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Abstract. Fiducial localization in volumetric images is a common task
performed by image-guided navigation and augmented reality systems.
These systems often rely on fiducials for image-space to physical-space
registration, or as easily identifiable structures for registration validation
purposes. Automated methods for fiducial localization in volumetric im-
ages are available. Unfortunately, these methods are not generalizable as
they explicitly utilize strong a priori knowledge such as fiducial intensity
values in CT, or known spatial configurations as part of the algorithm.
Thus, manual localization has remained the most general approach, read-
ily applicable across fiducial types and imaging modalities. The main
drawbacks of manual localization are the variability and accuracy errors
associated with visual localization. We describe a semi-automatic fiducial
localization approach that combines the strengths of the human opera-
tor and an underlying computational system. The operator identifies the
rough location of the fiducial, and the computational system accurately
localizes it via intensity based registration using the mutual information
similarity measure. This approach is generic, implicitly accommodating
for all fiducial types and imaging modalities. The framework was evalu-
ated using five fiducial types and three imaging modalities. We obtained
a maximal localization accuracy error of 0.35mm, with a maximal preci-
sion variability of 0.5mm.

1 Introduction

Surgical augmented reality and image-guided navigation systems aim to enhance
the clinician’s ability to interpret the underlying surgical scene observed via
intra-operative imaging. This is most often achieved by registering high quality
pre-operative images to the intra-operative physical setting [?,?]. Registration is
typically performed using a rigid paired-point approach as it has an analytic so-
lution [?]. Fiducials are localized in the pre-operative image and intra-operatively
localized using a tracked calibrated pointer.

Performing paired point, rigid or non-rigid, registration in a robust, accurate,
and precise manner is a key task in navigation and guidance systems, aligning
image-space and physical-space. It is also in wide spread use in research labora-
tories where it serves as a means for estimating a ground truth transformation
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for evaluating results obtained with novel image-to-image or image-to-physical
registration methods [?,?,?].

The nomenclature describing the various errors in paired point registration
was introduced in [?], defining the three relevant quantities: Fiducial Localization
Error (FLE), Fiducial Registration Error (FRE), and Target Registration Error
(TRE). Thus, to minimize the TRE we need to reduce FLE. In other words, we
want to precisely and accurately localize the fiducials in image-space.

We next present, in chronological order, existing approaches to fiducial lo-
calization described in the literature.

The simplest form of localization is for a human operator to visually local-
ize the fiducials in the volumetric image. This approach is common due to its
simplicity and the robustness of the human operator to variations in imaging
modalities and fiducial geometries and appearances. Studies that report the val-
ues of image-space FLE that can be expected in the clinical setting using skin
adhesive fiducials were described in [?,?]. According to these reports, typical val-
ues for FLE in the image domain are in the range of 0.8-2.3mm. These depend
upon the imaging modality, MR or CT, associated spatial resolution, and the
fiducial type in use. A study designed to evaluate FLE using a custom phantom
with divot fiducials and manual localization in CT reported FLE values in the
range of 0.4-0.8mm [?]. Most likely these lower values are associated with the
use of CT and the specific fiducial choice.

Possibly the first automated method was presented in [?]. Cylindrical mark-
ers with known dimension are automatically localized in CT and MR. The al-
gorithm is comprised of two parts identification of potential fiducial locations
and fiducial localization. The first part identifies potential fiducial locations us-
ing thresholding and morphological operations. The second part determines if a
candidate is indeed a fiducial by comparing the size and shape of the connected
component and the known fiducial size and radius. The fiducial is localized using
the intensity weighted centroid of the connected component. It should be noted
that in practice MR and CT are treated differently, with modality specific steps
described as part of the algorithm. The method was shown to have a 1.4% false
positive identification error rate localizing 168 fiducials.

In [?] an automated algorithm for localizing fiducials in CT and MR is pre-
sented. The method first identifies potential fiducial locations using the mathe-
matical morphology top-hat operator; then, assuming no false negatives, it re-
moves candidates that are too close to each other based on the intensity values
in the candidate regions. Finally, localization is performed using the intensity
weighted centroid of the region. The method was only evaluated on a single CT
scan of a phantom with eight cylindrical fiducials. All fiducials were localized,
but given the sample size it is unclear if this method can indeed deal with various
fiducial types and modalities.

In [?] donut shaped fiducials are automatically localized in CT. A fixed in-
tensity threshold is used to identify the patient and fiducials, this is followed by
morphological operations that result in identification of connected components
that are deemed to be fiducial locations. Each fiducial is localized using the in-



tensity weighted centroid of the connected component. The method was shown
to have less than 5% false negative and 2.3% false positive identification error
rate localizing 25 fiducials.

In [?] a method based on template matching on the edge detection results of
CT or MR is presented. The method is customized for donut fiducials that are
commonly used by clinical systems. The method successfully identified fiducials
in two CT and five MR data sets. Evaluation of the localization accuracy is not
provided.

A method designed for automatic donut fiducial detection on cranial images
is described [?]. The method is based on identification of fiducial corner points in
the 2D edge detected result obtained from CT or MR. The corners are clustered
via K-means and a polynomial curve is fit to the corner points. The center point
of the curves is defined as the fiducial location. The method successfully localized
fiducials in 56 CTs with a difference of 0.5mm or less from a manually defined
ground truth. On 66 MR images the method only failed twice.

Another method designed for automatic donut fiducial detection in cranial
images is described in [?]. This method takes the 3D nature of the data into
account and uses a local 2D height map based template matching approach to
identify fiducial locations. First, the head surface is segmented from the CT or
MR volume using a threshold. Then at each surface voxel location the distance
between the surface and the plane defined by the voxel and the vector connecting
it to the center of the volume/head is estimated. This local height map is then
compared to the fiducial’s height map. If the difference between the two height
maps is less than a threshold this is a potential fiducial. All potential fiducial
locations are clustered using a nearest neighbor approach. The marker is then
localized by taking the candidate location whose height map is most similar to
the fiducial’s height map. The method was evaluated using 15 CT, and 10 MRI
data sets. In CT(MR) 69/75(47/52) fiducials were accurately localized.

A more recent method for automatic spherical fiducial localization in cranial
CT images is described in [?]. The method is specific to CT as the intensity value
of the fiducials is used as part of the localization approach. A set of surfaces
is obtained from the CT using the marching cubes algorithm. The surface that
corresponds to the head is removed and the remaining surfaces are categorized as
fiducial or not based on the known fiducial geometry by comparing the surface’s
bounding box size to the expected size and the Hausdorff distance between
the surface and a sphere positioned at the center of the bounding box. Once
a surface is classified as a fiducial its location is estimated as the centroid of
the surface vertices. The method was evaluated on clinical data with 211/233
fiducials accurately localized.

It should be noted that each of these localization methods was evaluated using
a single fiducial type, with some of the algorithms customized to the specific
fiducial geometry or the anatomical structure on which they are attached, such
as the head. In all of these algorithms the fiducial configuration is arbitrary.
This necessitates visual confirmation as none of these algorithms can guarantee
success, all fiducials correctly localized without any false positives. A strong



constraint, that allows one to dispense with visual confirmation, is the use of a
known fiducial configuration.

We propose to use a common framework for semi-automatic fiducial local-
ization that is not tailored to a specific fiducial. The approach combines the
strengths of a human operator and an underlying computational system. The
operator performs a recognition task, identifying the presence of a fiducial in a
rough location, and the computational system accurately localizes it. We next
describe our approach in detail.

2 Materials and Methods

Our framework for fiducial localization in volumetric images is a natural exten-
sion of manual localization and thus fits within the existing clinical practice.
We formulate fiducial localization as a multi-modality intensity based rigid reg-
istration task. Fiducials are modeled as volumetric images. In our case we use
binary volumes, although other intensity models are readily accommodated by
our framework. A straightforward method for creating additional fiducial models
is to acquire a high quality volumetric scan of the new fiducial and accurately
localize it in that image.

To localize a fiducial in an image the operator identifies the rough fiducial
location in the image by clicking anywhere inside it, we then register the fiducial
model to the image with the indicated location serving as the initial translational
part of a rigid transformation. As most often fiducials represent a single point,
we require that the origin of the model fiducial image be located at this point.
Thus, the translational part of the transformation obtained by intensity based
registration becomes the point we seek.

The fiducial model is registered locally, with the region of interest defined
to be twice the size of the fiducial model image diameter. This ensures that
even if the operator identified the fiducial’s edge the whole fiducial is contained
in our region of interest. The rigid transformation is parameterized using three
translation components, with rotation represented by the three Euler angles. We
use the Nelder-Mead downhill simplex as our optimizer, as it does not require
the computation of derivatives. Given that our goal is to localize the fiducials
in all modalities using the same framework, we use mutual information as our
similarity measure [?,?].

As is well known, the success of iterative registration algorithms is highly
dependent on initialization. In our case initialization only provides a constraint
on the location of the fiducial and not its orientation. This is a critical issue, as
registration will most likely fail if a correct registration means that the fiducial
model image should be rotated by 180o around one of its axes, which is not
uncommon. We therefor associate a set of rotations with each fiducial model.
Together with the location these define a set of initializations used to localize
the fiducial. It should be noted that this set of orientations is dependent on the
fiducial geometry. In case of a spherical fiducial there is only one rotation, the
identity. Other commonly used fiducials such as the Beekly PinPoint (Beekley



Fig. 1. Fiducial types used for framework evaluation: (top) physical fiducials (bottom)
surface representation of the binary fiducial models.

Corp.,CT, USA) or the IZI multi modality markers (IZI Medical Products, MD,
USA), shown in Figure ??, do require multiple orientations. As these two fiducial
types are symmetric around one axis, they each have six orientations associated
with them. We thus perform multiple registrations starting from the set of ini-
tializations defined by the fiducial geometry. The transformation obtained by
the registration with the optimal similarity measure value is taken as the correct
one.

An interesting issue with the IZI multi-modality markers is that they have
two sets of symmetry planes. The more problematic one is due to the fact that
the part that is adhered to the patient is symmetric to the top of this cylindrical
fiducial. If we only modeled the fiducial this symmetry cannot be resolved. We
therefor break the symmetry by slightly enlarging the image model so that it
incorporates the fiducial, and above the fiducial an empty region. This matches
the physical setup where the region above the fiducial contains air.

Our framework uses the following parameter values. For Mutual Information
estimation we use 24 histogram bins and 0.4 of the pixels of the fiducial image.
We set the function convergence tolerance to 0.001, the parameters convergence
tolerance to 0.25 and the maximum number of iterations to 200.

3 Experimental Evaluation

To evaluate our fiducial localization framework we used the following set of fidu-
cials: (1) 4mm diameter sphere; (2) 6mm diameter sphere; (3) multi modality
markers from IZI, referred to as donut fiducials; (4) the PinPoint multi modality
markers from Beekly, referred to as cone fiducials; and (5) conical divot markers.



modality sphere
4mm

sphere
6mm

donut cone divot

CT 5(1) - 5 (1) 5(1) 12 (1)
CBCT 13(3) 20(4) - - -

MR - - - 5(1) -

CT - - 9(1) - -
MR - - 15(2) 9(1) -

Table 1. Number of localized fiducials per modality, number of scans in parenthesis.
Top part of the table are phantom data sets, bottom part are clinical data sets. Five
different forms of fiducials were localized, for a total of 95 unique localizations.

Figure ?? shows a subset of these and corresponding surface models. The fidu-
cials were imaged using three modalities: CT, MR and Cone-Beam CT (CBCT).
In some cases the images are of phantoms and in others clinical images. The
data used in this evaluation study is described in Table 1.

The framework’s precision was evaluated exhaustively. All of the fiducials
are roughly localized in all data sets. We then perform an initial localization
using the operator provided location as described above. The output of this
localization serves as the input for our precision evaluation. We construct a set
of concentric spheres centered on this point with each sphere having a radius
0.5mm larger than the previous one. We randomly selected points on each of the
spheres serving as user input for our framework. We quantify precision as the
distance between the initial point used to construct the set of spheres and the
result of each of the registrations.

Fig. 2. Plastic phantom with divots whose location is known with high accuracy.

Evaluating accuracy is a non-trivial task, as the true fiducial location is never
known. Instead we use common surrogates. In our case, we localized all spheri-



cal fiducials using the weighted intensity centroid (implementation found online,
ground truth for fiducial localization in CBCT [?]). We take the result of this
approach as the reference fiducial location. In addition, we also designed a phan-
tom with a dozen divot holes at known locations and used a highly accurate 3D
printer, Objet500 Connex from Stratasys, to print it. Figure ?? shows this phan-
tom. Finally, on two clinical data sets we used a common strategy for obtaining
a reference localization; we had multiple, in our case five, operators manually
localize donut fiducials and used the mean of this localization as the reference
fiducial location.
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Fig. 3. Precision using phantom data. Each point on the graphs represents the average
of 100 initializations. In CBCT we used 4mm diameter spheres (continuous, blue, line)
and 6mm diameter spheres (dashed, green, line). In CT we used 4mm spheres (dashed,
green, line), cones (continuous, cyan, line), divots (dotted, blue, line) and donuts (dash-
dot, red, line). In MR we used cones.

CT MR

fi
n
a
l

d
is

ta
n
ce

[m
m

]

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

3

initial distance [mm]

Fig. 4. Precision using clinical data. Each point on the graphs represents the average
of 100 initializations. In CT we used donut fiducials. In MR we used cone fiducials
(continuous, blue, line) and donut (dashed, green, line).



4 Results

Our evaluation results for precision, both for phantom and clinical data, show
a precision of less than 0.5mm for all fiducial types. The breakdown point in
precision occurs once the initialization is far enough from the actual fiducial
location so that the whole fiducial is not encompassed by our region of interest.
As the region of interest is determined by the fiducial size we observed that the
breakdown point for larger fiducials was further away from their actual location,
as is expected. Figures ?? and ?? summarize our experiments for phantom and
clinical data.
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Fig. 5. Precision of fiducial localization in mm. Donut fiducials localized in clinical CT
and MR (CTH/MRH - manual, CTC/MRC - semi-automated). The precision of the
semi-automated method is clearly better.
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Fig. 6. Accuracy evaluation results in mm, (a) using phantom data and (b) using donut
fiducials on clinical data.

While our results show that the proposed approach is highly precise, it is
interesting to compare this approach to the human operator’s precision. To
compare the two, we took the manual ”accurate” localizations used to define



a ground truth on the clinical data. This illustrates the inter-observer variability
and associated precision. We compare this to the variability associated with the
proposed approach when the input is a rough localization. Figure ?? illustrates
the higher precision of our method.

Having established that our framework is precise, we now look at its ac-
curacy. Our framework obtained results with a maximal error of 0.35mm on
phantom data. This is in comparison to the ground truth obtained by using an-
other semi-automated localization approach, intensity weighted centroid, and to
a ground truth known from phantom construction. On clinical data our frame-
work obtained results with a maximal error of 1.5mm. Figure ?? summarizes our
accuracy evaluation. The accuracy results on the clinical data are significantly
lower. Most likely this is due to the quality of our reference gold standard, aver-
aging of multiple manual localizations. This observation is supported by the low
precision exhibited by manual localization as seen in Figure ??.

5 Discussion and Conclusions

We have presented a semi-automated framework for fiducial localization. The
framework was evaluated for precision and accuracy using three fiducial geome-
tries, sphere, cone, and donut. In all data sets all of the fiducials were accurately
localized. Our approach is based on the robustness provided by the human op-
erator, readily identifying the presence and rough location of fiducials. Once a
fiducial is identified the registration based approach accurately and precisely
localizes it.

While our approach is only semi-automatic, it is clinically acceptable as it is
a slight modification of the existing workflow, and places less requirements on
the operator. That is, instead of accurate localization the operator need only
identify the rough location of the fiducial. In addition, by taking advantage

Fig. 7. Volume rendering of cranial CT image used in our evaluation. Note the presence
of the head rest



of the robustness of the operator’s visual system complex settings are readily
accommodated for in an implicit manner, something that is not trivial when
proposing fully automated localization schemes. Point in case, we used a clinical
CT for evaluation in which the patient’s head was in a head rest (see Figure ??).
None of the human operators was distracted by this, implicitly dealing with
confounding information which would most likely cause automated methods to
fail.
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