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Abstract

The aim of this paper is to gather insight into typical-case complexity of the Boolean Satisfiability
(SAT) problem by mining the data from the SAT competitions. Specifically, the statistical properties of
the SAT benchmarks and their impact on complexity are investigated, as well as connections between
different metrics of complexity. While some of the investigated properties and relationships are “folklore”
in the SAT community, this study aims at scientifically showing what is true from the folklore and what
is not.

1 Introduction
Modern SAT solvers routinely solve problem instances with hundreds of thousands of variables
and millions of clauses. This and similar claims can be found in several papers [29, 2, 12, 11].
Indeed, some problem instances of this size can be solved by modern SAT solvers, but by far
not all of them; in fact, there are problem instances that are orders of magnitude smaller but
still cannot be solved in practice. Being an NP-complete problem, the worst-case complexity of
all known exact SAT solvers is super-polynomial, leading to a huge gap between the worst-case
complexity and the complexity of typical instances. The main goals of typical-case complexity
research are to understand the factors that impact the complexity of typical problem instances
and to develop algorithms that are efficient on as many instances as possible [19].

Such results are usually achieved either through mathematical analysis of expected algorithm
complexity on random instances or through comprehensive empirical measurements. In this
paper, the focus is on the latter. However, since large-scale computational experiments are
costly (see below), the aim is to reuse existing data from past SAT competitions, instead of
running new measurements.

SAT competitions are held since 1992, with the aim of providing an objective evaluation
of contemporary SAT solvers against each other [15]. The exact format of the competitions
has varied over the years (for example, in some years, there was a SAT race instead of a SAT
competition, putting more focus on industrial application problems), but the SAT competitions
have consistently acted as a driving force in the development of ever more efficient SAT solvers.

This paper mostly relies on data from the last SAT competition, held in 2013 (SC 2013), as a
satellite event of the SAT 2013 conference [7]. The benchmarks are grouped in three categories:
application, hard combinatorial, and random. In all benchmark categories, there are both
satisfiable and unsatisfiable instances. In the first two categories, there are 300 instances each,
and 400 in the random category. In this paper, only complete, sequential SAT solvers are
considered.

SC 2013 was a giant set of computational experiments: the 93 submitted solvers used
altogether roughly 100,000 hours of CPU time, which would cost approximately 50,000 EUR
on Amazon EC2, used about 6,000 kWh energy, generating roughly 3 tons of carbon-dioxide
[8].

The aim of this paper is to investigate the following questions, based on the SC 2013 results:
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• What characterizes typical problem instances? Are there significant differences between
instances of the three benchmark categories?

• What metrics can be used to characterize the complexity of a problem instance, and how
do they relate to each other?

• How do size and other metrics of problem instances impact their hardness?

The presented data should provide valuable insight for algorithm designers, competition
organizers, and other researchers working in the field of SAT. In particular, we use a substantial
amount of data to prove or disprove by rigorous statistical analysis some of the common beliefs
in the SAT “folklore.”

2 Previous work
SAT competitions are quite well documented, see e.g. [7, 4] for the last two and [15] for a recent
overview of the series. The website http://www.satcompetition.org has (links to) all the details
about the competitions, including benchmarks, solvers, and results.

There have also been some scientific works inspired by the competitions. In particular,
some researchers have questioned the adequacy of the used solver ranking schemes [22, 25] and
benchmark selection process [14], and came up with more sophisticated solutions. Other work
dealt with the detailed evaluation of solvers’ performance [27, 28], and the machinery needed
to smoothly implement the competition [24].

In contrast to most previous work, which focussed on solver performance, this paper takes a
problem instance centered approach, in which solvers are just instruments to obtain information
about the instances.

3 Preliminaries
In the SAT problem, we are given n Boolean variables and m clauses, where each clause is the
disjunction of a set of literals, and a literal is a variable or its negation. The aim is to decide
whether there is an interpretation of the variables that satisfies all clauses. The ratio m/n will
be denoted by α.

In the subsequent analysis, the correlation of two datasets will often be investigated. For this
purpose, the most widely-used metric is the Pearson product-moment correlation coefficient,
commonly called simply “correlation coefficient.” For a pair of data series X = (X1, . . . , Xn),
Y = (Y1, . . . , Yn), the correlation coefficient is given by the following formula:

r(X,Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
,

where X̄ = 1
n

∑n
i=1Xi and Ȳ = 1

n

∑n
i=1 Yi. The correlation coefficient is always between -1

and 1; r = 0 means no correlation, r = 1 means a perfect positive correlation, whereas r = −1
means perfect negative correlation.

A shortcoming of the Pearson correlation coefficient is that it measures the linear correlation
between the two datasets, and is less sensitive to non-linear dependence relationships. Therefore,
in this paper, the Spearman rank correlation coefficient (%) will be used instead. Also % is
between -1 and 1, with similar interpretation as r. A high |%| value means that the relationship
between the two datasets can be well described by a monotonic function (which need not be
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linear). % > 0 means a monotonically increasing, % < 0 a monotonically decreasing trend
between the two datasets. As a rule of thumb, the correlation is considered strong if |%| ≥ 0.6,
moderate if 0.6 > |%| ≥ 0.4 and weak otherwise.

To calculate %(X,Y ), one has to first create the corresponding ranked variables X ′ and Y ′:
e.g., X ′i is the rank of Xi in the sorted (ascending) order of the X dataset. If multiple values
are equal, they receive the ranking number which is the average of their positions in the sorted
order. Then, the Spearman rank correlation coefficient is calculated as the Pearson coefficient
of the ranked variables, i.e., %(X,Y ) = r(X ′, Y ′).

Whether a correlation can be considered significant, depends not only on the value of %,
but also on the sample size from which % was calculated. It is common to characterize the
significance using the p-value, which gives the probability that the given |%| value or higher
is obtained by chance, i.e. if there were no correlation. A p-value below 1 percent is usually
considered sufficient for significance. For the Spearman correlation coefficient, the p-value can
be approximated by means of a t-test with t = %

√
(n− 2)/(1− %2) [16]. Specifically for a

sample of size 300 (the size of the application and hard combinatorial benchmark categories),
the correlation is significant if |%| ≥ 0.14; for a sample size of 400 (the size of the random
benchmark category), it is significant if |%| ≥ 0.12.

4 Characteristics of problem instances
First, let us look at some basic statistical properties of the benchmarks. Several researchers
pointed out the importance of short clauses and that binary and ternary clauses may need special
treatment, partly because they form the majority of clauses in real-world problem instances
[9, 3, 18]. To verify this, Fig. 1 shows a histogram of the clause length distribution of the
three benchmark categories. Moreover, Table 1 shows the average clause length and the tail
probabilities of the clause distributions for the three benchmark categories.

Figure 1: Clause length distribution of the three benchmark categories of SC 2013

The characteristics of the random benchmarks are quite different from the other two cate-
gories. This is no surprise, since the random benchmarks were specifically generated with clause
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Table 1: Average and tails of the clause length distribution
Average
clause length

Percentage of clauses
with length=1

Percentage of clauses
with length>10

Application 2.78 0.30% 1.82%
Hard combinatorial 2.11 0.01% 0.04%
Random 4.92 0.00% 0.00%

lengths of 3, . . . , 7 [6]. However, it also means that the random benchmarks do not model real-
world instances well, so that insight from the analysis of uniform random k-SAT instances does
not automatically apply to real-world instances as well. For the application and the hard com-
binatorial categories, the distributions are similar, both with a clear peak at 2. However, the
concentration at 2 is much stronger for hard combinatorial instances; for application instances,
also the length 3 occurs often. It is also worth mentioning that there is a non-negligible number
of unit clauses in the benchmarks: even the 0.01% in the case of hard combinatorial instances
means that, on average, such an instance contains roughly 103 unit clauses.

Figure 2: Variable grade distribution of the Application benchmark category

Figure 3: Variable grade distribution of the Hard combinatorial benchmark category
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Figure 4: Variable grade distribution of the Random benchmark category

For a variable x, the positive grade of x is the number of clauses containing the literal
x; its negative grade is the number of clauses containing the literal x̄. As shown in Figures
2-4, also the grade distributions concentrate in the low part of the possible values, especially
for application instances, where the positive grade peaks at 2 and the negative grade at 3, as
well as the hard combinatorial instances, where the positive grade peaks at 1 and the negative
grade at 2, all of them with a frequency of roughly 50%. Interestingly, in both cases, negative
grades tend to be higher than positive grades. This seemingly counter-intuitive finding may
be explained by some common idioms in SAT encoding: for example, the fact that exactly one
of k variables should be true is usually expressed by a subformula in which each variable has
positive grade 1 and negative grade k− 1. Another example is the Tseitin encoding of an AND
gate: the variable introduced for the AND gate has positive grade 1 and negative grade 2.

The behaviour of random instances is again quite different from the other two categories. In
this case, the positive and negative distributions are almost identical, as could be expected. The
peak at the grade 5 is rather weak: less than 9% of variables have this grade. The distribution
is clearly less concentrated than in the other two cases. The form of the curve with its second
local maximum at 16 is a bit surprising, but can be explained as the superposition of multiple
binomial distributions with different parameters.

Similar conclusions can be drawn from Table 2. Even for the application and hard combi-
natorial benchmarks, which exhibit a high peak for values 1 . . . 3, the average is much higher,
especially for negative grades. This also shows that the variable grade distribution is signif-
icantly less concentrated than the clause length distribution. Moreover, the grade 0 has a
non-negligible frequency in all cases, justifying the usefulness of the pure literal heuristic [12].

5 Metrics of complexity
One of the fundamental questions of typical-case complexity is how to measure the complexity
of a problem instance. What is easy to measure is the complexity of a specific algorithm on a
given problem instance, but the results obtained this way are algorithm-specific. The data from
the SAT competitions offer a great opportunity to decrease the dependence of the results on the
peculiarities of a specific algorithm by considering a bigger set of algorithms1. The main aim of

1A limitation of this approach is that many similar solvers participate in the SAT competition. It is an
interesting direction for future research to quantify and compensate the effect of solver homogeneity on the
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Table 2: Average and tails of the variables’ grade distribution
Average
grade

Percentage of vari-
ables with grade=0

Percentage of vari-
ables with grade>20

Application
positive grade 6.54 0.96% 2.31%
negative grade 9.94 0.74% 5.04%

Hard combinatorial
positive grade 3.28 0.88% 2.18%
negative grade 32.86 0.88% 9.11%

Random
positive grade 25.07 0.14% 25.28%
negative grade 25.07 0.15% 25.27%

the SAT competitions is to use the benchmark instances as tools to investigate the complexity
of the algorithms in relation to each other, but a dual look at the competitions means using
the algorithms as tools to obtain insight into the complexity of the benchmark instances.

Suppose that n algorithms are run on a given benchmark instance, with a timeout of T .
The result is the set of runtimes 0 ≤ t1, t2, . . . , tn ≤ T (for a timeout, ti = T ). Based on these
data, the following metrics can be defined to characterize the hardness of the given instance:

• Average of the runtimes (AVG)

• Median of the runtimes (MED)

• Number of timeouts (#TOUT)

• Average runtime of the runs that did not time out (AVG-NOTOUT)

Although AVG is probably the most intuitive metric, it is not always appropriate. If a
distribution has no expected value, then the average of a sample can behave in an erratic way;
the median should be preferred in such cases [13]. Also, AVG is distorted by the timeouts
being counted as T , whereas this does not influence the median as long as at most half of the
runs timed out. This is also the motivation for AVG-NOTOUT, because the average is only
accurate for those runs that did not time out. #TOUT is meaningful because there are many
timeouts in SC 2013, and hence the primary question of each run is whether it finishes before
the timeout. (This is also the basis for the ranking of solvers [15].)

As can be seen in Table 3, a strong positive correlation can be observed among the differ-
ent complexity metrics on all three benchmark categories. This means that there are indeed
instances that are hard, no matter how “hard” is defined, and similarly there are clearly easy
instances. The correlation is strongest between AVG and #TOUT. This is no surprise, because
the higher the value of #TOUT, the more runs have ti = T , increasing also AVG. The weak-
est correlations can be observed between AVG-NOTOUT and the other metrics; in particular,
for both application and hard combinatorial instances, the correlation between #TOUT and
AVG-NOTOUT is lowest. This means that the fact that only a few solvers could solve a given
instance makes it probable, but not at all definite, that it took a long time for those solvers to

complexity metrics presented here.
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Table 3: Correlation between different metrics of complexity
Application Hard combinatorial Random

AVG – MED 0.95 0.95 0.87
AVG – #TOUT 0.93 0.97 0.94
AVG – AVG-NOTOUT 0.85 0.64 0.92
MED – #TOUT 0.86 0.93 0.82
MED – AVG-NOTOUT 0.81 0.56 0.75
#TOUT – AVG-NOTOUT 0.68 0.52 0.94

solve it. This also suggests that the pair (#TOUT, AVG-NOTOUT) can be used as an intu-
itive metric of complexity, in which both components provide useful information: an instance
is really hard if few solvers could solve it, and it took them a long time.

6 Dichotomy of complexity
A challenge faced by algorithm engineers is to find good benchmarks for evaluation of algorithm
performance. This can be quite difficult because of an often-perceived dichotomy of complex-
ity: many benchmarks are either too easy or too hard, with only very few in between. This
phenomenon is demonstrated in Figs. 5-7, showing the distribution of runtimes for the three
benchmark categories. The horizontal axis corresponds to the runtimes, in seconds. In SC
2013, a timeout of T = 5000s was used; hence the last bar corresponds to the timeouts. The
height of the bars represents the number of runs whose runtime falls into the given interval.
(For the Random benchmark category, the last bar is actually much higher, but it is chopped
off to enhance visibility of the rest of the diagram.) As can be seen, the pattern is the same
for all three benchmark categories: the majority of runs is either quite short or experiences a
timeout. Runs with a runtime between 1000 and 5000 seconds are relatively rare2.

Figure 5: Histogram of runtimes in the Application benchmark category

This dichotomy is in line with the notion of heavy-tailed runtime distributions [13], but it
makes benchmarking difficult. Also, it is worth mentioning that (i) SAT solvers routinely use
frequent restarts to mitigate the effect of heavy tails [12] and (ii) the selection of the benchmarks

2Although less strikingly, but this phenomenon can also be recognized in the usual cactus plots of the
competition, see e.g. http://satcompetition.org/edacc/SATCompetition2013/experiment/19/cactus/.
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Figure 6: Histogram of runtimes in the Hard combinatorial benchmark category

Figure 7: Histogram of runtimes in the Random benchmark category

for SC 2013 was carried out in a way so as to minimize the number of too easy and too hard
instances [5]. Even with these counter-measures, the complexity dichotomy remains very clear.
Thus, the mitigation of the heavy-tailed runtime distribution of solvers, as well as the testing
of solvers with a heavy-tailed runtime distribution, both remain important research topics.

7 The satisfiability threshold

It is well-known that at some critical value of α, denoted by α0(k), the probability of solvability
of random k-SAT formulae abruptly changes from almost 1 to almost 0; moreover, the average-
case complexity of random k-SAT also peaks at α0(k) [10, 17]. The question is to what extent
these probabilistic properties apply also to specific real-world instances.

The random benchmarks used in SC 2013 come from random k-SAT distributions with
k = 3, . . . , 7 [6]. The threshold values for these distributions are quite precisely known [21].
For the other benchmarks, clause lengths are not uniform, so the average clause length can be
used as a substitute for k. For a given value of k – which may be fractional in this case – the
best known approximation of the satisfiability threshold is derived from the cavity method [21].
Based on the calculated estimation of the satisfiability threshold, denoted by α∗0, the following
two metrics can be derived to characterize, in a normalized way, the position of the given
instance with respect to the threshold: (i) constrainedness is defined as sgn(α − α∗0) and (ii)
relative density is defined as α/α∗0. The numerical property satisfiability is defined as 1 if the
instance is satisfiable, -1 if it is unsatisfiable, and 0 if it is not known whether it is satisfiable.
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Table 4: Correlation between metrics of density and satisfiability
Application Hard combinatorial Random

constrainedness – satisfiability -0.06 -0.03 0.01
relative density – satisfiability 0.12 -0.25 -0.01

As can be seen from Table 4, only very weak correlations can be observed between satisfia-
bility and density. Actually, only the value of -0.25 is significant at the 99% confidence level, the
others are not. This result may be surprising, as one would have expected a clear negative cor-
relation (the higher the density, the less formulae will be satisfiable). For application and hard
combinatorial benchmarks, there are two possible reasons for this. First, the phase transition
phenomenon that is known for random k-SAT may not be applicable to structured instances
with non-uniform clause length. Second, the used approximation for the threshold is only accu-
rate for large values of k, whereas the average clause length of these benchmarks is very low (see
Section 4). For random benchmarks, these issues are not applicable. Here, the reason seems to
be rather that the random benchmarks were deliberately generated with α always being very
close to the threshold [6]. Specifically, the relative density of the random benchmarks of SC
2013 varies between 0.9998 and 1.0003. This lack of a real variance practically prohibits any
meaningful conclusions regarding the dependence on density.

Table 5: Correlation of relative distance from satisfiability threshold and hardness
Application Hard combinatorial Random

-0.16 0.12 -0.26

The other question is how the distance from the satisfiability threshold impacts hardness.
For this, let the relative distance from the satisfiability threshold be defined as |α− α∗0|/α∗0. As
metric of hardness, the number of timeouts (#TOUT) is used. The resulting correlations are
shown in Table 5. As can be seen, the correlations are rather weak, which is not surprising,
given the above issues with α∗0 and the benchmark selection process. Only the correlations of
-0.16 and -0.26 are significant, and they are negative as expected: instances further away from
the satisfiability threshold tend to be slightly easier.

8 The impact of problem instance size
Usually, bigger instances are expected to be harder. Size can be measured for example by the
number of variables, number of clauses, or file size. Furthermore, the compressed file size has
also been suggested [20]. The correlations among these metrics are shown in Table 6.

As can be seen, all size metrics have a strong positive correlation. In particular, the corre-
lations between m, file size, and compressed file size3 are very strong, which is not surprising.
More interestingly, also n has a strong correlation with these metrics, especially for application
and hard combinatorial benchmarks: for example, formulae with more variables clearly tend to
have more clauses. The correlation for random benchmarks is less strong.

3Compression was done with gzip.
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Table 6: Correlation between different metrics of size in the three benchmark categories
Application Hard combinatorial Random

n – m 0.88 0.83 0.64
n – file size 0.85 0.83 0.55
n – compressed file size 0.90 0.85 0.60
m – file size 0.96 1.00 0.98
m – compressed file size 0.99 0.99 1.00
file size – compressed file size 0.97 0.99 1.00

Table 7: Correlation between metrics of size and complexity
Application Hard combinatorial Random

Correlation with #TOUT
n -0.38 -0.16 0.38
m -0.39 0.01 0.36
file size -0.33 0.01 0.34
compressed file size -0.39 -0.01 0.35

Correlation with AVG
n -0.42 -0.13 0.35
m -0.43 0.03 0.32
file size -0.37 0.03 0.31
compressed file size -0.41 0.01 0.32

Investigating the impact of size on complexity, and using #TOUT and AVG as complexity
metrics, the results are summarized in Table 7. As can be seen, there is no clear connection
between size and complexity. For the hard combinatorial benchmarks, the correlations are
very weak, most of them not even significant. For random benchmarks, a weak but significant
positive correlation can be observed in all cases. Quite surprisingly, the application benchmarks
give rise to weak or moderate but significant negative correlation in all cases.

Searching for an explanation of this counter-intuitive phenomenon, it is worth looking graph-
ically at the connection between size and complexity. Figs. 8 and 9 show this dependence for the
application and random benchmark families, respectively. (The horizontal axis has logarithmic
scale in both cases in order to improve visibility.) For the application benchmarks, the plot is
rather chaotic, without any clear trend. However, there is a big cluster of very hard instances
in the left half of the diagram, while in the right half, the majority of data points correspond
to lower AVG values. This might be rooted in the way benchmarks are selected because huge
instances must be relatively easy, otherwise no solver could solve them and they would have
been discarded. This may explain the negative correlation. For the random benchmarks, the
k-SAT instances with different k values can be quite clearly differentiated, and for each k, a
steeply ascending trend can be observed, leading to the positive correlation.

As a final experiment on the impact of size, Table 8 shows the size (in terms of m) of the
biggest solved and smallest unsolved instances. It is again interesting to observe that size is
hardly relevant: although an instance with over 50 million clauses could be solved, another one

81



Typical-case complexity and the SAT competitions Z. Á. Mann

Figure 8: Dependence of average runtime on m for application benchmarks

Figure 9: Dependence of average runtime on m for random benchmarks

with some hundreds of clauses – i.e., 5 orders of magnitude smaller – could not.
The fact that problem instance size has limited impact on complexity is not new to the

SAT community, because it has been known for a long time that large application instances are
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Table 8: Extreme sizes (size is measured by the number of clauses)
Application Hard combinatorial Random

Biggest solved SAT instance 53,616,734 1,827,900 52,057
Biggest solved UNSAT instance 9,676,386 15,834,160 6,145
Smallest unsolved instance 87,670 672 1,907

often easier than smaller random or hard combinatorial instances. However, referring back to
the first sentences of this paper, the size of the biggest solved instances is still a key element
in the communication about the efficiency of solvers, showing that this fallacy is still widely
accepted. Moreover, our results show that even within the same benchmark category, size has
no clear impact on complexity, and this may have been less widely known.

9 The impact of some statistical features on complexity

Since size seems to be of little relevance to the complexity of problem instances, the next
question is whether there are other, easily calculated features of the problem instances that
have higher impact on complexity.

Table 9: Correlation between some statistical features of problem instances and their complexity
(AVG)

Application Hard combinatorial Random

α 0.18 0.25 -0.15
average clause length 0.42 0.14 -0.14
average variable grade 0.24 0.25 -0.15
average difference of posi-
tive and negative grade

0.30 -0.02 -0.02

compression ratio -0.28 -0.23 0.27

As Table 9 shows, none of the investigated metrics exhibits a strong correlation with com-
plexity; only the average clause length has moderate correlation with complexity on application
benchmarks. The correlations are particularly weak for random benchmarks, and they have in
most cases exactly the opposite sign as the corresponding correlations on application and hard
combinatorial benchmarks. This shows once again the heterogeneity of the benchmarks and
the large difference between the three benchmark categories.

It is worth noticing that such features are used (among others) in portfolio-based solvers
like SATzilla to select, from a set of available solvers, the most appropriate solver for a given
problem instance [26]. Although these features are useful for solver selection, apparently none
of them is – at least alone – appropriate for predicting complexity. This is in line with previous
observations from Nudelman et al., showing that from the features used in SATzilla, the ones
that are useful for predicting complexity are only those that are either variations of the clauses-
to-variables ratio or information from partial runs of SAT solving algorithms [23].
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10 Robustness of ranking

The usual way of ranking solvers based on the number of instances that they can solve within
a given time frame may lead to some anomalies. The ranking methodology contains some arbi-
trary choices, in particular the set of benchmarks and the timeout value, that can significantly
influence the results. As shown in Table 10, halving the timeout value T significantly changes
the ranking results. This is in accordance with previous observations [25]. It can also be seen
that halving the set of benchmarks, i.e. using only the first half of the set of benchmarks w.r.t.
some random order, has even bigger impact on the ranking in the application and hard com-
binatorial tracks. Hence, small differences in the ranking will probably not have any statistical
significance [22]. The displacements are smallest for random benchmarks; this is probably due
to the very high percentage (82%) of the random benchmarks that were not solved by any
solver, which makes the ranking in the random track relatively more resilient to such changes.

Table 10: Impact of halving the timeout value or the set of benchmarks: average and maximum
displacement of solvers in the ranking

Application Hard combinatorial Random

Halving T
average displacement 11% 12% 8%
maximum displacement 45% 37% 36%

Halving the set of benchmarks
average displacement 16% 13% 5%
maximum displacement 72% 54% 14%

Table 11: Impact of halving the timeout value or the set of solvers: average and maximum
displacement of benchmarks in the ranking

Application Hard combinatorial Random

Halving T
average displacement 8% 5% 5%
maximum displacement 48% 28% 21%

Halving the set of solvers
average displacement 6% 4% 10%
maximum displacement 33% 17% 23%

Analogously to the solver ranking, one can also create a ranking of benchmarks based on
the number of solvers that could solve the instance in the given time frame (the #TOUT
metric). The robustness of this ranking can be investigated by similar means as that of the
solver ranking: what happens if T is halved or the set of solvers is halved? The results are
shown in Table 11. As can be seen, the impact of changes is usually smaller for this ranking
than for the solver ranking. This may be intuitively explained as follows: the drive to improve
solvers has led to the good solvers having similar performance (just like the difference between
the performance of top athletes is small), whereas there is no such drive for benchmarks.

84



Typical-case complexity and the SAT competitions Z. Á. Mann

11 Conclusions
The presented statistics on the basis of SC 2013 lead to the following conclusions:

• Random instances behave quite differently from the other two, more practical benchmark
categories. Thus, the practical applicability of insight from random SAT (e.g., [1, 17, 21,
23]) is quite limited.

• Clause length distribution: for application benchmarks, 94% of clauses have length 2 or 3.
For hard combinatorial benchmarks, this ratio is 99% (91% have length 2). For random
benchmarks, the distribution is very different.

• Variable grade distribution: for application and hard combinatorial instances, the peak is
at low values (1-3), but the distribution is less concentrated. Negated literals appear more
frequently. There is a significant number of pure literals. Again, the distribution is quite
different for random benchmarks.

• Metrics of complexity: the correlation between all investigated complexity metrics was
quite strong.

• Dichotomy of complexity: for all three benchmark categories, the majority of instances is
either very hard or relatively easy.

• Satisfiability threshold: the sudden phase transition and accompanying complexity peak
that were previously observed for random k-SAT are not apparent in the given set of
benchmarks.

• Problem instance size: different metrics of size correlate with each other; however, they
have no clear impact on complexity. Also, while it is true that instances with tens of
millions of clauses can be solved, there are also instances with only some hundreds of
clauses that no solver could solve.

• Other statistical features: none of the investigated statistical problem instance features
has a strong correlation with complexity.

• Robustness of ranking: changes in the arbitrary features of the experimental methodology
may substantially distort the resulting ranking of solvers. The impact on the ranking of
benchmarks is significantly smaller.

In some cases, these results reinforce our existing knowledge about the SAT problem, in some
other cases, they enrich and extend it. This better understanding of problem characteristics
will hopefully pave the way to improved solution and analysis techniques in the future.
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