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Abstract. This paper presents an EM algorithm for fitting traces with
Markovian arrival processes (MAPs). The proposed algorithm operates
on a special subclass of MAPs. This special structure enables the efficient
implementation of the EM algorithm; it is more orders of magnitudes
faster than methods operating on the general MAP class while providing
similar or better likelihood values. An other important feature of the
algorithm is that it is able to fit multi-class traces with marked Markovian
arrival processes as well. Several numerical examples demonstrate the
efficiency of the procedure.

1 Introduction

Phase-type (PH) distributions and Markovian arrival processes (MAPs) play
an important role in the performance and reliability analysis as they allow to
describe a wide class of distributions and processes with Markovian techniques.
The solutions of various queueing systems, failure models, etc. incorporating PH
distributions and MAPs are typically numerically tractable.

However, the applicability of these models depends on how well the load of
the system is represented, thus, how efficient the PH fitting and/or MAP fitting
methods are when the empirical properties of the system are approximated.

Several fitting algorithms exist for PH distributions. As for correlated pro-
cesses, the maturity of MAP fitting methods is a bit behind to the maturity of the
PH fitting methods. There are several MAP fitting methods that aim to maxi-
mize the likelihood, all of them are based on the EM (expectation-maximization)
algorithm. However, EM based MAP fitting algorithms have some distinct draw-
backs that limit their practical usability. These algorithms suffer from slow con-
vergence, high per-iteration computational effort and the final result is overly
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dependent on the initial guess. As in case of PH fitting methods, it turned out
that basing the fitting on a special MAP structure has a beneficial effect on both
the convergence speed and the per-iteration computational effort. It is even typ-
ical that results obtained by fitting with general MAP structures are worse than
those obtained by fitting with specialized structures [16].

The development of fitting procedures for the multi-type extension of MAPs,
called MMAPs (marked Markovian arrival processes) is in initial stages, only
a few solutions are available. In this paper we introduce a new special MMAP
structure which enables a fast implementation of the EM algorithm. This special
structure resembles to the ER-CHMM structure introduced for the single-class
case in [16], but it is more general.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions and basic properties of marked Markovian arrival processes. We provide an
overview on the available MAP and MMAP fitting methods in Section 3. The
proposed MMAP structure and the corresponding EM algorithm is presented in
Section 4. The numerical experiments are detailed in Section 5, finally, Section
6 concludes the paper.

2 Marked Markovian Arrival Processes

In a Markovian Arrival Process (MAP, [15]) there is a background process (also
referred to as phase process) given by a continuous time Markov chain with
generator matrix denoted by D. Some of the transitions in this Markov chain
are accompanied by an arrival event; the corresponding transition rates are the
entries of matrix D1. The transition rates of the background process not ac-
companied by an arrival event are the entries of matrix D0. For the sum of
these matrices we have D = D0 +D1 (we assume that D defines an irreducible
Markov chain throughout this paper).

Marked Markovian arrival processes (MMAPs, [11]) are the multi-class ex-
tensions to MAPs, where the arrival events are tagged (marked) with the class
of the arrivals. A MMAP distinguishing C different classes of arrival events is
given by a set of matrices Dc, c = 0, . . . , C, where D0 describes the transition
rates not accompanied by an arrival and Dc the ones accompanied by a type c
arrival. The generator of the background Markov process is D =

∑C
c=0 Dc. Fur-

thermore, we can introduce the embedded phase process at arrivals and obtain
matrices P (c) = (−D0)−1Dc whose i, jth entry is the joint probability of the
phase and the type of the next arrival given the phase at the previous arrival.
The stationary phase probability vector at arrival instants, π, is then the unique
solution of πP = π, π1 = 1 with P =

∑C
c=1 P

(c) (1 denotes a column vector of
ones of appropriate size).

Let us denote the random variable representing the inter-arrival time between
the i − 1th and ith arrivals by Xi, and the type of the ith arrival by Ci =
{1, . . . , C}. The joint probability density function (pdf) that the consecutive
inter-arrival times are x1, x2, . . . , xK and the corresponding arrival classes are



c1, c2, . . . , cK can be expressed by

f(x1, c1, x2, c2, . . . , xK , cK) = πeD0x1Dc1e
D0x2Dc2 . . . e

D0xKDcK1, (1)

which we will use several times in the sequel.

3 MAP and MMAP Fitting Methods

The MAP and MMAP fitting methods published in the literature can be clas-
sified to two categories. There are methods that are based on fitting statistical
quantities of the trace (like moments, auto-correlations, etc.), while other meth-
ods aim to maximize the likelihood.

A purely moment matching based solution is described in [19], where a ra-
tional arrival process is constructed based on the marginal moments and the
lag-1 joint moments of the trace. The resulting rational arrival process is trans-
formed to a MAP in the second phase of the algorithm. This method has been
generalized to MMAPs in [12]. A drawback of this approach is that it may hap-
pen that the result does not have a Markovian representation, or does not even
define a valid stochastic process. An other popular framework falling into this
category has been introduced in [13], where the MAP fitting is performed in
two steps: the fitting of the marginal distribution and the fitting of the corre-
lations. For the first step any PH fitting method can be applied, while for the
second step several different solutions appeared. In [13] the target of fitting is
the lag-k auto-correlation function, in [7] and [3] it is the lag-1 joint moments.
The procedure in [6] is a MMAP fitting method based on marginal and joint mo-
ment fitting. The KPC procedure published in [8] follows a different approach,
it achieves impressive results by combining small MAPs for fitting the moments,
the auto-correlations and the bi-correlations of the trace.

Another family of MAP fitting methods aim to find a MAP or a MMAP
that maximizes the likelihood of the measurement trace. The EM algorithm
([9]) is an iterative framework, which is a popular choice to implement likelihood
maximization. Rydén [18] discussed an EM algorithm for a subclass of MAPs
called MMPP (Markov modulated Poisson process), and it could naturally be
extended to the general MAP parameter estimation. Buchholz [5] presented an
improved EM algorithm in terms of computation speed for the general MAP
class to analyze real trace data. The EM algorithms for the general MAP with
multiple arrival types (or batches), i.e., the general MMAPs, were proposed in [4]
and [14]. Okamura and Dohi [16] discussed the maximum likelihood estimation
for the generalized structure.

4 Fitting Traces with MMAPs having a special structure

4.1 Motivation

A major drawback of EM-algorithm based MAP fitting methods is that they are
slow if the number of measurements to fit is large. A large number of iterations



are required till convergence, and the per-iteration computational effort is also
significant.

In case of EM-algorithm based phase-type (PH) distribution fitting methods
the solution for this issue has been recognized for a long time. It turned out that
fitting with sub-classes of PH distributions like hyper-exponential [10], hyper-
Erlang [20], or acyclic PH distributions [17] is more efficient than fitting with
the general PH class [2].

The computational effort of EM-algorithm based MAP fitting methods can
be reduced in the same way, however identifying sub-classes of MAPs is far less
trivial than it was in case of PH distributions. A possible sub-class of MAPs
has been introduced in [13], where the proposed structure consists of a set of
component PH distributions and a transition probability matrix that determines
which component generates the next inter-arrival time given the current one, it
is a kind of Markov-modulated PH distributions. (The procedure itself combines
the moment matching and maximum likelihood estimation). Okamura and Dohi
[16] provided a fast EM-based MAP fitting algorithm for the same structure, and
found that it gives high likelihood values while the execution time is much lower
compared with fitting by general MAPs. They found the case when the com-
ponent PH distributions are Erlang distributions (called ER-CHMM) especially
beneficial.

In this paper, our aim is to improve the ER-CHMM structure based EM-
algorithm for fitting traces from several aspects:

– We generalize it to fit multi-type (marked) arrival processes as well.
– We introduce a structure that is more general than ER-CHMM, while the

computational complexity remains relatively low.
– We present an improved method to optimize the discrete (shape) parameters

of the structure.

4.2 The definition of the special structure used for fitting

In this section we define the special MMAP structure on which our fitting pro-
cedure is based on.

This special MMAP process is a generalization of the ER-CHMM structure.
Similar to ER-CHMM, we have M branches with branch i consisting of ri states
connected in a row with the same transition rates λi. However, in our case these
branches do not represent Erlang distributions, as not all states of the branch
are traversed before generating an arrival. When a branch is selected to generate
the next inter-arrival time, the initial state of the branch is determined by a
probability vector.

Let us assign a two-dimensional identifier to the phases: phase (i, n) identifies
state n in branch i.

The parameters characterizing this process are

– the rate and the shape parameters of the branches, denoted by λi and ri,
i = 1, . . . ,M ,

∑M
i=1 ri = N , respectively;



– probabilities p
(c)
i,(j,m) with c = 1, . . . , C, i, j = 1, . . . ,M, m = 1, . . . , rj .

p
(c)
i,(j,m) represents the probability that the next phase just after the arrival

is (j,m) given that the previous arrival has been generated by branch i
resulting in a type c arrival. Note that the ER-CHMM structure is obtained

if p
(c)
i,(j,m) = 0 for m > 1.

According to the definition matrix D0 is given by

D0 =



−λ1 λ1

. . .
. . .

−λ1

−λ2 λ2

. . .
. . .

−λ2

. . .

−λM λM

. . .
. . .

−λM



,

 r1

 r2

 rM

(2)

and matrices Dc, c = 1, . . . , C are

Dc =

0 . . . 0 0 . . . 0 0 . . . 0

λ1p
(c)

1,(1,1)
. . . λ1p

(c)

1,(1,r1)
λ1p

(c)

1,(2,1)
. . . λ1p

(c)

1,(2,r2)
. . . λ1p

(c)

1,(M,1)
. . . λ1p

(c)

1,(M,rM )

0 . . . 0 0 . . . 0 0 . . . 0

λ2p
(c)

2,(1,1)
. . . λ2p

(c)

2,(1,r1)
λ2p

(c)

2,(2,1)
. . . λ2p

(c)

2,(2,r2)
. . . λ2p

(c)

2,(M,1)
. . . λ2p

(c)

2,(M,rM )

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . 0 0 . . . 0 0 . . . 0

λMp
(c)

M,(1,1)
. . .λMp

(c)

M,(1,r1)
λMp

(c)

M,(2,1)
. . .λMp

(c)

M,(2,r2)
. . . λMp

(c)

M,(M,1)
. . .λMp

(c)

M,(M,rM )



.

 r1 r2

 rM

(3)

By construction, the entries of matrix P (c) = [u
(c)
(i,n),(j,m), i, j = 1, . . . ,M, n =

1, . . . , ri,m = 1, . . . , rj ] describing the transition probabilities of phases embed-
ded just after arrival instants corresponding to type c arrivals are given by

u
(c)
(i,n),(j,m) = p

(c)
i,(j,m). (4)

The stationary distribution of the phases right after arrivals is the unique
solution of the linear system

π = π

C∑
c=1

P (c), π1 = 1, (5)



which can be partitioned according to the two-dimensional phase numbering as
π = [π(i,n), i = 1, . . . ,M, n = 1, . . . , ri].

Given that the MMAP is in state (i, n) just after arrivals the density of the
inter-arrival times is

f(i,n)(x) =
(λix)ri−n

(ri − n)!
λie
−λix, (6)

from which the marginal distribution of the arrival process is obtained by un-
conditioning yielding

f(x) =

M∑
i=1

ri∑
n=1

π(i,n)f(i,n)(x). (7)

4.3 The EM Algorithm

Let us denote the trace data by X = {x1, c1, x2, c2 . . . , xK , cK}, where xk ∈ R
is the kth inter-arrival time and ck ∈ N is the type of the kth arrival. In this
section we assume that the shape parameters of the branches given by vector
r = (r1, . . . , rM ) is fixed. Our goal is to maximize the likelihood for the trace
data

L(Θ(r)|X ) = πeD0x1Dc1e
D0x2Dc2 . . . e

D0xKDcK1, (8)

where the parameters defining our MAP are Θ(r) = {λi, pi,(j,m)}, from which
matrices Dc, c = 0, . . . , C are derived by (2) and (3).

Let the (i, n)th entry of row vector a[k] =
(
a(i,n)[k], i = 1, . . . ,M, n = 1, . . . , ri

)
denote the likelihood of phase (i, n) after observing x1, c1, x2, c2, . . . , xk, ck. This
vector will be referred to as forward likelihood vector in the sequel and can be
obtained recursively by

a[0] = π, a[k] = a[k − 1] · eD0xkDck . (9)

Similarly, we can define backward likelihood vectors b[k] =
(
b(i,n)[k]

)
as

b[K] = 1, b[k] = eD0xkDckb[k + 1]. (10)

The likelihood is then given by

L(Θ(r)|X ) = a[k] · b[k + 1], (11)

for any k = 0, . . . ,K − 1.
Due to the special structure the forward and backward likelihood vectors can

be expressed in a simpler way as

a(i,n)[k] =

M∑
j=1

rj∑
m=1

a(j,m)[k − 1] · f(j,m)(xk) · u(ck)(j,m),(i,n), (12)

b(j,m)[k] =

M∑
i=1

ri∑
n=1

f(j,m)(xk) · u(ck)(j,m),(i,n) · b(i,n)[k + 1]. (13)



Note that as opposed to (9) and (10), (12) and (13) does not involve matrix
exponential operations, which will be a significant gain in speed.

According to the EM approach we consider the data X to be incomplete, and
assume that there is an unobserved data Y which, together with X , forms the
complete data. In our case the values of the unobserved data Y = {y1, z1 . . . , yK , zK}
inform us which branch generates the kth data item of X (yk ∈ {1, . . . ,M}) and
which was the initial state of branch yk when generating the kth inter-arrival
time (zk ∈ {1, . . . ryk}).

Given the unobserved data Y, it is possible to obtain maximum likelihood
estimates (MLE) for λi and pij . Let us start with λi. Since the inter-arrival times
are independent given the unobserved data we can express the log-likelihood of
parameters λ1, . . . , λM as

logL(λ1, . . . , λM |X ,Y, r) =

K∑
k=1

log
(
f(yk,zk)(xk)

)
. (14)

To obtain MLE for λi we need to find the maximum of (14) by solving

∂

∂λi

K∑
k=1

I{yk=i} log

(
ri∑
n=1

I{zk=n}f(i,n)(xk)

)
= 0, (15)

that gives

λ̂i =

∑K
k=1

∑ri
n=1 n · I{yk=i,zk=n}∑K
k=1 xkI{yk=i}

. (16)

To obtain MLE for probabilities p̂
(c)
i,(j,m) we apply [1] yielding

p̂
(c)
i,(j,m) =

∑K−1
k=1 I{ck=c,yk=i,yk+1=j,zk+1=m}∑K−1

k=1 I{yk=i}
. (17)

In the E-step of the EM algorithm the expected values of the unobserved
variables are computed:

q
(c)
(i,n),(j,m)[k] = P (ck = c, yk = i, zk = n, yk+1 = j, zk+1 = m|Θ̂(r),X )

=
P (ck = c, yk = i, zk = n, yk+1 = j, zk+1 = m,X|Θ̂(r))

P (X|Θ̂(r))

=
a(i,n)[k − 1] · f(i,n)(xk) · u(c)(i,n),(j,m) · b(j,m)[k + 1]

P (X|Θ̂(r))
,

(18)

q(i,n)[k] =
P (yk = i, zk = n,X|Θ̂(r))

P (X|Θ̂(r))
=
a(i,n)[k − 1] · b(i,n)[k]

P (X|Θ̂(r))
, (19)

where Θ̂(r) are the estimates of the parameters Θ(r).



Algorithm 1 Pseudo-code of the proposed EM algorithm

1: procedure HEM-Fit(xk, λi, ri, p
(c)

i,(j,m))
2: LogLi← −∞
3: while (LogLi− oLogLi)/LogLi > ε do
4: Obtain vector π by (5)
5: for k = 1 to K do
6: Compute and store conditional densities f(i,n)(xk) by (6)
7: end for
8: for k = 0 to K do
9: Compute and store forward likelihood vectors a[k] by (12)

10: end for
11: for k = K downto 1 do
12: Compute and store backward likelihood vectors b[k] by (13)
13: end for
14: for i = 1 to M do
15: Compute new estimate for λi by (20)
16: end for
17: for c = 1 to C, i = 1 to M , j = 1 to M do
18: for m = 1 to rj do

19: Compute new estimate for p
(c)

i,(j,m) by (21)
20: end for
21: end for
22: oLogLi← LogLi
23: LogLi← π · b[0]
24: end while
25: return (λi, p

(c)

i,(j,m), i, j = 1, . . . ,M,m = 1, . . . , rj , c = 1, . . . , C)
26: end procedure

In the M-step the new estimates of Θ (denoted by Θ̂(r)) are computed which
maximize the expected likelihood function. From (17) it follows that

λ̂i =

∑K
k=1

∑ri
n=1 n · q(i,n)[k]∑K

k=1 xk
∑ri
n=1 q(i,n)[k]

=

∑K
k=1

∑ri
n=1 n · a(i,n)[k − 1] · b(i,n)[k]∑K

k=1 xk
∑ri
n=1 a(i,n)[k − 1] · b(i,n)[k]

, (20)

p̂
(c)
i,(j,m) =

∑K−1
k=1

∑ri
n=1 q

(c)
(i,n),(j,m)[k]∑K−1

k=1

∑ri
n=1 q(i,n)[k]

=

∑K−1
k=1

∑ri
n=1 a(i,n)[k − 1] · f(i,n)(xk) · u(c)(i,n),(j,m) · b(j,m)[k + 1]∑K−1

k=1

∑ri
n=1 a(i,n)[k − 1] · b(i,n)[k]

.

(21)

The pseudo-code of the EM algorithm is depicted in Algorithm 1. The input

of the algorithm is the trace and the initial guesses for probabilities p
(c)
i,(j,m) and

the shape and rate parameters of the branches. The outputs of the algorithm
are the optimized values of these parameters.

For the initial guesses we apply the k-means algorithm as suggested in [16].



4.4 Optimization of the shape parameters

To make the algorithm more user friendly, it is possible to optimize the shape
parameter vector r = (r1, . . . , rM ) as well. In this case the user has to enter just a
single parameter: the size of the MAP he/she wants (N). The problem to deter-
mine the parameter N is addressed by statistical argument such as information
criterion, but this is out of scope of this report.

The set of possible r vectors is given by

HN =

{
(r1, . . . , rM );

M∑
m=1

ri = N, 1 ≤M ≤ N, 1 ≤ r1 ≤ · · · ≤ rM

}
, (22)

Note that the last condition 1 ≤ r1 ≤ · · · ≤ rM is based on the fact that each
pair of any two values ri and rj is commutative; for example, r = (1, 2, 1) and
r = (1, 1, 2) are supposed to be same.

Then the maximum likelihood estimates (MLEs) of shape parameters are
given by the solution of the following maximization problem:

r̂ = argmax
r∈HN

L(r, Θ̂(r)|X ), (23)

Since the shape parameters are restricted to an integer, (23) is essentially an
integer programming, i.e., the combinational problem over a set HN .

A possible straight-forward solution of this optimization problem is to execute
the presented EM algorithm with all possible shape parameter vectors r ∈ HN ,
which can make the fitting very slow, since the cardinality of HN increases
exponentially as N grows.

Thummler et al. [20] presented a heuristic method that tries to predict
promising combinations of shape parameters by doing a few iterations of the
EM algorithm which is called the progressive preselection. This method first
considers all vectors r ∈ HN . Then the EM algorithm is started for each of the
vectors with loose convergence conditions (ε = 10−2, usually requiring only a
few iterations). The results are sorted according to the likelihood values, and
half of the vectors (the worst performing ones) are dropped. Then further EM
iterations are applied with the remaining vectors with tighter convergence condi-
tions, the worst performing ones are dropped, and so on, till only a single vector
r remains. While this approach is fast, it does not guarantee that it finds the
optimal r at the end. The reason is that the optimal r can be dropped during
the pre-selection steps if it converges slower to the optimum, which happened
frequently in our numerical investigations if the convergence conditions corre-
sponding to the preselection phases are not set adequately.

This paper presents an alternative approach to find the best combination of
shape parameters with an incremental approach. The idea behind the method is
to search only the neighborhood of a shape parameter vector. For a given sum
of shape parameters N , we consider the following sets:

H̃k =

{
(r1, . . . , rN );

N∑
m=1

ri = k, 0 ≤ r1 ≤ · · · ≤ rN

}
, k = 1, . . . , N. (24)



The set H̃k is essentially same as Hk in Eq. (22). Note that ri is allowed to be 0
in H̃k and that the length of all the elements of H̃k, k = 1, . . . , N , becomes N .
For all the elements in

⋃N
k=1 H̃k, we define the following distance:

D(ri, rj) =

N∑
n=1

|ri,n − rj,n|, ri, rj ∈
N⋃
k=1

H̃k, (25)

where ri = (ri,1, . . . , ri,N ) and rj = (rj,1, . . . , rj,N ). According to the above
distance, neighborhood of r is defined as follows.

N (r) =

{
r′;D(r, r′) = 1, r′ ∈

N⋃
k=1

H̃k

}
. (26)

For instance, if N = 4 the neighborhood of the vector r = (0, 0, 1, 2) is

N (r) = {(0, 0, 0, 2), (0, 0, 1, 1), (0, 1, 1, 2), (0, 0, 2, 2), (0, 0, 1, 3)}. (27)

Observe that if r ∈ H̃k, then a member of N (r) is a member of either H̃k−1 or
H̃k+1.

Based on the above insights, we propose an algorithm based on the local
search to find the MLE of shape parameter vector in Algorithm 2. In the algo-
rithm, L(r) means the log-likelihood function of r. From the argument of degree
of freedom in statistics, the maximum of log-likelihood functions in H̃k is a
non-decreasing function with respect to k. Then the algorithm searches for the
maximum value in neighborhood with the direction from which k increases, and
provides the (local) maximum of log-likelihood functions in the set H̃N . If the
assumption that the neighborhood of the maximum of log-likelihood functions in
H̃k includes the shape parameter vector maximizing the log-likelihood function
in H̃k−1 holds, the algorithm finds the global maximum of log-likelihood func-
tions in H̃N . Although it is difficult to prove that this assumption holds for any
situation, the assumption is expected to hold for many practical situation. The
time complexity of Algorithm 2 is O(N1.5), because the maximum size of neigh-
borhood of N (r), r ∈ H̃k is proportional to a square of k. Since the size of HN
is given by a function of the factorial of N , the proposed method is applicable
even for a large N .

5 Numerical Experiments

In this section we present two numerical examples to examine how effective our
enhanced EM algorithm is.

5.1 Fitting Single-Class Trace

In the first example we intend to fit a well-known traffic trace, the BC-pAug89
trace5 that is frequently used as a benchmark in several papers. It consist of the

5 Downloaded from http://ita.ee.lbl.gov/html/contrib/BC.html



Algorithm 2 Incremental search for the best shape parameters.

1: r ← (0, . . . , 0, 1)
2: for k = 2 : N do
3: Lmax ← −∞
4: for r′ ∈ N (r)

⋂
H̃k do

5: if L(r′) > Lmax then
6: rmax ← r′

7: Lmax ← L(r′)
8: end if
9: end for

10: r ← rmax

11: end for

inter-arrival times of one million packet arrivals measured on an Ethernet net-
work. This trace does not distinguish multiple arrival types, thus we are applying
single-class MAP fitting in this example. We are investigating two questions:

– How capable the proposed special MAP structure is when fitting the trace
with the EM algorithm.

– How efficient the proposed heuristic method called ”Incremental” is in opti-
mizing the shape parameters r1, . . . , rM .

The following MAP fitting methods are involved into the comparison.

– The EM-algorithm introduced in [5]6.
– The EM-algorithm published in [16] which operates on the general class of

MAPs.
– The EM-algorithm operating on the ER-CHMM structure ([16]).
– The EM-algorithm operating on the special MAP structure proposed by this

paper.

The latter two procedures are included in our new MAP/MMAP fitting tool
called SPEM-FIT7. This open-source tool has been implemented in C++ and
is able to utilize the multiple cores of modern CPUs. It supports three different
methods to optimize the shape parameters, namely ”progressive preselection”
(referred to as ”PreSel” in the sequel), enumerating all possible configurations
and selecting the best one (referred to as ”All”), and the new incremental method
proposed in this paper (”Incr”).

The likelihood values obtained when fitting with MAPs of different sizes are
depicted in Figure 1. (The likelihood values in this section are all log-likelihoods
divided by the length of the trace). The corresponding execution times are shown
in Figure 2. We note that method ”Buchholz” and ”Okamura-Dohi” stopped
before convergence when the maximum number of iterations has been reached
(that is 1000 for ”Buchholz”, and 3000 for ”Okamura-Dohi”).

6 We would like to thank Peter Buchholz and Jan Kriege for providing the implemen-
tation of the algorithm and for guidance on the usage

7 It can be downloaded from https://bitbucket.org/ghorvath78/spemfit



When examining the execution times it is striking how slow the methods
operating on the general MAP class are. Observe that these methods pick a single
initial guess and apply several EM iterations on it, while in case of ER-CHMM
and the proposed structure the execution times include the optimization of the
shape parameters as well, they are still 1, 2, or even 3 orders of magnitudes faster.
While being faster, they are also able to achieve as high or higher likelihood
values than the EM algorithms working with general MAPs.

Table 1. Log-likelihood values obtained with different methods

Method 4 6 8 10 12

Buchhoz −0.8033 −0.7957 −0.7929 n/a n/a
Okamura-Dohi −0.8002 −0.76345 −0.75512 −0.728709 −0.725897

ER-CHMM (All) −0.80079 −0.77634 −0.74766 −0.72598 −0.715183
ER-CHMM (PreSel) −0.800787 −0.776342 −0.747659 −0.723873 −0.715183
ER-CHMM (Incr) −0.80079 −0.77936 −0.74766 −0.7314 −0.715183

Our (All) −0.80051 −0.76494 −0.74173 −0.72813 −0.71399
Our (PreSel) −0.800506 −0.764944 −0.741738 −0.727968 −0.713967
Our (Incr) −0.80051 −0.76494 −0.74173 −0.72813 −0.71402

Based on the numerical results it is possible evaluate how the different com-
ponents of our refined EM algorithm perform. With the proposed MAP structure
it is possible to obtain higher likelihood values in most of the cases, although
the execution time increases as well (which is straight forward as it has more
parameters to optimize than the ER-CHMM). Regarding the optimization of the
shape parameters we found that the ”Incremental” procedure was able to find
the optimum in the majority of the cases. With a small number of states ”All”
turned out to be faster than ”Incremental”, but from 8 states on ”Incremental”
catches up and the its speed advantage grows with increasing number of states.

Table 2. Fitting times obtained with different methods (in seconds)

Method 4 6 8 10 12

Buchhoz 33571 57703 103162 n/a n/a
Okamura-Dohi 11172 17407 32896 60726 82773

ER-CHMM (All) 24 213 388 795 1954
ER-CHMM (PreSel) 25 94 113 337 582
ER-CHMM (Incr) 34 103 331 596 867

Our (All) 98 247 1026 2434 6179
Our (PreSel) 91 234 328 982 2257
Our (Incr) 139 450 1040 1988 3415

Regarding the ”PreSel” heuristic, that does not guarantee finding the opti-
mum, performs very well in this example. We note however, that fine-tuning the
thresholds used by this method is a hard task. If the thresholds are too loose,



the procedure will be fast but it may drop candidates prematurely, potentially
loosing the one that could provide the best result at the end. At the other hand,
too tight thresholds make the progressive pre-selection practically equivalent to
the ”All” method. We selected the appropriate thresholds based on a large num-
ber of numerical experiments with several traces, however, these thresholds are
not universal.

5.2 Fitting Multi-Class Trace

To examine the behavior of the proposed enhancements further, we made a
multi-class trace from the BC-pAug89 trace according to the packet sizes. Ar-
rivals with packet sizes between 1 and 759 are marked as class-1 arrivals, while
arrivals of larger packets are considered as class-2 arrivals. As we do not have the
implementations of EM algorithms for MMAPs published in the past, we com-
pare the multi-class generalization of the ER-CHMM structure (our procedure

with p
(c)
i,(j,m) = 0 for m > 1) and the proposed more general MMAP structure in

this Section.

Table 3. Log-likelihood values obtained by using the two special structures

Vector r ER-CHMM Proposed

(1, 7) -1.29603 -1.35266
(2, 6) -1.51657 -1.21412
(3, 5) -1.70301 -1.21671
(4, 4) -1.72712 -1.51611

(1, 1, 6) -1.11458 -1.11355
(1, 2, 5) -1.18571 -1.12161
(1, 3, 4) -1.21068 -1.15472
(2, 2, 4) -1.19233 -1.17741
(2, 3, 3) -1.23412 -1.13608

(1, 1, 1, 5) -1.04259 -1.11015

Vector r ER-CHMM Proposed

(1, 1, 2, 4) -1.00136 -0.997126
(1, 1, 3, 3) -1.02608 -0.997745
(1, 2, 2, 3) -1.03497 -1.10369
(2, 2, 2, 2) -1.05739 -1.04147

(1, 1, 1, 1, 4) -1.05193 -1.05193
(1, 1, 1, 2, 3) -1.01446 -1.09347
(1, 1, 2, 2, 2) -1.05179 -1.03403

(1, 1, 1, 1, 1, 3) -1.0743 -1.06969
(1, 1, 1, 1, 2, 2) -1.04512 -1.09436

(1, 1, 1, 1, 1, 1, 2) -1.11112 -1.1638

Table 3 shows the log-likelihood values obtained by using the two special
structures with all possible shape parameter configurations providing 8 states
in total. Examining the results we can observe that the more general structure
is able to achieve a significant improvement if there are several branches having
a high shape parameter. If the shape parameter is low in most of the branches
(or in the dominating branches having high steady state probability), the ER-
CHMM performs better, as it has fewer parameters to optimize. In this particular
example the optimal shape parameter vector is (1, 1, 2, 4), where the proposed
new structure wins by a slight margin.

Finally, Figure 1 compares the best results obtained with various MMAP
sizes, showing that the EM algorithm with the proposed structure provides
slightly better log-likelihood values, but the difference is marginal. With other
traces, where the optimal shape parameters are higher, we expect the difference
to be higher.



Fig. 1. Log-likelihood values obtained with different MMAP sizes
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6 Conclusion

This paper presents several improvements on the EM algorithm based MAP
fitting methods. As recognized in numerous past papers, the key idea to make
MAP fitting efficient is to apply a special MAP structure instead of the general
MAP class. We followed the same path in this paper. We generalized the ER-
CHMM structure introduced in [16], developed a method to find the optimal
shape parameters of this structure, finally, our method is able to fit multi-class
traces as well. The proposed MAP structure is able to improve the log-likelihood
values of the results of fitting in most of the cases investigated in the numerical
experiments. The gain depends on the nature of the trace. In our numerical
example the improvement is slight, but, since the execution time of the fitting is
reasonable, it is still worth taking the advantage of this more general structure.
With the procedure introduced to find the optimal shape parameters it is possible
to avoid trying out all possible combinations, which is beneficial on the fitting
times as well.
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19. M. Telek and G. Horváth. A minimal representation of Markov arrival processes
and a moments matching method. Performance Evaluation, 64(9):1153–1168, 2007.

20. Axel Thummler, Peter Buchholz, and Miklos Telek. A novel approach for phase-
type fitting with the EM algorithm. Dependable and Secure Computing, IEEE
Transactions on, 3(3):245–258, 2006.


