
Average-case complexity of backtrack search for

coloring sparse random graphs

Zoltán Ádám Mann and Anikó Szajkó

This paper was published in Journal of Computer and System Sciences 79:(8)
pp. 1287-1301, 2013.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42927475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Average-case complexity of backtrack search for

coloring sparse random graphsI

Zoltán Ádám Manna,∗, Anikó Szajkóa

aDepartment of Computer Science and Information Theory, Budapest University of

Technology and Economics, Magyar tudósok körútja 2, 1117 Budapest, Hungary

Abstract

We investigate asymptotically the expected number of steps taken by backtrack

search for k-coloring random graphs Gn,p(n) or proving non-k-colorability, where

p(n) is an arbitrary sequence tending to 0, and k is constant. Contrary to

the case of constant p, where the expected runtime is known to be O(1), we

prove that here the expected runtime tends to infinity. We establish how the

asymptotic behaviour of the expected number of steps depends on the sequence

p(n). In particular, for p(n) = d/n, where d is a constant, the runtime is always

exponential, but it can be also polynomial if p(n) decreases sufficiently slowly,

e.g. for p(n) = 1/ lnn.

Keywords: graph coloring, average-case complexity, search tree, random

graphs, backtrack

1. Introduction

Graph coloring is an important combinatorial optimization problem with

many applications in engineering, such as register allocation, frequency assign-

ment, pattern matching and scheduling [1, 2, 3]. Accordingly, graph coloring

has been the subject of intensive research.

IA preliminary version of this paper was presented at the 7th Hungarian-Japanese Sym-
posium on Discrete Mathematics and Its Applications.

∗Corresponding author. Phone: +36 20 939 8842, Fax: +36 1 463 3157.

Email addresses: zoltan.mann@gmail.com (Zoltán Ádám Mann),
szajko.aniko@gmail.com (Anikó Szajkó)

Preprint submitted to Journal of Computer and System Sciences May 4, 2013

One of the most important tools to mathematically investigate graph color-

ing is to study the coloring of random graphs. Usually, the Gn,p random graph

model is used [4], meaning that the graph has n vertices, and each pair of ver-

tices is connected by an edge with probability p independently from each other

(we will refer to p as edge density). Many remarkable results and mathemati-

cal methods came into existence on random graphs concerning graph coloring

and many other graph-theoretic problems; see for example the extensive surveys

in [5] and [6].

As a particular result of the research of the last couple of decades, the chro-

matic number of random graphs both with constant and varying edge density

were estimated [7, 8, 9, 10, 11]. In 2004, Achlioptas and Naor [12] succeeded

to almost exactly determine the chromatic number of random graphs with edge

density function p(n) = d/n, when the size of the graph tends to infinity.

Graph coloring is NP-hard. The most widely used exact algorithm for graph

coloring is the backtrack search algorithm. In this paper, we deal with a ver-

sion of backtrack search that solves the #COL problem: that is, it counts the

number of solutions. (For k-colorable graphs, this takes longer than merely de-

ciding colorability, since we cannot stop after finding the first solution. However,

for non-k-colorable graphs, the same amount of time is needed for solving the

decision problem and the counting problem.)

Obviously, the worst-case complexity of this algorithm is exponential in the

size of the graph. However, in practice, the backtrack algorithm works quite

efficiently even for relatively large graphs. In fact, Wilf proved in 1984 the sur-

prising result that the expected runtime of the backtrack algorithm is bounded

even if the size of the graph tends to infinity [13]. That is, the average-case

complexity of this algorithm is O(1). Later, Bender and Wilf provided a more

detailed analysis of the asymptotic distribution of the algorithm’s runtime [14].

In our recent research, we refined the results of Bender and Wilf: with detailed

examinations, we can quite precisely predict the expected runtime of the back-

track algorithm for a random graph, as a function of the number of vertices, the

number of colors, and the edge density [15, 16].

2

However, the above results apply only to random graphs where the edge

density p is constant. Note that such graphs are with high probability very

dense with Θ(n2) edges. On the other hand, sparse graphs are more common

in practice [17]. To accommodate this fact in the Gn,p model, the edge density

should rather be a function p = p(n) that decreases with increasing n and tends

to 0 when n → ∞. Therefore, in this paper, we investigate the asymptotic

behavior of the expected runtime of the backtrack algorithm in cases of different

such p(n) functions. Previous work on coloring sparse graphs concentrated on

the p(n) = d/n case; the main novelty of our paper is that it applies to any p(n)

sequence with p(n) → 0.

In order to use a machine-independent measure of complexity, we estimate

the expected number of visited nodes in the algorithm’s search tree.

1.1. Results

Our main results describe the asymptotic behaviour of the average-case com-

plexity of the backtrack algorithm on Gn,p graphs for any p(n) → 0, both in a

qualitative and quantitative way. The qualitative result is as follows:

Theorem 1. Let the number of available colors k be constant, and p = p(n) be

any sequence between 0 and 1, tending to 0. Then, the expected number of visited

nodes in the backtrack algorithm’s search tree tends to infinity when n → ∞.

Although this theorem is not hard to prove, it is interesting because it is

in clear contrast to Wilf’s theorem [13] for constant p values: however slowly

p(n) tends to 0, if it does, this makes the algorithm’s average-case complexity

divergent.

On the other hand, as our next theorem shows, the rate by which p(n) tends

to 0 does have significant impact on how quickly the expected number of visited

nodes in the algorithm’s search tree diverges:

Theorem 2. Let the number of available colors k be constant, and p = p(n)

be any sequence between 0 and 1, tending to 0. Let E(Y) denote the expected

3

number of visited nodes in the algorithm’s search tree.

(1) If ∃ε > 0 such that, for all large enough n, np(n) > k ln k + ε, then

E(Y) = Θ

(√

1

p(n)
exp

(

k(ln k)2

2p(n)

)

)

= Θ

(√

1

p(n)
· c1/p(n)

)

,

where c = k
k ln k

2 .

(2) If ∃ε > 0 such that, for all large enough n, np(n) < k ln k − ε, then

E(Y) = Θ

(

exp

((

ln k +
n ln(1− p(n))

2k

)

n

))

= Θ
(

kn(1− p(n))
n
2

2k

)

.

This theorem gives an almost complete quantitative characterization of the

average-case complexity of the algorithm.

It should be noted that E(Y) is invariably exponential in the second case.

This can be seen as follows: the coefficient of n in the exponent is

ln k +
n ln(1− p(n))

2k
= ln k − np(n)

2k
· − ln(1− p(n))

p(n)
>

> ln k −
(

ln k

2
− ε

2k

)

· − ln(1− p(n))

p(n)
>

ln k

2

for all large enough n, because − ln(1−p(n))
p(n) → 1. To sum up: in the second case,

E(Y) = Ω

(

exp

(

ln k

2
n

))

= Ω
((√

k
)n)

.

In the first case, the formula can be either polynomial or super-polynomial:

e.g., it is polynomial for p(n) = 1/ lnn, but super-polynomial for p(n) = 1/
√
n.

That is, although the algorithm’s average-case complexity is definitely divergent

if limn→∞ p(n) = 0, it can still be polynomial in n, if the convergence of p(n) to 0

is sufficiently slow. Actually, it can even be sub-linear, e.g. for p(n) = 1/ ln lnn.

The proofs rely on the technique that we developed in [15, 16] for estimating

the number of visited nodes on level t of the search tree. From here, the way to

the desired theorems is largely analytical.

1.2. Paper organization

We start by describing previous, related work in Section 2. In Section 3, we

introduce the necessary definitions and notations, followed by the recapitulation

4

of our previous results in Section 4 that we will be using later on. Section 5

contains our main results: the proofs of Theorems 1 and 2. Section 6 contains a

discussion on some important special cases of the theorems and how they relate

to previous results in the literature. We present some numerical experiments in

Section 7, and finally, Section 8 concludes the paper.

2. Previous work

Because of its importance, the study of the complexity of graph coloring

started already in the early 1970s. In fact, graph coloring was one of the 21

combinatorial problems whose NP-completeness was shown by Karp in his sem-

inal 1972 paper [18]. Afterwards, researchers’ attention turned towards approx-

imation algorithms, but it turned out quickly that approximating the chromatic

number is a hard problem. An early result of Garey and Johnson showed that no

polynomial-time approximation algorithm with an approximation ratio smaller

than 2 can exist, unless P=NP [19]. More recently, it was shown that – under

standard assumptions of complexity theory – not even an O(n1−ε) approxima-

tion can exist for any ε > 0 [20, 21].

Also starting with the 1970s, different heuristic and exact algorithms were

developed for the graph coloring problem (see e.g. [22, 23, 24]). The proposed

exact algorithms mostly used some form of backtrack search to guarantee a

complete search while also being able to prune potentially large parts of the

search space.

With the availability of practical graph coloring algorithms implemented

as computer programs, researchers started to gain empirical experience with

graph coloring in practice [24, 25, 26, 27]. These empirical investigations lead

to the discovery of some fascinating phenomena in the average-case and typical-

case complexity of the backtrack algorithm for graph coloring. It turned out

that, in many cases, graph coloring is actually quite easy even for quite large

graphs. More precisely, graph coloring – like many hard combinatorial problems

– exhibits a phase transition phenomenon with an accompanying easy-hard-

5

easy pattern [25, 28, 29, 26]. Briefly, this means that, given k colors, for small

values of the edge density (under-constrained case), almost all graphs are k-

colorable. When the edge density increases, the ratio of k-colorable graphs

abruptly drops from almost 1 to almost 0 (phase transition). After this critical

region, almost all graphs are non-k-colorable (over-constrained case). In the

under-constrained case, coloring is easy: even the simplest heuristics usually find

a proper coloring [30, 24]. In the over-constrained case, it is easy for backtracking

algorithms to prove uncolorability because they quickly reach contradiction [31].

The hardest instances lie in the critical region [25].

These empirical results also spawned mathematical research to explain and

prove in a rigorous way the above characteristics of the average-case complexity

of the backtrack algorithm for graph coloring. Wilf proved in 1984 the exciting

result that the average-case complexity of the backtrack algorithm is actually

O(1) [13]. In order to derive this result, he considered the expected number of

visited nodes of the search tree when the input graph is taken fromGn,p. Further

elaborating this result, Bender and Wilf gave estimations on the asymptotic

behavior of the expected number of visited nodes of the search tree [14]. In the

present paper, we use the same model as Bender and Wilf. However, it should

be noted that Wilf’s result as well as the analysis of Bender and Wilf only apply

to dense graphs with a fixed value of p.

A different approach was taken by Turner to show why graph coloring is easy

for many graphs [30]. He analyzed the behavior of some simple heuristics on k-

colorable graphs, and proved that they can find a coloring with high probability

(whp for short, meaning that the probability tends to 1 as n goes to infinity).

In terms of the backtrack algorithm, this means that it would find a solution

whp without backtracking. Note however, that Turner’s result only applies if

the number of available colors is small, i.e. k = O(log n), and p is fixed.

In a similar way, the recent paper of Coja-Oghlan, Krivelevich and Vilenchik

also focuses on k-colorable graphs and investigates why their coloring tends to

be easy [32]. They show that all valid k-colorings lie whp in a single “cluster”,

agreeing on the color of most vertices. What is more important from our point of

6

view is that they also prove that such graphs can be colored whp in polynomial

time. Note that their approach works for k-colorable graphs with n vertices

and m = dn edges, where d is sufficiently large. (In the Gn,p model, this would

correspond to the p ≈ 2d/n case.)

Jia and Moore also analyzed the p = d/n case, but for small values of d and

with a different goal [33]. They aimed at explaining the phenomenon of heavy

tails, i.e. the surprisingly high probability of extremely low or extremely high

algorithm runtimes. In particular, they proved that for appropriate values of

d, both the probability of 0 backtracks and the probability of an exponential

number of backtracks are positive.

Because of the phenomenon of heavy-tailed runtime distributions, it was

suggested in the AI community to boost practical algorithm performance by

randomization and frequent restarts [34, 35]. That is, if a run of the algorithm

takes long, it should be restarted in the hope that the new run will take a more

lucky path in the search tree and finish sooner. In fact, this strategy works

surprisingly well for many NP-hard problems, including Boolean satisfiability

and other constraint satisfaction problems.

The analysis of the chromatic number of random graphs was first suggested

in the seminal 1960 paper of Erdős and Rényi [4]. Subsequent work of Grimmett

and McDiarmid [36], Bollobás [8], and Luczak [9], lead to an understanding of

the order of magnitude of the expected chromatic number of random graphs.

Through the recent work of Shamir and Spencer [11], Luczak [10], Alon and

Krivelevich [7], and Achlioptas and Naor [12], we can determine almost exactly

the expected chromatic number of a random graph in the limit: the expected

chromatic number of a random graph is whp one of two possible values. Specif-

ically, if kd denotes the smallest integer k with d < 2k log k, then the chromatic

number of a Gn,d/n graph is with high probability either kd or kd + 1.

Upper bounds on the chromatic number were often proven in an algorithmic

way, by showing that a simple algorithm will succeed in coloring the graph with

high probability. Examples include the GIC heuristic that works by determin-

ing independent sets greedily and using them as color classes [36, 37, 38], the

7

greedy list-coloring algorithm k-GL that selects a vertex with minimum number

of available colors [39], and its refinement in which ties are broken in such a way

that vertices with more uncolored neighbours are selected with higher probabil-

ity [40]. A possible interpretation of these results is that, for small constraint

densities, the solution can be found without backtracking with positive proba-

bility [33]. In a similar way, Turner proved the No-Choice algorithm – which,

after coloring a clique, colors only vertices whose color is uniquely determined

– to find a coloring for almost all k-colorable graphs, if k = O(log n) and p is

fixed.

Algorithmic aspects have been studied besides random graphs with constant

p, also for sparse graphs with p = p(n) = d/n. Examples beyond the ones

already mentioned include the result of Pittel andWeishaar, who proved that the

greedy algorithm for coloring a random graph Gn,d/n requires only O(log log n)

colors, and the number of used colors will be one of two possible numbers [41].

Coja-Oghlan and Taraz presented an expected-linear-time algorithm for coloring

a random graph Gn,d/n with d ≤ 1.01 [42]. Later, Sommer proved that the

algorithm’s expected running time is actually linear for all d ≤ 1.33 [43]. The

algorithm of Shamir and Upfal works for graphs with mean degree d = d(n)

and uses not more than d(n)/ log d(n) colors, which is approximately twice the

chromatic number [37].

Interestingly, methods from theoretical physics (more specifically, statistical

mechanics) have also been applied successfully to study the asymptotic expected

performance of backtrack algorithms. After first results on the satisfiability

problem [44], this machinery was also used to study the 3-coloring problem. In

particular, Monasson and co-workers modeled the solution process of backtrack

search with an out-of-equilibrium (multi-dimensional) surface growth problem

[45, 31]. By solving the resulting partial differential equation, an estimation of

the backtrack algorithm’s runtime can be obtained that is fairly close to the

empirical results for relatively dense graphs. Although these results are not

rigorous, Monasson later developed a method based on generating functions,

with which similar results were achieved in a rigorous way [46]. In particular,

8

it was established that the expected runtime of the backtrack algorithm for 3-

coloring a random graph from Gn,d/n, for large enough d, is exp(cn + o(n)),

where c depends only on d.

In contrast to most previous research, our focus is on graphs from Gn,p,

where p = p(n) is any sequence tending to 0. Our aim is to analyze how the

asymptotic behavior of the expected number of visited nodes of the search tree

depends on how quickly p(n) converges to 0.

3. Preliminaries

We consider the counting version of the graph coloring problem, in which

the input consists of an undirected graph G = (V,E) and a number k, and the

task is to count the number of possibilities for coloring the vertices of G with

k colors such that adjacent vertices are not assigned the same color. The input

graph is a random graph taken from Gn,p, i.e. it has n vertices and each pair

of vertices is connected by an edge with probability p independently from each

other. The vertices of the graph will be denoted by v1, . . . , vn, the colors by

1, . . . , k. A coloring assigns a color to each vertex; a partial coloring assigns a

color to some of the vertices.

The color that the (partial) coloring w assigns to vertex v is denoted by

w(v). If w does not assign a color to v, then w(v) is undefined.

A (partial) coloring is invalid if there is a pair of adjacent vertices with the

same color, otherwise the (partial) coloring is valid.

The backtrack algorithm considers partial colorings. It starts with the empty

partial coloring, in which no vertex has a color. This is the root – that is, the

single node1 on level 0 – of the complete search tree. Level t of the complete

search tree contains the kt possible partial colorings of v1, . . . , vt. The complete

search tree, denoted by T , has n+1 levels (0, 1, . . . , n), the last level containing

the kn colorings of the graph. For simplicity of notation, we use w ∈ T to denote

1In order to avoid misunderstandings, we use the term ‘vertex’ in the case of the input

graph and the term ‘node’ in the case of the search tree.

9

that the partial coloring w is a node of the complete search tree. Furthermore,

let Tt denote the set of partial colorings on level t of T . If t < n and w ∈ Tt,

then w has k children in the complete search tree: those partial colorings of

v1, . . . , vt+1 that assign to the first t vertices the same colors as w.

In each partial coloring w, the backtrack algorithm considers the children

of w and visits only those that are valid. Invalid children are not visited, and

this way, the whole subtree under an invalid child of the current node is pruned.

This is correct because all nodes in such a subtree are also certainly invalid. The

algorithm proceeds in a depth-first-search manner until all nodes of the search

tree are visited or pruned.

T depends only on n and k, not on the specific input graph. However, the

algorithm visits only a subset of the nodes of T , depending on which vertices

of G are actually connected. The number of actually visited nodes of T will be

used to measure the complexity of the algorithm on the given problem instance.

Moreover, the number of actually visited nodes on the nth level of T yields the

number of solutions, i.e. the number of valid k-colorings.

Of course, this is a simplified algorithm model. In particular, we assume

that branching is performed according to a statically determined order of the

vertices. This greatly simplifies the analysis of the algorithm’s performance.

4. Expected number of visited nodes of the search tree

Let Y be the number of visited nodes in T , Yt the number of visited nodes

in Tt, and S the number of solutions, i.e. the number of valid k-colorings. Y ,

Yt, and S are random variables, the value of which depends on the input graph.

In [16], we proved lower and upper bounds on the expected value of these

quantities. Since these bounds play a vital role in deriving our current results,

we repeat them here.

Proposition 3. kt(1− p)
t
2−t

2k ≤ E(Yt) ≤ kt(1− p)
t
2−kt

2k .

Proof. For w ∈ Tt, let

Q(w) :=
{

{x, y} : x, y ∈ {v1, . . . , vt}, x 6= y, w(x) = w(y)
}

10

be the set of pairs of vertices with identical colors, and let q(w) := |Q(w)|.
Clearly, w is valid if and only if, for all {x, y} ∈ Q(w), x and y are not adjacent.

It follows that the probability of w being valid is (1 − p)q(w), and thus the

expected number of visited nodes of Tt is:

E(Yt) =
∑

w∈Tt

(1− p)q(w).

In the following, we denote by s(w, i) (or simply si if it is clear which partial

coloring is considered) the number of vertices of G that are assigned color i in

the partial coloring w.

We first aim at proving the lower bound.

Since the role of the colors is symmetric, it follows that

∑

w∈Tt

q(w) =
∑

w∈Tt

k
∑

i=1

(

s(w, i)

2

)

=
k
∑

i=1

∑

w∈Tt

(

s(w, i)

2

)

= k
∑

w∈Tt

(

s(w, 1)

2

)

.

In order to compute this sum, we should examine for how many w ∈ Tt

we have s(w, 1) = j. In other words, how many colorings exist for the first t

vertices, in which exactly j vertices receive color 1. Since the j vertices can be

chosen in
(

t
j

)

ways and the remaining t − j vertices must receive a color from

the remaining k− 1 colors, there are
(

t
j

)

(k− 1)t−j such partial colorings. It can

be assumed that j ≥ 2 because otherwise the contribution of color class 1 to

q(w) is 0. Using
(

j
2

)(

t
j

)

=
(

t
2

)(

t−2
j−2

)

:

∑

w∈Tt

q(w) = k

t
∑

j=2

(

j

2

)(

t

j

)

(k − 1)t−j = k

(

t

2

) t
∑

j=2

(

t− 2

j − 2

)

(k − 1)t−j =

= k

(

t

2

) t−2
∑

ℓ=0

(

t− 2

ℓ

)

(k − 1)t−2−ℓ.

Using the binomial theorem for ((k − 1) + 1)t−2, this can be written as

∑

w∈Tt

q(w) = k

(

t

2

)

kt−2 = kt−1

(

t

2

)

.

Dividing this by |Tt| = kt, we receive 1
|Tt|
∑

w∈Tt
q(w) = t2−t

2k . Since x 7→ (1−p)x

is convex, thus Jensen’s inequality gives

1

|Tt|
∑

w∈Tt

(1− p)q(w) ≥ (1− p)
1

|Tt|
∑

w∈Tt
q(w) = (1− p)

t
2−t

2k ,

11

yielding exactly the stated lower bound.

In order to prove the upper bound, we use

∑k
i=1 s

2
i

k
≥
(

∑k
i=1 si
k

)2

=
t2

k2
,

thus

q(w) =
1

2

(

k
∑

i=1

s2i −
k
∑

i=1

si

)

≥ 1

2

(

t2

k
− t

)

,

yielding exactly the stated upper bound.

Since E(Y) =
∑n

t=0 E(Yt), and E(S) = E(Yn), we obtain the following

bounds as a corollary of Proposition 3:

E(Y) ≥
n
∑

t=0

kt(1− p)
t
2−t

2k (1)

E(Y) ≤
n
∑

t=0

kt(1− p)
t
2−kt

2k (2)

kn(1− p)
n
2−n

2k ≤ E(S) ≤ kn(1− p)
n
2−kn

2k (3)

5. Asymptotic analysis

Originally, we derived the above bounds with the aim of using them in a

setting where the value of p is fixed [15, 16]. However, they also apply to the

case when p depends on n. In the following, we will write p(n) or pn to denote

the dependence of p on n.

Our aim is to prove Theorems 1 and 2. For this purpose, we need to estimate

the sums in the above inequalities (1) and (2) for large values of n. It should

be noted that these are not simple series, because with growing n, not only the

number of terms changes, but also the terms themselves, since p is not constant.

This is why we need the following, more sophisticated method to estimate sums

of this form, which is an application of Laplace’s method (cf. [47, Appendix

A.6]).

12

From inequality (1),

E(Y) ≥
n
∑

t=0

kt (1− pn)
t
2−t

2k =

n
∑

t=0

(

(1− pn)
1

2k

)t2 (

k (1− pn)
− 1

2k

)t

. (4)

In this formula, 0 < (1− pn)
1

2k < 1 and k (1− pn)
− 1

2k > 1. Therefore, ∃an, bn >

0, so that (1− pn)
1

2k = e−an and k (1− pn)
− 1

2k = ebn . Introducing

rn = − ln(1− pn),

we can write

an = − ln
(

(1− pn)
1

2k

)

=
rn
2k

,

bn = ln
(

k (1− pn)
− 1

2k

)

= ln k +
rn
2k

.

With this choice of an and bn, the lower bound from equation (4) becomes

simply

E(Y) ≥
n
∑

t=0

exp(−ant
2 + bnt).

In an analogous way, the upper bound (2) can be reformulated as

E(Y) ≤
n
∑

t=0

(

(1− pn)
1

2k

)t2 (

k (1− pn)
− 1

2

)t

=
n
∑

t=0

exp(−ant
2 + b′nt). (5)

Note that an is the same as before, but the value of b′n is slightly different from

bn:

b′n = ln
(

k (1− pn)
− 1

2

)

= ln k +
rn
2
.

Knowing that limn→∞ pn = 0+, the following limits can be easily estab-

lished:

lim
n→∞

rn = 0+,

lim
n→∞

an = 0+,

lim
n→∞

bn = ln k,

lim
n→∞

b′n = ln k,

lim
n→∞

rn/pn = 1.

13

The following two lemmas are refinements of Lemma 3 in [14].

Lemma 4. Let n ∈ Z
+ and a = an, b = bn ∈ R

+ such that 2an− b > 0. Then,

n
∑

t=0

e−at2ebt >
1√
a
e

b
2

4a

∫ −√
a

− b

2
√

a

e−u2

du.

Proof. Let x = t− b
2a , hence −ax2 = −at2+ bt− b2

4a . Besides, let u =
√
ax, thus

u2 = ax2. Accordingly:

√
ae−

b
2

4a

n
∑

t=0

e−at2ebt =
√
a

n
∑

t=0

e−ax2(t) =
√
a

− b

2a
+n

∑

x=− b

2a

e−ax2

=
√
a

− b

2
√

a
+
√
an

∑

u=− b

2
√

a

e−u2

.

Here, x and u might denote fractions; the summation ranges over all x respec-

tively u, for which x = t− b
2a , u =

√
at− b

2
√
a
, where t is an integer between 0

and n. Note that x goes with step 1, whereas u goes with step
√
a.

Since 2an − b > 0, it follows that − b
2
√
a
+

√
an > 0. Hence, restricting the

last sum to the terms where u < 0, and then regarding it as an upper estimation

of an integral by step
√
a, we obtain

√
ae−

b
2

4a

n
∑

t=0

e−at2ebt ≥
√
a

0
∑

u=− b

2
√

a

e−u2

>

∫ −√
a

− b

2
√

a

e−u2

du,

which completes the proof. (In the last inequality, we used the fact that the

highest u below 0 must be in the interval [−√
a, 0]. See also Figure 1. Note

that we had to be careful because e−u2

is not monotonous in the whole interval

[− b
2
√
a
,− b

2
√
a
+

√
an]; this is why we restricted ourselves to negative values of

u.)

Corollary 5. Let n, a, b as in Lemma 4. Then,

n
∑

t=0

e−at2ebt >
b

2a
− 1.

Proof. As Figure 1 illustrates, the integral is higher than the area of the gray

rectangle under the curve:
∫ −√

a

− b

2
√

a

e−u2

du >

(

b

2
√
a
−
√
a

)

e
−
(

− b

2
√

a

)

2

=

(

b

2
√
a
−
√
a

)

e−
b
2

4a ,

14

�

�

�

�

�

�

�

�

�
�

�
�

�

Figure 1: Lower bound in the 2an− b > 0 case

leading exactly to the desired bound.

Lemma 6. Let n ∈ Z
+ and a = an, b

′ = b′n ∈ R
+ such that 2an− b′ > 0. Then,

n
∑

t=0

e−at2eb
′t <

1√
a
e

b
′2
4a

(

∫ − b
′

2
√

a
+
√
an

− b′
2
√

a

e−u2

du+
√
a

)

.

Proof. Similarly to the proof of Lemma 4 and using its notations (but with b′

instead of b), we would like to regard the received sum as a lower approximation

of an integral by step
√
a. Again, we have − b′

2
√
a
+
√
an > 0. As can be seen in

Figure 2, each negative value of u is represented with a rectangle to the right

from u, whereas each positive value of u is represented with a rectangle to the

left from u. This way, we get a proper lower approximation of the integral,

except for the fact that there are two rectangles (the rectangle corresponding

to the highest negative value of u and the rectangle corresponding to the lowest

positive value of u) that overlap. The error thus made is at most
√
a · 1. Hence,

√
ae−

b
′2
4a

n
∑

t=0

e−at2eb
′t =

√
a

− b
′

2
√

a
+
√
an

∑

u=− b′
2
√

a

e−u2

<

∫ − b
′

2
√

a
+
√
an

− b′
2
√

a

e−u2

du+
√
a,

which completes the proof.

Concerning the 2an− b ≤ 0 case, we will use the following bounds:

15

�

�

�

�
�

�
�

�
�

�

�

� �

�
��

�

� ��

Figure 2: Upper bound in the 2an− b′ > 0 case

Lemma 7. Let n ∈ Z
+ and a = an, b

′ = b′n ∈ R
+ such that 2an− b′ < 0. Then,

n
∑

t=0

exp(−at2 + b′t) <

(

1 +
2

b′ − 2an

)

exp(−an2 + b′n).

Proof. Similarly to the proof of Lemma 6, we have

n
∑

t=0

exp(−at2 + b′t) = exp(−an2 + b′n) +
n−1
∑

t=0

exp(−at2 + b′t) <

< exp(−an2 + b′n) +
1√
a
exp

(

b′2

4a

)∫ − b
′

2
√

a
+
√
an

− b′
2
√

a

e−u2

du.

(6)

The idea behind this is that now− b′

2
√
a
+
√
an < 0, and thus e−u2

is monotonously

increasing in the whole integration domain. Therefore, a member of the sum

at u corresponds to a rectangle to the right from u, and thus the integration

domain must have length
√
an to estimate the sum from t = 0 to t = n− 1.

Using u1 = − b′

2
√
a
and u2 = − b′

2
√
a
+

√
an, the integral

∫ u2

u1

e−u2

du can be

bounded for u1 < u2 < 0 as follows:
∫ u2

u1

e−u2

du <

∫ u2

u1

e−u2udu = − 1

u2

(

e−u2

2 − e−u1u2

)

< − 1

u2
e−u2

2 .

Using the specific value for u2, this yields

∫ − b
′

2
√

a
+
√
an

− b′
2
√

a

e−u2

du <
2
√
a

b′ − 2an
exp

(

−b′2

4a
− an2 + b′n

)

.

Writing this back into (6) completes the proof.

16

Proposition 8. Let n ∈ Z
+ and a = an, b = bn ∈ R

+ such that 2an − b ≤ 0.

Then,
∑n

t=0 exp(−at2 + bt) ≥ n+ 1.

Proof. Let 0 ≤ t ≤ n. Since 2an − b ≤ 0 and a > 0, it follows that b ≥ 2an >

an ≥ at, and thus exp(−at2 + bt) = exp(t(b− at)) ≥ 1.

Now, all the needed machinery is in place for the proofs of the main theorems.

Proof of Theorem 1. Using Corollary 5 and Proposition 8, we obtain

E(Y) ≥

bn
2an

− 1 if 2ann− bn > 0,

n+ 1 if 2ann− bn ≤ 0.

When n → ∞, both lower bounds tend to infinity, which completes the proof.

Proof of Theorem 2. Using the definition of an, bn, b
′
n, and rn, we can write

2ann − bn = nrn
k − ln k − rn

2k and 2ann − b′n = nrn
k − ln k − rn

2 . Since rn → 0

and rn/pn → 1, the following can be stated: in part (1), where npn > k ln k+ ε,

both 2ann− bn and 2ann− b′n will be positive for all large enough n, whereas in

part (2), where npn < k ln k− ε, both 2ann− bn and 2ann− b′n will be negative

for all large enough n.

(1) Lemma 4 can be used, yielding

E(Y) >
1√
an

exp

(

b2n
4an

)∫ −√
an

− bn

2
√

an

e−u2

du.

In view of limn→∞ − bn
2
√
an

= −∞ and limn→∞ −√
an = 0,

lim
n→∞

∫ −√
an

− bn

2
√

an

e−u2

du =

∫ 0

−∞
e−u2

du =

√
π

2
,

and thus

E(Y) = Ω

(

1√
an

exp

(

b2n
4an

))

.

Since bn > ln k, this can be further written as

E(Y) = Ω

(

1√
an

exp

(

(ln k)2

4an

))

= Ω

(

√

2k

rn
exp

(

k(ln k)2

2rn

)

)

.

17

This is almost the desired lower bound, except that it contains rn instead of

pn. The first occurence of rn can be easily changed to pn because rn/pn → 1,

and thus, for all large enough n, we have for example rn < 2pn. It is less

obvious why the second occurence of rn can be changed to pn, as it appears

in the denominator of the exponent. For this purpose, we can use the bound

rn ≤ pn

1−pn

. (This can be seen for example from Lagrange’s mean value theorem

and using the fact that (− ln(1 − x))′ = 1/(1 − x) is monotonously increasing

for 0 < x < 1.) This yields

E(Y) = Ω

(
√

1

pn
exp

(

k(ln k)2

2pn
(1− pn)

))

= Ω

(
√

1

pn
exp

(

k(ln k)2

2pn

))

,

exactly as intended.

The corresponding upper bound can be obtained using Lemma 6:

E(Y) <
1√
an

exp

(

b′2n
4an

)

∫ − b
′
n

2
√

an
+
√
ann

− b′
n

2
√

an

e−u2

du+
√
an

 <

<
1√
an

exp

(

b′2n
4an

)(∫ +∞

−∞
e−u2

du+
√
an

)

.

Using that
∫ +∞
−∞ e−u2

du =
√
π and that limn→∞

√
an = 0, we obtain

E(Y) = O

(

1√
an

exp

(

b′2n
4an

))

.

Here, the exponent is

b′2n
4an

=
(ln k + rn

2)2

4an
=

(ln k)2

4an
+

krn
8

+
k ln k

2
=

(ln k)2

4an
+O(1),

and hence

E(Y) = O

(

1√
an

exp

(

(ln k)2

4an

))

= O

(

√

2k

rn
exp

(

k(ln k)2

2rn

)

)

.

Using that rn ≥ pn, we obtain

E(Y) = O

(
√

1

pn
exp

(

k(ln k)2

2pn

))

,

as intended.

18

(2) Here we use the trivial lower bound

n
∑

t=0

exp(−ant
2 + bnt) > exp(−ann

2 + bnn) > exp(−ann
2 + n ln k).

As upper bound, Lemma 7 yields

n
∑

t=0

exp(−ant
2 + b′nt) <

(

1 +
2

b′n − 2ann

)

exp(−ann
2 + b′nn).

It is already known that in this case b′n − 2ann > 0. However, we need to

show that this expression can even be bounded by a positive constant:

b′n − 2ann = ln k +
rn
2

− nrn
k

≥ ln k − npn
k

rn
pn

> ε′

for any 0 < ε′ < ε/k. This holds because npn

k < ln k − ε
k and rn/pn → 1. As

a consequence, 1 + 2
b′
n
−2ann

= O(1) and thus E(Y) = O(exp(−ann
2 + b′nn)).

Here, b′nn = n ln k + nrn
2 = n ln k + npn

2
rn
pn

= n ln k + O(1), and thus E(Y) =

O(exp(−ann
2 + n ln k)).

Together with the lower bound, we have

E(Y) = Θ(exp(−ann
2 + n ln k)) = Θ

(

exp
(

− rn
2k

n2 + n ln k
))

=

= Θ

(

exp

(

n2

2k
ln(1− pn) + n ln k

))

= Θ
(

(1− pn)
n
2

2k kn
)

.

6. Discussion

6.1. The pn = d/n case

It is interesting to investigate what Theorem 2 yields in the special case

when pn = d/n, where d is a positive constant (approximately the expected

degree of the vertices). Obviously, npn > k ln k + ε ⇔ d > k ln k and npn <

k ln k − ε ⇔ d < k ln k. Let first d > k ln k. Then, Theorem 2 yields E(Y) =

Θ
(√

n exp
(

k(ln k)2

2d n
))

= Θ
(

exp
(

k(ln k)2

2d n+ 1
2 lnn

))

.

In the second case (d < k ln k), Theorem 2 yields E(Y) = Θ
(

exp
(

n ln k − n2rn
2k

))

.

In order to obtain a formula that can be handled more easily, it would be

19

good to replace here rn with pn. In general, this is not possible, but in the

pn = d/n case, it is: from the Taylor expansion of − ln(1 − x) it follows that

rn = pn +O(p2n) = pn +O(1/n2). Thus,

E(Y) = Ω

(

exp

(

n ln k − n2pn
2k

−O(1)

))

= Ω

(

exp

(

n ln k − n2pn
2k

))

.

On the other hand, since rn ≥ pn, it is obvious that E(Y) = O
(

exp
(

n ln k − n2pn

2k

))

,

so that we have

E(Y) = Θ

(

exp

(

n ln k − n2pn
2k

))

= Θ

(

exp

((

ln k − d

2k

)

n

))

.

To sum up:

E(Y) =

Θ
(

exp
(

k(ln k)2

2d n+ 1
2 lnn

))

if d > k ln k,

Θ
(

exp
((

ln k − d
2k

)

n
))

if d < k ln k.

As can be seen, both expressions are exponential in n, but the behaviour

is slightly different in the two cases. The transition between the two cases is

quite smooth: looking at the coefficient of n in the exponent, both formulae

give 1
2 ln k for d = k ln k. What is more, even their derivatives with respect to

d are equal at this point: ∂
∂d

k(ln k)2

2d

∣

∣

∣

d=k ln k
= −k(ln k)2

2d2

∣

∣

∣

d=k ln k
= − 1

2k and also

∂
∂d

(

ln k − d
2k

)

= − 1
2k .

It is interesting to relate this phenomenon to the phase transition in the

geometry of the solution space, as shown recently by Achlioptas and Coja-

Oghlan [48]. They proved that for d < k ln k, the set of solutions builds whp a

giant connected ball, whereas for d > k ln k, it disintegrates into an exponential

number of small components that are quite far from each other. Achlioptas

and Coja-Oghlan suggest that this may be the reason why it is easy to find

a solution for d < k ln k, while this is not possible with any of the expected

polynomial-time algorithms known today for d > k ln k. It is worth noting that

our results also show a transition at exactly the same point. The transition that

we observe is less abrupt than the one shown by Achlioptas and Coja-Oghlan,

presumably due to the following differences:

20

• The algorithm that we are investigating does not stop at the first found

solution, but visits all solutions. Hence, the scattered solution space for

d > k ln k is not significantly more difficult for this algorithm than the

giant ball for d < k ln k.

• While Achlioptas and Coja-Oghlan were focusing on the set of solutions,

the algorithm that we are investigating spends significant time with partial

solutions. Thus, an abrupt change in the structure of the solution space

does not necessarily have a high impact on the overall search tree of our

algorithm.

Nevertheless, there is a transition at d = k ln k, and from the proof of

Theorem 2 also its origins can be understood. The number of visited nodes

on level t of the search tree depends on two conflicting factors: there are kt

nodes on this level of the tree, and a fraction of (1 − pn)
t
2

2k
+Θ(t) of them are

visited. The first factor is increasing in t, the second decreasing. Their product

starts to increase rapidly, has a maximum, and then decreases rapidly (as a bell

curve). For d < k ln k, the maximum would be at some t > n, whereas for

d > k ln k, the maximum is at some t < n. This means that for d < k ln k,

the number of visited nodes is exponentially increasing for all t ≤ n, with

the biggest contribution stemming from the last level, and thus even a small

change in d or n alters the overall number of visited nodes of the search tree

significantly. On the other hand, if d > k ln k, then the maximum contribution

is at some intermediate level and the contribution of the last levels is minimal;

thus, changes in d or n have much lower impact on E(Y).

6.2. Balanced colorings

In Proposition 3, we showed that

kt(1− p)
t
2−t

2k ≤ E(Yt) ≤ kt(1− p)
t
2−kt

2k ,

which was sufficient for deriving our theorems. However, it is worth mentioning

that the upper bound is tight within polynomial terms. This is due to the

21

fact that the sum over partial colorings in Tt is dominated by balanced partial

colorings, in which each color class has ⌈t/k⌉ or ⌊t/k⌋ vertices. For the case

when t is a multiple of k, this was already shown by Achlioptas and Naor [12].

For the general case, let t = t1k + t2, where t1, t2 are integers and 0 ≤ t2 ≤
k − 1. In [16], we established that the number of balanced partial colorings in

Tt is

R0 =

(

k

t2

)

· t!

((t1 + 1)!)t2(t1!)k−t2
,

and their q value is

q0 = t2

(

t1 + 1

2

)

+ (k − t2)

(

t1
2

)

.

Using Stirling’s approximation, we obtain

R0 =

(

k

t2

)

· t!

(t1 + 1)t2(t1!)k
≥
(

k

t2

)

·
√
2πt · tt

et

(t1 + 1)t2 ·
(

e
√
t1 · t

t1

1

et1

)k
=

=

(

k

t2

)

·
√
2π

ek+t2
· tt2+1/2

(t1 + 1)t2 · tk/21

·
(

t

t1

)t1k

≥

≥
(

k

t2

)

·
√
2π

ek+t2
· tt2+1/2

(t1 + 1)t2 · tk/21

· kt−t2 = Ω

(

1

α(t)
· kt
)

,

(7)

where α(t) is polynomial in t. Furthermore, it is easy to see that

q0 −
t2 − kt

2k
=

1

2

(

t2 −
t22
k

)

= O(1). (8)

Equations (7) and (8) together yield the following lower bound:

E(Yt) ≥ R0 · (1− p)q0 = Ω

(

1

α(t)
· kt · (1− p)

t
2−kt

2k

)

,

which is only a polynomial factor away from the upper bound of Proposition 3.

6.3. Expected number of solutions

In this section, we look at the asymptotics of the expected number of solu-

tions, and discuss some of its consequences. It is well known that for npn >

2k ln k + ε, E(S) < cn1 for some 0 < c1 < 1 [12]. In the pn = d/n case, this

corresponds to the d > 2k ln k condition.

22

Applying Markov’s inequality, limn→∞ Pr(∃ solution) = limn→∞ Pr(S ≥
1) ≤ limn→∞ E(S) = 0. In other words, such graphs are whp non-k-colorable.

As mentioned earlier, the investigated algorithm solves the counting problem

in general, but for non-k-colorable graphs, the amount of computation is equal

for the counting problem and the decision problem. Thus we can now conclude

that, for npn > 2k ln k + ε, our results on E(Y) also apply to the version of the

algorithm solving the decision problem.

The presented machinery can also be used to estimate E(S) in the npn <

2k ln k − ε case:

Proposition 9. Let the number of available colors k be constant, and p = pn

be any sequence between 0 and 1, tending to 0. Let E(S) denote the expected

number of k-colorings of the graph. If, for all large enough n, npn < 2k ln k− ε,

then E(S) > cn2 for some 1 < c2. (Specifically, c2 = exp(ε′), where 0 < ε′ < ε
2k .)

Proof. From inequality (3),

E(S) ≥kn (1− pn)
n
2−n

2k = kn exp

(

(ln(1− pn))
n2 − n

2k

)

=

=kn exp

(

−(1 + o(1))pn
n2 − n

2k

)

=

(

k

exp
(

(1 + o(1))pn
n−1
2k

)

)n

.

(9)

In the exponent of the denominator, we have

(1 + o(1))pn
n− 1

2k
< (1 + o(1))

npn
2k

< (1 + o(1))
(

ln k − ε

2k

)

< ln k − ε′

for any 0 < ε′ < ε
2k . Writing this into (9) yields E(S) > cn2 , as stated.

To sum up, the expected number of solutions tends exponentially to 0 for

npn > 2k ln k+ ε, whereas for npn < 2k ln k− ε, it tends exponentially to ∞. It

should also be noted that this result is independent of the used algorithm.

In the pn = d
n case, if d < 2k ln k, then Proposition 9 can be applied, and

hence limE(S) = ∞. Analyzing the d = 2k ln k case separately, by applying (3)

directly:

lim
n→∞

E(S) ≥ lim
n→∞

kn
(

1− d

n

)nn−1

2k

= lim
n→∞

(

k
2k
√
ed

)n
2k
√
ed =

2k
√
ed = k,

23

lim
n→∞

E(S) ≤ lim
n→∞

kn
(

1− d

n

)nn−k

2k

=

(

k
2k
√
ed

)n √
ed =

√
ed = kk.

Hence, E(S) remains finite and non-zero in this case.

It may be worth noting that this dramatic change in the behaviour of E(S)

at d = 2k ln k does not have any impact on E(Y). As shown earlier, E(Y) has

a – less dramatic – transition at d = k ln k, and for d > k ln k, the contribution

of the last levels of the search tree to E(Y) is marginal.

7. Numerical examinations

0 50 100 150 200 250 300
10

0

10
50

10
100

10
150

10
200

10
250

n: number of vertices

E
x
p
e
c
te

d
 n

u
m

b
e
r

o
f

v
is

it
e
d
 n

o
d
e
s
 o

f
th

e
 s

e
a
rc

h
 t

re
e

p=1/n
5

p=1/n

p=1/n
0.5

p=1/ln n

Figure 3: Expected number of visited nodes of the search tree for different edge density

functions (k = 6).

Using the presented approach and the technique for efficiently computing

E(Y) and E(S) values that we developed in [15], we can show graphically the

behavior of these quantities for some representative pn functions. See Figure 3

for the behavior of E(Y) and Figure 4 for the behavior of E(S). Please note the

exponential scale on the vertical axis in both figures.

As can be seen, for pn = 1/n5 and pn = 1/n, both E(Y) and E(S) tend

rapidly to infinity. For pn = 1/n0.5, E(Y) grows significantly more slowly, but

24

0 50 100 150 200 250 300
10

−200

10
−150

10
−100

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

n: number of vertices

E
x
p
e
c
te

d
 n

u
m

b
e
r

o
f

s
o
lu

ti
o
n
s

p=1/n
5

p=1/n

p=1/n
0.5

p=1/ln n

Figure 4: Expected number of solutions for different edge density functions (k = 6).

50 100 150 200 250 300
10

−250

10
−200

10
−150

10
−100

10
−50

10
0

10
50

10
100

10
150

10
200

10
250

n: number of vertices

E
x
p
e
c
te

d
 n

u
m

b
e
r

o
f

s
o
lu

ti
o
n
s

p=1/n (d<2k ln k)

p=21,5/n (d=2k ln k)

p=50/n (d>2k ln k)

Figure 5: Expected number of solutions for different edge density functions of the form pn =

d/n (k = 6).

as we know, still super-polynomially. E(S) starts as a monotonously increasing

function, but has its maximum at n = 199, where the expected number of

25

solutions is 2, 03 · 1051 and decreases afterwards. As we know, E(S) tends to 0

in this case, but it is interesting to note that E(S) is quite high for graphs with

approximately 200 vertices. Finally, when pn = 1/ lnn, then E(S) tends to 0 in

a much quicker manner. Also the growth of E(Y) is quite moderate in this case

– as we know, it is polynomial in n.

Finally, Figure 5 depicts the behavior of E(S) in the pn = d/n case, for

different values of d. In line with the calculations, E(S) increases rapidly when

d < 2k ln k and converges quickly to 0 when d > 2k ln k. In the critical case of

d = 2k ln k, the value of E(S) stagnates.

8. Conclusion

In this paper, we analyzed the complexity of the backtrack search algorithm

for coloring random graphs from Gn,p. Our main focus was on estimating the

expected number of visited nodes in the algorithm’s search tree. In contrast to

most previous research, our results apply to any pn sequence with lim pn = 0. In

particular, we proved that, for all such sequences, the average-case complexity

of the algorithm goes to infinity. This is in contrast with the case of fixed p,

where the average-case complexity of the algorithm is known to be O(1). We

also established how quickly the average-case complexity increases for different

pn sequences, and we showed examples where it is polynomial respectively ex-

ponential. Finally, we estimated with the same method the expected number

of valid k-colorings, and showed that, apart from a narrow critical region, it

quickly goes to either 0 or infinity. Our analytical results were supplemented by

corresponding numerical experiments.

The most important question that remains open is how the presented method

can be transferred to a variant of the algorithm that solves the decision version

of the problem and is also realistic for k-colorable graphs.

26

Acknowledgments

This work was partially supported by the Hungarian National Research Fund

and the National Office for Research and Technology (Grant Nr. OTKA 67651),

as well as the grant TÁMOP - 4.2.2.B-10/1–2010-0009. The work of Zoltán

Ádám Mann was partially supported by the János Bolyai Research Scholarship

of the Hungarian Academy of Sciences.

References

[1] P. Briggs, K. D. Cooper, L. Torczon, Improvements to graph coloring regis-

ter allocation, ACM Transactions on Programming Languages and Systems

16 (3) (1994) 428–455.

[2] N. K. Mehta, The application of a graph coloring method to an examination

scheduling problem, Interfaces 11 (5) (1981) 57–65.

[3] Z. Mann, A. Orbán, Optimization problems in system-level synthesis, in:

3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Ap-

plications, 2003, pp. 222–231.

[4] P. Erdős, A. Rényi, On the evolution of random graphs, Magyar Tud. Akad.

Mat. Kutató Int. Közl. 5 (1960) 17–61.

[5] B. Bollobás, Random Graphs, 2nd Edition, Cambridge University Press,

Cambridge, 2001.

[6] S. Janson, T. Luczak, A. Rucinski, Random Graphs, Wiley, New York,

2000.

[7] N. Alon, M. Krivelevich, The concentration of the chromatic number of

random graphs, Combinatorica 17 (3) (1997) 303–313.

[8] B. Bollobás, The chromatic number of random graphs, Combinatorica 8 (1)

(1988) 49–55.

27

[9] T. Luczak, The chromatic number of random graphs, Combinatorica 11 (1)

(1991) 45–54.

[10] T. Luczak, A note on the sharp concentration of the chromatic number of

random graphs, Combinatorica 11 (3) (1991) 295–297.

[11] E. Shamir, J. Spencer, Sharp concentration of the chromatic number on

random graphs Gn,p, Combinatorica 7 (1) (1987) 121–129.

[12] D. Achlioptas, A. Naor, The two possible values of the chromatic number

of a random graph, in: 36th ACM Symposium on Theory of Computing

(STOC ’04), 2004, pp. 587–593.

[13] H. S. Wilf, Backtrack: an O(1) expected time algorithm for the graph

coloring problem, Information Processing Letters 18 (1984) 119–121.

[14] E. A. Bender, H. S. Wilf, A theoretical analysis of backtracking in the

graph coloring problem, Journal of Algorithms 6 (2) (1985) 275–282.

[15] Z. Mann, A. Szajkó, Determining the expected runtime of exact graph

coloring, in: Mini-conference on Applied Theoretical Computer Science

(MATCOS), published in the Proceedings of the 13th International Multi-

conference, Information Society - IS, Volume A, 2010, pp. 389–392.

[16] Z. Mann, A. Szajkó, Improved bounds on the complexity of graph coloring,

in: Advances in the Theory of Computing (AITC 2010), published in the

Proceedings of the 12th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, IEEE Computer Society, 2010, pp.

347–354.

[17] Z. Mann, A. Orbán, V. Farkas, Evaluating the Kernighan-Lin heuristic for

hardware/software partitioning, International Journal of Applied Mathe-

matics and Computer Science 17 (2) (2007) 249–267.

[18] R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,

J. W. Thatcher (Eds.), Complexity of computer computations, Plenum,

1972, pp. 85–103.

28

[19] M. R. Garey, D. S. Johnson, The complexity of near-optimal graph coloring,

Journal of the ACM 23 (1976) 43–49.

[20] U. Feige, J. Kilian, Zero knowledge and the chromatic number, Journal of

Computer and System Sciences 57 (1998) 187–199.

[21] D. Zuckerman, Linear degree extractors and the inapproximability of max

clique and chromatic number, Theory of Computing 3 (2007) 103–128.

[22] J. R. Brown, Chromatic scheduling and the chromatic number problem,

Management Science 19 (4) (1972) 456–463.

[23] D. W. Matula, G. Marble, J. D. Isaacson, Graph coloring algorithms, in:

R. C. Read (Ed.), Graph Theory and Computing, Academic Press, 1972,

pp. 109–122.

[24] D. Brélaz, New methods to color the vertices of a graph, Communications

of the ACM 22 (4) (1979) 251–256.

[25] P. Cheeseman, B. Kanefsky, W. M. Taylor, Where the really hard prob-

lems are, in: 12th International Joint Conference on Artificial Intelligence

(IJCAI ’91), 1991, pp. 331–337.

[26] J. Culberson, I. Gent, Frozen development in graph coloring, Theoretical

Computer Science 265 (1-2) (2001) 227–264.

[27] T. Szép, Z. Mann, Graph coloring: the more colors, the better?, in: Pro-

ceedings of the 11th IEEE International Symposium on Computational

Intelligence and Informatics, 2010, pp. 119–124.

[28] T. Hogg, C. P. Williams, The hardest constraint problems: A double phase

transition, Artificial Intelligence 69 (1-2) (1994) 359–377.

[29] T. Hogg, Refining the phase transition in combinatorial search, Artificial

Intelligence 81 (1-2) (1996) 127 – 154.

29

[30] J. S. Turner, Almost all k-colorable graphs are easy to color, Journal of

Algorithms 9 (1) (1988) 63–82.

[31] R. Monasson, On the analysis of backtrack procedures for the coloring of

random graphs, in: E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (Eds.),

Complex Networks, Springer, 2004, pp. 235–254.

[32] A. Coja-Oghlan, M. Krivelevich, D. Vilenchik, Why almost all k-colorable

graphs are easy to color, Theory of Computing Systems 46 (3) (2010) 523–

565.

[33] H. Jia, C. Moore, How much backtracking does it take to color random

graphs? Rigorous results on heavy tails, in: Principles and Practice of

Constraint Programming (CP 2004), 2004, pp. 742–746.

[34] C. Gomes, B. Selman, N. Crato, H. Kautz, Heavy-tailed phenomena in

satisfiability and constraint satisfaction problems, Journal of Automated

Reasoning 24 (1-2) (2000) 67–100.

[35] C. Gomes, B. Selman, H. Kautz, Boosting combinatorial search through

randomization, in: Proceedings of the Fifteenth National Conference on

Artificial Intelligence (AAAI-98), 1998, pp. 431–437.

[36] G. R. Grimmett, C. J. H. McDiarmid, On colouring random graphs, Math-

ematical Proceedings of the Cambridge Philosophical Society 77 (2) (1975)

313–324.

[37] E. Shamir, E. Upfal, Sequential and distributed graph coloring algorithms

with performance analysis in random graph spaces, Journal of Algorithms

5 (1984) 488–501.

[38] W. F. de la Vega, On the chromatic number of sparse random graphs,

in: B. Bollobás (Ed.), Graph Theory and Combinatorics, Academic Press,

1984, pp. 321–328.

30

[39] D. Achlioptas, M. Molloy, The analysis of a list-coloring algorithm on a ran-

dom graph, in: Proceedings of the 38th Annual Symposium on Foundations

of Computer Science, 1997, pp. 204–212.

[40] D. Achlioptas, C. Moore, Almost all graphs with average degree 4 are 3-

colorable, Journal of Computer and System Sciences 67 (2003) 441–471.

[41] B. Pittel, R. S. Weishaar, On-line coloring of sparse random graphs and

random trees, Journal of Algorithms 23 (1997) 195–205.

[42] A. Coja-Oghlan, A. Taraz, Exact and approximative algorithms for coloring

G(n,p), Random Structures and Algorithms 24 (3) (2004) 259–278.

[43] C. Sommer, A note on coloring sparse random graphs, Discrete Mathemat-

ics 50 (2009) 3381–3384.

[44] S. Cocco, R. Monasson, Trajectories in phase diagrams, growth pro-

cesses and computational complexity: how search algorithms solve the 3-

satisfiability problem, Phys. Rev. Lett. 86 (2001) 1654.

[45] L. Ein-Dor, R. Monasson, The dynamics of proving uncolourability of large

random graphs. I. Symmetric colouring heuristic, Journal of Physics A:

Mathematical and General 36 (2003) 11055–11067.

[46] R. Monasson, A generating function method for the average-case analysis

of DPLL, in: Proceedings of APPROX-RANDOM ’05, 2005, pp. 402–413.

[47] C. Moore, S. Mertens, The Nature of Computation, Oxford University

Press, 2011.

[48] D. Achlioptas, A. Coja-Oghlan, Algorithmic barriers from phase transi-

tions, in: 49th Annual IEEE Symposium on Foundations of Computer

Science, 2008, pp. 793–802.

31

