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Introduction

Animal dispersal is a crucial biological trait that allows 
individuals to colonise new habitats, locate mating part-
ners, food and other resources (Clobert et al., 2004; Bowler 
& Benton, 2005). Due to combination of their limited dis-
persal abilities and specific habitat requirements, insects 
are among the animals most threatened by habitat frag-
mentation (Ewers & Didham, 2005). Increasing interest in 
biodiversity conservation, i.e. safeguarding occurrence of 
species in a fragmented landscape (e.g. Petit et al., 2001) 
requires also knowledge on their dispersal abilities. Im-
proved analytical tools allow to study the dispersal of vari-
ous model organisms (Petit et al., 2001; Ulrich & Zalewski, 
2007) in different landscapes (Van Dyck & Baguette, 2005; 
Bonte et al., 2006; Sander et al., 2006; Campagne et al., 
2009). Despite the advances, the questions most frequently 
asked by conservationists remain simple: what is the prob-
ability for an average individual to cross a given distance, 
and what is the range of maximum distances that individu-
als from a given population may realistically cover. The 
answers are highly important for delimitation of conserva-
tion areas, or for deciding between reintroduction and rely-

ing on spontaneous colonisation in restoration programmes 
(e.g. Schultz, 1998; Maes et al., 2004).

Mark-release-recapture (MRR) data and regression mod-
els based on them are among the most common tools used 
to estimate animal dispersal (e.g. Hill et al., 1996; Fric & 
Konvicka, 2007; Zimmermann et al., 2011). Compared to 
other methods, such as population genetic analyses, telem-
etry, and dispersal simulators (i.e. flight-mills), the MRR-
based results tend to give lowest dispersal estimates due 
to underestimation of long-distance movements (Koenig 
et al., 1996; Jonsell et al., 2003; Drag et al., 2011; Chiari 
et al., 2013; David et al., 2013; Oleksa et al., 2013), and 
vary due to local conditions and/or sampling designs (e.g. 
Stevens et al., 2010; Hassal & Thompson, 2012). However 
little is known how MRR-based estimates of a species mo-
bility vary due to local conditions or sampling designs for 
ground beetles as one of the important model groups in 
terrestrial ecology (Thiele, 1977).

The ground beetle Carabus (Pachystus) hungaricus hun-
garicus (Fabricius, 1792) (Coleoptera: Carabidae) inhabits 
dry calcareous, loess, and sand grasslands from lowlands 
up to nearly 600 m a.s.l. in the Carpathian Basin (Hůrka, 
1996; Bérces et al., 2008). The species is globally declin-
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pling focused on grasslands and took place from 2.9.–19.10.2008. 
(Table 1).

Ad (iii), the locality is an island in the Danube River with three 
sand dune areas, all belonging to the authority of the Duna-Ipoly 
National Park. It is a Site of Community Importance with the ap-
pellation of “HUDI20047 Szigeti homokok”. Area near the vil-
lage of Pócsmegyer (about 170 ha, 100–120 m a.s.l.) comprising 
40 ha is covered with tall-grass vegetation of the Pannonian sand 
steppes (Festucetum vaginatae) and was selected as the study 
site. These grasslands are fragmented by patches of black locust 
plantations (Robinia pseudoacacia). 270 non-baited pitfall traps 
were placed in a 4 × 4 m grid in 10 rows and 27 columns, covering 
an area of 0.4 ha. Sampling focused on grasslands and took place 
from 9.5.–28.10.2008. See Table 1 and Bérces & Elek (2013) for 
details.

Data analysis
For dispersal analyses, straight distances between capture 

points (traps) were summed to obtain the movements for each 
beetle recaptured at least once. Based on these distances, we 
computed for each sex and site the inverse power function (IPF), 
expressing the probability density I of movements to distances D:

I ~ C × Dn

The function is fitted by plotting the logarithm of cumulative 
fractions of individuals moving specific or greater distances (lnI) 
against linearized expressions of the distances, i.e., lnI = lnC – 
n(lnD) (Hill et al., 1996; Fric & Konvicka, 2007). Parameter n, 

ing, protected and/or red-listed in most countries of occur-
rence, listed also in Annexes II and IV of the EU Habitats 
Directive (e.g. Szél et al., 2006; Bérces et al., 2008). As a 
typical steppe species, the ground beetle Carabus hungari-
cus represents Pannonian steppe invertebrates (e.g. Cizek 
et al., 2012) in EU legislation. Despite previous investiga-
tions, no information on mobility of this species has been 
published.

In this paper, we investigate mobility patterns in three 
populations of the flightless, protected grassland specialist 
ground beetle, Carabus hungaricus (Coleoptera: Carabi-
dae). We applied the power law function to obtain move-
ment parameters. We will discuss how the sampling design 
may affect these estimates based on power law function. 
The variability in those estimates provides an interesting 
illustration of reliability and comparability of the MMR 
based dispersal estimates in ground beetles.

Material and Methods

Sampling sites and sampling design
The beetles were sampled at three locations (Fig. 1), includ-

ing (i) Pouzdrany steppe, and (ii) Tabulova in southern Mora-
via (Czech Republic), and (iii) Szentendre island near Budapest 
(Hungary). At each site, beetles were individually marked by 
numbers or codes engraved on their elytra; after marking, they 
were released immediately.

Ad (i), the locality is protected as National Nature Reserve and 
Site of Community Importance (total area: 180.8 ha, 200–300 m 
a.s.l.), with C. hungaricus as one of its target species. It repre-
sents one of the largest remnants of subcontinental steppic grass-
lands in the region. It is partly overgrown with shrubs and trees 
due to abandonment and hands-off conservation approach. Ac-
tive management, consisting of grazing and mowing, was partly 
reestablished after 1989. 204 live-capture pitfall traps were po-
sitioned across the steppe and its vicinity, distributed at various 
distances. The minimum distance between neighbouring traps 
was 5 m. Sampling focused on grasslands, but covered a wide 
range of habitats and vegetation types. Sampling took place from 
26.3.–6.11.2006. See Table 1 and Pokluda et al. (2012) for details.

Ad (ii), the locality is part of Pálava Protected Landscape Area, 
and Stolová hora Site of Community Importance (total area: 77.1 
ha, 380–450 m a.s.l.), covered by remnants of subcontinental, 
calcareous steppic grasslands on limestone. 100 live-capture pit-
fall traps were positioned across steppe at various distances. The 
minimum distance between neighbouring traps was 5 m. Sam-

Fig. 1. Pattern of the distributions of the pitfall traps used in 
the three areas in the Czech Republic and Hungary where the 
dispersal of the ground beetle, Carabus hungaricus (Coleoptera: 
Carabidae), was studied using mark-recapture.

Table 1. Basic information on the sampling method and results of three mark-recapture studies on the ground beetle, Carabus hun-
garicus (Coleoptera: Carabidae) carried out at three sites in the Czech Republic and Hungary. M – male; F – female.

Site Marking
period

Span
(days)

Search 
days

Number
of traps

Mean (max.) dis-
tance between two 

traps (in m) 
Sex Marked 

individuals
Recaptured 
individuals

Mean distance 
(m) (SD)

Max. dis-
tance (m)

Pouzdrany 26.3–6.11.2006 204 67 204 508 (1304) M + F 3860 589
(CZ) M 1803 285 115.5 (135.5) 919

F 2057 304 132.5 (147.5) 1104
Tabulova 2.9.–19.10.2008 47 22 100 194 (489) M + F 1089 137
(CZ) M 555 67 51.4 (62.2) 287

F 534 70 82.8 (76.5) 321
Szentendre 9.5.–28.10.2008 172 28 270 41 (110) M + F 1306 421
(HU) M 717 257 47.5 (33.9) 189

F 589 164 47.1 (32.8) 207
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the slope of the linearized function, expresses the relative disper-
sal propensity, so that the shallower the slope, the higher possi-
bility of long-distance dispersal (Baguette et al., 2000; Baguette, 
2003). We carried out these regression models to obtain predic-
tions of movements over long distances (50, 100, 200, 500 and 
1000 m) for males and females separately and for both sexes 
together at each study site. The Tukey HSD tests were used to 
compare slopes and intercepts (= elevation) of the resulting linear 
regressions of males and females within each site and to compare 
movements of pooled sexes among different sites.

To compute daily movement, we divided the total covered dis-
tance by an individual by the number of days between the first 
and last catch. Individuals with long lifespan may cover large 
distances but then fell into a trap close to previous capture. To 
minimise such bias caused by MRR, only data from period with 
clear positive relation between lifespan and distance covered 
were used. The analyses were carried out in R 3.0.1 (R core team 
2013).

Results

Major movement patterns
In Pouzdrany, out of the 3860 individuals marked (1803 

males and 2057 females), 589 were recaptured (285 males 

and 304 females), and 536 (255 males, 281 females) moved 
to another trap. The average distance of 115.5 m and 132.5 
m was crossed by males and by females respectively. The 
maximum recorded distance of movement was 919 m for 
male and 1104 m for male and female.

In Tabulova site, 1089 individuals (555 males and 534 
females) were marked, 67 males and 70 females were re-
captured, and 51 males and 67 females moved to another 
trap. The average distance taken by males and females 
were 51.5 m and 83 m. The maximum recorded distance 
of movement was 287 m for male and 321 m for female.

In Szentendre, 1306 individuals (717 males and 589 fe-
males) were marked, 257 males and 164 females were re-
captured at least once. 255 males and 163 females moved 
to another trap. The average distances taken by males and 
females were almost identical 47.5 m and 47 m respec-
tively. The maximum distance taken was 189 m for males 
and 207 m for female (see Table 1 for further details).
Movement models

The estimates of movements, obtained from the IPF re-
gressions, differed among the three study sites (Table 2 and 
Fig. 2). The lowest estimate of movement at the shortest 
calculated distance (50 m) was found in Szentendre (22.9% 
of all individuals) while the highest estimate at the same 
distance was in Pouzdrany (86.8%). Dispersal estimate for 
the longest calculated distance (1000 m) was 1.2% of all 
individuals in Pouzdrany, but only 0.1% of all individuals 
in Szentendre. The estimates of beetle movements at the 
third studied site, in Tabulova, were in between (41% for 
50 m, 0.9% pre 1000 m)  Based on the multiple compari-
sons of each site in the slope and elevation of IPF for sepa-
rate sexes, we did not find any sex-related differences in 
the movement patterns at any of the three sites. With sexes 
pooled together, the IPF slope was significantly steeper 
for Szentendre than for Tabulova (p < 0.05) or Pouzdrany 
(p < 0.05), predicting higher probability of reaching larger 
distances for beetles at the two latter sites. IPF elevation 
was significantly different between Szentendre and Pouzd-
rany (p < 0.05).

Daily movements were computed using data on individ-
uals with lifespan five and less days. The average distance 
covered by individuals of C. hungaricus in one day (day-

Fig. 2. The cumulative percentages of individuals of the 
ground beetle, Carabus hungaricus (Coleoptera: Carabidae) that 
dispersed over particular distances at the three sites studied in 
the Czech Republic (CZ) and Hungary (HU). Distances of 0 m 
(recaptured by the same trap) were excluded and the rest were 
divided into 50 m classes.

Table 2. Results of fitting the inverse power function (IPF) to the movements of the ground beetle, Carabus hungaricus (Coleoptera: 
Carabidae) recorded using mark-recapture at three sites in the Czech Republic and Hungary, and predicted probability of individuals 
moving 50, 100, 200, 500 and 1000 m for each of the populations studied.

IPF: lnI = lnC(± S.E.) – a(± S.E.)*lnD R^2 F df p-value 50
(m)

100 
(m)

200 
(m)

500 
(m)

1000 
(m)

Pouzdrany M lnI = –1.27(± 0.089) – 4.16(± 0.170)*lnD 0.826 204.350 1,43 P < 0.00001 0.707 0.293 0.121 0.038 0.016
(CZ) F lnI = –1.29(± 0.082) – 4.05(± 0.147)*lnD 0.833 248.59 1,50 P < 0.00001 0.822 0.337 0.138 0.042 0.017

M + F lnI = –1.43(± 0.085) – 4.42(± 0.144)*lnD 0.829 281.16 1,58 P < 0.00001 0.868 0.323 0.120 0.032 0.012
Tabulova M lnI = –1.19(± 0.111) – 4.71(± 0.293)*lnD 0.877 114.18 1,16 P < 0.00001 0.319 0.140 0.061 0.021 0.009
(CZ) F lnI = –1.09(± 0.127) – 3.97(± 0.321)*lnD 0.795 73.76 1,19 P < 0.00001 0.492 0.231 0.109 0.040 0.019

M + F lnI = –1.27(± 0.124) – 4.69(± 0.297)*lnD 0.820 104.59 1,23 P < 0.00001 0.410 0.170 0.071 0.022 0.009
Szentendre M lnI = –1.86(± 0.225) – 7.00(± 0.596)*lnD 0.801 68.48 1,17 P < 0.00001 0.239 0.066 0.018 0.003 0.001
(HU) F lnI = –1.79(± 0.238) – 6.79(± 0.661)*lnD 0.802 56.77 1,14 P < 0.00001 0.241 0.070 0.020 0.004 0.001

M + F lnI = –2.04(± 0.238) – 7.57(± 0.621)*lnD 0.803 73.33 1,18 P < 0.00001 0.229 0.056 0.014 0.002 0.001
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time movement) was 20.3 m in Pouzdrany site, 17.5 m in 
Tabulova and 8.4 m in Szentendre.

Discussion

Study outcome and limitations
Our study showed that adults of C. hungaricus are active 

and mobile beetles frequently moving for tens to hundreds 
of meters. Although the short distance movements are the 
most common, individuals are able to cross distances in 
magnitude of kilometers as estimated by the IPF as well as 
demonstrated by the distances covered by individual bee-
tles at Pouzdrany steppe.

For individuals from the three studied populations, the 
dispersal probability estimates differed in magnitude for 
distances >100 m. In our study, the three populations in-
habiting three sites were sampled using two sampling 
designs for three time periods. The sites are covered by 
similar vegetation, their climate is similar, and their parts 
inhabited by the beetle have similarly flat relief. We sug-
gest that the sampling design, period, size and spatial ar-
rangement of habitats in different locations were the main 
factors affecting the estimates for dispersal probability. 
Linear arrangement of traps in Tabulova and Pouzdrany 
sites resulted in rather high average distance among traps, 
while the grid design in Szentendre with low average dis-
tance among traps, most likely affected the dispersal prob-
ability estimates. Similarly, the applied short sampling 
period might result lower estimates in the dispersal prob-
ability for Tabulova. 

Apart from quantifying the dispersal probability esti-
mates of C. hungaricus, our results showed how vastly 
different results could the MRR studies give under rather 
similar circumstances. Mobility estimates based on the 
MRR are mostly viewed as a species specific trait. Our re-
sults provided illustration that the MRR estimated disper-
sal probabilities might depend on sampling circumstances 
such as sampling time and design, or habitat patch size 
(e.g. Fric et al., 2010; Stevens et al., 2010). We suggest 
that a standardized sampling design and sampling period 
eliminate such biases mentioned above.
Movement patterns

The dispersal estimates for C. hungaricus seem rather 
high in comparison to results of other studies of ground 
beetles. For example distance of 2.5 km was enough to 
isolate populations of C. variolosus (Matern et al., 2008). 
Skłodowski (2008) observed that Pterostichus niger had 
a movement range between 40–250 m in a forest-clearcut 
area in Poland, and he also noted that this pattern might be 
explained by the random movement of this species. The 
daily movements estimated for the three studied popula-
tions of C. hungaricus are rather high in comparison to 
results of other MRR studies of ground beetles. For exam-
ple, daily movements by C. cancellatus, C. hortensis, C. 
nemoralis and P. niger ranged between 2.54–3.69 m/day 
(Skłodowski, 2008). On the other hand, our results are fully 
concordant with movements of C. variolosus observed by 
Drees at al. (2008). Also Rijnsdorp (1980) and Den Boer 

(1970) observed that males of C. problematicus walked 
with an average speed of 25 ± 12 m per day, while females 
walked with a speed of 15 ± 4 m per day. Other Carabus 
species moved for 40–200 m per night (Hockmann et al., 
1989; Kennedy, 1994; Riecken & Rath, 1996; Assmann, 
1998). It is difficult to estimate, however, whether the dif-
ferences and similarities in dispersal of various species of 
ground beetles are attributable to ecology or habitat of in-
dividual species, or to variability in study designs.
Dispersal options

For each site, the dispersal probability estimates are 
based on a sampling during a single season. C. hungaricus 
individuals regularly live for more than one year, and some 
individuals live up 5 years (Bérces & Elek, 2013). It is also 
well known that the MRR based mobility estimates tend 
to substantially underestimate long distance movements 
of studied organisms (e.g. Smout et al., 2010; Drag et al., 
2011; Pe’Er et al., 2013). We may thus expect that the 
beetles are able to reach habitat patches kilometers away 
from an occupied patch as long as no migration barriers 
such as e.g. water course and closed canopy forest (includ-
ing even narrow lines of such habitat, see Pokluda et al., 
2012) occur in between. In the fragmented landscapes of 
Central European lowlands, such long distance movements 
are highly unlikely mainly due to the decline in the cover 
of grasslands and increase in cover of closed forest (e.g. 
Holusa et al., 2012). Habitat patches suitable for C. hun-
garicus are sparse, and often isolated by migration barriers 
(Pokluda et al., 2012). Thus, we suggest that due to the 
critical status and the limited dispersal abilites of C. hunga-
ricus in most countries within its occurrence, the facilitated 
dispersal might be a proper tool for the ensuring beetles’ 
survival in many parts of their range. 

Knowledge of C. hungaricus mobility, together with 
knowledge of its habitat requirements and population bi-
ology, is likely to benefit the conservation of this species 
(Pokluda et al., 2012; Bérces & Elek, 2013) as well as nu-
merous other endangered flightless grassland species such 
as Dorcadion species (e.g. Baur et al., 2005).
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