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Backtrack-style exhaustive search algorithms for NP-hard problems tend to have large variance in their runtime. This is
because “fortunate” branching decisions can lead to finding a solution quickly, whereas “unfortunate” decisions in another
run can lead the algorithm to a region of the search space with no solutions. In the literature, frequent restarting has been
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1. Introduction

All known exact algorithms for NP-hard problems
have super-polynomial (usually exponential) worst-case
complexity. Luckily, smart algorithms are usually
much faster on many practical problem instances than
their worst-case complexity. However, this improved
performance usually comes at a price: extremely high
variability in running time. That is, the running time of
the algorithm may vary dramatically – multiple orders of
magnitude – between runs on similar problem instances,
or even between different runs on the same problem
instance (Gomes et al., 2000; Cheeseman et al., 1991;
Hogg and Williams, 1994; Jia and Moore, 2004). This
high variability in algorithm runtime poses a significant
challenge on the practical application of the algorithm,
because it is hard to predict if the algorithm will solve a
given problem instance within a couple of seconds or will
run for several days (or even longer).

Such smart exact algorithms for NP-hard problems
are often variants of backtrack search. Backtrack search
operates on partial solutions, assigning values to variables
one by one. When the algorithm can deduce that the
current partial solution cannot be extended to a solution,
then it backtracks, thus pruning a part of the search space.
This pruning is very helpful in making the algorithm

efficient enough even for many large problem instances.
Backtrack search algorithms also suffer from

extreme variability in running time, especially on solvable
instances. Intuitively, this is because “lucky” branching
decisions can lead to finding a solution quickly, whereas
“unlucky” decisions in another run can lead the algorithm
to a region of the search space with no solutions.

A possible remedy for this issue that has been
suggested in the literature is frequent restarting (Gomes
et al., 1998). If an algorithm involves random choices, it
may make sense to run it several times on a given problem
instance. For example, suppose that the median runtime of
a randomized algorithm on problem instances of a given
size is 1 minute. Assume that the algorithm has been
running on a problem instance for 5 minutes without any
results yet. Intuitively, one could think that the algorithm
will most probably finish very soon, so we should keep
waiting. However, empirical evidence shows that it is
better to stop the current run of the algorithm and restart
it. The rationale is that it might actually happen with
surprisingly high probability that the current run of the
algorithm will take several hours, days, or even longer.
On the other hand, if we restart the algorithm, chances
are high that the next run will be more fortunate and may
finish in a minute or even less.

Thinking of a backtrack search, the reason why
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frequent restarting improves the performance of the
algorithm is that this way long useless searches in areas
of the search space with no solutions are stopped; the
restarted search might be more lucky and finds its way
directly to a more promising part of the search space.

Although restarting works quite well in practice, it
is a very simplistic approach to solve the inefficiencies of
backtrack search. In a way, it is a brute-force approach:
there is no guarantee whatsoever that the new run will be
better; instead, the rationale is that among several runs of
the algorithm, there will be probably a lucky one.

In this paper, we propose a more sophisticated
approach. We observed that the problem with backtrack
search is rooted in its depth-first-search nature. This is
why it cannot “give up” searching an unfruitful part of the
search space and move on to other, more promising areas.
Therefore, we propose to implement backtrack search
with a best-first-search (BFS) heuristic that will guide it
to different parts of the search space, always aiming for
the most promising area. The modified algorithm is also
an exact algorithm. If there is no solution, the modified
algorithm will also perform a complete search to prove
unsolvability. If the problem instance is solvable, then the
modified algorithm is also guaranteed to find a solution,
but in many cases it can find it much faster than a normal
backtrack algorithm.

The rest of the paper is organized as follows.
First, Section 2 reviews previous work on speeding up
backtrack search algorithms. Next, we give a formal
description of the problem domain that our algorithms
attack: constraint satisfaction problems (Section 3),
followed by a description of our reference backtrack
algorithm (Section 4). This algorithm already contains
several enhancements to make it smart and efficient.
The main contribution of the paper, the extension of the
backtrack algorithm with the BFS heuristic, is presented
in Section 5. As it turns out, some of the improvement
techniques contained in the reference backtrack algorithm
to speed it up, most notably conflict-driven backjumping,
make the extension with BFS quite tricky. We also
prove the correctness of the algorithm. Next, Section 6
gives an example to facilitate the understanding of the
presented algorithm. Section 7 presents the results of
empirical measurements to compare the efficiency of the
reference backtrack algorithm, backtracking accelerated
with frequent restarting, and backtracking accelerated
with BFS. Finally, Section 8 concludes the paper.

2. Previous work

Well-known early applications of the backtrack algorithm
include the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm for deciding the satisfiability of propositional
logic formulae in conjunctive normal form (Davis and
Putnam, 1960; Davis et al., 1962), as well as Randall

Brown’s algorithm and its refinements for graph coloring
(Brown, 1972; Brélaz, 1979).

With the wide-spread application of backtrack
algorithms, researchers started to gain empirical
experience with such algorithms in practice. The
problem of the extremely high variability in algorithm
runtime came up quickly, as documented for example
by Knuth in his 1975 paper (Knuth, 1975): “Sometimes
a backtrack program will run to completion in less than
a second, while other applications of backtracking seem
to go on forever. The author once waited all night for
the output from such a program, only to discover that
the answers would not be forthcoming for about 106

centuries.” This motivated Knuth to devise methods
to estimate the runtime of a backtracking algorithm
using sampling strategies. Ever since, the prediction
of algorithm runtime has remained an important and
challenging research topic, see e.g. (Hutter et al., 2006)
for more recent results.

The fact that backtracking is much faster on many
typical problem instances than its worst-case complexity
spawned also interest in the rigorous mathematical
analysis of the algorithm’s complexity on random problem
instances. For instance, Wilf showed in 1984 that for the
graph coloring problem, the average-case complexity of
backtrack search is only O(1) – in significant contrast
to its exponential worst-case complexity (Wilf, 1984).
Through subsequent results, the behaviour of backtrack
search on graph coloring is quite well understood (Bender
and Wilf, 1985; Jia and Moore, 2004; Mann and Szajkó,
2010b; Mann and Szajkó, 2010a).

Of course, researchers also devised techniques to
speed up backtrack search (Russell and Norvig, 2010).
Some of the most important techniques are:

• The algorithm has some freedom in choosing the
next variable to branch on as well as in determining
the order in which the possible values will be
assigned to that variable. By using appropriate
heuristics for these choices, the algorithm can be
made more efficient (Geelen, 1992).

• If the search problem exhibits symmetries, symmetry
breaking techniques can be used to avoid searching
equivalent portions of the search space, thus
making the search more efficient without threatening
optimality (Brown et al., 1996).

• Backjumping aims to increase the size of the pruned
part of the search space after a conflict by carefully
analyzing the causes of the conflict and jumping back
in the search tree potentially multiple levels (Dechter
and Frost, 2002).

• Nogood learning can be used to record combinations
of decisions that necessarily lead to a conflict, so that
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the same combination can be avoided in the future,
preventing the exploration of certainly useless parts
of the search space (Dechter, 1990).

• Consistency propagation techniques (arc
consistency, i-consistency etc.) make it possible to
infer without branching that a variable cannot take
one or more of its possible values, thus keeping the
search tree relatively small (Dechter, 2003).

All these techniques make backtrack search smarter,
so that it will be as efficient as possible on as many inputs
as possible. However, even with these improvements, the
algorithm’s worst-case complexity remains exponential,
so that the problem of high variability remains.

A different approach was used by Gomes et al,
introducing the notion of “heavy-tailed distributions” to
characterize the runtime distribution of typical backtrack
algorithms for combinatorial problems (Gomes et al.,
2000). A heavy-tailed runtime distribution formalizes
the experience that runs of an exact algorithm for
an NP-hard problem often take much longer than the
median runtime of the algorithm. Beside providing
statistical description of such distributions, Gomes et
al suggested that the problem can be mitigated using
frequent restarts of the algorithm. In fact, they suggest that
deterministic algorithms should also be randomized in
order to capitalize on the acceleration opportunity offered
by frequent restarting (Gomes et al., 1998).

Since then, frequent restarts have become an integral
part of most successful solvers, e.g. Chaff (Moskewicz
et al., 2001) and MiniSAT (Eén and Sörensson, 2004).
Also, several different schemes have been suggested
concerning the frequency with which restarts should be
carried out, respectively how the restart times should
be increased during the course of the algorithm (Luby
et al., 1993; Biere, 2008; Kautz et al., 2002). More
recently, Haim and Heule pointed out that the optimal
restart strategy is strongly dependent on the use of other
improvement techniques (e.g., constraint learning), and,
as a result of the trends in those other improvement
techniques, optimal restart times decrease with newer
solver generations (Haim and Heule, 2010).

The technique presented in this paper is comparable
to frequent restarts in that it also addresses specifically
the problem of heavy tails, i.e. the fact that unfortunate
branching decisions early on in a backtrack search can
easily lead to extremely long runs of the algorithm.
However, our technique is more sophisticated and offers
the possibility to resume a paused search instead of
abandoning it completely. This way, we do not waste
computational power as frequent restarts do.

Another related work is that of Schaefer et al. on
Hierarchical Genetic Search (HGS), which is – similarly
to our approach – also a way of running multiple solver
instances concurrently (Schaefer et al., 2012). However,

the details of the two approaches are quite different, given
that HGS operates with genetic algorithms, whereas we
use an exact algorithm for constraint satisfaction as base
solver. For example, HGS is characterized by a tree of
populations with increasing accuracy; such a concept is
not necessary in our method, making the interoperation
between the solver instances simpler in our case.

3. Problem formulation

We consider the constraint satisfaction problem (CSP), as
a general application domain of backtrack search. The
volume of past research on applying backtrack search
to CSP and the fact that many combinatorial problems
can be formulated in a natural way as CSP make it an
ideal testbed for our investigations. Also other, popular
problems, such as satisfiability or integer programming
can be easily turned into a CSP (Mann, 2011).

CSP is defined on a set of variables X =
{x1, x2, . . . , xn}. The domain of xi is a finite, non-empty
set denoted by D(xi) or Di, consisting of the possible
values for variable xi.1 We write D := D1 ×D2 × . . .×
Dn. A possible assignment of values to the variables is a
vector (a1, a2, . . . , an)T ∈ D, assigning to each variable
xi a value ai ∈ Di.

We are also given a set of constraints C =
{C1, C2, . . . , Cm}. Each Cj is a pair (Vj , Rj),
consisting of a subset of the variables Vj ⊆ X

and a relation Rj . If Vj = {xj1 , xj2 , . . . , xjk},
then Rj ⊆ Dj1 × Dj2 × . . . × Djk . Rj

defines which tuples of possible values of the involved
variables satisfy the given constraint. Specifically,
the assignment (a1, a2, . . . , an)

T ∈ D satisfies the
constraint (Vj , Rj), where Vj = {xj1 , xj2 , . . . , xjk}, iff
(aj1 , aj2 , . . . , ajk)

T ∈ Rj . If the assignment does not
satisfy the given constraint, then there is a conflict among
the assignments xj1 = aj1 , xj2 = aj2 , . . . , xjk = ajk .

The aim is to assign to each variable a value from
its domain, such that all constraints are satisfied. That is,
a solution is an assignment (a1, a2, . . . , an)T ∈ D, such
that for all (Vj , Rj) ∈ C, if Vj = {xj1 , xj2 , . . . , xjk},
then (aj1 , aj2 , . . . , ajk)

T ∈ Rj . The goal of the CSP is to
decide whether a solution exists. If so, then the given CSP
instance is solvable, otherwise it is unsolvable.

We will use the following simple CSP instance as a
running example in the paper:

Variables: X = {x1, x2, x3, x4}
Domains: D1 = D2 = D3 = D4 = {0, 1}
Constraints:

C1 : x1 < x3 + x4

C2 : x2+x3 = x1 · x3

1In the following examples, the Di sets will consist of numbers, but
this is not necessary.
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x1

x3

x4

x2

Fig. 1. Constraint graph of the example CSP

This CSP instance is solvable, a solution is for
example x1 = x2 = x3 = 0, x4 = 1.

The constraint graph of a CSP is an undirected graph
G = (X,E), in which the vertices are the variables. Two
variables xi and xj are adjacent if there is a constraint
containing both of them. The constraint graph of the
above example is shown in Fig. 1. The constraint graph
allows us to speak about e.g. the “neighbours of a
variable” or the “constraints incident to a variable”.

It will be useful to also consider partial assignments,
in which some variables are assigned a value, whereas
others are unassigned. The notation xi = ε denotes that
xi is unassigned. We assume that ε is a new symbol,
not contained in any Di. We use D′

i := Di ∪ {ε} and
D′ := D′

1 ×D′

2 × . . . ×D′

n. Then, a partial assignment

is simply an element of D′. If it is also an element of D,
i.e. the value ε is not used, then it is a full assignment.

Given a partial assignment v = (a1, a2, . . . , an)
T ∈

D′, the set of assigned variables will be denoted by
A(v) = {xi ∈ X : ai 6= ε}, the set of unassigned
variables by U(v) = {xi ∈ X : ai = ε}. A partial
assignment also allows a subset of the constraints to
be evaluated, namely those, in which only the assigned
variables participate. That is, the set of evaluable con-

straints is EC(v) = {(Vj , Rj) ∈ C : Vj ⊆ A(v)}.
The partial assignment v is 0-consistent, if it satisfies all
evaluable constraints.

In the running example, consider the partial
assignment v = (0, 0, 0, ε). Then, A(v) = {x1, x2, x3},
U(v) = {x4}, and EC(v) = {C2}. Since (x1, x2, x3) =
(0, 0, 0) satisfies constraint C2, v is 0-consistent.

4. The backtrack algorithm

4.1. The basic version of the algorithm. The
algorithm assigns values to the variables, one at a time,
as long as no conflict occurs. If all variables can be
assigned a value, a solution is found and the algorithm
terminates. If there is a conflict, the algorithm backtracks,
i.e. it goes back to the last consistent state by undoing the
last decision. Then it proceeds to an unexplored branch

by trying a new value for the currently selected variable.
When all possible branches from a given state have been
tried without success, the algorithm backtracks further.

The algorithm traverses the partial assignments in
a tree structure. There are two possible termination
situations: either a solution is found, or the algorithm
checks all branches from the root of the tree without
success, and tries to backtrack from the root. In this
case, we can be sure that the input problem instance is
unsolvable. Clearly, the algorithm terminates in finite
time, since the size of the complete search tree is an
upper bound on the number of steps of the algorithm.
This number is exponentially high, but in many cases
the algorithm can prune large subtrees of the search tree,
which can considerably decrease its runtime.

More formally, a complete search tree is a directed
tree T with the following characteristics:

• Each node of T is a partial assignment.

• The root of T is the partial assignment (ε, ε, . . . , ε).

• Each leaf of T is a full assignment. Moreover, each
full assignment is one of the leaves, i.e. the number
of leaves is |D1| · |D2| · . . . · |Dn|.

• Let v = (a1, a2, . . . , an) be an inner node of
T . Then, there is a variable xi ∈ U(v) such
that the children of the node v in T are:

{

v′ =
(a′1, a

′

2, . . . , a
′

n) : a′i ∈ Di and a′j = aj for all
j ∈ {1, 2, . . . , n} \ {i}

}

.

The last point means that, at a given partial
assignment v, the algorithm chooses an unassigned
variable xi, and tries to assign all possible values to it; the
resulting partial assignments will be the children of v. The
unassigned variable chosen in node v is denoted by x(v).
The child of v that is obtained from v by assigning a to xi

(where xi = x(v) and a ∈ Di) is denoted by v[xi ← a].
The complete search tree is not unique, as different

choices of the unassigned variable to branch on will result
in different complete search trees. However, all possible
complete search trees have the same set of leaves, namely
all full assignments. A possible complete search tree of
the above example is given in Fig. 2.

The algorithm does not have to visit all nodes of the
complete search tree. There are two reasons for this:

• If the algorithm reaches a non-0-consistent partial
assignment, then it can backtrack, because this
partial assignment surely cannot be extended to
a solution. For instance, the partial assignment
(0, ε, 0, 0) in the above example is not 0-consistent
because constraint C1 is not fulfilled; therefore, the
subtree under this partial assignment can be pruned.

• If the algorithm reaches a leaf that is a solution, then
it can stop and return the found solution.
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Fig. 2. A complete search tree of the example CSP

For these reasons, the actual search tree will be a
subtree of T .

Algorithm 1. The basic backtrack algorithm
v := (ε, ε, . . . , ε)
while true do

if v is not 0-consistent then
BACKTRACK

else if v is a full assignment then //v is a solution

return v

else //v is 0-consistent, but not a full assignment

choose an unassigned variable xi and let x(v) := xi

choose a value a from Di

change v by assigning a to xi //move to a child node

end if
end while

procedure BACKTRACK
repeat

if v is the root of T then
return UNSOLVABLE

else
change v by letting x(v) = ε //move to the parent node

end if
until v has children that are not visited yet
change v by assigning a new value to x(v) //move to next child node

end procedure

The basic version of the backtrack search algorithm
is described in pseudo-code in Algorithm 1.

4.2. Used improvement techniques. Beyond the basic
backtrack algorithm described above, we used a number
of techniques to make it competitive, as shown next.

4.2.1. Consistency propagation. In an interim state
of the algorithm, we are given a 0-consistent partial
assignment v, meaning that values of the assigned
variables satisfy all evaluable constraints. However, the
values of the assigned variables can also impact the
possible values of the unassigned variables. Through
intelligent use of this information, we can detect earlier
that the partial assignment is bound to lead to a conflict.

Consistency propagation in our algorithm combines
two techniques: 1-consistency and arc-consistency. In
order to define 1-consistency, let xi be an unassigned
variable, and let b ∈ Di be a possible value of xi.
Then, b is a 1-consistent value for xi, if v[xi ← b]
is still 0-consistent. Moreover, v is 1-consistent, if
there is a 1-consistent value for all unassigned variables
xi ∈ U(v). Obviously, non-1-consistent values of an
unassigned variable will lead to a conflict; hence, if v is
not 1-consistent, then it cannot be extended to a solution.

In order to maintain 1-consistency, we store for each
unassigned variable xi ∈ U(v) its set of 1-consistent
values, denoted by ∆v(xi), or simply ∆(xi) if there is no
ambiguity about v. At the beginning, ∆(xi) is initialized
to Di. Later on, every time a value is assigned to a variable
xj , all constraints involving xj are examined to check if it
can be inferred that a value of another, unassigned variable
xi has become non-1-consistent, and if so, it is removed
from ∆(xi). If ∆(xi) becomes empty for an unassigned
variable xi, then we backtrack.

If ∆v(xi) = {a}, then obviously, in any extension
of v to a full assignment, xi = a, so we can perform the
same steps as above to maintain 1-consistency, as if xi

were already assigned the value a, thus possibly removing
further non-1-consistent values of other unassigned
variables. This is arc-consistency propagation.

To see the power of consistency propagation, take
the partial assignment v = (0, ε, ε, 0) in our running
example. Since x1 and x4 already have fixed values,
constraint C1 can be examined to check which values of
x3 are 1-consistent. The value 0 is not 1-consistent for
x3, yielding ∆v(x3) = {1}. As ∆v(x3) contains only
one element, we can use arc-consistency propagation and
analyze constraint C2, in which now x1 and x3 already
have fixed values. None of the possible values of x2 are
1-consistent, and hence v cannot be extended to a solution:
we can backtrack and prune the whole subtree under v.
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4.2.2. Variable selection. For choosing the next
variable to branch on, we use the MRV (Minimum
Remaining Values) heuristic, selecting the variable with
the least remaining values in its domain, i.e., we
choose the unassigned variable xi for which |∆(xi)| is
minimal. This helps in keeping the size of the tree as
small as possible. To break ties, we use the degree
heuristic, choosing the variable with the highest number
of unassigned neighbours. This helps the consistency
propagation mechanism to infer as much information as
possible concerning the neighbouring variables. If there
is still a tie, we choose the variable with the lowest index.

4.2.3. Value selection. After choosing a variable to
branch on, the value selection heuristic defines in which
order the child nodes are visited. If the problem instance
is not solvable, then all children of the current node must
be visited anyway, until the algorithm finally backtracks
from this partial assignment. Hence in this case, the
value selection heuristic plays no important role. But if
the problem instance is solvable, then it may make the
algorithm significantly faster if it chooses the right value
first. I.e., the aim of the value selection is to propose
the most promising values first. For this reason, we start
with the value that constrains the neighbouring unassigned
variables the least. More formally, if x is the chosen
variable to branch on, a is a possible value for x, and y is
an unassigned neighbour of x, then let λ(a, y) denote the
number of values in ∆(y) that would have to be removed
from ∆(y) if a were assigned to x. Furthermore, let
λ(a) :=

∑

y∈N(x)∩U(v) λ(a, y), where N(x) is the set
of neighbours of x. In other words, λ(a) is the total
number of values that will be removed – as a result of the
constraints – from the neighbouring unassigned variables.
We assign the values in increasing order of λ.

4.2.4. Unimportant variables. Let x be an unassigned
variable. If we can be sure that ∆(x) will be non-empty
after any consistent assignment of the remaining variables,
then x is an unimportant variable, and can be removed
without affecting solvability.

Two simple examples are the following. If a variable
has more possible values in its ∆ set than the number of
values that the remaining (not yet satisfied) constraints
can possibly remove, then it is an unimportant variable,
because we can surely satisfy all its constraints.

In the second case, the variable x is unimportant,
if there is another variable y, such that ∆(y) ⊆ ∆(x)
and in each constraint involving x, if x is replaced by
y, an existing constraint of y is obtained. In this case, x
is indeed unimportant, because assigning the same value
to x as to y will satisfy all constraints involving x, if all
constraints involving y can be satisfied.

4.2.5. Conflict-driven backjumping. Suppose that
during the course of the algorithm, the partial assignment
v[x← a] has been visited and the algorithm found out that
this partial assignment cannot be extended to a solution;
hence, the algorithm backtracks to the partial assignment
v, and will try another child v[x ← a′] next. However,
sometimes it can be established that failure of the partial
assignment v[x ← a] was not due to x having the value
a, but rather to other decisions encoded within v. In
this case, other children of v will also definitely fail, so
there is no point in visiting them. Rather, we should
backjump directly to the last node of the search tree that
is not guaranteed to fail, by undoing one of the decisions
responsible for the failure of v[x← a].

Fig. 3. The case for conflict-driven backjumping

To demonstrate this phenomenon, we revisit our
running example. Consider the situation depicted in Fig.
3, in which the algorithm made the following assignments
(in this order): x2 ← 1, x4 ← 1, x3 ← 0. At
this point, the consistency propagation mechanism will
remove both values from ∆(x1), because none of them
fulfils constraint C2. Therefore, the algorithm backtracks
and tries the other possible value for x3, thereby reaching
the partial assignment (ε, 1, 1, 1). Again, the consistency
propagation mechanism will remove both values from
∆(x1), because none of them fulfils constraint C2.
Therefore, the algorithm will backtrack again: it will undo
the x3 ← 1 decision, then it recognizes that the partial
assignment (ε, 1, ε, 1) has no unexplored children, hence
it goes back to the partial assignment (ε, 1, ε, ε) and then
to its unexplored child (ε, 1, ε, 0).

However, if we look more carefully at the reasons

of the failure of the abandoned branch of the tree, we
can conclude that the choice x4 ← 1 did not contribute
to the failure. Rather, the former choice x2 ← 1 lead
to a situation where both possible values of x3 became
infeasible. This is easy to see, because only constraint C2

played a role in establishing the conflict, in which x4 does
not appear. Therefore, the newly visited branch, which
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differs from the old one only in the value of x4, is also
doomed for failure. In other words, we can backjump
directly to the partial assignment (ε, ε, ε, ε) by undoing
the unlucky choice of x2 and trying a new value for it.

Fig. 4. Example constraint effect graph

In general, to know the reasons for failure, we use
the constraint effect graph. Each node in this graph
represents an action that the algorithm has carried out:
either assigning a value to a variable or removing a value
from a variable’s ∆ set. In addition, there is a special
node, denoted by Γ, representing failure. Every time
the algorithm assigns a value to a variable, it creates
an appropriate new node in the constraint effect graph.
Every time the algorithm removes a value from ∆(x) for
a variable x, an appropriate node is created and connected
by a directed edge with all other nodes that are reasons for
this action; the edges are directed towards the new node.
If ∆(x) becomes empty, the corresponding nodes are
connected with Γ by a directed edge, directed towards Γ.
An example can be seen in Figure 4, showing the conflict
situation after the assignments x2 ← 1, x4 ← 1, x3 ← 0.

With this technique in place, the reason for failure
can be found: it is the set of assignments of values to
variables, from which there is a directed path to Γ in the
constraint effect graph. We must differentiate between
two backtrack situations:

• We backtrack from v because consistency
propagation emptied ∆(x) for some variable x,
meaning that there is no value for x that would be
consistent with the values chosen for its neighbours.
We will call such a backtrack a direct backtrack.

• We backtrack from v because all children of v have
been visited without finding a solution, i.e. we have
backtracked already from the last child of v. We will
call such a backtrack an indirect backtrack.

Backjumping is only possible in the case of an
indirect backtrack. To see this, assume that we make
a direct backtrack from v[x ← a] to v. This means
that v was a consistent state, but setting x ← a made it
inconsistent. Then, the reasons for failure in state v[x ←
a] include the setting made for variable x; therefore,
changing x to another value might resolve the conflict.

Now assume that the algorithm is about to make an
indirect backtrack from state v, because all children of v

have been visited in vain. Then it is important to know
the set of decisions (assignments of values to variables)
that contributed to the failure of the children of v. Let
v′ be a child of v. At the moment when the algorithm
was about to backtrack from v′, the algorithm was able
to determine, using the constraint effect graph, the set of
variables whose assignment contributed to the failure of
v′. We call this the conflict set of v′ and denote it by
L(v′). Then, the reason for failure of v is

⋃

{L(v′) : v′

is a child of v}. It can be seen easily that, as long
as all variables in this set retain their values, failure is
guaranteed; however, if at least one of them changes its
value, then there is a chance for success. This means that
the algorithm can backjump as much as necessary to undo
one of the decisions concerning these variables.

4.3. Determinism. It is important to note that the
algorithm that we presented so far – which we will call
the reference algorithm – is fully deterministic. That is,
the input problem instance determines what the complete
search tree will look like, which of its nodes will be visited
and in what order. To formalize this, let the state of the
algorithm at any point during the run of the algorithm
comprise all information that the algorithm has gathered
and stores for future use. Specifically, the state, denoted
by σ, consists of the following pieces of information:

• The current partial assignment v

• The order in which the variables in A(v) were
assigned their values

• For all x ∈ A(v), the set of values that have already
been tried for x

• For all x ∈ U(v), the set ∆v(x)

• The set of unimportant variables

• The conflict set of v and its ancestors in the tree

The algorithm starts from an initial state σ0, and in each
step, it moves to a new state. Since the state contains all
information necessary to determine the next state, the state
after step i + 1 is a function of the state after step i. That
is, σi+1 = next(σi), where the function next defines how
the algorithm steps to the next state. It is important to note
that the next function induces a linear order among the
visited nodes of the search tree.

5. Best-first-search

We now describe our proposed extension of the backtrack
algorithm to overcome the limitations stemming from
its depth-first-search (DFS) strategy. We extend it with
a best-first-search (BFS) strategy, so that it can jump
quickly between different parts of the search tree, always
focusing on the most promising part of the tree.



8 Z. Á. Mann and T. Szép

In doing so, the biggest challenge is to make sure
that, on one hand, the algorithm remains complete and,
on the other hand, we do not waste time on visiting the
same node of the search tree multiple times. Therefore,
we must maintain in a memory-efficient fashion what
nodes have already been visited. For this reason, we
do not use a full-fledged BFS which would allow full
freedom in moving in the tree, but rather a combination of
a controlled BFS and the more “disciplined” DFS inherent
in the underlying backtrack algorithm.

Informally, the idea is that the algorithm should run
as the reference algorithm would, but sometimes it can
jump forward or backward in the search, so that it may
find a solution faster. As an analogy, when looking for
something in a book, we read a couple of sentences, then
jump to another part, read there again some sentences etc.

We implement this scheme by launching several
copies of the reference algorithm at different points in
the search tree. We start one of these search instances
and let it run for a while. Afterwards, we pause this run
and transfer control to another search instance etc. The
currently visited node of search instance S, denoted by
cn(S), is stored when it is paused, so that it can later be
resumed from this node of the search tree.

In order to have full control about what part of the
search tree each search instance is visiting, we confine
all but one search instances to the subtree rooted in the
node in which they were started. Specifically, we create
a main search instance S∗ and some normal search in-

stances S1, S2, . . . , Sk. For each search instance S, let
sn(S) denote the start node of S, and let T (S) denote the
subtree of S, that is, the subtree of the search tree with
root sn(S). A normal search instance Si is only allowed
to search within T (Si), i.e., when it tries to backtrack
from sn(Si), it is stopped. Moreover, for any two search
instances S and S′, sn(S) must not be within T (S′) and
vice versa, sn(S′) must not be within T (S). We will call
these rules the search instance consistency rules. Because
of these restrictions, all normal search instances will scan
disjoint parts of the search tree.

The main search instance S∗ is not confined to
T (S∗). When it finishes scanning T (S∗), it will also scan
all parts of the search tree that are not covered by any other
search instances, thereby guaranteeing the completeness
of the algorithm. However, every time the main search
instance moves downwards in the search tree, we must
check if it reached the start node of a normal search
instance. If it reaches sn(Si), then we know that the next
steps of the search until the current position of Si have
already been visited by Si, and thus S∗ can move on from
the current position of Si. In this case, Si and S∗ must be
merged. This step will be explained later in detail.

Algorithm 2 shows the overall flow of the algorithm.
The non-trivial details of the algorithm are described in
the following subsections.

Algorithm 2. The backtrack algorithm with BFS logic
Create search instances S∗ and S1, S2, . . . , Sk

Set the status of all search instances to active
while true do

Pick an active search instance S

Run S for at most N steps
if S found a solution then

Return with the found solution
else if S 6= S∗ and S tried to backtrack from sn(S) then

Set S to passive
else if S = S∗ and it tried to backtrack from the root node then

Return with UNSOLVABLE
else if S = S∗ and it reached the start node of some Si then

Merge S and Si

end if
end while

5.1. Creating search instances. First, we define
the starting partial assignments for the search instances.
These are selected randomly from the nodes on the given
level(s) of the search tree, except that we pay attention to
the search instance consistency rules. Next, the creation
of a search instance S is carried out by emulating the
behaviour of the backtrack algorithm and steering it
directly to the desired start node sn(S) by assigning the
chosen values to the variables in A(sn(S)). We repeat this
for all search instances. Specifically, for creating the main
search instance, we pick the first possible value for each
variable, so that the start node of the main search will be in
the left-most branch of the search tree. When creating the
normal search instances, if we decide to emulate a forward
step by assigning the ith value to the next variable, we
have to remove all of the preceding i−1 possible choices.

5.2. Status of a search instance. The status of a
search instance can be either active or passive. Each
search instance is initialized as active and remains active
until it finishes searching the subtree that it is confined
to. That is, when search instance S tries to backtrack
from sn(S), it becomes passive. From this moment, S
will not be run anymore. However, it cannot simply be
removed, because it manifests the important information
that T (S) has already been scanned. In practical terms,
the difference between an active and a passive search
instance is that an active search instance can be picked
for further running, while a passive one cannot.

The main search instance remains active during the
whole algorithm.

5.3. Picking the search instance to run next. The
search instance to run next is selected from the active
search instances. The idea of best-first-search is to use
a valuation function Q that lets us estimate the value of
each active search instance (higher Q values are better).
We choose with probability p the search instance with
highest value, and with probability 1−p a search instance
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uniformly at random. The latter should help avoid the
degeneration where for some reason always the same
search instance is selected.

Our valuation function is defined in such a way that it
favours search instances that are more likely to produce a
solution. It is computed for search instance S as follows:

Q(S) = Q1(sn(S)) +Q2(cn(S)) +Q3(S) +Q4(S).

Q1 and Q2 judge how promising the start node
respectively the current node of S is. They do this in
the same way, but with potentially different coefficients:
Q1(v) = c1q(v), Q2(v) = c2q(v), and q(v) = |A(v)| ·
∑

xi∈U(v) |∆v(xi)|. That is, Q1 and Q2 favour nodes
where the number of assigned variables is high and the
unassigned variables have many possible values. In such
cases, it is likely that we can choose suitable values for the
unassigned variables.

Q3 accounts for the number of steps that S has
already made. If this number is high, this means that S
did not really prove to be as good as it seemed because
it failed to lead to a solution quickly. Thus, Q3 should
favour search instances with a low number of steps made,
and hence we chose Q3(S) = c3

1
steps(S) .

Q4 is based on the set of nodes that search instance
S has already visited (denoted by visited_nodes(S)). If
S has already led to a node that is almost a solution,
i.e. where almost all variables could be assigned a value
without a conflict, then it seems more likely that it will
indeed lead to a solution. Therefore, we chose Q4(S) =
c4 max{|A(v)| : v ∈ visited_nodes(S)}.

5.4. Running a search instance. The selected search
instance is executed and it emulates the steps of the
underlying backtrack algorithm. The search instance is
allowed to run for at most a given number of steps,
where one step corresponds to one execution of the next

function described in Section 4.3. When the search
instance S is first run, it starts from sn(S). When it is
stopped, its current node cn(S) is stored so that the next
time it can continue running from this node. S runs until
one of the following happens:

• The given maximum number of steps has been made

• A solution is found

• S 6= S∗ and it tries to backtrack from sn(S),
meaning that T (S) has been scanned without finding
a solution

• S = S∗ and it tries to backtrack from the root node,
meaning that the whole search tree has been scanned
without finding a solution

• S = S∗ and it reached sn(Si) for some normal
search instance Si

5.5. Merging two search instances. First, let us
assume that we do not use conflict-driven backjumping.
The more complex case when conflict-driven
backjumping is also applied, will be discussed in
detail in Section 5.6.

If S∗ reaches sn(Si), this means that all nodes from
the initial node (the root of the search tree) until sn(Si)
have been checked by S∗ and all nodes between sn(Si)
and cn(Si) have been checked by Si. (Intervals of nodes
are understood with respect to the linear order induced by
the next function.) That is, all nodes between the initial
node and cn(Si) have been checked. In this case, S∗ and
Si are merged into a single search instance, which will be
in all aspects identical to Si but it will be the new main
search instance. In practical terms, this means that we
remove the old S∗ and promote Si to be the new S∗.

The new S∗ continues the search from cn(Si). This
is correct, as all nodes before cn(Si) have already been
checked. The merged search will continue to scan the
remainder of T (Si). Afterwards it goes on with the rest
of the search tree, as this is now the main search instance.
Hence, we do not lose completeness through the merge.

It might seem that removing the old S∗ incurs a loss
of information. However, the state of the old S∗ when
reaching sn(Si) was exactly the same as that of Si when
it had started in sn(Si). This is because – under the
assumption that there is no conflict-driven backjumping
– the state of a search instance is uniquely determined by
its current location within the search tree. Therefore, we
do not lose information, we just avoid redundancy. All
information necessary for the merged search instance to
continue its work is contained in the state of Si.

5.6. Handling conflict-driven backjumping. In order
to perform conflict-driven backjumping, the conflict sets
must be maintained during the search. For this reason,
the state of the search instance will not only depend on its
current node, but also on previously visited nodes. This
phenomenon is illustrated schematically in Fig. 5.

In such a case, when the reference algorithm
backtracks from node Y , it establishes the conflict set
L(Y ) containing the variable assignments that contributed
to the failure at Y . Later, when backtracking from
Z, L(Z) is determined analogously, and then L(X) is
computed as L(X) = L(Y )∪L(Z), and this information
is used to decide where to backjump from X .

Using multiple search instances makes this more
complex. If the subtree rooted in Z is searched by search
instance Si, this has two important consequences:

• Si can correctly determine the conflict sets for all
nodes within T (Si) because the conflict sets are
computed bottom-up, i.e. starting from the leaves
and going upwards in the search tree.
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Fig. 5. Example for the effect of conflict-driven backjumping

• Si does not know L(Y ) and so would not be able
to correctly determine the conflict set of X or other
nodes outside of T (Si).

That is, as long as Si is confined to T (Si), it will
behave exactly as the reference algorithm does. With
S∗, there is also no problem because it starts in the very
first branch and works its way exactly as the reference
algorithm. The only problem occurs when Si is merged
with S∗ and should continue working outside of T (Si).
Merging takes place when S∗ goes from X to Z. At
this point, S∗ has already determined the conflict set
for all nodes until this node, including L(Y ). L(Z)
has been determined or will be determined (depending
on whether Si is still active or not) by Si. The two
search instances together have all information necessary
to compute L(X) and later also the conflict sets of the
other nodes. To conclude: when merging S∗ and Si,
the conflict information maintained by the two search
instances must be united in the new S∗ and this way we
get a search instance that has the same information as the
reference algorithm would at the same point.

Conflict-driven backjumping may also lead to
another interesting phenomenon. Looking again at Fig.
5, it can happen that S∗, when backtracking from Y

(or one of its descendants), infers that it can actually
backjump directly to an ancestor of X in the search tree.
As a consequence, S∗ will not visit node Z, and thus it
will never be merged with Si. This actually means that
the subtree rooted at Z is guaranteed to not contain any
solutions, and S∗ managed to infer this without the need
for Si to scan the subtree. In this case, running Si is a
waste of time, but otherwise it does not harm. Since this
phenomenon happens rarely, we decided to simply accept
it. However, it should be noted that, if the given problem
instance is unsolvable, then the steps taken by such useless
search instances are the only overhead (in terms of the
number of backtracks) of the best-first-search algorithm
compared to the underlying backtrack algorithm. Our

empirical results suggest that this overhead is minimal.

5.7. Correctness. Since we presented our algorithm in
a semi-formal way, this allows for a semi-formal proof of
its correctness. We assume that the reference algorithm,
that we will denote with Aref , is correct. Based on
this, we prove that the algorithm extended with the
best-first-search logic, denoted by ABFS , is also correct.

First, we introduce some notations and conventions.
Let v1 and v2 be two nodes of the complete search
tree. We write v1 ≺ v2 if v1 precedes v2 in the
depth-first-search order inherent in Aref . This is almost
the same as the linear order induced by the next function,
with the only difference that next is only defined for the
nodes that are actually visited by the algorithm, whereas
≺ is defined for all node pairs of the complete search tree,
i.e. also for nodes that are skipped by the algorithm. We
will assume that the search instances of ABFS are indexed
such that sn(S1) ≺ sn(S2) ≺ . . . ≺ sn(Sk).

Proposition 1. Let v be a node of the search tree that is

visited by Aref . Then, ABFS will either also visit v or it

will find a solution earlier.

Proof. We differentiate between two cases.
Case 1: there is an i such that v ∈ T (Si). In this case, as
long as v is not yet visited, Si remains in active status, and
will be selected to be run again and again. Since within
T (Si), Si does the same as Aref , it will visit v after a
finite number of steps.
Case 2: v is in no T (Si). Let j denote the number of
search instances whose start node lies before v according
to ≺, i.e. sn(Sj) ≺ v ≺ sn(Sj+1). We prove the claim
using induction according to j. If j = 0, then similarly as
in Case 1, S∗ will visit v after a finite number of steps.
Now, assume that the claim is already proven for all j′ <
j. We must again differentiate between two sub-cases.
Case 2.1: sn(Sj) is visited by Aref . In this case, the
parent node of sn(Sj), denoted by v′, is also visited
by Aref . Moreover, sn(Sj−1) ≺ v′ ≺ sn(Sj), and
thus according to induction, v′ is also visited by ABFS ,
specifically by S∗. When S∗ goes from v′ to sn(Sj), it
is merged with Sj , and continues the search from cn(Sj)
with exactly the same state as Aref . Since sn(Sj) ≺ v,
v 6∈ T (Sj) and cn(Sj) ∈ T (Sj), it follows that cn(Sj) ≺
v. From this point, S∗ will visit v after a finite number of
steps, similarly to Case 1.
Case 2.2: sn(Sj) is not visited by Aref . In this case, let
v′ denote the last node before sn(Sj) that was visited by
Aref . Since v′ ≺ sn(Sj), according to induction, v′ is
also visited by ABFS . Moreover, when S∗ visits v′, it has
the same state as Aref . Therefore, the next node visited
by Aref , v′′ = next(v′), is also the next node visited by
S∗. Since v is visited by Aref , v′′ ≺ v must hold. From
this point, S∗ will visit v after a finite number of steps,
similarly to Case 1. �
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Corollary 1. If Aref always returns a correct answer

after a finite number of steps, then so does ABFS as well.

Proof. Since the complete search tree is finite and ABFS

visits each node of the search tree at most once, it will
clearly return a result after a finite number of steps. If
the given problem instance is not solvable, then of course
ABFS will not be able to find a solution and hence it will
correctly return UNSOLVABLE. If the problem instance
is solvable, then, according to our assumption, Aref will
find a solution. According to the Proposition, ABFS will
also correctly find this, or another, solution. �

6. An example

In order to make the operation of the algorithm clearer,
we demonstrate it on a simple schematic example. We
assume an unsolvable problem instance, and use 3 search
instances: a main search instance S∗ and 2 normal search
instances S1, S2. First, we let them run for some time:

sn(S1) 
sn(S*) 

... ... 

... ... 

... sn(S2) 

... 

cn(S*) 
cn(S1) 

cn(S2) 

Not visited yet 

Visited, not 

finished yet 

Finished node 

Passive search 

Legend 

The main search instance finishes its original branch
and searches further in the search tree. Search instance
1 finishes its own subtree, so it is not allowed to search
further:

cn(S1)=sn(S1) 
sn(S*) 

... ... ... sn(S2) 

... 

cn(S2) 
cn(S*) 

... 

Not visited yet 

Visited, not 

finished yet 

Finished node 

Passive search 

Legend 

Then, the main search instance arrives to the start
node of search instance 1:

cn(S1)=sn(S1) 

cn(S*) 

sn(S*) 

... ... ... sn(S2) 

... 

cn(S2) 

Not visited yet 

Visited, not 

finished yet 

Finished node 

Passive search 

Legend 

Now, the main search instance is merged with search
instance 1:

cn(S*) sn(S*) 

... ... ... sn(S2) 

... 

cn(S2) 

Not visited yet 

Visited, not 

finished yet 

Finished node 

Passive search 

Legend 

The main search instance continues to work its way
until it arrives to the start node of search instance 2:

cn(S*) 

sn(S*) 

sn(S2) 

... 

cn(S2) 

Not visited yet 

Visited, not 

finished yet 

Finished node 

Passive search 

Legend 

Then, the main search instance is merged with search
instance 2 and continues from the current location of
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search instance 2, see figure below. Afterwards, the main
search instance will search through the whole search tree
and backtrack to the root node with failure.

sn(S*) 

... 

cn(S*) 

Not visited yet 

Visited, not 

finished yet 

Finished node 

Passive search 

Legend 

7. Empirical results

In a set of empirical measurements using graph coloring
benchmarks, we compared the efficiency of the basic
backtrack algorithm (BACKTRACK), the backtrack
algorithm with frequent restarts (RESTART) as suggested
previously in the literature, and the backtrack algorithm
with the proposed best-first-search heuristic (BFS).

7.1. Experimental setup. All measurements were
carried out on a computer with an Intel i5 Core CPU
running at 2.4 GHz, 3 GB RAM, and Windows 7. The
algorithms were implemented in C++ and compiled using
mingw, the Windows version of GNU GCC 4.4.1. The
measurements were carried out using BCAT (Budapest
Complexity Analysis Toolkit), a software framework
specifically designed for the implementation and testing
of combinatorial algorithms (Mann and Szép, 2010).

As problem instances, we used 28 industry
benchmarks from different benchmark collections (see
Table 1) plus 28 random instances (see Table 2). For all
these graphs, we used two different choices for the number
of colors k: one such that the graph is k-colorable and one
such that it is not. Thus, altogether, we had 112 instances,
half of them solvable, the other half unsolvable.

For the RESTART algorithm, we used a geometric
restart strategy, the success of which is documented in
the literature (Walsh, 1999; Wu and van Beek, 2003): the
bound on the number of backtracks before restarting is
initialized to 100 and multiplied by 1.5 after each restart.
The BFS algorithm is configured so that it starts 500
search instances in depth 15. A switch between solver
instances is performed every 8000 backtracks, and in such
cases, the most attractive solver instance is chosen with
probability 0.5, and a random one otherwise.

Table 1. Properties of the used structured instances. The num-
ber of variables is denoted by n, the number of con-
straints by m. RAP means Register Allocation Prob-
lem, FAP means Frequency Assignment Problem

Name n m Source

queen7x7 49 476 DIMACS benchmark (Trick, 2003)
queen8x8 64 728 DIMACS benchmark (Trick, 2003)
queen9x9 81 2112 DIMACS benchmark (Trick, 2003)
queen10x10 100 2940 DIMACS benchmark (Trick, 2003)
ash331GPIA 662 4185 DIMACS benchmark (Trick, 2003)
ash608GPIA 1216 7844 DIMACS benchmark (Trick, 2003)
ash958GPIA 1916 12506 DIMACS benchmark (Trick, 2003)
school1 385 19095 DIMACS benchmark (Trick, 2003)
school1_nsh 352 14612 DIMACS benchmark (Trick, 2003)
RAP1792 334 14157 RAP (Appel and George, 1996)
RAP3678 380 11621 RAP (Appel and George, 1996)
RAP0040 580 12082 RAP (Appel and George, 1996)
RAP24050 337 10612 RAP (Appel and George, 1996)
RAP24467 420 13804 RAP (Appel and George, 1996)
RAP16616 845 14189 RAP (Appel and George, 1996)
RAP22950 621 9200 RAP (Appel and George, 1996)
FAP01 703 16438 FAP (Mann and Szajkó, 2012)
FAP02 481 11211 FAP (Mann and Szajkó, 2012)
FAP03 360 7756 FAP (Mann and Szajkó, 2012)
FAP04 434 10056 FAP (Mann and Szajkó, 2012)
FAP05 409 9401 FAP (Mann and Szajkó, 2012)
FAP06 385 8422 FAP (Mann and Szajkó, 2012)
FAP07 385 10278 FAP (Mann and Szajkó, 2012)
FAP08 238 7660 FAP (Mann and Szajkó, 2012)
FAP09 304 10983 FAP (Mann and Szajkó, 2012)
FAP10 263 8683 FAP (Mann and Szajkó, 2012)
FAP11 285 8016 FAP (Mann and Szajkó, 2012)
FAP12 466 8008 FAP (Mann and Szajkó, 2012)

7.2. Comparing the efficiency of the algorithms.
After fixing the parameters, we ran the three algorithms
on all problem instances. Since there were huge
differences between the complexity of the different
problem instances, we grouped them into three categories
based on the runtime of the algorithms on them:

• Easy instances with solver runtimes up to 101 sec.

• Hard instances with solver runtimes in the range of
101 to 103 seconds

• Hardest instances with solver runtimes of 104

seconds and more

The algorithms’ results on the easy problem
instances are summarized in Table 3. As can be seen,
the BACKTRACK algorithm is quite successful here: it
solves most problem instances within 1 second, and its
average runtime is only 3.6 seconds. RESTART solves
slightly more instances within 1 second, but its average
runtime is worse because on the “less easy” easy instances
its runtime is higher than that of BACKTRACK. BFS has
a similar average runtime as RESTART, but the number of
instances that it can solve within 1 second is lower. This
is probably due to the initial overhead of setting up BFS
(several search instances, additional data structures etc.).
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Table 2. Properties of the used random instances

Name n m

random_65_05_01 65 1063
random_65_05_02 65 1049
random_65_05_03 65 1041
random_70_05_01 70 1203
random_70_05_02 70 1216
random_70_05_03 70 1168
random_70_05_04 70 1166
random_70_05_05 70 1205
random_75_05_01 75 1369
random_75_05_02 75 1410
random_75_05_03 75 1382
random_75_05_04 75 1368
random_75_05_05 75 1375
random_75_052_01 75 1422
random_75_052_02 75 1432
random_75_052_03 75 1446
random_75_052_04 75 1409
random_75_052_05 75 1396
random_80_05_01 80 1575
random_80_05_02 80 1614
random_80_05_03 80 1581
random_80_05_04 80 1590
random_80_05_05 80 1620
random_80_052_01 80 1652
random_80_052_02 80 1659
random_80_052_03 80 1646
random_80_052_04 80 1665
random_80_052_05 80 1637

Table 3. Results on easy problem instances

BACKTRACK RESTART BFS

Average runtime 3.6 s 6.8 s 6.9 s
Percentage of instances
solved within 1 s

69.7% 71.2% 37.9%

Fig. 6. Results on hard solvable instances

Concerning the hard instances, the algorithms’
performance is quite different on solvable vs. unsolvable
instances. As discussed, the main motivation for both
RESTART and BFS is to be able to give up unfruitful

Fig. 7. Results on hard unsolvable instances

parts of the search space in favor of more promising;
and this idea applies primarily to solvable instances.
For unsolvable instances, in each branching, all possible
values must be tried anyway; thus, the systematic search
of BACKTRACK is appropriate, restarting or jumping
between regions only adds overhead. In principle,
restarting could help even in this case because choosing
the variables to branch on in a different order may prove
better. However, according to the empirical results, it does
not help as much as it adds overhead by discarding the
results of already performed work.

As can be seen in Fig. 6, both RESTART and BFS
help to decrease the runtime on hard solvable instances.
In almost all cases, BFS is the fastest. The reduction in
average runtime compared to BACKTRACK is 67% for
RESTART and 86% for BFS. In other words, RESTART
is approximately 3 times faster than BACKTRACK,
whereas BFS is 7 times faster than BACKTRACK.

As expected, BACKTRACK is best for unsolvable
instances, as can be seen in Fig. 7. In almost all
cases, both RESTART and BFS yield a non-negligible
overhead. However, the overhead of BFS is almost always
lower than that of RESTART. On average, RESTART is
approximately 3 times slower than BACKTRACK. BFS
is only 2 times slower than BACKTRACK.

Table 4. Runtimes (in sec.) on the hardest problem instances

Benchmark Solvable BACKTRACK RESTART BFS

FAP01 no 4864 timeout 4932
FAP09 no 7373 24033 7390
queen9x9 no 10149 timeout 10542
queen10x10 yes timeout timeout 17995
random_80_052_01 yes 11872 25789 18056
RAP24050 no 4145 timeout 4339
RAP1792 no 13601 timeout 14657

The results on the hardest instances are shown in
Table 4. We used a timeout of 8 hours (28800 seconds).
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As can be seen from the table, BACKTRACK managed
to solve 6 out of 7 instances, RESTART solved only 2
of them, whereas BFS solved all 7. The reason why
RESTART performed rather poorly on these instances is
that most of them are unsolvable, where RESTART adds
quite some overhead compared to the other algorithms.

Fig. 8. Histogram of the algorithms’ runtime

7.3. Runtime variance. Finally, we wanted to assess
the variance in the algorithms’ runtime. We ran each
algorithm 100 times on the same solvable problem
instance (random_80_05_02). As can be seen in Fig.
8, BACKTRACK indeed exhibits a heavy-tailed runtime
distribution (note the logarithmic scale of the horizontal
axis). Both RESTART and BFS have far lower tail
probabilities. In particular, BFS has a sharp concentration
around its maximum likelihood value at approximately
10 s. In other words: in terms of both efficiency
and predictability of runtime, RESTART is superior to
BACKTRACK, and BFS is even superior to RESTART.

8. Conclusions

In this paper, we proposed a new way to reduce the
runtime of backtrack search. We observed that the reason
why backtrack search lasts sometimes extraordinarily
long is caused by its depth-first-search nature prohibiting
it from giving up on unfruitful parts of the search
space in favor of more promising areas. To remedy
this, we proposed to extend backtrack search with a
best-first-search control, thus combining the systematic
backtrack search with exploration options. Our algorithm
operates multiple backtrack search instances and focuses
always on the most promising one. We described in
detail how this scheme can be implemented efficiently and
without sacrificing optimality.

Our work is related to the frequent restart strategy
that had been suggested previously in the literature with

a similar goal. The advantage of our approach over
restarting is that we do not discard knowledge cumulated
by the backtrack search. Our empirical results confirmed
that our algorithm is indeed more efficient than restarting:
it results in higher speedup on solvable problem instances
and lower overhead on unsolvable instances.

Although the results are promising, there is still work
to be done. We regard the complexity of our approach
as the main obstacle to its wide-spread usage. Although
the basic idea of our algorithm is not complicated,
implementing it on top of an existing solver can be tricky,
and may depend on the characteristics of the solver, as
shown also in this paper in relation to conflict-driven
backjumping. In the future, we would like to gain more
experience with the applicability and implementation
options of this approach. In particular, we intend to
integrate it into a state-of-the-art satisfiability solver.

Another promising avenue for future research is
the parallelization of the presented approach. Since
the work of the individual search instances is mostly
independent from each other, with only limited interaction
at well-defined points, we can expect a significant
performance gain from parallelization. On a system
with k parallel processing units, one can run k worker
threads that process search instances in parallel, and a
manager thread that determines the next search instance
to process for a worker thread that has become free, based
on the best-first-search logic. This way, an almost k-fold
speedup can be expected.
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