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Photonic tuning of Beliaev damping in a superfluid
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We show that the Beliaev damping of elementary excitations in a homogeneous Bose-Einstein condensate
can undergo resonant enhancement by several orders of magnitude when the superfluid is interacting with a
far-detuned radiation field of an optical resonator. The photonic tuning of the quasiparticle damping can be
controlled by an external laser drive.
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Ultracold atoms coupled to the radiation field of an optical
resonator form a long-range interacting many-body system
[1–4] that proved to be suitable for the quantum simulation of
the superradiant quantum phase transition of the Dicke model
[5–7]. Critical behavior in nonequilibrium phase transitions
between stationary phases of an open system [8–16] cannot
be cast in the usual formalism of the symmetry-breaking
transition of the ground state. As it has been predicted [8,9]
and recent experiments have proved [17], photon dissipation
and the accompanying quantum fluctuations substantially
modify the correlation functions and the critical exponents
[10,18]. Dissipation is thus a key factor in quantum criticality.
In addition, measured data revealed the effect of another
dissipation channel related to atomic collisions [17]. In this
paper we show that the damping rate of the soft mode can
undergo an unexpected, resonancelike, huge enhancement
prior to vanishing. The variation of the soft-mode frequency
as the control parameter is tuned and the bath composed of
the usually neglected phonon degrees of freedom is sampled
at different points. At a certain value of the control parameter
the spectral mode density diverges and the damping rate gets
enhanced.

Elementary excitations of a homogeneous Bose-Einstein
condensate of ultracold atoms are collective density waves
with different wave numbers that can be considered quasi-
particles. Besides the dispersion relation, the quasiparticles
are characterized by a damping rate [19–24]. The finite
lifetime originates from two possible scattering processes
among quasiparticles. The first one leads to Landau damping
[25–27], where the selected excitation, together with another
thermally excited one, merges into a third excitation of the
system. This mechanism needs a thermal occupation of the
other excitation, therefore it vanishes at zero temperature.
In the second, so-called Beliaev damping process [28,29],
the selected excitation decays directly into two lower-energy
excitations. This scattering process is the basic source of
dissipation in a superfluid near zero temperature [30]. In the
following, we will consider the Landau and Beliaev collisional
decay processes of quasiparticles when the homogeneous Bose
gas is in an optical resonator.

Suppose that a Bose-Einstein condensate of atoms is placed
into an optical resonator [31] and is illuminated by a coherent
laser light from the side perpendicular to the cavity axis
(see Fig. 1). The laser frequency ωL is far detuned from all
atomic transitions and the absorption is thus negligibly small.
However, the driving laser is close to resonance with a single

mode of the cavity, hence the atoms can efficiently scatter
laser light into this mode. The photon scattering between
the driving laser and the cavity is subject to interference in
the many-particle system. The cavity mode function selects
density waves that are coupled by the collective scattering
to the light field. Then the corresponding quasiparticles are
sensitive to external control exerted by tuning the laser pump
power or frequency.

At low temperature, the dilute gas of bosonic atoms with
mass m, placed into a container with infinite length, is
described by the Hamiltonian (� = 1)

HA =
∫

�̂†(x)

[
− 1

2m

d2

dx2
+ g

2
�̂†(x)�̂(x)

]
�̂(x)dx, (1)

where g = 4πa/mw is the strength of the low-energy col-
lisions with s-wave scattering length a. For simplicity we
consider only the one-dimensional motion of the atoms along
the cavity axis, inside an elongated trap with the transverse
size of the condensate taken to be w. The entire Hamiltonian
is then H = HA + HC , with

HC = −�Câ†â +
∫ L

0
�̂†(x)[η(â† + â) cos(kx)

+U0â
†â cos2(kx)]�̂(x)dx. (2)

The first term describes the bare cavity energy in a frame
rotating with the pumping laser frequency �C = ωL − ωC .
Terms in the integral represent two kinds of optical processes
involving the atom cloud density. The first one is a laser
drive of the cavity via photon scattering off the atoms. The
corresponding effective amplitude is η = �g0/�A, with � the
Rabi frequency of the pumping laser, g0 the single-photon Rabi
frequency in the cavity, and �A = ωL − ωA the detuning of
the laser from the atomic resonance. The cavity mode function
is cos(kx), with wave number k. The second interaction term
having a†a is the absorption of cavity photons and induced
emission back into the cavity [33–35]. This coherent scattering
forms an optical lattice potential cos2(kx) for the atomic
matter wave with a depth proportional to the intensity with
a coefficient U0 = g2

0/�A.
We briefly recall here that the system defined by this

Hamiltonian admits a very simple solution for weak driving
strength, which is referred to as the normal phase. When the
density of the atom cloud is constant along the cavity axis, the
effective driving term vanishes by integrating out the cos(kx)
mode function over the condensate. This means destructive
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pumping laser

FIG. 1. (Color online) Scheme of the Fabry-Pérot resonator sus-
taining an electromagnetic standing wave with a single cos(k x)
mode function and containing a Bose-Einstein condensate of atoms
illuminated from the side.

interference in the scattering and no photon field builds up
in the cavity. Nothing modulates then the quasihomogeneous
condensate density. This solution breaks down above a certain
pump power ηc = √−�C ωR [5,6,36], where ωR = k2/2m is
the recoil frequency. Above the critical point η > ηc a stable
periodic modulation of the atomic density is formed. However,
in the following we consider only below-threshold driving
strength with the corresponding homogeneous superfluid state.

The periodicity of the interaction terms with the cavity
wavelength suggests the decomposition of the matter wave
field in terms of Bloch states as

�̂(x) = 1√
L

∑
q

eiqx[b̂q +
√

2 cos(kx)ĉq +
√

2 sin(kx)ŝq],

(3)

where b̂q , ĉq , and ŝq are annihilation operators of atomic
single-particle states with wave functions eiqx , cos(kx)eiqx ,
and sin(kx)eiqx , respectively. Here we introduced a quasimo-
mentum q ∈ [−k/2,k/2]. Note that states created by ĉq and
ŝq carry a momentum k in addition to the quasimomentum.
We consider only the three lowest-energy bands; higher-order
harmonics of the type cos(nkx) (n = 2,3, . . .) are not relevant
for the present study [37].

All the boson mode operators can be split into mean-field
and fluctuation parts. In the present geometry, for weak driving
only the homogeneous atom field mode, which contains the
condensate, has nonvanishing mean b̂0 → √

Nc + b̂0, where
Nc is the number of condensate atoms. All the other excitation
modes as well as the photon field have zero mean amplitude.
The Heisenberg equations of motion for the fluctuations can
be cast into the form of a hierarchy of terms with different
powers of the condensate atom number

√
Nc,

i
d

dt
vμ =

∑
ν

Fμνvν + 1√
Nc

∑
q

∑
α,β

V αβ
μ [w†

α(q)wβ(q)

−〈w†
α(q)wβ(q)〉], (4a)

i
d

dt
wμ(q) =

∑
ν

Gμν(q)wν(q) + 1√
Nc

∑
α,β

Wαβ
μ vαwβ(q),

(4b)

where we used the compact vector notation

v = (a,a†,b0,b
†
0,c0,c

†
0,s0,s

†
0)T , (5a)

w(q) = (bq,b
†
−q,cq,c

†
−q,sq,s

†
−q)T (5b)

for the q = 0 and q �= 0 modes, respectively. Orders with
higher powers of 1/

√
Nc are omitted.

The highest order describes a linear coupling between
the modes, which corresponds to the Bogoliubov approach.
Eigenmodes of the linear system define the quasiparticles. Up
to this order, modes with different quasimomentum magnitude
|q| do not couple. Moreover, only the q = 0 modes couple to
the photon degree of freedom by the laser-induced interaction
(2). Therefore, the set of modes {a,b0,c0,s0}, gathered in v in
Eq. (5a), form polariton modes and has to be treated separately.
Of special importance is the excitation mode c0, which matches
exactly the cavity mode function cos(kx) and hence can
be populated directly from the homogeneous Bose-Einstein
condensate (BEC) mode b0 by scattering photons between
the laser and the cavity mode. The q �= 0 quasimomentum
excitations form the familiar Bogoliubov spectrum of the
homogeneous BEC, represented by the dispersion curves in
Figs. 2(b) and 2(c), and are referred to as phonons in the
following.

Beyond the standard Bogoliubov approximation, the next
order accounts for the interactions between quasiparticles,
in particular, the cross coupling between polaritons and
phonons.1 In Eq. (4), one polariton mode is coupled to
two phonons, which is in accordance with the scattering
processes underlying the Landau and the Beliaev damping,
as sketched in Fig. 2. Assuming large condensate size, the
phonons are spectrally dense and form a dissipation bath for
the quasiparticles, including the phonons themselves. The
damping is thus an intrinsic property originating from the
short-range s-wave scattering. The rate of damping of a
given polariton mode can be calculated within the Markov
approximation [38], which relies on the phonons spanning a
broad frequency range compared to the decay rate.

Figure 3 shows the Landau and the Beliaev damping rates,
separately, of the polariton, which is composed dominantly of
the c0 mode. In the considered geometry, this quasiparticle is
the most susceptible to the external control parameter η, which
can be varied either by the pump laser power or by its detuning
�A from the atomic resonance.

The damping rate starts from the value characteristic of this
excitation in free space and then the Beliaev part develops a
strong resonance peak at η/ηc ≈ 0.8. Further increasing the
control parameter, the damping rate falls abruptly.

The tunability of the damping of a quasiparticle is due to the
dressing by cavity photons and the broad range of tunability
is due to the criticality in the system. The frequency of one of
the polariton modes [resulting from the diagonalization of Fμν

in Eq. (4a)] depends significantly on the interaction strength,
as presented in Fig. 2(a), since this is the soft mode of the

1Polariton-polariton and phonon-phonon couplings at this order
are neglected. The former is highly nonresonant and the latter will
be considered phenomenologically in the form of a finite phonon
lifetime.
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FIG. 2. (Color online) Frequency schemes. (a) Frequency of the relevant density-wave quasiparticle dressed by photons, the polariton
mode, as a function of the laser power. This is the soft mode of the normal-superradiant phase transition [5,32], with vanishing frequency at
the threshold of the superradiant phase. (b) and (c) Phonon dispersion relations as a function of the quasimomentum. (b) Illustration of Landau
damping. The polariton together with a phonon decays into a higher-energy phonon. (c) Illustration of Beliaev damping. The polariton decays
into two lower-energy phonons. In the damping processes energy and momentum are conserved.

normal-superradiant transition. It is important to note that this
polariton is dominantly the c0 density wave mode with a tiny
admixture of photons, a maximum of ωR/|�C | = 10−3 for
the parameters of the figure, due to the large eigenfrequency
difference. For η = 0 the polariton mode frequency is just at
the point where the second and third phonon bands touch [see
Figs. 2(b) and 2(c)]. When the laser is turned on, for increasing
η this particular point of the excitation branch departs from
the dispersion curve and its frequency gradually decreases
according to Fig. 2(a). For energy conservation, varying the
polariton frequency amounts to sampling the bath at different
points of the spectral density function. The resulting damping
rates are thus tuned by the control parameter η.

The key to understanding the resonant behavior in the
superfluid at zero temperature is that the spectral density
function in this case is not directly the Bogoliubov phonon
spectrum. In the normal phase, considered here, translation
invariance and momentum conservation are preserved. In a
Beliaev-type decay process, the k momentum of the polariton
is distributed between the two phonons. The only way is that
the phonons have opposite quasimomenta and one of them
has to be from the first and the other one from the second
band, as illustrated schematically in Fig. 2(c). An effective
spectral density function can be derived for such a third-order
decay process. In particular, for polariton frequencies at about
ωR/2 the polariton decays into two phonons at the opposite
edges of the Brillouin zone |q| ≈ k/2. Here the dispersion
relation is linear, hence a continuum set of pairs +q � k/2
on the lower branch and −k/2 � −q on the upper branch
fulfills both the momentum and energy conservation laws. This
yields a diverging effective spectral density and ultimately
this is the underlying reason for the peak in the damping
rate at η/ηc = 0.8. Below this polariton frequency, the decay
process becomes necessarily nonresonant and more and more
suppressed. All this analysis is valid up to the point η/ηc = 1,
since this is a critical point where the homogeneous mean-field
solution collapses.

The calculated polariton damping depends on the damping
rates of the phonons that take part in the decay processes.
The phonon linewidth could be derived from the microscopic

model by taking into account the third-order phonon-phonon
interaction terms, which we neglected in (4). The usual
Landau and Beliaev formulas should be retained for the
q �= 0 phonon modes, as they do not couple to the photon
field. Instead of this involved microscopic approach, we
introduced the phenomenological parameter ε, which accounts
for the summed damping rates of the two phonons created
by the polariton decay. By neglecting the dependence on the
quasimomentum, we get a single, fitting parameter ε. The
polariton damping rate is displayed for various ε in the inset
of Fig. 3. The phonon decay is typically in the range of a
few hundreds hertz, therefore we expect the curve associated

FIG. 3. (Color online) Landau (blue, front) and Beliaev (yellow,
back) damping rates plotted as a function of the pumping strength η

at various temperatures. The Landau damping rate increases towards
the critical point but is suppressed for temperatures below kBT ∼
0.1ωR . The inset shows the strong peak of the Beliaev damping
(at kB T = 0.01ωR , it hardly depends on temperature) for various
values of the phenomenological parameter ε accounting for the decay
rates of the phonons (in units of ωR). The parameters are Nc = 104,
kL/2π = 1000, Ncg/L = 0.1ωR , and �C = −1000ωR .
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with ε = 0.1 to be the best prediction of experimental
data.

Recent experiments performed on this system found such
a peak in the decay rate of the cos kx excitation mode (see
Fig. 4 in [17]). Our theory reveals then that the observed
peak can be a manifestation of the Beliaev damping, which
is typically a negligible process, but here the light shift of
the polariton frequency leads to a significant enhancement.
The Beliaev damping relies on a nonlinear interaction of
quasiparticles and on a continuum bath of phonons. Other
effects such as the finite-size effect can also contribute [39] or
modify the peak. In particular, the peak can be broadened by
an external trapping, which might open a non-negligible gap
in the dispersion relation at the edges of the Brillouin zone. We
emphasize, however, that the photon-assisted Beliaev damping
effect described above is an intrinsic property of the infinite
ultracold-atom gas system. It exists in the thermodynamic
limit defined by the length L → ∞ and the number of atoms
N → ∞ such that the density N/L is constant. Based on our
detailed calculation [40], we expect that the damping rate is

proportional to the density Nc/L. Our calculation was based on
a one-dimensional model for the BEC, which captures properly
the effect of resonant enhancement of the Beliaev damping. In a
more accurate model including three-dimensional motion and
eventually additional trapping potentials, the overlap integrals
and thereby the coupling constants in Eqs. (4) would be
modified by geometric factors. For the summation over the
quasimomentum q in the final expressions to be evaluated
for the plots, we have taken the three-dimensional spectral
density of phonon modes into account in order to suppress the
contribution from the low-frequency part of the phonon bath.

We thank Ferdinand Brennecke, Rafael Mottl, and Peter
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