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ABSTRACT
Queues with Markovian arrival and service processes,
i.e., MAP/MAP/1 queues, have been useful in the anal-
ysis of computer and communication systems and dif-
ferent representations for their sojourn time distribu-
tion have been derived. More specifically, the class of
MAP/MAP/1 queues lies at the intersection of the class
of QBD queues and the class of semi-Markovian queues.
While QBD queues have an order N2 matrix exponen-
tial representation for their sojourn time distribution,
where N is the size of the background continuous time
Markov chain, the sojourn time distribution of the latter
class allows for a more compact representation of order
N .

In this paper we unify these two results and show that
the key step exists in establishing the commutativity of
some fundamental matrices involved in the analysis of
the MAP/MAP/1 queue. We prove, using two differ-
ent approaches, that the required matrices do commute
and identify several other sets of commuting matrices.
Finally, we generalize some of the results to queueing
systems with batch arrivals and services.

Keywords: QBD, MAP/MAP/1 queue, sojourn time
distribution, commuting matrices.

1. INTRODUCTION
The class of MAP/MAP/1 queues is a versatile and
well-studied class of queueing systems used to model
computer and communication systems [5, 6]. Its effec-
tiveness lies in the generality of the Markovian arrival
process (MAP) which can be used to fit very different ar-
rival patterns with highly correlated inter-arrival times
[11, 7, 15]. The MAP process can also be used to model
the service process whenever significant correlation ex-
ists in the service times of consecutive customers, e.g.
[2], and some authors therefore refer to it as the Marko-
vian service process (MSP). The MAP process has also

been extended and analyzed to allow for batch arrivals
and multiple customer types [9, 3].

The queue length distribution of the MAP/MAP/1
queue is well-known to be matrix exponential of order
N , where N is the product of the number of states of
the arrival and service MAP, as its evolution can be cap-
tured by means of a Quasi-Birth-Death Markov chain
[10]. The sojourn time distribution of the MAP/MAP/1
queue on the other hand can be obtained as a special
case of a class of semi-Markovian queues studied by Sen-
gupta [13, 14] and therefore has a matrix exponential
form of order N as well. This result was later general-
ized in [4] for queues with multitype MAP arrivals.

On a different line of research Ozawa studied the so-
journ time distribution of a class of so-called Quasi-
Birth-Death (QBD) queues [12] and proved that it has a
matrix exponential representation of order N2, where N
is the size of the background continuous time Markov
chain. As the class of MAP/MAP/1 queues forms a
subclass of the set of QBD queues, the result of Ozawa
gives rise to an order N2 representation for the sojourn
time distribution of a MAP/MAP/1 queue.

In this paper we unify these two different repre-
sentations for the sojourn time distribution in a
MAP/MAP/1 queue. It turns out that the key fea-
ture is the commutativity of some characteristic matri-
ces that appear in the analysis of the queue length and
sojourn time distribution of the MAP/MAP/1 queue.
Apart from unifying both results and proving the re-
quired commutativity property, we also identify some
other sets of commuting matrices that have played a
fundamental role in the analysis of the MAP/MAP/1
queue. To prove the latter results we introduce two dif-
ferent approaches: an “algebraic” approach that relies
on spectral decomposition arguments and a “stochastic”
approach that relies on the stochastic interpretation of
the matrices involved. These two approaches have cross
fertilized one another several times during the evolution
of the field.

The paper is structured as follows. Section 2 reintro-
duces the QBD queue, while Section 3 summarizes the
main results on its sojourn time distribution. In Section
4 we show how an orderN representation for the sojourn
time distribution of the MAP/MAP/1 queue can be ob-
tained from the QBD queue provided that some funda-
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mental matrices commute. In Section 5 we present two
different approaches to prove that the required commu-
tativity result holds and also identify other sets of com-
muting matrices. Finally, in Section 6 we argue that the
results of Section 5 can be generalized to queues with
BMAP arrivals and services as well.

2. THE QUASI-BIRTH-DEATH QUEUE
In a QBD queue the arrivals and the services are modu-
lated by a common continuous time background Markov
chain Z(t). A set of transitions of the background pro-
cess are accompanied by an arrival (the associated ma-
trix is denoted by F ), other transitions of the back-
ground process are accompanied by a service comple-
tion, assuming that there is at least a customer in the
system (given by matrix B). There may be transitions
by which neither an arrival, nor a service completion oc-
curs (given by matrices L or L′ depending on whether
the system is busy or empty, respectively). When there
is at least one customer in the system the generator of
the background process is denoted by Q = {qij , i, j =
1, . . . , N}. When there is no customer in the queue the
generator of the background process might be different
and is denoted by Q′ = {q′ij , i, j = 1, . . . , N}. Note
that Q = B + L + F and Q′ = L′ + F . The stochastic
process that keeps track of the number of customers in
the system is denoted by X (t).

With a lexicographical numbering of the states the
two-dimensional process {X (t),Z(t), t > 0} is a QBD
Markov chain [1], with its generator given by

Π =


L′ F
B L F

B L F
. . .

. . .
. . .

 . (1)

The sojourn time in a QBD queue, V, is defined as the
time between an arrival event and the corresponding ser-
vice instant in steady state assuming a first-come first-
served (FCFS) service discipline.

Provided that the QBD Markov chain with transition
matrix Π is irreducible and positive recurrent, denote
its stationary distribution by π = (π0, π1, . . . ). The j-th
entry of the vector πk corresponds to the steady state
probability that there are k customers in the queue while
the background process Z(t) is in state j. As the steady
state distribution of a QBD Markov chain is known to
have a matrix geometric form [1], πk can be written as

πk = π0R
k, k > 0, (2)

where R is the minimal non-negative solution of the
quadratic matrix equation

0 = F + RL + R2B, (3)

and vector π0 is the unique solution of the following set
of linear equations:

0 = π0 (L′ + RB) ,

1 = π0 (I −R)−1
1.

For later use we also introduce the matrix U and G as
the smallest non-negative solution of

U = L + F (−U)−1B, (4)

0 = B + LG + FG2, (5)

respectively. The matrices R, U and G are all de-
fined by B,L,F and they are related such that R =
F (−U)−1 and G = (−U)−1B [1]. The mean arrival
rate λ of a QBD queue is given by

λ =

∞∑
i=0

πiF1.

If the arrival and service times are controlled by inde-
pendent Markov chains Z(in)(t) and Z(out)(t), the QBD
queue simplifies to a MAP/MAP/1 queue. This is an
important special case, as the independence of the ar-
rival and service processes often holds in practice, and
the sojourn time distribution can be obtained in a more
efficient way (see Section 4.2). By denoting the matrices
of the MAP that generates the arrivals by D0 and D1

(D0 +D1 = D, D = {dij , i, j = 1, . . . , N (in)}) and the
matrices of the MAP generating the service events by S0

and S1 (S0 + S1 = S, S = {sij , i, j = 1, . . . , N (out)})
the blocks of the QBD Markov chain can be expressed
as

F = D1 ⊗ I,

L = D0 ⊕ S0,

B = I ⊗ S1,

L′ = D0 ⊗ I.

(6)

3. SOJOURN TIME IN THE QBD
QUEUE

To determine the distribution of the sojourn time it suf-
fices to know the distribution of the queue length at ar-
rival instants and the distribution of the time taken by
the QBD queue to generate k service events, for k ≥ 1.

Let entry j of the vector π̂k denote the probability that
the QBD queue is at level k just after the arrival epoch,
while the background process is in state j. Further, let
entry (i, j) of the matrix N(k, t) denote the probability
that exactly k service events occur in a non-idle interval
of length t, while the phase of the underlying process is
i and j at the start and end of the interval, respectively,
that is

[N(k, t)]i,j =

P (Xs(t) = 1,Z(t) = j|Xs(0) = k + 1,Z(0) = i),

where Xs(t) corresponds to the level of the two-
dimensional Markov chain {Xs(t),Z(t), t > 0} with its
generator given by

Π =


L′ + F

B L + F
B L + F

. . .
. . .

 . (7)

N(k, t) is determined by the following set of differential



equations [1]:

∂

∂t
N(0, t) = N(0, t)(L + F ), (8)

∂

∂t
N(k, t) = N(k, t)(L + F ) + N(k − 1, t)B, (9)

for k = 1, . . . ,∞ with boundary conditions N(0, 0) = I
and N(k, 0) = 0 for k > 0. The generating func-
tion of the departure events is defined by N∗(z, t) =∑∞
k=0 z

kN(k, t). Multiplying (8) and (9) by zk and
summing up for k = 0, 1, . . . gives

∂

∂t
N∗(z, t) = N(z, t)(L + F + zB), (10)

with initial condition N∗(z, 0) = I. Its solution is given
by

N∗(z, t) = e(L+F+zB)t. (11)

Ozawa [12] established the following two theorems,
where the second theorem shows that the sojourn time
distribution has a matrix exponential form of order N2:

Theorem 1. (Theorem 1 in [12]) The vectors π̂k are
given by

π̂1 =
1

λ
π0F ,

π̂k = π̂1R̂
k−1

, k = 2, . . . ,∞,
(12)

with R̂ given by

R̂ = (−U)−1F . (13)

Theorem 2. (Theorem 2 in [12]) The distribution of
the sojourn time is given by

P (V < t) = 1− (1T ⊗ η̂)e((L+F )T⊗I)+(BT⊗R̂))tvec〈I〉,
(14)

where η̂ is the stationary phase distribution at arrivals

η̂ = π̂1

(
I − R̂

)−1

, (15)

and vec〈〉 denotes the column-stacking operator.

Remark 1: Theorem 1 was proven using probabilistic
arguments in [12], but can also be proven easily in an
algebraic manner as

π̂k =
πk−1F∑∞
i=0 πiF1

=
1

λ
πk−1F =

1

λ
π0R

k−1F

=
1

λ
π0

(
F (−U)−1)k−1

F =
1

λ
π0F

(
(−U)−1F

)k−1

=
1

λ
π0FR̂

k−1
.

(16)

Remark 2: It was also noted in [12, Remark 1] that
the sojourn time distribution can also be expressed as
P (V > t) = η̂W (t)1, where

W (t) =

∞∑
k=0

R̂
k
N(k, t), (17)

and that W (t) is the solution of the differential equation

d

dt
W (t) = W (t)(L + F ) + R̂W (t)B. (18)

with W (0) = I. Note if R̂ and W (t) were to commute,
this differential equation immediately leads to a matrix
exponential distribution for the sojourn time of order
N . Ozawa [12] notes that R̂ and W (t) commute for
the M/PH/1 queue, but not in general for the QBD

queue. In fact, even for the MAP/M/1 queue R̂ and
W (t) do not commute in general, meaning (18) does
not give immediate rise to an order N representation.
More specifically, for the MAP/M/1 queue we can easily
see that W (t) can be expressed as

W (t) =

∞∑
k=0

R̂
k
eDt (µt)k

k!
e−µt = eR̂µte(D−µI)t. (19)

Thus R̂ and W (t) only commute if R̂ and e(D−µI)t

commute, which only holds in some special cases.

4. SOJOURN TIME IN A MAP/MAP/1
QUEUE

4.1 The QBD queue approach
In this section, we will make a slight modification to
W (t) for the MAP/MAP/1 queue such that we obtain a
differential equation where the modified W (t), denoted

as W̃ (t), and R̂ always commute.

More specifically we introduce the matrix W̃ (t) similar
to (17) as

W̃ (t) =

∞∑
k=0

R̂
k
Ñ(k, t), (20)

where Ñ(k, t) is defined as the solution to the differen-
tial equation

∂

∂t
Ñ(0, t) = Ñ(0, t)(I ⊗ S0), (21)

∂

∂t
Ñ(k, t) = Ñ(k, t)(I ⊗ S0) + Ñ(k − 1, t)(I ⊗ S1),

(22)

for k = 1, . . . ,∞ with Ñ(0, 0) = I and Ñ(k, 0) = 0

for k > 0. Observe that the definition of Ñ(k, t) differs

from N(k, t) in that Ñ(k, t) does not follow the evolu-
tion of the arrival process, more precisely the phase of
the arrival process remains fixed. This slight difference
will turn out to be essential in the subsequent discus-
sion.

We can now establish the following theorem, the proof
of which is similar in nature to the one of Theorem 2 in
[12] and is included for completeness:

Theorem 3. The sojourn time distribution in a
MAP/MAP/1 queue can be expressed as P (V > t) =

η̂W̃ (t)1, where W̃ (t) is the solution to the differential
equation

d

dt
W̃ (t) = W̃ (t)(I ⊗ S0) + R̂W̃ (t)(I ⊗ S1). (23)



with W̃ (0) = I.

Proof. The probability that the sojourn time of an
arriving customer is greater than t equals the probabil-
ity that the number of service events generated up to
time t is less than the number of customers the arriving
customer found in the system (including itself). Hence,
we have

P (V > t) =

∞∑
n=1

π̂n

n−1∑
k=0

Ñ(k, t)1

=

∞∑
n=1

π̂1R̂
n−1

n−1∑
k=0

Ñ(k, t)1

=

∞∑
k=0

η̂R̂
k
Ñ(k, t)1 = η̂W̃ (t)1,

(24)

where η̂ =
∑∞
k=1 π̂1R̂

k−1
has a closed form given

by (15). To obtain the differential equation in (23)

for W̃ (t), it suffices to sum (21) and (22) after left-

multiplying them by R̂
k
.

Remark 3: Making use of the vec〈〉 operator and utiliz-
ing its properties, Theorem 3 yields

d

dt
vec〈W̃ (t)〉 = ((I ⊗ S0)T ⊗ I)vec〈W̃ (t)〉

+ ((I ⊗ S1)T ⊗ R̂)vec〈W̃ (t)〉,

for which the closed form solution is

vec〈W̃ (t)〉 = e((I⊗S0)
T⊗I)+((I⊗S1)

T⊗R̂))tvec〈I〉, (25)

by noting that W̃ (0) = I. Thus the distribution of
the sojourn time in a MAP/MAP/1 queue can also be
expressed as

P (V < t) = 1− η̂W̃ (t)1

= 1− (1T ⊗ η̂)e((I⊗S0)
T⊗I)+((I⊗S1)

T⊗R̂))tvec〈I〉.

This distribution is a matrix exponential distribution of
order N2 and is therefore of little interest. Theorem 3
is however interesting as we will now show that W̃ (t)

and R̂ do commute in general. To prove this formally
we introduce the following assumption:

Assumption 1. The matrices R̂ and (I⊗S0)+R̂(I⊗
S1) can be diagonalized.

A matrix A of size N ×N can be diagonalized if there
exists a non-singular matrix P such that P−1AP is
a diagonal matrix, or equivalently there exists a set of
N (not necessarily distinct) eigenvalues for A with N
linearly independent corresponding eigenvectors. Two
matrices A and B are said to be simultaneously diag-
onalizable if there exists a non-singular matrix P such
that both P−1AP and P−1BP are diagonal matrices,
or equivalently both A and B are diagonalizable and
they share the same set of eigenvectors.

Note, we do not assume that R̂ and (I⊗S0)+R̂(I⊗S1)
can be simultaneously diagonalized. Further on we will

prove that R̂ and (I⊗S0)+R̂(I⊗S1) commute, which
will imply that they can in fact be simultaneously diag-
onalized, because a set of diagonalizable matrices com-
mutes if and only if the set is simultaneously diagonal-
izable. We feel that Assumption 1 is probably not re-
quired for W̃ (t) and R̂ to commute, but did not manage
to come up with a formal proof without this assumption.

Theorem 4. Under Assumption 1 the matrices
W̃ (t) and R̂ commute.

Proof. Denote λ1, . . . , λN as the N eigenvalues of R̂
with N linearly independent corresponding (left) eigen-

vectors φ1, . . . , φN . We prove that W̃ (t) and R̂ can
be simultaneously diagonalized, which suffices to prove
that they commute. As such it is sufficient to show that
φi is an eigenvector of W̃ (t) as well, for i = 1, . . . , N .

As φi is a left-eigenvector of R̂ we have

φiW̃ (t) = φi

∞∑
k=0

R̂
k
Ñ(k, t) = φi

∞∑
k=0

λki Ñ(k, t)

= φiÑ
∗
(z, t)|z=λi = φie

((I⊗S0)+λi(I⊗S1))t,

(26)

where Ñ
∗
(z, t) =

∑∞
k=0 z

kÑ(k, t) is the generating
function based on (21) and (22) and similar to (11) we
have

Ñ
∗
(z, t) = e((I⊗S0)+z(I⊗S1))t. (27)

At this point we need to utilize that some essential ma-
trices of MAP/MAP/1 queues commute, which is dis-
cussed in detail below. According to Theorem 12 in
Section 5.2 the matrices R̂ and (I ⊗ S0) + R̂(I ⊗ S1)

commute, thus the eigenvectors φ1, . . . , φN of R̂ are also
eigenvectors of (I ⊗ S0) + R̂(I ⊗ S1), as a set of diag-
onalizable matrices commutes if and only if the set is
simultaneously diagonalizable. Let γi be the eigenvalue
of (I ⊗ S0) + R̂(I ⊗ S1) associated with φi, then

γiφi = φi
(

(I ⊗ S0) + R̂(I ⊗ S1)
)

= φi(I ⊗ S0) + φiR̂(I ⊗ S1)

= φi(I ⊗ S0) + λiφi(I ⊗ S1)

= φi ((I ⊗ S0) + λi(I ⊗ S1)) .

Consequently, φi is also an eigenvector of (I ⊗ S0) +

λi(I ⊗ S1) and e((I⊗S0)+λi(I⊗S1))t as required.

Remark 5: For the MAP/M/1 queue we can easily see

that W̃ (t) is found as

W̃ (t) =

∞∑
k=0

R̂
k (µt)k

k!
e−µt = e−µt eR̂µt, (28)

meaning R̂ and W̃ (t) commute even without Assump-
tion 1. For the M/MAP/1 queue on the other hand,

Ñ(k, t) and N(k, t) are the same, meaning W̃ (t) =

W (t) and W (t) therefore commutes with R̂, which gen-
eralizes the observation of Ozawa that they commute for
the M/PH/1 queue.



Corollary 1. Under Assumption 1 the sojourn
time distribution of a MAP/MAP/1 queue has an or-
der N matrix exponential representation given by

P (V < t) = 1− η̂e((I⊗S0)+R̂(I⊗S1))t
1. (29)

Proof. Utilizing Theorem 4 makes the solution of
(23) more efficient, as we now have

d

dt
W̃ (t) = W̃ (t)[(I ⊗ S0) + R̂(I ⊗ S1)], (30)

from which (29) follows.

4.2 The age process approach
The MAP/MAP/1 queue is also a special case of a class
of semi-Markovian queues studied by Sengupta [14],
where the sojourn time of a semi-Markovian queue was
shown to be representable as an order N matrix expo-
nential distribution. We start by presenting this result
customized to the MAP/MAP/1 queue.

The analysis of semi-Markovian queues is based on the
analysis of the age process. Although the age process
can be defined at all time epochs t, it suffices to define
it when the server is busy (by censoring out the idle
periods). Define the age process {A(t),Z(t), t ≥ 0} as
follows. A(t) ≥ 0 represents the age of the customer in
service at time t, that is, t−A(t) represents the time of
arrival of the customer in service. Z(t) keeps track of
the phase of the service process at time t and the phase
of the arrival process at time t−A(t).

According to [14] the stationary distribution of the age
process is matrix exponential as

α(x) = α(0)eTx, (31)

where matrix T is closely related to matrix R̂ as ([14],
Equation (15))

T = (I ⊗ S0) + R̂(I ⊗ S1), (32)

and the vector α(0) is given by

α(0) = (θ ⊗ β)(−T ), (33)

where the vectors β and θ are the solutions of β(S0 +
S1) = 0, β1 = 1 and θ(−D0)−1D1 = θ, θ1 = 1, respec-
tively.

As the sojourn time of a customer is its age at its service
completion, we have that

P (V < t) =

∫ t
0
α(x)(I ⊗ S1)1 dx∫∞

0
α(x)(I ⊗ S1)1 dx

= 1− 1

c
(θ ⊗ β)eT t(I ⊗ S1)1,

(34)

where c is a normalization constant c = (θ⊗β)(I⊗S1)1,
that equals the mean service rate µ = βS11.

The two expressions for the distribution of the sojourn
time in a MAP/MAP/1 queue given by (34) and (29)
can be proven to be equal in a direct manner.

To this end, we first express the probability vector cor-
responding to an arrival to the empty queue by two
different ways.

• Based on the queue process this probability vector
equals to π̂1.

• We can express this probability vector based on
the age process as well, it is the probability that
the next arrival occurs later than the sojourn time
of a customer. Hence we get∫∞

0
α(x)(I ⊗ S1)e(D0⊗I)x((−D0)−1D1 ⊗ I)dx∫∞

0
α(x)(I ⊗ S1)1 dx

,

(35)

where the denominator equals to µ (see above) and
the numerator is α(0) due to Lemma 2.4 in [13].

Thus, we can conclude that π̂1 = α(0)/µ = (θ ⊗
β)(−T )/µ holds. Applying this equality in (34) yields

P (V > t) = η̂eT t1 = π̂1(I − R̂)−1eT t1

=
1

µ
(θ ⊗ β)(−T )(I − R̂)−1eT t1.

Exploiting the fact that the matrices R̂,T and eT t com-
mute (due to Theorem 12 and (32)) yields

P (V > t) =
1

µ
(θ ⊗ β)(−T )(I − R̂)−1eT t1

=
1

µ
(θ ⊗ β)eT t(I − R̂)−1(−T )1

=
1

c
(θ ⊗ β)eT t(I ⊗ S1)1,

where in the last step we utilized that (I −
R̂)−1(−T )1 = (I⊗S1)1 which can be proven as follows:
(32) clearly implies that

−T + (I ⊗ S1) = −(I ⊗ S0) + (I − R̂)(I ⊗ S1),

which yields

(I−R̂)−1(−T ) = (I ⊗ S1)− (I−R̂)−1(I ⊗ (S0+S1)),

and the equality follows by post-multiplying it with 1

as (S0 + S1)1 = 0.

5. COMMUTING MATRICES IN
MAP/MAP/1 QUEUES

In this section we will identify four sets of commuting
matrices related to the MAP/MAP/1 queue. We will
provide two different approaches to prove these rela-
tions. The first will be based on the spectral decompo-
sition of the matrices involved and as such will require
some mild assumptions on the existence of the eigenvec-
tors involved. The second approach will not require any
assumptions and is based on a relationship derived from
the age process, as such we refer to it as the queueing
based approach.



5.1 Spectral decomposition approach
We start by establishing some relations for the matrices
R and G and will rely on the following assumption:

Assumption 2. The matrix G can be diagonalized
and inverted. Denote its eigenvalues as λ̄1, . . . , λ̄N
and its corresponding right eigenvectors as u1, . . . , uN .
We further assume that the matrices D0 + λ̄iD1 and
S1 + λ̄iS0 can be diagonalized for i = 1, . . . , N .

By the definition of λ̄i and (5) we have

det
[
(I ⊗ S1) + (D0 ⊕ S0)λ̄i + (D1 ⊗ I)λ̄2

i

]
= 0 (36)

on the unit disk (that is |λ̄i| ≤ 1) and ui is the solution
of[

(I ⊗ S1) + (D0 ⊕ S0)λ̄i + (D1 ⊗ I)λ̄2
i

]
ui = 0, (37)

which can be written as

det
[
(D0λ̄i + D1λ̄

2
i )⊕ (S1 + S0λ̄i)

]
= 0 (38)

and [
(D0λ̄i + D1λ̄

2
i )⊕ (S1 + S0λ̄i)

]
ui = 0 (39)

Now, if A and B can both be diagonalized, then so
can A ⊕B and it can be directly verified [8, Theorem
13.16] that all of its eigenvalues and eigenvectors are
the sums and Kronecker products of the eigenvalues and
eigenvectors of A and B, respectively.

Thus, for a given λ̄i let δij , for j = 1, . . . , N (in),
and σik, for k = 1, . . . , N (out), be the eigenvalues of
(D0λ̄i + D1λ̄

2
i ) and (S1 + S0λ̄i), respectively. Fur-

ther, denote the right eigenvector associated with δij

and σik as u
(D)
ij and u

(S)
ik , respectively. The eigenval-

ues of (D0λ̄i + D1λ̄
2
i ) ⊕ (S1 + S0λ̄i) are δij + σik and

as ui is an eigenvector with eigenvalue 0, we have by
Assumption 2

ui = u
(D)
ij ⊗ u

(S)
ik (40)

for some j and k such that δij = −σik.

Lemma 1. Under Assumption 2 the vector ui is an
eigenvector of the matrices (D0λ̄i +D1λ̄

2
i )⊗ I and I ⊗

(S1 + S0λ̄i).

Proof. By (40) we have(
(D0λ̄i + D1λ̄

2
i )⊗ I

)
ui =(

(D0λ̄i + D1λ̄
2
i )⊗ I

)
(u

(D)
ij ⊗ u

(S)
ik ) =

(D0λ̄i + D1λ̄
2
i )u

(D)
ij ⊗ u

(S)
ik =

δiju
(D)
ij ⊗ u

(S)
ik = δijui .

The same derivation applied to I ⊗ (S1 + S0λ̄i) results
in (

I ⊗ (S1 + S0λ̄i)

)
ui = σikui.

Theorem 5. Under Assumption 2 the matrices G,
D0⊗I + (D1⊗I)G and I⊗S1 + (I⊗S0)G commute.

Proof. It suffices to show that ui is a right eigen-
vector of D0 ⊗ I + (D1 ⊗ I)G and I ⊗S1 + (I ⊗S0)G
as this shows that these matrices can be simultaneously
diagonalized. Further,

(I ⊗ S1 + (I ⊗ S0)G)ui =(
I ⊗ S1 + (I ⊗ S0)λ̄i

)
ui = σikui,

by Lemma 1. A similar argument can be used for D0⊗
I + (D1⊗I)G, but we need the additional requirement
that λ̄i 6= 0 to conclude that ui is an eigenvector of
(D0 + D1λ̄i)⊗ I from Lemma 1.

Completely analogue we can establish the following:

Assumption 3. The matrix R can be diagonalized
and inverted. Denote its eigenvalues as λ̂1, . . . , λ̂N
and its corresponding left eigenvectors as v1, . . . , vN .
We further assume that the matrices D1 + λ̂iD0 and
S0 + λ̂iS1 can be diagonalized for i = 1, . . . , N .

Theorem 6. Under Assumption 3 the matrices R,
D1⊗I +R(D0⊗I) and I⊗S0 +R(I⊗S1) commute.

We now derive some results for the matrices R̂ and Ĝ,
where Ĝ is defined as

Ĝ = B(−U)−1. (41)

The matrix U defined by (4) satisfies U = L + FG =
L + RB, it is non-singular, G = (−U)−1B and R =

F (−U)−1. Further, recall that R̂ = (−U)−1F . It is

worth noting that R̂ is the R-matrix of the GI/M/1-type
Markov chain if we observe the MAP/MAP/1 queue

only at arrival instants, while Ĝ is not the G-matrix
of the M/G/1-type Markov chain if we only observe at
service completion instants since this G-matrix is the
same as the one of the QBD Markov chain.

Theorem 7. Under Assumption 2 the matrices Ĝ
and D0 ⊗ I + (D1 ⊗ I)Ĝ commute.

Proof. By the definition of Ĝ we have Ĝ =
UGU−1, which implies that the eigenvalues of Ĝ and G
are the same and the right eigenvector of Ĝ associated
with λ̄i is ûi = Uui, where ui is the right eigenvector
of G associated with λ̄i.

We are going to show that ûi is also a right eigenvector
of (λ̄iD0 + λ̄2

iD1)⊗ I. To this end we are going to rely
on the following three equalities

• ui = u
(D)
ij ⊗ u

(S)
ik ,

• (D0λ̄i + D1λ̄
2
i )u

(D)
ij = δiju

(D)
ij ,



• ûi = −1/λ̄i(I ⊗ S1)ui,

where the latter equality comes from the fact that ûi is
the right eigenvector of Ĝ associated with λ̄i that is

λ̄iûi = Ĝûi = B(−U)−1︸ ︷︷ ︸
Ĝ

Uui︸︷︷︸
ûi

= − (I ⊗ S1)︸ ︷︷ ︸
B

ui.

We have

[(λ̄iD0 + λ̄2
iD1)⊗ I] ûi

= −1/λ̄i [(λ̄iD0 + λ̄2
iD1)⊗ I](I ⊗ S1)ui

= −1/λ̄i [(λ̄iD0 + λ̄2
iD1)u

(D)
ij ⊗ S1u

(S)
ik ]

= −1/λ̄i [δiju
(D)
ij ⊗ S1u

(S)
ik ]

= −δij/λ̄i [I ⊗ S1](u
(D)
ij ⊗ u

(S)
ik )

= δij/λ̄i [I ⊗ S1](−U)−1Uui

= δij/λ̄i Ĝ ûi = δij ûi .

The remainder of the proof now exists in repeating the
argument used to prove Theorem 5.

Remark 6: Given Theorem 5 it seems natural to assume
that Ĝ and I ⊗ S1 + (I ⊗ S0)Ĝ also commute, but
numerical experiments show that this is not the case.
This is because ûi is not a right eigenvector of I ⊗S1 +
(I ⊗ S0)λ̄i.

Theorem 8. Under Assumption 3 the matrices R̂
and I ⊗ S0 + R̂(I ⊗ S1) commute.

Proof. Following the pattern of the proof of Theo-
rem 7 for the matrices R and R̂ we obtain the state-
ment. The key observation is that R̂ and R have the
same eigenvalues as R̂ = U−1RU and the left eigenvec-
tor v̂i of R̂ corresponding to λ̂i is given by viU , which al-
lows one to obtain the identity λ̂iv̂i = −v̂i(D1⊗I).

5.2 Queueing based approach
In this section we basically prove Theorem 5 to 8 using
a different approach such that Assumptions 2 and 3 are
not required. We start by showing that

(−U)−1 =

∫ ∞
u=0

eTu(eD0u ⊗ I)du, (42)

using the stochastic interpretation of (−U)−1 and eTu.
More specifically, entry (i, j), with i = (i1, i2) and j =
(j1, j2), of (−U)−1 holds the expected amount of time
that the arrival and service processes spend in state j1
and j2, respectively, while there is a single customer
in the queue during a busy period that was initiated
while the arrival and service process were in state i1
and i2, respectively. Next, consider the probabilistic
interpretation of entry (i, k) of eTu with k = (k1, k2)
[13]: it is the expected number of times during a busy
period that the age of the customer c in service equals u,
the current service state equals k2 and the state of the
arrival process was k1 when customer c arrived, given

that the busy period was initiated in state i = (i1, i2).
Thus, each of these visits contributes to entry (i, j) of
(−U)−1 if j2 = k2 and there are no arrivals in an interval
of length u after customer c arrived and the state of the
arrival process is k1 at the start and j1 at the end of the
interval, which is given by entry (k1, j1) of the matrix

eD0u. This establishes (42).

Equation (42) implies that

T (−U)−1 + (−U)−1(D0 ⊗ I) = −I, (43)

as X = −
∫∞
u=0

eAuCeBudu is the unique solution of
AX+XB = C if both A and B are stable matrices [8,
Theorem 13.19] (that is, the real parts of the eigenvalues
of A and B are negative). It is well known that the
matrix D0 is stable, while T is stable due to Lemma
2.4(b) in [14].

Theorem 9. The matrices G, (D0⊗I)+(D1⊗I)G
and (I ⊗ S1) + (I ⊗ S0)G commute.

Proof. To simplify the notation we introduce DG =
(D0⊗I) + (D1⊗I)G and SG = (I⊗S1) + (I⊗S0)G.
First, post-multiply (43) by (I ⊗ S1) and use the fact
that G = (−U)−1(I ⊗ S1) to obtain

TG + G(D0 ⊗ I) = −(I ⊗ S1),

where we also used the fact that (I ⊗S1) and (D0⊗ I)

commute. Using (32) and R̂ = (−U)−1(D1 ⊗ I) yields

(I ⊗ S0)G + G(D1 ⊗ I)G + G(D0 ⊗ I) = −(I ⊗ S1).

In other words,

G DG = −(I ⊗ S0)G− (I ⊗ S1). (44)

From the quadratic equation (5) for G we find

DG G = −(I ⊗ S0)G− (I ⊗ S1), (45)

meaning DG G = G DG . By (44)

SG G = −G DG G,

while by (45), we have

G SG = −G DG G,

which yields G SG = SG G. Finally, if G commutes
with DG and SG , then

SG DG = (I ⊗ S1) DG + (I ⊗ S0) DG G

= (I ⊗D0) SG + (I ⊗D1) SG G = DG SG.

Theorem 10. The matrices R, (I⊗S0)+R(I⊗S1)
and (D1 ⊗ I) + R(D0 ⊗ I) commute.

Proof. Introduce SR = (I ⊗ S0) + R(I ⊗ S1) and
DR = D1 ⊗ I + R(D0 ⊗ I). By pre-multiplying (43)
with (D1 ⊗ I) one finds

(D1 ⊗ I)T (−U)−1 + R(D0 ⊗ I) = −(D1 ⊗ I).



Using the expression for T and R̃ shows that

(I ⊗ S0)R + R(I ⊗ S1)R = −(D1 ⊗ I)−R(D0 ⊗ I),

that is,

SR R = −(D1 ⊗ I)−R(D0 ⊗ I). (46)

The fact that R and SR commute now follows from the
fact that quadratic equation (3) for R can be written as

R SR = −(D1 ⊗ I)−R(D0 ⊗ I). (47)

Equation (46) implies

R DR = −R SR R,

while (47) yields

DR R = −R SR R,

meaning R and DR commute. Similar to the G matrix,
as R commutes with SR and DR , DR and SR
also commute.

Theorem 11. The matrices Ĝ and D0 ⊗ I + (D1 ⊗
I)Ĝ commute.

Proof. Let DĜ = D0⊗I +(D1⊗I)Ĝ and SR̂ =

I⊗S0 + R̂(I⊗S1). Pre-multiplying (43) with (I⊗S1)
gives

Ĝ(D0 ⊗ I) = (I ⊗ S1)[TU−1 − I],

which indicates that

Ĝ DĜ

= (I ⊗ S1)[TU−1 − I] + Ĝ(D1 ⊗ I)(I ⊗ S1)(−U)−1

= (I ⊗ S1)[TU−1 − I + R̂(I ⊗ S1)(−U)−1].

Using the expression T = SR̂ yields

Ĝ DĜ = (I ⊗ S1)[(I ⊗ S0)U−1 − I]. (48)

Further, by definition of DĜ and the fact that Ĝ =

(I⊗S1)(−U)−1 and Ĝ
2

= (I⊗S1)G(−U)−1, we have

DĜ Ĝ = (I ⊗ S1)[(D0 ⊗ I) + (D1 ⊗ I)G](−U)−1.

As U = (I ⊗ S0) +DG, we get

DĜ Ĝ = (I ⊗ S1)[(I ⊗ S0)U−1 − I]. (49)

Hence, DĜ Ĝ = Ĝ DĜ due to (48) and (49).

Theorem 12. The matrices R̂ and I ⊗ S0 + R̂(I ⊗
S1) commute.

Proof. Post-multiplying (43) by (D1 ⊗ I) implies
that

T (−U)−1(D1 ⊗ I) = (U−1(D0 ⊗ I)− I)(D1 ⊗ I).

As noted before SR̂ = T and R̂ = (−U)−1(D1 ⊗ I),
meaning

SR̂ R̂ = (U−1(D0 ⊗ I)− I)(D1 ⊗ I).

Since U = (D0 ⊗ I) + SR , we therefore get

SR̂ R̂ = −[U−1(I ⊗ S0) + U−1R(I ⊗ S1)](D1 ⊗ I).

As R = (D1 ⊗ I)(−U)−1, R̂ = (−U)−1(D1 ⊗ I) and
(D1 ⊗ I) commutes with (I ⊗ S0) and (I ⊗ S1), this
implies

SR̂ R̂ = R̂(I ⊗ S0) + R̂
2
(I ⊗ S1) = R̂ SR̂ .

6. BMAP ARRIVALS AND SERVICES
In this section we indicate that Theorems 5 to 8 can be
generalized to the case where either the arrival or service
process is a batch Markovian arrival process (BMAP).
When we establish these results we will restrict ourselves
to the spectral decomposition approach. It is also pos-
sible to derive these results by extending the queueing
based approach of Section 5.2.

6.1 BMAP/MAP/1 queue
The M/G/1-type Markov chain describing the behavior
of a BMAP/MAP/1 queue has the following structure
[11]

D0 ⊗ I D1 ⊗ I D2 ⊗ I . . .
I ⊗ S1 D0 ⊕ S0 D1 ⊗ I D2 ⊗ I . . .

I ⊗ S1 D0 ⊕ S0 D1 ⊗ I . . .
. . .

. . .
. . .

 ,
where the matrices Dk, for k ≥ 0, characterize the
BMAP. The characteristic matrix G of this M/G/1-type
Markov chain is the minimal non-negative solution of

0 = (I ⊗ S1) + (D0 ⊕ S0)G +

∞∑
i=1

(Di ⊗ I)Gi+1

and matrices U and Ĝ can be defined as

U = (D0 ⊕ S0) +

∞∑
i=1

(Di ⊗ I)Gi,

Ĝ = (I ⊗ S1)(−U)−1.

Assumption 4. The matrix G can be diagonalized
and inverted. Denote its eigenvalues as λ̄1, . . . , λ̄N
and its corresponding right eigenvectors as u1, . . . , uN .
We further assume that the matrices

∑∞
i=0 λ̄

k
iDk and

S1 + λ̄iS0 can be diagonalized for i = 1, . . . , N .

The proofs of the following two theorems follow the
same pattern as the one of Theorem 5 and 7, respec-
tively. A similar commutativity of G and

∑∞
i=0 DiG

i

is mentioned by Lucantoni in [9, Corollary 1] for the
BMAP/G/1 queue.

Theorem 13. Under Assumption 4 the matrices G,∑∞
i=0(Di ⊗ I)Gi and I ⊗ S1 + (I ⊗ S0)G commute.

Theorem 14. Under Assumption 4 the matrices Ĝ

and
∑∞
i=0(Di ⊗ I)Ĝ

i
commute.



6.2 MAP/BMAP/1 queue
The structure of the transition matrix of the GI/M/1-
type Markov chain describing the behavior of an
MAP/BMAP/1 queue is [10]

D0 ⊗ I D1 ⊗ I

I ⊗ Ŝ1 D0 ⊕ S0 D1 ⊗ I

I ⊗ Ŝ2 I ⊗ S1 D0 ⊕ S0 D1 ⊗ I

I ⊗ Ŝ3 I ⊗ S2 I ⊗ S1 D0 ⊕ S0 D1 ⊗ I
...

. . .
. . .

. . .
. . .


where Ŝi =

∑∞
j=i Sj and the matrices Sk, for k ≥ 0,

characterize the BMAP.

The characteristic matrix R of this GI/M/1-type
Markov chain is the minimal non-negative solution of

0 = (D1 ⊗ I) + R(D0 ⊕ S0) +

∞∑
i=1

Ri+1(I ⊗ Si).

(50)

Reordering (50) results in

R = (D1 ⊗ I)

(
−(D0 ⊕ S0)−

∞∑
i=1

Ri(I ⊗ Si)

)−1

.

Based on this decomposition we introduce the matrices
U and R̂ as follows

U = (D0 ⊕ S0) +

∞∑
i=1

Ri(I ⊗ Si),

R̂ = (−U)−1(D1 ⊗ I).

Assumption 5. The matrix R can be diagonalized
and inverted. Denote its eigenvalues as λ̂1, . . . , λ̂N
and its corresponding left eigenvectors as v1, . . . , vN .
We further assume that the matrices D1 + λ̂iD0 and∑∞
k=0 λ

k
iSk can be diagonalized for i = 1, . . . , N .

The following two theorems can be proven similar to
Theorem 6 and 8, respectively:

Theorem 15. Under Assumption 5 the matrices R,
D1 ⊗ I + R(D0 ⊗ I) and

∑∞
i=0 R

i(I ⊗ Si) commute.

Theorem 16. Under Assumption 5 the matrices R̂

and
∑∞
i=0 R̂

i
(I ⊗ Si) commute.
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[7] G. Horváth, P. Buchholz, and M. Telek. A MAP
fitting approach with independent approximation
of the inter-arrival time distribution and the lag
correlation. In Proc of QEST 2005. IEEE
Computer Society, 2005.

[8] A. J. Laub. Matrix Analysis For Scientists And
Engineers. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2004.

[9] D. M. Lucantoni. New results on the single server
queue with a batch Markovian arrival process.
Stochastic models, 7(1):1–46, 1991.

[10] M. F. Neuts. Matrix-Geometric Solutions in
Stochastic Models. John Hopkins University Press,
Baltimore, MD, USA, 1981.

[11] M. F. Neuts. Structured Stochastic Matrices of
M/G/1-type and their Applications. Marcel
Dekker, New York, NY, 1989.

[12] T. Ozawa. Sojourn time distributions in the queue
defined by a general QBD process. Queueing Syst.
Theory Appl., 53(4):203–211, August 2006.

[13] B. Sengupta. Markov processes whose steady state
distribution is matrix exponential with an
application to the GI/PH/1 queue. Adv. in Appl.
Probab., 21:159–180, 1989.

[14] B. Sengupta. The semi-Markovian queue: theory
and applications. Stochastic Models, 6(3):383–413,
1990.

[15] M. Telek and G. Horváth. A minimal
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