisics et al. (2005) and Henríquez et al. (2009) included this factor, but found no effects in isopods and carabids, respectively. In our study, C. nemoralis and in N. brevicollis females were more asymmetric than males, indicating that females could indeed be more sensitive than males to disturbance.

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

Fluctuating asymmetry and urbanisation

Higher developmental instability in more urbanised habitats was reported from Northern Germany (Weller and Ganzhorn 2004) and this can be considered support for the Habitat Disturbance Hypothesis (Gray 1989). Although FA in the length of the tibia2 in C. nemoralis showed differences among the studied urbanisation stages, this asymmetry was higher in the forest than in the other urbanisation stages, while tarsus I showed lower FA values in the urban stage than elsewhere for *P. melanarius*. Finding similar inconsistencies, Weller and Ganzhorn (2004) speculated that habitat size and the degree of isolation could play a role in this phenomenon. Weller and Ganzhorn (2004) also suggest that the species that occur at all studied sites are more "robust" and are less affected by urbanisation-related stress than species which do not occur at all studied sites. If this suggestion is correct, the less common species, in general, should show a higher degree of FA than the common ones, which remains to be tested. We did not find unequivocal support for the hypothesis that as urbanization progresses, the conditions create higher levels of FA in ground beetles present in more than one urbanization stage. This makes it difficult to suggest that measuring FA is useful to indicate environmental disturbance in ground beetles. Females showed a higher level of FA than males, which warrants the separation of sexes in further studies of this type. The theoretical advantages using within-individual characters as markers of habitat quality are still upheld, but the question whether measuring FA in carabids is useful in this context remains open.

298

299

300

301

302

303

297

Acknowledgements

We thank the Sorø Akademi Stilftelse for permission to work on their land, J. Thomsen, A.Grube, J. Jakobsen, H-B. Christiensen for their assistance and support, and K. Floate for comments on an earlier draft. This study was partially funded by a Bolyai Research Grant of the Hungarian Academy of Sciences (no. BO/00045/11/8, ZE), Aarhus University

- and the Domus Hungarica Foundation, Budapest, Hungary (GLL). This is publication no. 11
- 305 of the Danglobe Project. Author contributions: GL and ZE designed the study, developed
- 306 methodology, conducted fieldwork, ZE and MB performed the measurements, ZE and GL
- 307 collaborated in the statistical analysis of the data; ZE and GL wrote the manuscript, with input
- 308 from MB.

- 310 References
- 311 Blair, R.B. 1996. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6:
- 312 506-519.
- 313 Blair, R.B. 2004. The effects of urban sprawl on birds at multiple levels of biological
- organization. Ecol. and Soc. 9(5),http://www.ecologyandsociety.org/vol9/iss5/art2
- 315 Bolker, B.M., M.E. Brooks, C.J. Clark, S.W. Geange, J.R. Poulsen, M.H.H. Stevens and J-
- S.S. White. 2009. Generalized linear mixed models: a practical guide for ecology and
- 317 evolution. *Trends Ecol. Evol.* 24: 127-135.
- 318 Bots, J., S. Van Dongen, T. Adriaens, H.J. Dumont, R. Stoks and H. Van Gossum. 2009.
- Female morphs of a colour polymorphic damselfly differ in developmental instability
- 320 and fecundity. *Anim. Biol.* 59: 41-54.
- 321 Clarke, G.M. 1993. Fluctuating asymmetry of invertebrate populations as a biological
- indicator of environmental quality. *Environ. Pollut.* 82: 207-211.
- 323 Clarke, G.M. 1994. Developmental stability analysis: an early-warning system for biological
- monitoring of water quality. Aust. J. Biol. 7: 94-104.
- 325 Clarke, G.M. 1995. Relationships between developmental stability and fitness: Application for
- 326 conservation biology. *Conserv. Biol.* 9: 18-24.
- 327 Clarke, G.M. and T.J. Ridsdill-Smith. 1990. The effect of avermectin B1 on developmental
- stability in the bush fly, *Musca vetustissima*, as measured by fluctuating asymmetry.
- 329 Entomol. Exp. Appl. 54: 265-269.

- 330 Elek, Z. and G.L. Lövei. 2005. Ground beetle (Coleoptera, Carabidae) assemblages along an
- urbanisation gradient near Sorø, Zealand, Denmark. Entomologiske Meddelelser 73: 115-
- 332 121.
- 333 Elek, Z. and G.L. Lövei. 2007. Patterns of ground beetle (Coleoptera: Carabidae) assemblages
- along an urbanisation gradient in Denmark. *Acta Oecol.* 32: 104-111.
- Eversham, B.C., D.B. Roy and M.G. Telfer. 1996. Urban industrial and other manmade sites
- as analogues of natural habitats for Carabidae. *Ann. Zool. Fenn.* 33: 149-156.
- 337 Floate, K.D. and P.C. Coghlin. 2010. No support for fluctuating asymmetry as a biomarker of
- chemical residues in livestock dung. *Can. Entomol.* 142: 354-368.
- 339 Floate, K.D. and A.S. Fox. 2000. Flies under stress: a test of fluctuating asymmetry as a
- biomonitor of environmental quality. *Ecol. Appl.* 10: 1541-1550.
- 341 Garnier, S., N. Gidaszewski, M. Charlot, J. Rasplus and P. Alibert. 2006. Hybridization,
- developmental stability, and functionality of morphological traits in the ground beetle
- 343 Carabus solieri (Coleoptera, Carabidae). Biol. J. Linn. Soc. 89: 151-158.
- 344 Gray, J.S. 1989. Effects of environmental stress on species rich assemblages. *Biol. J. Linn*.
- 345 *Soc.* 37: 19-32.
- 346 Hendrickx, F., J. Maelfait and L. Lens. 2003. Relationship between fluctuating asymmetry and
- fitness within and between stressed and unstressed populations of the wolf spider *Pirata*
- 348 *piraticus. J. Evol. Biol.* 16: 1270-1279.
- 349 Henriquez, P., D.S. Donoso and A.A. Grez. 2009. Population density, sex ratio, body size and
- 350 fluctuating asymmetry of *Ceroglossus chilensis* (Carabidae) in the fragmented Maulino
- forest and surrounding pine plantations. *Acta Oecol.* 35: 811-818.
- 352 Hurd, P. 2010. R script for calculating G test. University of Alberta, Canada.
- 353 http://www.psych.ualberta.ca/~phurd/cruft/
- 354 Hurka, K. 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlin.

- 355 Kowarik, L. 1995. On the role of alien species in urban flora and vegetation. In: Pysek, P.K.,
- 356 M. Parch, M. Rejmanek and P.M. Wade. (ed.), *Plant invasions: general aspects and*
- 357 *special problems.* SPB Academic, Amsterdam The Netherlands.
- 358 Labrie, G., C. Prince and J. Bergeron. 2003. Abundance and developmental stability of
- 359 Pterostichus melanarius (Coleoptera: Carabidae) in organic and integrated pest
- management orchards of Quebec. Canada. Environ. Entomol. 32: 123-132.
- 361 Légendre, P. 2005. Species associations: the Kendall coefficient of concordance revisited. J.
- 362 Agr. Biol. Envir. St. 10: 226-245.
- 363 Leung, B. and M. R. Forbes. 1996. Fluctuating asymmetry in relation to stress and fitness:
- Effects of trait type as revealed by meta-analysis. *Ecoscience* 3: 400-413.
- 365 Leung, B., M.R. Forbes and D. Houle. 2000. Fluctuating asymmetry as a bioindicator of
- stress: comparing efficacy of analyses involving multiple traits. *Am. Nat.* 155: 101-115.
- 367 Magura, T., R. Horváth and B. Tóthmérész. 2010a. Effects of urbanization on ground-
- dwelling spiders in forest patches, in Hungary. *Landscape Ecol.* 25: 621-629.
- 369 Magura, T., Lövei, G.L., Tóthmérész, B. 2010b. Does urbanization decrease diversity in
- ground beetle (Carabidae) assemblages? *Global Ecol. Biogeogr.* 19: 16-26.
- 371 Magura, T., B. Tóthmérész and T. Molnár. 2008. A species-level comparison of occurrence
- patterns in carabids along an urbanisation gradient. *Landscape Urban Plan.* 86: 134-140.
- 373 Marzluff, J.M., R. Bowman and R. Donnely. 2001. A historical perspective on urban bird
- research: trends, terms, and approaches. In Marzluff, J.M., R. Bowman and R. Donnely.
- 375 (ed.) Avian Ecology in an Urbanizing World. Kluwer Academic, Norwell Massachusetts.
- 376 McCabe, J. and L. Partridge. 1997. An interaction between environmental temperature and
- genetic variation for body size for the fitness of adult female *Drosophila melanogaster*.
- 378 Evolution 51: 1164-1174.
- 379 McIntyre, N.E., J. Rango, W. F. Fagan and S. H. Faeth. 2001. Ground arthropod community
- structure in a heterogeneous urban environment. *Landscape Urban Plan.* 52: 257-274.

- 381 Møller, A.P. 1995. Developmental stability and ideal despotic distribution of blackbirds in a
- patchy environment. Oikos 72: 228-234.
- 383 Møller, A.P. and R. Thornhill. 1997. A meta-analysis of the heritability of developmental
- 384 stability. *J. Evol. Biol.* 10: 1-16.
- 385 Niemelä, J., J. Kotze, A. Ashworth, P. Brandmayr, K. Desender, T. New, L. Penev, M.
- Samways, and J. Spence. 2000. The search for common anthropogenic impacts on
- biodiversity: a global network. *J. Insect Conserv.* 4: 3-9.
- 388 Palmer, A.R. 1994. Fluctuating asymmetry analyses: A primer, In: Markow, T.A. (ed.)
- 389 Developmental Instability: Its Origins and Evolutionary Implications. Kluwer, Dordrecht.
- 390 Palmer, A.R. and C. Strobeck. 1986. Fluctuating asymmetry: measurement, analysis, patterns.
- 391 Annu. Rev. Ecol. Evol. S. 17: 391-421.
- 392 Palmer, A.R. and C. Strobeck. 1992. Fluctuating asymmetry as a measure of developmental
- instability: implications of non-normal distributions and power of statistical tests. *Acta*
- 394 *Zool-Stockholm* 191: 57-72.
- 395 Parsons, P.A. 1992. Fluctuating asymmetry: a biological monitor of environmental and
- genomic stress. *Heredity* 68: 361-364.
- 397 Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar and R Development Core Team 2012. nlme:
- 398 Linear and Nonlinear Mixed Effects Models. R package version 3.1-102. URL:
- 399 http://CRAN.R-project.org/package=nlme
- 400 R Development Core Team 2012. R: A language and environment for statistical computing. R
- 401 Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL:
- 402 http://www.R-project.org/
- 403 Rasband, W. 2003. *ImageJ Image processing and analysis in Java*. National Institutes of
- 404 Health, USA. http://rsb.info.nih.gov/ij/

- 405 Sapia, M., G.L. Lövei and Z. Elek. 2006. Effects of varying sampling effort on the observed
- diversity of carabid (Coleoptera: Carabidae) assemblages in the Danglobe Project,
- 407 Denmark. Ent. Fenn. 17: 345-350.
- 408 Smith, B.H., S.M. Garn and P.E. Cole. 1982. Problems of sampling and inference in the study
- of fluctuating dental asymmetry. Am. J. Phys. Anthropol. 58: 281-289.
- 410 Soulé, M. 1967. Phenetics of natural populations. II. Asymmetry and evolution in a lizard.
- 411 *Am. Nat.* 101: 141-160.
- 412 Valentine, D.W., M.A. Soulé and P. Samollow. 1973. Asymmetry analyses in fishes: a possible
- statistical indicator of environmental stress. Fish. B-NOAA 71: 357-370.
- 414 Van Dongen, S. and L Lens. 2000. The evolutionary potential of developmental stability. J.
- 415 Evol. Biol. 13: 326-335.
- 416 Vilisics, F., P. Sólymos and E. Hornung. 2005. Measuring fluctuating asymmetry of the
- 417 terrestrial isopod *Trachelipus rathkii* (Crustacea: Isopoda, Oniscidea). *Eur. J. Soil Biol.* 41:
- 418 85-90.
- 419 Warnes, G.R. 2012. Gplots: various R programming tools for plotting data. R package
- version 2.10.1. Url: http://CRAN.R-project.org/package=gplots.
- Weller, B. and J.U. Ganzhorn. 2004. Carabid beetle community composition, body size, and
- fluctuating asymmetry along an urban-rural gradient. *Basic Appl. Ecol.* 5: 193-201.

35 Elek et al. Page 18 fluctuating asymmetry in carabids 423

Table 1. Performance of nine morphological characters as potential measures of fluctuating asymmetry in the carabids *Carabus nemoralis*,

Nebria brevicollis and Pterostichus melanarius collected in pitfall traps at Sorø, Denmark, during spring 2005.

Morphological trait	Type of asymmetry				
	Carabus nemoralis	Nebria brevicollis	Pterostichus melanarius		
antsegment2	fluctuating	directional (R <l)< td=""><td>fluctuating</td></l)<>	fluctuating		
antsegment3	directional (R <l)< td=""><td>directional (R<l)< td=""><td>directional (R<l)< td=""></l)<></td></l)<></td></l)<>	directional (R <l)< td=""><td>directional (R<l)< td=""></l)<></td></l)<>	directional (R <l)< td=""></l)<>		
elytra	antisymmetry	fluctuating	antisymmetry		
proxi	fluctuating	antisymmetry	antisymmetry		
distal	fluctuating	antisymmetry	antisymmetry		
tarsus l	antisymmetry	antisymmetry	fluctuating		
tibia1	fluctuating	fluctuating	antisymmetry		
tibia2	fluctuating	antisymmetry	directional (R <l)< td=""></l)<>		
spine	no variation	no variation	no variation		

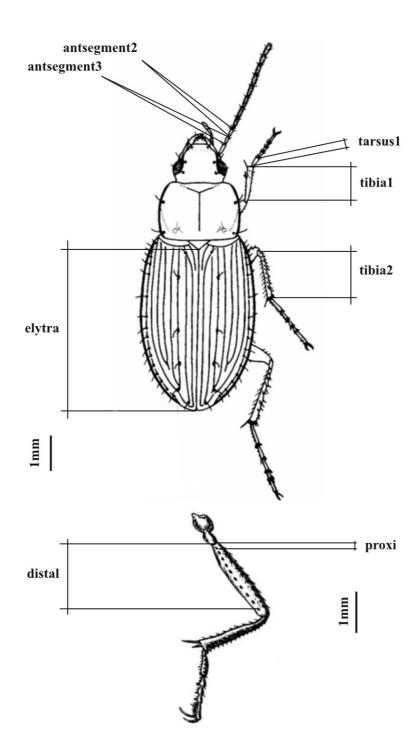
37 Elek et al. Page 19 fluctuating asymmetry in carabids 428

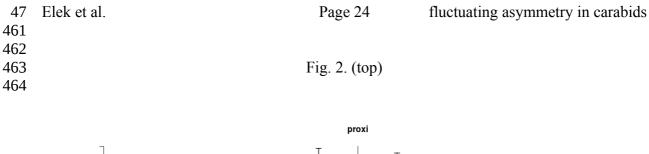
Table 2. Summary table of concordance analysis in *Carabus nemoralis*, collected in pitfall traps at Sorø, Denmark, during spring 2005. For the species, the result of global analysis is given, for traits, the posterior test of the contribution of individual judges (morphological traits) to the overall concordance. Legend: W - Kendall's coefficient of concordance; ppermutational probabilities, uncorrected; cor.-p.= permutational probabilities corrected, calculated only if there are more than one group.

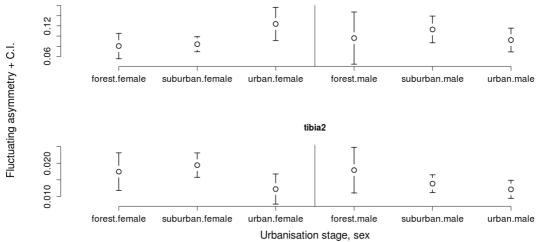
Morphological	Concordance/congruity
trait	(W=0.15, p=0.63)
antsegment2	W=0.16/ p=0.54/corp. =1
antsegment3	no true asymmetry detected
elytra	no true asymmetry detected
proxi	0.12/0.85/1
distal	0.17/0.44/1
tarsus l	no true asymmetry detected
tibia l	0.13/0.86/1
tibia2	0.16/0.53/1

Carabus nemoralis antsegment2 1, 169 402.372 <0.0001	Morphological trait/species	d.f.	\overline{F}	p		
intercept 1, 169 402.372 <0.0001 Site 2, 169 0.285 0.751 Sex 1, 169 0.121 0.727 Site:Sex 2, 169 2.261 0.106 sd (random effect residuals) 0.048 Proxi intercept 1, 169 369.468 0.0001 Site 2, 169 1.133 0.324 Sex 1, 169 0.454 0.501 Site:Sex 2, 169 3.449 0.08 distal intercept 1, 169 317.067 0.08 distal intercept 1, 169 0.245 0.782 Sex 1, 169 0.281 Site:Sex sd (random effect residuals) 0.049 tibial intercept 1, 169 0.784 0.458 sd (random effect residuals) 0.049 tibial intercept 1, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393						
Site 2, 169 0.285 0.751 Sex 1, 169 0.121 0.727 Site: Sex 2, 169 2.261 0.106 sd (random effect residuals) 0.048 proxi intercept 1, 169 369.468 <0.0001	antsegment2					
Sex 1, 169 0.121 0.727 Site: Sex 2, 169 2.261 0.106 sd (random effect residuals) 0.048 proxi intercept	intercept	1, 169	402.372	< 0.0001		
Site:Sex 2, 169 2.261 0.106 sd (random effect residuals) 0.048	Site	2, 169	0.285	0.751		
sd (random effect residuals) 0.048 proxi intercept 1,169 369.468 <0.0001 Site 2,169 1.133 0.324 Sex 1,169 0.454 0.501 Site:Sex 2,169 3.449 0.034 sd (random effecs residuals) 0.08 distal intercept 1,169 317.067 <0.0001	Sex	1, 169	0.121	0.727		
proxi intercept 1, 169 369.468 <0.0001 Site 2, 169 1.133 0.324 Sex 1, 169 0.454 0.501 Site:Sex 2, 169 3.449 0.034 sd (random effecs residuals) 0.08 distal 1, 169 317.067 <0.0001 Site 2, 169 0.245 0.782 Sex 1, 169 1.169 0.281 Site:Sex 2, 169 0.784 0.458 sd (random effect residuals) 0.049 tibia1 1, 169 408.3 <0.0001 Site 2, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	Site:Sex	2, 169	2.261	0.106		
intercept 1, 169 369.468 <0.0001 Site 2, 169 1.133 0.324 Sex 1, 169 0.454 0.501 Site:Sex 2, 169 3.449 0.034 sd (random effecs residuals) 0.08 distal 1, 169 317.067 <0.0001	sd (random effect residuals)			0.048		
Site 2, 169 1.133 0.324 Sex 1, 169 0.454 0.501 Site:Sex 2, 169 3.449 0.034 sd (random effecs residuals) 0.08 distal 1, 169 317.067 <0.0001	proxi					
Sex 1, 169 0.454 0.501 Site:Sex 2, 169 3.449 0.034 sd (random effecs residuals) 0.08 distal Intercept 1, 169 317.067 <0.0001 Site 2, 169 0.245 0.782 Sex 1, 169 1.169 0.281 Site:Sex 2, 169 0.784 0.458 sd (random effect residuals) 0.049 tibia1 intercept 1, 169 408.3 <0.0001 Site 2, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	intercept	1, 169	369.468	<0.0001		
Site:Sex 2, 169 3.449 0.034 sd (random effecs residuals) 0.08 distal intercept 1, 169 317.067 <0.0001	Site	2, 169	1.133	0.324		
distal intercept 1, 169 317.067 <0.0001	Sex	1, 169	0.454	0.501		
distal intercept 1, 169 317.067 <0.0001 Site 2, 169 0.245 0.782 Sex 1, 169 1.169 0.281 Site:Sex 2, 169 0.784 0.458 sd (random effect residuals) 0.049 tibia1 intercept 1, 169 408.3 <0.0001 Site 2, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	Site:Sex	2, 169	3.449	0.034		
intercept 1, 169 317.067 <0.0001 Site 2, 169 0.245 0.782 Sex 1, 169 1.169 0.281 Site:Sex 2, 169 0.784 0.458 sd (random effect residuals) 0.049 tibia1 intercept 1, 169 408.3 <0.0001	sd (random effecs residuals)			0.08		
Site 2, 169 0.245 0.782 Sex 1, 169 1.169 0.281 Site:Sex 2, 169 0.784 0.458 sd (random effect residuals) 0.049 tibia1 intercept 1, 169 408.3 <0.0001 Site 2, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	distal					
Sex 1, 169 1.169 0.281 Site:Sex 2, 169 0.784 0.458 sd (random effect residuals) 0.049 tibia1 1, 169 408.3 <0.0001	intercept	1, 169	317.067	<0.0001		
Site:Sex 2, 169 0.784 0.458 sd (random effect residuals) 0.049 tibia1 408.3 <0.0001 Site 2, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	Site	2, 169	0.245	0.782		
sd (random effect residuals) 0.049 tibia1 1,169 408.3 <0.0001	Sex	1, 169	1.169	0.281		
tibia1 intercept 1, 169 408.3 <0.0001 Site 2, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	Site:Sex	2, 169	0.784	0.458		
intercept 1, 169 408.3 <0.0001 Site 2, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	sd (random effect residuals)			0.049		
Site 2, 169 0.369 0.691 Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	tibia1					
Sex 1, 169 0.007 0.931 Site:Sex 2, 169 0.937 0.393	intercept	1, 169	408.3	<0.0001		
Site:Sex 2, 169 0.937 0.393	Site	2, 169	0.369	0.691		
	Sex	1, 169	0.007	0.931		
sd (random effect residuals) 0.017	Site:Sex	2, 169	0.937	0.393		
	sd (random effect residuals)			0.017		

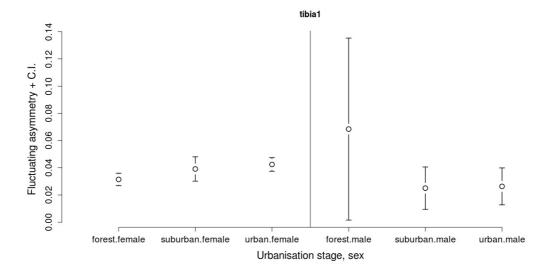
tibia2

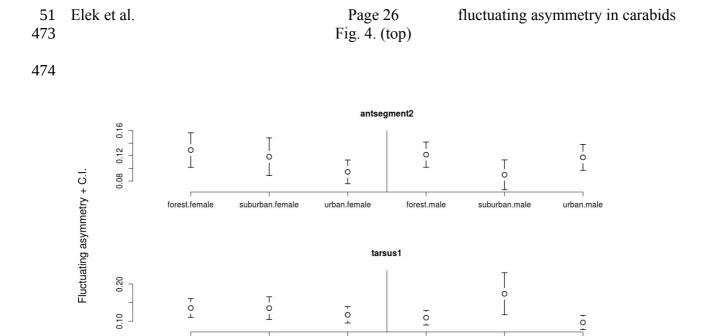

41	Elek et al. intercept	1, 169	Page 352.753	e 21 < 0.0001	fluctuating asymmetry in carabids
	Site	2, 169	4.011	0.019	
	Sex	1, 169	2.673	0.103	
	Site:Sex	2, 169	1.396	0.25	
	sd (random effect residuals)	,		0.013	
	Nebria brevicollis			_	
	elytra				
	intercept	1, 187	453.599	< 0.0001	
	Site	2, 187	1.235	0.292	
	Sex	1, 187	1.712	0.191	
	Site:Sex	2, 187	0.671	0.512	
	sd (random effect residuals)			0.006	
	tibia1				
	Intercept	1, 187	285.639	< 0.0001	
	Site	2, 187	2.292	0.102	
	Sex	1, 187	4.296	0.039	
	Site:Sex	2, 187	3.334	0.037	
	sd (random effect residuals)			0.027	
	Pterostichus melanarius				
	antsegment2				
	Intercept	1, 245	460.24	< 0.0001	
	Site	2, 245	1.629	0.198	
	Sex	1, 245	0.059	0.808	
	Site:Sex	2, 245	2.194	0.113	
	sd (random effect residuals)			0.088	
	tarsus1				
	Intercept	1, 245	489.739	<0.0001	
	Site	2, 245	4.578	0.011	
	Sex	1, 245	1.887	0.17	
	Site:Sex	2, 245	2.419	0.091	


0.09


sd (random effect residuals)

43 440	Elek et al. Figure legends	Page 22	fluctuating asymmetry in carabids	
441				
442	Fig. 1. The method of measurement of	of the studied morph	ological traits. Abbreviations:	
443	antsegment2, antsegment3- the	length of the second	, and third segments of the antennae	
444	respectively; elytra - the length of the elytrae; tarsus I - length of the first tarsi; tibia I,			
445	tibia2 – the length the first and second tibiae respectively; proxi, distal- the distance			
446	between the end of the femur and the proximal and distal spines respectively on the first			
447	femur; spine - the number of spines on the second tibia. Drawings modified from			
448	Aukema (1998) and Csiki (1908)	8).		
449	Fig. 2. Distribution of asymmetry ind	dex for proxi and the	tibia2 in male and female Carabus	
450	nemoralis in the studied urbanis	sation stages in Sorø	, Denmark. Data are means; vertical	
451	lines indicate ± 95% confidence	e intervals.		
452	Fig. 3. Distribution of asymmetry ind	dex for the tibia1 in r	male and female Nebria brevicollis	
453	in the studied urbanisation stage	es in Sorø, Denmark	. Data are means; vertical lines	
454	indicate ± 95% confidence inter	rvals.		
455	Fig. 4. Distribution of asymmetry ind	dex for antsegment2	and tarsus 1 in male and female	
456	Pterostichus melanarius in the	studied urbanisation	stages in Sorø, Denmark. Data are	
457	means; vertical lines indicate \pm	95% confidence inte	ervals.	


Fig. 1. (top)



49 Elek et al.
467
468
Fig. 3. (top)
469
470

urban.female

forest.male

Urbanisation stage, sex

suburban.male

urban.male

suburban.female

forest.female

fluctuating asymmetry in carabids

51

Elek et al.