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PARTIAL COVERING OF A CIRCLE BY EQUAL CIRCLES. PART I: THE
MECHANICAL MODELS

Zsolt Gáspár∗, Tibor Tarnai†, Krisztián Hincz‡

Abstract. How must n equal circles of given radius be placed so that they cover as great
a part of the area of the unit circle as possible? To analyse this mathematical problem,
mechanical models are introduced. A generalized tensegrity structure is associated with a
maximum area configuration of the n circles, whose equilibrium configuration is determined
numerically with the method of dynamic relaxation, and the stability of equilibrium is
investigated by means of the stiffness matrix of the tensegrity structure. In this Part I, the
principles of the models are presented, while an application will be shown in the forthcoming
Part II.

1 Introduction

One of the well-known problems of discrete geometry concerning finite circle arrangements
in the plane is the following [5]: How must n equal circles be packed in the unit circle
without overlapping so that the radius of the circles will be as large as possible? This
packing problem has a dual counterpart in covering : How must the unit circle be covered
by n equal circles without interstices so that the radius of the circles will be as small as

possible? For a given n, let r
(n)
max and R

(n)
min denote the maximum radius in the packing

problem and the minimum radius in the covering problem, respectively. For circles with

radius r such that r
(n)
max ≤ r ≤ R

(n)
min, Zahn [40] posed a problem intermediate between these

two: How must n equal circles of given radius r be arranged so that the area of the part
of the unit circle covered by the n circles will be as large as possible? This intermediate
problem is the topic of the present paper. Here and throughout the paper, following Fejes
Tóth [14], we use the term circle also for a circular disc.

Proven solutions to the packing problem have been established for values of n up
to 10 by Pirl [32], for n = 11 by Melissen [29], and for n = 12, 13, 14 and 19 by Fodor
[18, 19, 20, 17]. Conjectured solutions are known for 15 ≤ n ≤ 18 and for 20 ≤ n ≤ 25
[11]. Graham and co-workers [25] extended this range of n and provided putative solutions
up to n = 65. The covering problem is somewhat more difficult than the packing problem.
Certainly, fewer results are known for the covering problem. Although the solution is trivial
up to n = 4 and for n = 7 further solutions are settled only up to n = 10: proven solutions
have been provided for n = 5 and 6 by Bezdek [4, 3], and for n = 8, 9, 10 by Fejes Tóth
[16]. Conjectural solutions have been given for n = 11 and 12 by Melissen [30] (improved
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by Nurmela [31]) and for 13 ≤ n ≤ 35 by Nurmela [31]. The intermediate problem is the
least tractable of the three. To our knowledge, the only paper dedicated to the intermediate
problem in the plane is that by Zahn [40] who provided a proven solution for n = 2 (for 0.5
< r < 1) and conjectured solutions for 3 ≤ n ≤ 10 (for between three and six selected values
of r). Apart from these results there are not even conjectures for other values of n. (It
should be noted that a similar problem concerning partial covering of the spherical surface
by n equal circles was raised and proven solutions for n = 2, 3, 4, 6, 12 were established
by Fejes Tóth [14, 15], with putative solutions for n = 5, 7 to 11, and 13 produced later by
Fowler and Tarnai [21, 22].)

Recently Connelly [9] studied the intermediate problem. He considered the case
of n = 5 as an example, and wanted to know how, for a continuous increase in r, the
circle configuration changes in the transition from the maximum packing to the minimum
covering. If r is close to the maximum packing radius, then the circles have only double
overlaps. In this case, the maximum area can be determined with a formula of Csikós
[12]. Connelly [9] worked out a stress interpretation of Csikós’s formula, and showed how
a tensegrity structure can be associated with the maximum area configuration. However,
if r is close to the minimum covering radius then the circles can have some triple overlaps
for which, although Csikós’s formula remains valid, it is not known how to construct an
adequate mechanical model to represent the maximum area configuration.

The primary aim of this paper is to set up a mechanical model to analyse the
intermediate problem, which works also for triple overlaps, and by which the solution to the
problem can be found, or which results in an at least locally optimum arrangement. In the
case of triple overlaps, the equivalent mechanical model of the maximum area configuration
of circles is a generalized tensegrity structure, a new feature of which is that, in addition
to struts and cables, it contains also triangle elements (known as in-plane loaded plate
elements in finite element techniques).

In the investigations we consider the intermediate problem in an analogous mechan-
ical interpretation. The area function is very complicated and the determination of its
critical point and its maximum is quite difficult. The advantage of the mechanical analogy
is that it simplifies the process to find the solution to the problem, and provides some ad-
ditional information about the solution. Instead of determining the extremum of the area
function, equilibrium of forces is investigated. In structural mechanics, there are known
iteration methods to find equilibrium configurations, which in the intermediate problem
directly provide the critical point of the area function. In these methods the (tangent)
stiffness matrices play a crucial role [28].

An additional aim is to introduce mechanical models also for solving the packing
and covering problems. These models, however, are not entirely new in principle, because
we have already used similar mechanical models for finding (locally) optimal circle packings
and coverings in other domains (e.g. polygons, 2-sphere) [35, 36, 37, 38]. These models are
different a little from those used in [2, 7].

An example of application of the mechanical models will be shown in Part II [24]
where conjectured solutions to the intermediate problem for n = 5 are given as r varies
from the maximum packing radius to the minimum covering radius.
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The outline of the rest of the paper is the following. In Section 2, we define the basic
terms and introduce the basic relationships we use in the investigations of the generalized
tensegrities. We present mechanical models used for packing (Section 3) and covering (Sec-
tion 4) constructions. In Section 5, the generalized tensegrity model used for determination
of the optimal partial coverings is presented, and formulae of internal forces and stiffness
matrices of elements (cables, struts, triangle elements) of the generalized tensegrity are
given. We show, for given value of circle radius r, how an equilibrium arrangement can be
determined by the method of dynamic relaxation; how the individual equilibrium configu-
rations can be characterized from the point of view of stability, and how the singular points
of the equilibrium paths can be calculated.

2 Basic de�nitions and basic relationships

2.1 Tensegrity

The definitions below are taken from [8, 10]. Consider a finite configuration of points pi, i =
1, 2, . . . , v in the Euclidean d-dimensional space Rd. This is denoted as p = (p1,p2, . . . ,pv).
A tensegrity graph G is an abstract graph on the vertices 1, 2, . . . , v (with no loops and
multiple edges), where each edge is designated as either a cable, a strut, or a bar. A
realization of G, where a point pi is assigned for the ith vertex of G, is called a tensegrity
framework and it is denoted as G(p). An edge of G (and consequently that of G(p) as well)
is called a member or element. In G(p), cables cannot increase in length, struts cannot
decrease in length, and bars can neither increase nor decrease in length. In structural
mechanics, it is said that cables are members only able to resist tension, struts are members
only able to resist compression, and bars are members able to resist both tension and
compression. If all edges of the graph G are only bars, G(p) is called a bar framework that,
in structural mechanics, is known as a pin-jointed framework, a truss or a bar-and-joint
assembly [34].

A stress ω on a tensegrity framework G(p) is an assignment of a scalar ωij = ωji

for each edge {i, j} of G, where ω = (. . . , ωij , . . .). A stress ω on a tensegrity framework is
a self-stress if the following equilibrium equation holds at each vertex i:

∑
j

ωij(pj − pi) = 0 (1)

where the sum is taken over all vertices j adjacent to i. A proper self-stress is a stress ω
such that ωij ≥ 0 if {i, j} is a cable, and ωij ≤ 0 if {i, j} is a strut (there is no condition on
a bar). In this way self-stress ω (as a row vector) is a solution to the set of homogeneous
linear equations ωR(p) = 0, where the e-by-dv matrix R(p) is called the rigidity matrix.
Here e is the number of edges of G.

Structural mechanics [34] provides a somewhat different interpretation of the above-
mentioned vector equilibrium. Though the scalar ωij is known as tension coefficient or
force density of member {i, j} in structural mechanics, it is used only in special engineering
problems. Since force is a central term, tensegrity frameworks (tensegrity structures) are
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also investigated in terms of member forces which are closely related to the scalars ωij .
Let Lij denote the length of the member {pi,pj} of the tensegrity framework: Lij =
Lji =| pj − pi |, and let Sij = Sji denote the force in that member. The relationship
between ωij and Sij is ωij = Sij/Lij . Introducing this into the equation (1) we have

∑
j

Sijeij = 0 (2)

where eij is the unit vector pointing from point pi to point pj , and the sum is taken over
all vertices j adjacent to i. Obviously eij = −eji. By arranging the member forces into
a vector sT = [. . . Sij . . .], where (.)T is the transpose operation, the set of equilibrium
equations is obtained in the form As = 0 where A is a dv-by-e matrix called equilibrium
matrix. We note here that the transpose of A is called compatibility matrix, and it is related
(but not identical) to the rigidity matrix R(p). In case As = 0 is fulfilled, it is said that
the structure is in a state of self-stress.

Usually, it is not easy to find a realization of G, which has a proper self-stress. For
problems of maximum packing and minimum covering with equal circles, however, even the
tensegrity graph itself, associated with the circle arrangement, is unknown. Determination
of the graph G and its realization with a proper self-stress is usually possible with an
iteration process under certain constraints. Such a constraint is that the member lengths
are all equal. All members are struts for packing, and all members are cables for covering.
The iteration starts with a configuration of v points p̃ = (p̃1, p̃2, . . . , p̃v), and with a
properly selected graph Ĝ where its representation Ĝ(p̃) has no self-stress. In the case of
packing (covering), by a uniform small increase (decrease) in the length of all members,
a new configuration and a new representation of Ĝ, without self-stress, is obtained. By
repeating this step, a configuration is arrived at where the representation of Ĝ has a self-
stress. It also can occur that self-stress appears only after we modify the graph Ĝ with
adding or removing edges to or from it. It can happen that the detected self-stress is not
proper. If it is so, then the strut {i, j} for which ωij > 0 (the cable {i, j} for which ωij < 0)
should be removed from the graph, and the process should be repeated for this modified
graph until the obtained tensegrity framework has a proper self-stress.

In structural mechanics, cables and struts represent unilateral constraints between
joints which are connected by them, and the relationships for them can be written in the
form of inequalities. Bars represent bilateral constraints, and the relationships for them can
be written in the form of equations. In actual numerical calculations, it is more advantageous
and simpler to use equations instead of inequalities. Therefore, bars are used for both cables
and struts, and at the end of the calculation it is checked whether a tensional bar force is in
the respective cable, and a compression bar force is in the respective strut. This is why all
edges of the graphs associated with packings and coverings of equal circles are designated
as bars.

If we imagine that the members of the respective tensegrity framework are equal bars
made of steel, for instance, then each bar can expand at the same rate that the temperature
of the bar increases. According to this thermal effect, a concerted equal rise in temperature
(that is to say uniform “heating”) of all bars causes a uniform expansion of all bars, which
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simply corresponds to an increase in the radius of the circles in packing. Similarly, a uniform
drop in temperature (that is to say uniform “cooling”) corresponds to a uniform contraction
of all bars, and so to a decrease in the radius of the circles in covering.

In the case of the circle packing problem, it is important that for the tensegrity
framework with a proper self-stress, the compression forces in the bars form a stable state
of self-stress. Let the tensegrity framework have v joints and e members. Since here d = 2,
e > 2v. The state of self-stress is stable if the rank of the 2v-by-e equilibrium matrix A is
equal to 2v.

2.2 Generalized tensegrity

Tensegrity structures can be generalized in several different ways. We consider the gener-
alization that is used in the problem of the maximum partial covering by equal circles.

Start with a tensegrity framework G(p) defined by the configuration p of points
pi ∈ Rd,i = 1, 2, . . . , v, and by the graph G on the vertices i = 1, 2, . . . , v, where each edge
of G is designated as a cable or a strut. If the vertices i, j, k of G are mutually adjacent,
that is, edges {i, j}, {j, k}, {k, i} form a triangle, and if these edges are designated as struts,
then a triangle T (i, j, k), called a triangle element, can be added to the graph G where the
vertices of T (i, j, k) coincide with the vertices i, j, k. Formally, the graph G is supplemented
with the edges {i, j}k, {j, k}i, {k, i}j of triangle T (i, j, k), and the obtained graph has three
double edges. If G has more triangles, then it can be supplemented with more triangle
elements. The resulting graph, denoted by GT , has some multiple edges. A realization of
GT , where a point pi is assigned for the ith vertex of GT , is called a generalized tensegrity
structure and it is denoted as GT (p).

A state of stress of a generalized tensegrity structure GT (p) is an assignment of a
scalar force Sij = Sji for each edge {i, j} of GT (that is, for each member {i, j} of the
underlying G), and a scalar force Qk

ij = Qk
ji for the edge {i, j}k of each triangle element

T (i, j, k). Here, the forces Sij and Qk
ij cannot be assigned arbitrarily, since they are depen-

dent on lengths. (At circle packings and coverings, there are constraints for the member
lengths, but the magnitudes of the member forces can be given relatively freely. At partial
covering, the lengths are relatively free to be assigned, but the magnitudes of the member
forces and edge forces depend on the lengths.) The member force Sij is a function of the
length Lij of the member {pi,pj}, and the edge force Qk

ij is a function of the edge lengths
Lij , Ljk, Lki of the triangle T (pi,pj ,pk). A state of self-stress on a generalized tensegrity
structure is a state of stress, if equilibrium holds for each vertex i of GT (p):

∑
j

(
Sij +

∑
k

Qk
ij

)
eij = 0 (3)

where the sum for j is taken over all vertices adjacent to i, and the sum for k is taken
over all triangle elements containing edge {i, j}. A proper state of self-stress is a state of
self-stress where Sij ≥ 0 if {i, j} is a cable, Sij ≤ 0 if {i, j} is a strut, and Qk

ij ≥ 0 if {i, j}k
is an edge of the triangle element T (i, j, k). Denote the sum of the forces appearing between
vertices i and j by sij :
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sij = Sij +
∑
k

Qk
ij

and arrange the forces sij into a vector ŝT = [. . . sij . . .] , then the set of homogeneous linear
equations Aŝ = 0 is obtained where A is the equilibrium matrix based on the original
(non-generalized) graph G.

In the case of the problem of the maximum partial covering of the unit circle by n
equal circles, the generalized tensegrity structure associated with the circle arrangement in
this problem is constructed in the following way. Let d = 2, and v = n+1, then q1,q2, . . . ,qn

are the centres of the equal circles (discs) C1, C2, . . . , Cn of radius r, and qn+1 is the centre
of the unit circle (disc) Cn+1. The member {qi,qj} is a cable, if i ≤ n, j = n + 1. The
member {qi,qj} is a strut, if i ≤ n, j ≤ n. The triangle T (qi,qj ,qk) is a triangle element
if i ≤ n, j ≤ n, k ≤ n. A tensional force Sij > 0 appears in the cable {qi,qn+1} if Ci and

the exterior of the unit circle Cn+1 intersect (have an external overlap Ci ∩ C{
n+1 ̸= ∅) . A

compression force Sij < 0 appears in the strut {qi,qj} if circles Ci and Cj intersect (have

a double overlap Ci ∩ Cj ̸= ∅). Tensional edge forces Qk
ij > 0, Qi

jk > 0, Qj
ki > 0 appear in

the edges {qi,qj}k, {qj ,qk}i, {qk,qi}j , if circles Ci, Cj , Ck have a part in common (have
a triple overlap Ci ∩ Cj ∩ Ck ̸= ∅).

Overlaps determine parts that could be removed from the equal circles without
changing the coverage of the unit circle. The sum of their areas is called surplus area, and
is denoted as A(q) for a configuration q of the centres of the circles. For a given radius r
of the equal circles, the mathematical task is to find the configuration p where the surplus
area A(p) is a minimum. In order that function A(q) have a local extremum at point p, a
necessary condition is that p be a critical (or stationary) point, that is, gradA(p)=0. The
function A(q) has a local minimum at p if here, additionally, the Hessian matrix H(A(p))
of the surplus area function is positive definite.

Since A(q) is a positive-valued function, the above mentioned mathematical problem
has a mechanical formulation. Consider a generalized tensegrity structure GT (q) defined on
the configuration q. Let A(q) be the internal potential energy for any configuration q. The
first derivatives of the overlap areas with respect to the respective member lengths (edge
lengths) define member forces (edge forces). If p is a critical point for the potential energy
function A, then the member forces and edge forces provide a vector equilibrium at each
vertex according to (3).

The generalized tensegrity is in a stable state of self-stress, if at point p, the potential
energy A has a local minimum. According to this, the equilibrium is stable if the Hessian
matrix H(A(p)), called tangent stiffness matrix in structural mechanics [1, 28], is positive
definite. We note that, in this case, in the rigidity theory of mathematics, it is said that
the (generalized) tensegrity is prestress stable. This stability principle is different from that
used in circle coverings [2]. The equilibrium is unstable, if at point p the potential energy A
has no local minimum, so if H(A(p)) has a negative eigenvalue. The equilibrium is critical
if H(A(p)) is singular.

Let Aij(qi,qj), and Aijk(qi,qj ,qk) denote the area of an external or a double over-
lap, and a triple overlap, respectively. Then the surplus area
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A =
∑

Aij(qi,qj)−
∑

Aijk(qi,qj ,qk).

Here the sum should be extended over all overlaps, but one overlap can be considered only
once. Thus, say, it is supposed that i < j < k, and so the sum cannot contain both Aij and
Aji. The relationships will be simpler if the areas are expressed with the member lengths
and edge lengths:

A =
∑

Aij

(
Lij(qi,qj)

)
−
∑

Aijk

(
Lij(qi,qj), Ljk(qj ,qk), Lki(qk,qi)

)
.

At generating the lth block of the gradient of function A, that is at ∂A/∂ql, each
overlap area, associated with a member or triangle element which is connected to vertex l,
should be differentiated. For a member {qi,qj} (if i = l, or j = l)

∂Aij

∂ql
=

dAij

dLij

∂Lij

∂ql
,

for a triangle element T (qi,qj ,qk) (if, for instance, i = l)

∂Aijk

∂ql
=

∂Aijk

∂Lij

∂Lij

∂ql
+

∂Aijk

∂Lki

∂Lki

∂ql
.

If we introduce member forces Sij and edge forces Qk
ij

Sij =
dAij

dLij
, Qk

ij =
∂Aijk

∂Lij
, (4)

and we take into account that

∂Lij

∂qi
= −eTij ,

∂Lij

∂qj
= eTij

then the blocks of the gradient of A result in the equilibrium equations of form (3).

The Hessian matrix of function A, that is, the tangent stiffness matrix of the gener-
alized tensegrity is also produced from the Hessian matrices of the overlap areas associated
with members and triangle elements. For instance, the block in the principal diagonal of
the Hessian matrix for a member {qi,qj} (if i = l) is

∂
(
∂Aij

∂ql

)T
∂ql

= −∂eij
∂ql

Sij − eij
dSij

dLij

∂Lij

∂ql

,

where

∂eij
∂ql

=
1

Lij

(
E− eije

T
ij

)
.
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Here E is the second-order unit matrix. If j = l, then the same expression is obtained. For
the block off the principal diagonal, the same expression is obtained but with the negative
sign. In this way, the stiffness matrix of a single cable or strut {qi,qj} has the simple form

Kij =

[
eij
−eij

] [
dSij

dLij

] [
eTij −eTij

]
+

Sij

Lij

[
E− eije

T
ij −E+ eije

T
ij

−E+ eije
T
ij E− eije

T
ij

]
.

This matrix can also be written with the help of member stress ωij [26]:

Kij =

[
qj − qi

qi − qj

] [
1

Lij

dωij

dLij

] [
(qj − qi)

T (qi − qj)
T
]
+ ωij

[
E −E
−E E

]
.

If the equal circles have no triple overlaps, then the tangent stiffness matrix of the
entire structure, expressed with member forces, is

K(q) = A(q)CA(q)T +G

where A(q) is the 2(n+1)-by-e equilibrium matrix, C = ⟨. . . dSij

dLij
. . .⟩ is an e-by-e diagonal

matrix, the symmetric 2(n+1)-by-2(n+1) matrix G is the so called geometric matrix [33].
The same tangent stiffness matrix, expressed with member stresses, is

K(q) = R(q)TDR(q) +Ω⊗E

where D = ⟨. . . 1
Lij

dωij

dLij
. . .⟩ is an e-by-e diagonal matrix; Ω is an (n+1)-by-(n+1) symmetric

matrix, the so called stress matrix [6], whose (i, j)th entry is −ωij if i ̸= j, and
∑

k ωik if
i = j (in the entries, ωij = 0 if i and j are not connected by a member). The symbol ⊗
denotes the tensor product of two matrices. If the equal circles have triple overlaps, the
tangent stiffness matrix K(q) becomes more complicated.

The tangent stiffness matrix has twofold importance in the partial covering problem.

(i) For an approximate configuration q, the member forces and edge forces are
determined by (4), and the force vectors at vertex i, in general are not in equilibrium, but
their resultant is a nodal force (nodal load) fi which is not equilibrated

∑
j

(
Sij +

∑
k

Qk
ij

)
eij = fi.

Let f denote the vector of the nodal forces: fT = [fT1 fT2 . . . fTn+1]. We eliminate
f by changing the configuration q. For this, the Newton-Raphson method is used where
the tangent stiffness matrix K(q) is the derivative. The mth step of the iteration takes the
form qm+1 = qm −K−1(qm)f(qm).

(ii) If f is vanished, then q = p, and equations (3) are fulfilled. The generalized
tensegrity associated with the partial circle covering is in a stable state of self-stress if K(p)
is positive definite. If it is so, it means that the surplus area has a local minimum at p.
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3 Model of the maximum packing

The optimal (maximum) packing can be found with uniform “heating” of a planar bar-and-
joint assembly associated with the circle system. The joints of the assembly are the centres
of the equal circles, and the bars connect the centres of two circles touching each other.
Thus the length of each bar is 2r. The joints at a distance of 1–r from the centre of the
unit circle are supported against displacement in the radial direction. One of these joints is
also supported against displacement in the tangential direction in order to prevent rotation
of the whole assembly about the centre of the unit circle. As an example, the bar-and-joint
assembly associated with the optimal packing of seven circles is shown in Fig. 1.

Figure 1: The bar-and-joint assembly associated with the maximum packing of n = 7 circles

If such a bar-and-joint assembly subjected to uniform heating is able to change its
state with the bars remaining free of stress, then the bars become longer and we find a pack-
ing of non-overlapping circles for a greater radius. Hence, the starting configuration cannot
have been optimal. (We note here that, owing to heating, the radius of the circle passing
through the supported joints decreases; we must therefore check whether the distance be-
tween two such joints, which was formerly greater than 2r, has become equal to the new
diameter of the circles. If this has happened, then the structure should be supplemented
with a new bar.)

If a rise in temperature causes stresses in bars, then any bars in tension can be
removed from the bar-and-joint assembly, and the heating procedure can be repeated for
the modified structure. If the associated bar-and-joint assembly is in a stable state of self-
stress such that there is no tensile force among the forces in bars, then the circle arrangement
is locally optimal. For example, forces in all bars of the bar-and-joint assembly in Fig. 1 are
equal compressive forces and form a stable state of self-stress. It should be noted that, in
the case of a locally maximum packing, all bars can be replaced with struts, since it is more
natural to consider a strut framework (as a tensegrity framework with a proper self-stress)
as in [7].
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Figure 2: The bar-and-joint assembly associated with the minimum covering by n = 7
circles

4 Model of the minimum covering

The optimal (minimum) covering can be found with uniform “cooling” of a planar bar-
and-joint assembly associated with the circle system. The network of the bar-and-joint
assembly is a bipartite graph. This follows from the fact that the assembly has two kinds
of joints, connected in a specific way. The joints of the first kind are the centres of the
equal circles. The joints of the second kind are those points where the boundaries of three
or more equal circles (or the boundary of the unit circle and the boundaries of two or
more equal circles) intersect, and which are not interior points of any of the equal circles.
The bars are always inside a circle and connect a joint of the first kind to one of the
second. Thus the length of each bar is r. The joints on the boundary of the unit circle are
supported against displacement in the radial direction. One of these joints is also supported
against displacement in the tangential direction. As an example, the bar-and-joint assembly
associated with the optimal covering of the unit circle by seven circles is shown in Fig. 2,
where the joints of the first kind are marked with small circles.

If such a bar-and-joint assembly subjected to uniform cooling is able to change its
state in such a way that the bars remain free of stress, then the bars become shorter and
we have found circle covering without interstices for a smaller radius. Hence, in this case,
the starting configuration cannot have been optimal.

We note, if k > 3 bars are connected to a joint of the second kind, then this joint is
considered as a multiple joint that should be split into k – 2 joints such that, multiplying
the connecting bars appropriately, 3 bars will be connected to each of the joints obtained
by splitting. The idea of multiplying (splitting) was introduced independently by [2] and
[37]. Multiplying the connecting bars is appropriate if

either
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(i) there exists a new joint where, among the angles between the connecting bars,
there is no angle greater than π (and of course, angles have been defined so that the third
bar is not inside the angular domain); in this case the unit circle will remain covered,

or

(ii) there are two new joints, where at each joint, two of the connecting bars (and
therefore all four bars) coincide with the same straight line, and the third bars are on
different sides of that line.

These joints, which were in coincidence, can become separated during cooling. Dif-
ferent realizations of bar multiplication can lead to different configurations. From these
finitely many configurations, the best should be selected.

Figure 3 presents a detail of a covering where 5 circles intersect at a point. Slightly
distorted, the 3 bars connected to each of the new joints are also shown.

Figure 3: Detail of the bar-and-joint assembly

If a drop in temperature causes stresses in bars, then the bars in compression can
be removed from the bar-and-joint assembly, and the cooling procedure can be repeated for
the modified structure. If for a circle arrangement, the associated bar-and-joint assembly
is in a state of self-stress such that there is no compressive force among the forces in bars,
then the arrangement is locally optimal. The above-mentioned multiplication of joints and
bars is effective only if the bars meeting at the joint carry non-zero stress in the state of
self-stress. It should be noted that, in the case of a locally minimum covering, all bars
can be replaced with cables, since it is more natural to consider a cable framework (as a
tensegrity framework with a proper self-stress) as in [2].
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5 Model of the maximum partial covering

5.1 Construction of the model

If radius r of the equal circles lies in the interval (r
(n)
max, R

(n)
min ) then, at the optimal arrange-

ment, the equal circles can intersect the unit circle and also can intersect each other, but the
unit circle will have a part uncovered by circles. The sum of the areas of the n equal circles
is given, and hence minimizing the uncovered area is the same problem as minimizing the
sum of two areas: the area of the unit circle that is multiply covered by the equal circles,
the area of the parts of the equal circles that lie outside the unit circle. If a certain area is
covered by each of k equal circles, then this area has a (k – 1)-fold surplus coverage. For
the sake of simplicity it is supposed that, in the investigated arrangements, at most three
circles cover the same area, that is, the equal circles can have at most triple overlaps.

The proposed mechanical model is composed of three different types of elements:
(a) cable, (b) strut, (c) triangle element. A cable element connects the centre of the unit
circle with the centre of one of the equal circles. It is active (that is, a tensile force arises
in it) if the circle intersects the unit circle. A strut element connects the centres of two
equal circles. It is active (that is, a compressive force arises in it) if the two equal circles
intersect. A triangle element connects the centres of three equal circles. It is active (that
is, tensile force arises at least in one of the edges of the triangle) if the three equal circles
have a non-zero area in common.

The centre of the unit circle is supported against all displacements, but the centre
of one of the equal circles is supported against tangential displacement. Figure 4 shows
the active elements in a (non-optimal) arrangement. Cables and struts are represented
by dashed lines and solid lines, respectively, the only triangle element is represented by a
shaded triangle.

Figure 4: Active elements of the model of partial covering

If it is not known in advance which equal circles will intersect the unit circle and each
other, then it is possible to consider all cables, struts and triangle elements simultaneously,
but then many of the internal forces will be equal to zero. If for given values of n and r
the whole model is in a stable state of self-stress, then, according to the explanation given
in 2.2, the arrangement is locally optimal. This means that the surplus area has a local
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minimum and the covered area of the unit circle has a local maximum.

5.2 Constitutive equations

(a) Cable element

In the case where the unit circle and one of the equal circles intersect, the magnitude
of the tensile force arising in the cable is defined as the derivative with respect to the cable
length of the area of the part of the circle lying outside the unit circle. This is exactly equal
to the length of the chord connecting the two points of intersection. Thus, the magnitude
of the force S arising in the cable of length L is

S =

{
0 if L ≤ 1− r√

4L2 − (1 + L2 − r2)2/L if L > 1− r
, (5)

and the cable length Ls corresponding to cable force S is

Ls =

{
Lr if S = 0√

1 + r2 − S2/2−
√

4r2 − S2 − r2S2 + S4/4 if S > 0
(6)

where Lr is the distance between the joints connected by the (passive) cable.

(b) Strut element

In the case where two equal circles intersect, the magnitude of the compressive force
arising in the strut is defined as the derivative of the common area with respect to the strut
length. This is equal to the length of the chord connecting the two points of intersection.
Thus, the magnitude of the force S arising in the strut of length L is

S =

{
−
√
4r2 − L2 if L < 2r
0 if L ≥ 2r

, (7)

and the strut length Ls corresponding to strut force S is

Ls =

{ √
4r2 − S2 if S < 0
Lr if S = 0

(8)

where Lr is the distance between the joints connected by the (passive) strut.

(c) Triangle element

In the case where three equal circles intersect, the magnitude of the tensile force
Qi arising in the ith edge of the triangle element is defined as the partial derivative of the
common area A with respect to the ith edge length:

Qi =
∂A(L1, L2, L3)

∂Li
.
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(The force in the edge is a tensile force since, with compressive forces in the strut elements
running along the three edges, a surplus coverage of the common area has already been
subtracted three times, and so this common area has become uncovered.) For intersection
of two equal circles, the strut force is calculated as the chord length. If the common area
of these two equal circles is intersected by a third circle, then the force in the strut will
be equal to the edge length of the Voronoi cell, corresponding to this strut. Therefore, the
respective edge force of the triangle element is equal to the difference between the chord
length and edge length of the cell as shown in Fig. 5.

Figure 5: Edge forces of the triangle element

For calculating edge forces, the cyclic order 1 → 2 → 3 → 1 of subscripts is used.
The applied parameters are defined in Fig. 6.

Figure 6: Definition of the applied parameters

Angles of the triangle element are
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βi = arccos
L2
i−1 + L2

i+1 − L2
i

2Li−1Li+1
.

Radius of the circumcircle of the triangle (for any i) is

R =
Li

2sinβi
.

If none of the edge lengths of the triangle element is greater than 2r, then by introducing
the parameters

ai =
L2
i − L2

i−1 − L2
i+1

4Li−1
, bi = cisinβi+1, (9a)

ci =
√

r2 − L2
i /4, di =

√
R2 − L2

i /4, (9b)

the edge forces are obtained as

Qi =


2ci if 0 < ai − bi

ci + di if ai − bi < 0 < ai
ci − di if ai < 0 < ai + bi

0 if ai + bi < 0

. (10)

From this it follows that, if for all three edges (i = 1, 2, 3) the inequality ai + bi < 0 holds,
then the triangle element is passive. We note that it may happen that only one of the edge
forces is different from zero. This happens when the common part of two circles is contained
by the third circle, that is, the common part of the three circles is the union of two equal
circle segments. In this case, the edge force is just the opposite of the strut force arising in
the strut element running along that edge. In such a case, the system of internal forces and
the stiffness matrix of the structure remain unchanged, if both the triangle element and the
strut element running along the aforementioned edge are considered passive.

5.3 Solution with dynamic relaxation

For given r and n, the equilibrium arrangement can be determined with the method of
dynamic relaxation [13, 39] by using (5), (7) and (10). If n is fixed, and beginning with

r
(n)
max, r is increased in small steps (and at each step, the previous position is used for
starting the iteration), then points of an equilibrium path are obtained. If beginning with

R
(n)
min , we go backwards along the same steps of r, then we do not always obtain the same

arrangement as before at each step. The reason for that is that more than one equilibrium
arrangement can correspond to a single value of r. With the dynamic relaxation, the
procedure mostly converges to a stable equilibrium configuration, but sometimes it tends
to an unstable configuration close to the starting one. The dynamic relaxation does not
investigate stability of the equilibrium configuration. For this investigation, the stiffness
matrix of the model should be determined. With the stiffness matrix, also the critical points
of the equilibrium path can be determined to an arbitrary desired degree of accuracy.
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5.4 Element sti�nesses, sti�ness matrices

The stiffness of an element depends strongly on the actual arrangement. It shows how the
internal forces (cable force, strut force, edge forces) of an element change with a (differential)
change in the element size. The (tangent) stiffness matrix provides the relationship between
the differential change in the position of the nodes of the element and the differential change
in the nodal force system keeping the element in equilibrium in this position. The stiffness
matrix is composed of two parts:

(i) the primary stiffness matrix which shows the effect of the change in the magnitude
of the internal forces caused by the change in the element size,

(ii) the secondary stiffness matrix which shows the effect of the change in the direc-
tion of already existing internal forces.
Let us investigate the three types of elements.

(a) Cable element
Stiffness H of the element is

H =
dS

dLs
=


0 if S = 0

1

Ls

(
2(1− L2

s + r2)

S
− S

)
if S > 0

. (11)

The structure of stiffness matrix K of the element is of the form

K =

[
K0 −K0

−K0 K0

]
(12)

where the block in the main diagonal is

K0 = eeT
(
H − S

Lr

)
+E

S

Lr
; (13)

here e is the unit vector pointing from the starting point to the end point of the element,
and E is the second-order unit matrix.

(b) Strut element
The stiffness of the element is

H =
dS

dLs
=

{ √
4(r/S)2 − 1 if S < 0

0 if S = 0
. (14)

The stiffness matrix can be produced according to (8) and (9) also in this case.

(c) Triangle element
Between the increment of the edge forces and the increment of the edge lengths the third-
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order matrix H makes relationship:

 dQ1

dQ2

dQ3

 = H

 dL1

dL2

dL3

 . (15)

The entries of matrix H take the form

Hij =
∂Qi

∂Lj
=



2
∂ci
∂Lj

if 0 < ai − bi

∂ci
∂Lj

+
∂di
∂Lj

if ai − bi < 0 < ai

∂ci
∂Lj

− ∂di
∂Lj

if ai < 0 < ai + bi

0 if ai + bi < 0

(16)

where (δij is the Kronecker symbol)

∂ci
∂Lj

=
−δijLi

4
√

r2 − L2
i /4

, (17a)

∂di
∂Lj

=

R
∂R

∂Lj
− δij

Li

4√
R2 − L2

i /4
, (17b)

here

∂R

∂Lj
=

Lj−1Lj+1

(
L4
j −

(
L2
j−1 − L2

j+1

)2)
(
2L2

2L
2
3 + 2L2

1L
2
3 + 2L2

1L
2
2 − L4

1 − L4
2 − L4

3

)3/2 . (17c)

The primary stiffness matrix (K
′
) of the triangle element provides the relationship be-

tween the displacement increments (dv) of the vertices and the nodal load increments (df)
equilibrating the edge force increments caused by the displacement increments:



df1x
df1y
df2x
df2y
df3x
df3y

 =

 −e2 e3
e1 −e3
−e1 e2

H

 eT1 −eT1
−eT2 eT2
eT3 −eT3




dv1x
dv1y
dv2x
dv2y
dv3x
dv3y

 = K
′
dv, (18)

and thus a block of K
′
is

K
′
ij =

2∑
α=1

2∑
β=1

(−1)α+βei+αHi+α,j+βe
T
j+β (19)
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where ei is the unit vector of the ith edge, and in the subscripts the previously defined
cyclic order is valid.

The secondary (supplementary) stiffness matrix of the triangle element contains the
effect of the change in direction of the already existing edge forces. The block in the main
diagonal of the supplementary stiffness matrix of the ith edge is

K0
i =

Qi

Li

(
E− eie

T
i

)
, (20)

and so the supplementary stiffness matrix K
′′
of the triangle element takes the form

K
′′
=

 K0
2 +K0

3 −K0
3 −K0

2

−K0
3 K0

1 +K0
3 −K0

1

−K0
2 −K0

1 K0
1 +K0

2

 . (21)

The complete (tangent) stiffness matrix K of the triangle element is the sum of the two
stiffness matrices:

K = K
′
+K

′′
. (22)

5.5 Equilibrium position, stability, singular points

Using the stiffness matrices of the elements and taking the supports into account we can
compile the stiffness matrix of the entire structure in any state, according to the usual way
in structural mechanics [27]. If, for a given radius r, the approximate position coordinates
of the circle centres and the respective element forces are known, then their values can be
made more exact with the following iteration steps.

(i) At every node, we calculate the sum of the force vectors appearing in the members
and triangle element edges connected to the node. That provides the unequilibrated load at
the node. From these nodal loads, the vector of the unequilibrated loads of the structure can
be composed, that is the vector of the load errors. The differences between the lengths Ls,
calculated from member forces, and distances Lr between the end points of the respective
members provide the vector of the compatibility errors. If the norm of both error vectors
is smaller than a prescribed error limit, then the iteration process can be stopped.

(ii) We generate the stiffness matrix of the structure and the vector of the reduced
loads composed from the two error vectors. Considering them as the coefficient matrix and
the right-hand side vector of a set of linear equations, the solution to this set of equations
provides a linear approximation of the displacements of the nodes.

(iii) If the norm of the obtained displacement vector is greater than a prescribed
value of a parameter defined to increase the radius of convergence of the iteration then,
proportionally, we decrease the norm to the prescribed parameter value.

(iv) From the obtained displacement vector and the stiffness matrices of the ele-
ments, we calculate the linear increments of the element forces.
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(v) By modifying the coordinates of the circle centres with the entries of the dis-
placement vector, and the element forces with the calculated increments, we obtain a better
approximation of them, and we can repeat the iteration from point (i).

If the stiffness matrix in the state obtained by iteration is positive definite, then the
arrangement may be optimal, if it is not positive definite, then it is certain that there exists
a better arrangement of the circles.

Plotting the equilibrium positions as a function of r, we obtain ”equilibrium paths”.
Points of the equilibrium paths can be divided into four categories.

(a) The equilibrium path in a small enough neighbourhood of the point is a smooth
curve. In this neighbourhood, the topology of the active elements is unchanged, the stiffness
matrix is not singular at any point of the curve, and the number of its positive eigenvalues
does not change.

(b) The equilibrium path in a small enough neighbourhood of the point is a curve,
but the topology of the active elements on the two sides of the point is different. Since for
the cable elements and strut elements the constitutive function (material law) is non-smooth
(what is more the gradient at one side of the point is infinitely large), the potential energy
function is non-smooth either. The stiffness matrix is not singular at any point of the curve
in this neighbourhood and the number of its positive eigenvalues does not change.

(c) The stiffness matrix is singular at the point, and the equilibrium path bifurcates.
In a small enough neighbourhood of the point, the topology of the active elements is the same
on all branches of the path, and the potential energy of the structure is a smooth function
in this neighbourhood. The critical points can be classified according to catastrophe theory
[23].

(d) The equilibrium path bifurcates at the point, but the topology of the active
elements is not the same on every branch. The function of the potential energy is non-
smooth.

6 Conclusions

(a) With the tools of structural mechanics we have shown three mechanical models suitable
for providing conjectural solutions to the circle arrangement problem.
(b) In the models of both packing and covering, bars that are equally able to bear both
tensile and compressive forces are applied as structural elements. The reason for this is
to avoid using non-smooth functions. These models are free of stress in the investigated
domain, except at particular points. Where they can reach a state of self-stress, without
using the constitutive equations, we define stresses. In this way it is possible to identify
bars that can be removed from the assembly. We do not produce “equilibrium paths” here,
but only “equilibrium points”, that is, equilibrium positions for particular values of radius
r.

In the generalized tensegrity model of the partial covering, we use all the geometrical,
constitutive and equilibrium equations throughout. Here, stresses appear in members of the
structure for all the possible values of r, and we can produce “equilibrium paths”.
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(c) In order to show how these mechanical models work and how to use them the case of
n = 5 will be presented as an example in Part II [24]. The generalized tensegrity model for
n = 5 provides a good occasion also to determine such “equilibrium paths” in cases where
the stiffness matrix is not positive definite.
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[16] Fejes Tóth, G.: Thinnest covering of a circle by eight, nine, or ten congruent circles, in
Combinatorial and Computational Geometry (eds: J. E. Goodman, J. Pach and E. Welzl),
Mathematical Sciences Research Institute Publications vol. 52, Cambridge University
Press, pp. 361-376 (2005).

[17] Fodor, F.: The densest packing of 19 congruent circles in a circle, Geom. Dedicata 74
(2), 139-145 (1999).

[18] Fodor, F.: The densest packing of 12 congruent circles in a circle, Beiträge Algebra
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