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Abstract: The adsorbent layer system is especially suitable for the biological evaluation of 

different compounds and trace elements as well. Present experiments showed that 

formaldehyde (HCHO) molecules participate in the antibiotic activity of Cu (II) ion, an „old 

antibiotic”. The elimination of HCHO from the chromatographic spots (e.g. by reduction or 

capturing) resulted in a characteristic decrease of the antibiotic effect of trace elements. The 

trace elements are HCHO carriers and generate a double effect (first step: deprivation of 

HCHO as also biological effect; second step: release of HCHO with big killing activity).  

These features offer good opportunities for influencing fundamental biochemical pathways. It 

has been established that the trace elements (mainly transition metal ions as e.g. Ni(II) ion) 

always generate quadruple, bioequivalent, specific immune-stimulating activity in plants  with 
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a non-linear dose-response. HCHO and its reaction products (mainly O3) are responsible also 

for this latter activity. 
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INTRODUCTION   

Trace elements (metal ions) play an important and unique role in all living organisms and 

without their catalytic presence in trace or ultratrace amounts in many essential co-factors 

many basic biochemical reactions would not take place. 
[1-3]

 It is known that „free” trace 

elements can become toxic to cells dose-dependently and they can cause damage to cellular 

components when their concentrations surpass certain optimal (natural) levels 
[4,5].

 Trace 

elements generate diverse biological activities and they are involved in the generation and 

elimination of different diseases. Although it seems that each of them has its own mechanism 

of action, it is believed that these mechanisms actually share common factors. [4,5]
 

     It is already known that the possibility of the enzymatic (biological) and/or spontaneous 

(chemical) methylation/hydroxymethylation of trace elements means a special and unique 

contact between the biological and the inorganic world. 
[6,7]

 It has to pointed out that 

methylated/hydroxymethylated trace elements are potential formaldehyde (HCHO) precursors 

(generators) and HCHO formed from them can participate in different endogenous 

reactions/interactions.
[8,9]

 Enzymatic transmethylation takes place through HCHO 
[10]

 and 

demethylation practically always involves formation of HCHO. 
[11]

 There is a primary HCHO 

cycle in biological systems (Figure 3A) [12,13] in which the formation of the S-methyl group of 



 

 

L-methionine takes place through HCHO originating from natural HCHO generators and the 

formation of HCHO from SAM is linked to trans-methylation. 

        It was observed that the diverse beneficial effects of trans-resveratrol (TR) as a typical 

stilbene derivative e.g. in grapes (wines), can originate from its double effect. 
[12,14]

 The 

elimination of uncontrolled and/or controlled HCHO molecules from labile bonds in a given 

tissue (e.g. heart or brain tissue) with exogenous TR molecules (first step) might have a 

chemopreventive effect. The products of reaction between the TR and endogenous HCHO can 

produce a killing/inhibiting effect e.g. against pathogens or cancer cells (second step). 
[15,16 ] 

       It is known that some trace elements (e.g. As and Se) can be methylated enzymatically 

using S-adenosyl-L-methionine (SAM) as a „methyl donor”
[17] 

and spontaneously by means 

of HCHO formed/mobilized from cells/tissues. Trace elements (e.g. Cu and Zn) can be 

hydroxymethylated by means of HCHO originating from pathogen cells or from normal 

tissues etc. These methylation and hydroxymethylation reactions are analogous with the first 

step of the above TR reaction. [15,16]  The reaction products and further products (e.g. H2O3, 

O3) can show the second step effect (see above) or they can participate in carcinogenesis (e.g. 

high dose of Cu coordinated with high HCHO level). 

       It follows from these observations that there are no determinative second step effects 

without interactions in the first step. The double effect may be the basis of diverse biological 

activities of trace elements.
[18] 

The killing/inhibiting effect of HCHO mobilized by trace 

elements can be further increased by means of interaction with H2O2. Both HCHO and H2O2 

can be formed intracellularly and extracellularly by cells. These two small molecules can 

interact: singlet oxygen (
1
O2) and excited HCHO can form.

[19,20]
 

1
O2 can oxidize water 

molecules and – among others- ozone can be formed which is an important component of the 

adaptive immune system (Figure 3B). 
[21-23] 



 

 

         According to preliminary experiments and observations trace elements as carriers 

transport HCHO molecules in a dose-dependent manner to different points of a given 

biological unit. 
[24] 

         The known dramatic diversity of biological activities of trace (mainly transition) 

elements demands a deeper knowledge and understanding about their interactions with key 

biological small (and big) molecules. This paper illustrates in vitro (BioArena) and in vivo 

(greenhouse) systems that can be used to study these reactions. 

 

EXPERIMENTAL 

Experimental chemicals 

Authentic test substances (e.g. trace elements, formaline solution) were purchased from 

REANAL Co., Ltd. (Budapest, Hungary). All solvents and other chemicals were of 

analytical grade, and purchased from Merck Co., Ltd. (Darmstadt, Germany) and Reanal 

Co., Ltd. (Budapest, Hungary). Dye reagent: 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) (Sigma-Aldrich Ltd., Budapest, Hungary) was used to 

visualize the antimicrobial activity on the adsorbent layer. 

 

Layer Liquid Chromatographic Studies 

TLC chromatoplates covered with silica gel 60 F254 (Merck, Darmstadt, Germany) and 

sealed at all edges were used for OPLC separation. Sample application was carried out on 

preconditioned (3 h, 130 oC) adsorbent layers with a microsyringe and Linomat IV automatic 

sample applicator (CAMAG Co., Muttenz, Switzerland). TLC chromatograms are developed 

in an unsaturated chamber using different solvent systems. For OPLC separation, an 

automatic OPLC instrument was used, which consists of a liquid delivery system and a 



 

 

separation chamber (OPLC-NIT Co., Ltd., Budapest, Hungary). A cassette containing the 

chromatoplate with samples can be inserted into the chamber. After the separation process 

using different solvent systems, the cassette is pulled out. The dried chromatoplates were 

ready for densitometric and/or bioautographic evaluations.
[25]

 In some cases the 

chromatoplates had to be impregnated with 0.3 M Na-molibdate solution for the moving trace 

elements from the start point.                                                

Biological Detection of Trace Elements on the Adsorbent Layer: the In Vitro BioArena 

Studies 

For the biotest, a bacterial cell suspension of the phytopathogenic Pseudomonas savastanoi 

pv. phaseolicola race 6, causing halo blight on bean, was applied. Just before use, different 

endogenous and/or exogenous key compounds, such as HCHO and O3 capture molecules, 

were added to aliquots of the suspension. The developed, dried chromatoplates were 

immersed in the bacterial suspensions [with or without (control) endogenous or exogenous 

compound] for 25 s. Visualization of the bioautograms with MTT vital dye reagent was 

performed either after a short draining period or after an overnight incubation. 
[26,27] 

After 

staining, the time for evaluation was varied from 1 h to a few days. 

 

In Vivo Studies: Greenhouse Experiments - Biochemical Immunization of Plants 

Chemical pre-treatment of different bean varieties was carried out by spraying the abaxial leaf 

surface of the plants with aqueous solutions of the inducer (+ 1 drop of TWEEN 40 in 100 mL 

solution) using decimal aqueous dilutions (ranged from 10-1 to10-23mol L-1). Plants treated 

with water were used as a control. After an induction time period of 4 days bean plants were 



 

 

spray-inoculated with an aqueous spore suspension of Uromyces phaseoli  and then incubated 

(22 
o
C,100 % relative humidity) for 24 h. 

[28,29]
 Evaluation of data was accomplished on the 

9th day after inoculation. Rust pustules were counted by using a home-made pattern. Disease 

severity (infection rate, infectivity) was expressed as the average number of pustules on a 1 

cm
2
 leaf area (data on the statistical evaluation on a leaf surface of a minimum of 16 x 1 cm

2
 

are needed). These values are compared with the corresponding values of control plants. The 

obtained relative infection rate was expressed as a percentage (control 100 %). In order to 

study the effect of the inducer on the disease resistance of bean plants, the dependence of the 

infection rate on the concentration of the inducer administered (expressed in logarithmic 

scale) was examined 
[16, 28,30]

 The mathematical evaluation of the data was performed by 

moving average technique using suitable software. 

     (Of note, for successful experiments the chemical pre-treatment has to be carried out 

with an intensive washing of equipment between dilution steps with the actual dilution 

solution. This procedure includes a minimum of 10-15 times sprayings of next dilution 

solution into air or onto a indifferent surface.) 

RESULTS AND DISCUSSION 

Short theoretical introduction to the novel experiments 

Figure 1 illustrates a modified Haraguchi 
[31]

 schematic model of the biological world where a 

biological cell and biological fluid are separated by the cell membrane. Our model version 

includes one mechanism of action for trace elements integrating HCHO and its special 

reaction products (e.g. 
1
O2, O3) as well. This „chromatographic spot-like system” may be a 

home of most different biochemical pathway systems, at that time the layer chromatographic 

separation techniques (mainly in BioArena versions) can be used for studying them. Figure 1 



 

 

shows that the metal ions (mainly transition metals) (M) [and parallel HCHO molecules (F) 

and their reaction products] which play a fundamental role in their mechanism of action 

weave through the big biological units such as the genome, proteome etc. with corresponding 

consequences. More recently, it has been observed that the well-known antimicrobial activity 

of Cu (II) ions is indirect: the Cu (II) ions generate (mobilize) HCHO molecules from 

microbial cells or plant tissues and bind them forming an unknown coordination complex. 

This also may be a biological action (HCHO deprivation) (first step in the interaction). 
[18]

 

Figure 2 illustrates a structure of copper-hydroxymethyl complex which is a typical 

coordination complex of Cu (II) ion with a coordination number 6 forming a distorted 

octahedral geometry 1), while, the complex [Cu˙(CH2OH)4]
+
 has a tetrahedral geometry 2) 

taking into account excellent work of Theophanides and Anastassopoulou 
[4]

 with the copper-

ammine complex. In this coordination complex from the labile hydroxymethyl groups very 

reactive HCHO can be released (second step in the double effect) [18] with high 

killing/inhibiting activity to pathogen cells or to cancer cells. (It is supposed that other 

transition elements can generate similar hydroxymethylated derivatives in model reactions 

and in biological units, because all can mobilize HCHO molecules from microbes or other 

cells (tissues) in structure- and dose-dependent level. 
[18]

) 

    There is a primary HCHO cycle in biological systems (Figure 3a) 
[13,32]

 in which the 

formation of the S-methyl group of L-methionine takes place through HCHO originating from 

natural HCHO generators (e.g. N5CH3 (THF)) and the formation of HCHO from S-adenosyl-

L-methionine (SAM) is linked to trans-methylation reactions 
[10]

 in general. HCHO cycle is a 

determining biochemical pathway in biological systems with unique, practically yet unknown 

functions. The inhibiting-killing activity of HCHO released can be further increased by means 

of interaction with an other endogenous very reactive molecule, H2O2. Figure 3b summarizes 



 

 

the reaction series supposedly taking into account the earlier and more recent determining 

observations.
[19-23]

 This complex figure includes two fundamental, related biochemical 

pathways which can be studied in BioArena system. 

     This study of trace elements includes the following new investigations: 1) basal reactions of 

trace elements with HCHO; 2) influencing activity of trace elements for the biochemical 

pathways; 3) study of trace elements in in vivo conditions based on BioArena studies. 

        Basal reactions of trace elements with HCHO and others in BioArena system 

It has to be pointed out that column systems (e.g. HPLC columns) are not suitable for the 

biological detection of trace elements or organic compounds because the living cells (e.g. 

bacterial cells) do not grow there, so their detection and measurement (e.g. changes) is not 

possible. The BioArena system provides a solution here. It integrates the advantages of layer 

liquid chromatographic separation (ideally linear OPLC versions 
(33,34]

) and conventional and 

modern bioautography, 
[26,35]

 which exploits the possibility to study interactions of cells (e.g. 

bacterial cells) with endogenous and exogenous small and large cofactor molecules in the 

adsorbent bed of the layer after separation. In these interactions HCHO and its reaction 

products (e.g. O3) appear as key biological molecules. 

   Figure 4A  illustrates the antibacterial activity of Cu (II) ions as a well-known „old 

antibiotic”.  When HCHO-reducing molecules (L-ascorbic acid as a strong reducing agent) 

are added to the culture medium (Figures 4B, 4C, 4D) this activity is characteristically (non-

linearly) reduced, in accordance with previous results.
[27]

 It seems that Cu (II) ions as old 

antibiotic molecules act through HCHO and its reaction products similar to organic antibiotic-

like compounds. [36] 



 

 

    Figure 5 shows that when HCHO molecules are added to the culture medium, the 

antibacterial activity is characteristically increased (more intensive spots are observable). This 

means at that time that the bacterial cells and culture medium do not provide enough HCHO 

molecules for the Cu (II) ions and shows that HCHO molecules participate in the antibiotic 

activity of Cu (II) ions (this is not a synergistic effect). 

    When natural („classical”) HCHO-capturing molecules (reduced gluthathione and L-

arginine) are added to the culture medium (Figure 6B and 6C) the antibacterial activity is 

decreased characteristically and especially considerably in the case of reduced glutathione in 

accordance with previous results of organic antibiotics. Cu (II) ions collect the HCHO 

molecules from the bacterial cells and the culture medium to reach an antibacterial (antibiotic) 

effect. [27,36] 

Influence of trace elements on the biochemical pathways 

Figure 7 shows the antibacterial activity of trans-resveratrol (TR) in the presence of Fe (III), Zn 

(II), and Mn (II) ions. These metal ions generated a bigger activity than the control in all cases, 

that is, they gave more HCHO molecules to effect of TR. The Cu (II) ions generated bigger 

effect than these trace elements.
[37]

 It is obvious that the intensity of the first step (HCHO 

deprivation) depends on the trace element structure and dose but without this first step there is 

not a possibility for second step (killing/inhibiting effect).  Importantly, trace elements generate 

double effect similar e.g. to TR. 
[15,16] 

      In the presence of mycotoxins (e.g. aflatoxins) the HCHO level in a given biological unit is 

elevated by advanced liberation from bounded forms (e.g. because of the stress situation)
[13]  

and it may form from themselves aflatoxins by demethylation reaction. 
[29]   

The elimination of 

HCHO from the system (e.g. chromatographic spots) can decrease the antimicrobial-toxic 



 

 

effect of mycotoxins. 
[38,39]

 Figure 8 illustrates the change of B1 aflatoxin antibacterial activity 

in the presence of different doses of Se (IV). It can be seen that increasing the amount of Se 

(IV) ion in the culture medium the antibacterial activity of aflatoxin B1 decreases dramatically. 

Meanwhile it has been established that Cu (II) and Se (IV) ions generate opposite effect on the 

antibacterial-toxic action of mycotoxins. [40] 

    It is known that trans-resveratrol (TR) is a natural, concentration—dependent HCHO 

mobilizer, scavanger, capture and carrier molecule.
[15,16]

 It is interesting that in the presence of 

Cu (II) ions the antibacterial activity of TR considerably increases.
[27,36] 

This is valid for other 

transition elements as it can be seen on Figure 7.  Figure 9 illustrates the effect of cobalt (Co 

(II)) ions on the antibacterial effect of TR. It was probable that this transition element will also 

increase the antibacterial activity of TR, however, it seems that it acts perceptibly for the 

separation of two TR isomers as well. These results show clearly that the separation and 

observation possibilities are unlimited in BioArena system.   

     Ochratoxin A (OA) kills the pathogenic bacterial cells by endogenous ozone (O3).
[27,36,41]  

Figure 3B shows the formation possibilities of endogenous O3 practically from the interaction 

of HCHO with H2O2 .
[19-23]    

Using Cu (II) ions in the culture medium the antibacterial activity 

of OA increases (Figure 10.) supposedly on the basis of reaction series demonstrated in 

Figure 3B. (HCHO is an O3 precursor in this case).                                   

Extension of in vitro (BioArena) results with trace elements for in vivo conditions 

(greenhouse investigations) 

According to our preliminary investigations in vitro (BioArena – layer chromatography) 

results with trace elements can also be used in in vivo conditions [18,28,42] as in the case of 

organic compounds. 
[16,28,30]

 Figure 11 illustrates the quadruple, bioequivalent(four equal   



 

 

immune-stimulating ranges), non-linear, specific (time- and dose dependent) immune 

response effect of bean plants for the pre-treatment with different doses of Ni (II) ion. These 

results support the preliminary results with the Cu (II) and Ni (II) ions as inorganic inducers. 

[42]
 Using a HCHO capture molecule in vivo (e.g. dimedone), the four active immune response 

ranges of the bean plants could be eliminated, 
[42]

 similar to the elimination of the antibiotic 

effect in the in vitro (BioArena) studies on the adsorbent layer.[27] In fact the quadruple 

immune response of plants can analogously be induced by other trace elements. The 

possibilities are unlimited. 

    Figure 11 illustrates clearly that Ni(II) ions can also generate negative arm of hormesis 

effect (- log c = 1) (retardation/destruction) and at that time the positive arm of the hormesis 

(immune-stimulating effect at – log c = 5) as well. [42] 

 

CONCLUSIONS 

The layer liquid system is suitable only for the biological detection and interactions, and 

development of BioArena provides unlimited possibilities for studying fundamental 

biochemical mechanisms. These possibilities ensure also the future of the layer liquid 

chromatographic techniques. 

    These results with trace elements (metal ions) challenge also the idea on the two-phase 

hormesis 
[43,44]

 and show that hormesis phases are in the resistance phase of the stress 

syndrome. 
[45] 

 It seems on the basis of quadruple immune response of plants to pathogens that 

the resistance phase of stress syndrome 
[45]

 can be divided into four equivalent parts. 

    Further study of trace elements (mainly transition metal ions) in vitro (in BioArena) 

 and in vivo (e.g.in greenhouse) conditions regarding to HCHO/O3 idea promises further 



 

 

 surprising results –among others - in the field of hormesis and resistance. 

     It follows also from these results that dosing will occupy more important role in our life in 

future than in earlier times. The quadruple, bioequivalent, non-linear, specific immune 

response system (also for trace elements) opens new horizons, and we are only at the 

beginning to understand this unique finding. 
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                  Captions to figures of Tyihák E. et al.: JLC&RT, 2014. 

          Figure 1. A schematic model of the biological world in „a chromatographic spot” using a     

                         modified Haraguchi model [31] with special emphasis on the unique role of   

               HCHO/O3 idea in the mechanism of action supposed of trace elements (metal    

                ions). 

 



 

 

                      Figure 2. The potential structure of the copper-CH2OH complex.  

                                      1) Octahedral geometry;  2) tetrahedral geometry [4,24]. 

 

                      Figure 3.  Joining two fundamental biochemical pathways: formaldehyde cycle [12,13,32] 

               (A)  and  generation of key oxidants from the interaction of HCHO and H2O2   

                    [27,28,36] (B).         

 

                      Figure 4.   Effect of L-ascorbic acid (AA) as reducing agent on the antibacterial effect of  

               Cu (II) ions against Pseudomonas savastanoi pv. phaseolicola (Psm). 

                  A: layer dipped into Psm cell suspension, control; B-D: 10, 50 and 100 mg AA in  

100   mL cell suspension;    Chromatographic conditions:chromatoplate : silica gel 

60  F254 (Merck) impregnated by 0.3 M Na-molibdate, drying; then preconditioning 

at  130
o
C for 3 h. sample application;  eluent: 1 M Na-formate (rechromatography); 

Detection (visualization) was performed with MTT (methyl thiazolyl tetrazolium 

chloride). 

  

      Figure 5.   Effect of HCHO aqueous solution administration on the antibacterial activity of   

                        Cu(II)  ions  against Pseudomonas savastanoi pv. phaseolicola (Psm). 

                                     Chromatographic conditions: silica gel 60 F254  (Merck), preconditioning at  

             130
o
 for 3 h. Mobile phase: 0.1 M Na-formate. Visualization was performed with  

                               MTT. The real control is the diluted formalin solution alone (third sheet). Spots  

                               were not observable there, but dramatic spots were observable in the copper and  

                               formaline solution on the second sheet. 

    



 

 

                     Figure 6.  Effect of natural HCHO capturers on the antibacterial activity of Cu (II) ions     

                 against Pseudomonas savastanoi pv. phaseolicola (Psm).   

                             Chromatographic conditions: silica gel 60 F254 (Merck); preconditioning at  

                             130
o
 
o
    for  3 h. mobile phase: 1 M formate; visualization with MTT. 

 

             Figure 7. Effect of different trace elements on the antibacterial activity of trans-    

                             resveratrol.  

                                     A: Pseudomonas savastanoi pv. phaseolicola, alone, control, Psm; B: + 1    

                                    mg/mL   FeCl3.6H2O;     C: + 1 mg/mL MnCl2.4 H2O; D: + 1 mg/mL ZnSO4  

                             .      7H2O.  Chromatographic conditions:  chromatoplate: silica gel 60F254 (Merck,   

                                     preconditioning at 120 
o
C for 3 h); mobile phase: chloroform-methanol, 80:8, 

                                      (v/v); Incubation time between inoculation and staining was 2 h. This picture  

                                      was taken 18 h after staining. 

 

 

                    Figure 8.  Effect of Se(IV) ions on the antibacterial activity of aflatoxin B1. 

           A: Pseudomonas savastanoi pv. phaseolicola, alone, control;  

              B-E: + 0.01, 0.1, 1 and 2 mg sodium selenite in 100 mL cell 

   suspension.     Chromatographic conditions:  chromatoplate: silica gel 60F254  

  (Merck, preconditioning at 120 
o
C for 3h; mobile phase: chloroform-acetone,  

        9:1 (v/v);   Detection at the end of the process  with MTT. 

 

 



 

 

            Figure 9.  Effect of cobalt (II) ions on the antibacterial activity of trans-resveratrol. 

                                     A: Psm, Pseudomonas savastanoi pv. phaseolicola cell suspension, alone,    

                                     control;   B-D:  + 2, 4 and 6 mg CoCl3 in 100mL cell suspension 

           Chromatographic conditions: silica gel 60 F254 (Merck). Preconditioning at   

           130 
o 
C for 3 h.Mobile phase: chloroform-methanol 80:8 (v/v) Visualization  

                                     with MTT. 

 

            Figure 10. Effect of Cu(II) ions on the antibacterial activity of ochratoxin A. 

    A: Psm, Pseudomonas savastanoi pv. phaseolicola cell suspension, alone,  

    control; B and C: 4 and 6 mg CuSO4x5H2O in 100 mL cell suspension 

                                       Chromatographic conditions: silica gel 60F254 (Merck). Preconditioning at  

    130
o
C for 3 h. Mobile phase: chloroform-methanol, 8:2 (v/v). Visualization  

    with MTT. 

   (Copper ion was the HCHO carrier and OA is a HCHO acceptor molecule 

   on the basis of its structure.) 

 

                  Figure 11.  Effect of Ni (II) ion as inorganic inducer on the disease resistance of    

           bean   plants to bean rust (Uromyces phaseoli) using  decimal dilution. 

                                    Bean plants are inoculated with an aqueous spore suspension of bean rust 4  

                                    days after pre-treatment with the doses of inorganic inducer.(Ni (II) ion is a 

                                    HCHO carrier!) 

                                    (This figure is a demonstration of quadruple, bioequivalent, non-linear,                                

                                    specific  immune response system of plants). (Induced resistance) 
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