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Summary
Medulloblastoma, the most common malignant pediatric brain tumour, is currently treated with
non-specific cytotoxic therapies including surgery, whole brain radiation, and aggressive
chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least
four distinct molecular variants, prior attempts to identify targets for therapy have been
underpowered due to small samples sizes. Here we report somatic copy number aberrations
(SCNAs) in 1087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are
predominantly subgroup enriched. The most common region of focal copy number gain is a
tandem duplication of the Parkinson’s disease gene SNCAIP, which is exquisitely restricted to
Group 4α. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1 that arise
through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including
recurrent events targeting TGFβ signaling in Group 3, and NF-κB signaling in Group 4 suggest
future avenues for rational, targeted therapy.

Brain tumours are the most common cause of childhood oncological death, and
medulloblastoma is the most common malignant pediatric brain tumour. Current
medulloblastoma therapy including surgical resection, whole brain and spinal cord radiation,
and aggressive chemotherapy supplemented by bone marrow transplant yields five-year
survival rates of 60–70%1. Survivors are often left with significant neurological, intellectual,
and physical disabilities secondary to the effects of these non-specific cytotoxic therapies on
the developing brain2.

Recent evidence suggests that medulloblastoma actually comprises multiple molecularly
distinct entities whose clinical and genetic differences may require separate therapeutic
strategies3–6. Four principal subgroups of medulloblastoma have been identified: WNT,
SHH, Group 3, and Group 47, and there is preliminary evidence for clinically significant
subdivisions of the subgroups3,7,8. Rational, targeted therapies based on genetics are not
currently in use for medulloblastoma, although inhibitors of the Sonic Hedgehog pathway
protein Smoothened have shown early promise9. Actionable targets for WNT, Group 3, and
Group 4 tumours have not been identified4,10. Sanger sequencing of 22 medulloblastoma
exomes revealed on average only 8 SNVs per tumour11. Some SNVs were subgroup
restricted (PTCH1, CTNNB1), while others occurred across subgroups (TP53, MLL2). We
hypothesized that the observed intertumoural heterogeneity might have underpowered prior
attempts to discover targets for rational therapy.

The Medulloblastoma Advanced Genomics International Consortium (MAGIC) consisting
of scientists and physicians from 46 cities across the globe gathered >1200
medulloblastomas which were studied by SNP arrays (n=1239; Figure 1a; Supplementary
Figure 1; Supplementary Tables 1–3). Medulloblastoma subgroup affiliation of 827 cases
was determined using a custom nanoString-based RNA assay (Supplementary Figure 2)12.
Disparate patterns of broad cytogenetic gain and loss were observed across the subgroups
(Figure 1b; Supplementary Figures 3, 7, 8, 10, 11). Analysis of the entire cohort using
GISTIC213 to discover significant ‘driver’ events delineated 62 regions of recurrent SCNA
(Figure 1c; Supplementary Figure 4; Supplementary Tables 4–5); analysis by subgroup
increased sensitivity such that 110 candidate ‘driver’ SCNAs were identified, most of which
are subgroup enriched (Figure 1c–e; Supplementary Table 6).

Twenty-eight regions of recurrent high-level amplification (copy number ≥5) were identified
(Figure 1d; Supplementary Table 7). The most prevalent amplifications affected members of
the MYC family with MYCN predominantly amplified in SHH and Group 4, MYC in Group
3, and MYCL1 in SHH medulloblastomas. Multiple genes/regions were exclusively
amplified in SHH, including GLI2, MYCL1, PPM1D, YAP1, and MDM4 (Figure 1d).
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Recurrent homozygous deletions were exceedingly rare, with only 15 detected across 1087
tumours (Figure 1e). Homozygous deletions targeting known tumour suppressors PTEN,
PTCH1, and CDKN2A/B were the most common, all enriched in SHH cases (Figure 1e;
Supplementary Table 7). Novel homozygous deletions included KDM6A, a histone-lysine
demethylase deleted in Group 4. A custom nanoString CodeSet was used to verify 24
significant regions of gain across 192 MAGIC cases, resulting in a verification rate of 90.9%
(Supplementary Figure 5). We conclude that SCNAs in medulloblastoma are common, and
are predominantly subgroup enriched.

Subgroup-specific SCNAs in medulloblastoma
WNT medulloblastoma genomes are impoverished of recurrent focal regions of SCNA,
exhibiting no significant regions of deletion and only a small subset of focal gains found at
comparable frequencies in non-WNT tumours (Supplementary Figures 4, 6; Supplementary
Table 8). CTNNB1 mutational screening confirmed canonical exon 3 mutations in 63/71
(88.7%) WNT tumours, whereas monosomy 6 was detected in 58/76 (76.3%)
(Supplementary Figure 6; Supplementary Table 9). Four WNT tumours (4/71; 5.6%) had
neither CTNNB1 mutation nor monosomy 6, but maintained typical WNT expression
signatures. Given the size of our cohort and the resolution of the platform, we conclude that
there are no frequent, targetable SCNAs for WNT medulloblastoma.

SHH tumours exhibit multiple significant focal SCNAs (Figure 2a; Supplementary Figures
12, 15, 16; Supplementary Tables 10–11). SHH enriched/restricted SCNAs included
amplification of GLI2 and deletion of PTCH1 (Figure 2a, e, f)10. MYCN and CCND2 were
among the most frequently amplified genes in SHH (Supplementary Table 6), but were also
altered in non-SHH cases. Genes up-regulated in SHH tumours (i.e. SHH signature genes)
are significantly over-represented among the genes focally amplified in SHH tumours
(P=0.001–0.02, permutation tests; Supplementary Figure 9). Recurrent amplification of SHH
signature genes has clinical implications, as amplification of downstream transcriptional
targets could mediate resistance to upstream SHH pathway inhibitors14.

Novel, SHH-enriched SCNAs included components of TP53 signaling, including
amplifications of MDM4 and PPM1D, and focal deletions of TP53 (Figure 2a–e).
Targetable events, including amplifications of IGF signaling genes IGF1R and IRS2, PI3K
genes PIK3C2G and PIK3C2B, and deletion of PTEN were restricted to SHH tumours
(Figure 2a, c, e). Importantly, focal events affecting genes in the SHH pathway were largely
mutually exclusive and prognostically significant (Figure 2f, g). Many of the recurrent,
targetable SCNAs identified in SHH medulloblastoma (IGF1R, KIT, MDM4, PDGFRA,
PIK3C2G, PIK2C2B, and PTEN) have already been targeted with small molecules for
treatment of other malignancies, which might allow rapid translation for targeted therapy of
subsets of SHH patients (Supplementary Table 16). Novel SHH targets identified here are
excellent candidates for combinatorial therapy with Smoothened inhibitors, in order to avoid
the resistance encountered in both humans and mice9,14,15.

Group 3 and Group 4 medulloblastomas have generic names as comparatively little is
known about their genetic basis, and no targets for rational therapy have been identified7.
MYC amplicons are largely restricted to Group 3, while MYCN amplicons are seen in
Group 4 and SHH tumours (Figure 1d)3,4. Indeed, MYC and MYCN loci comprise the most
significant regions of amplification observed in Group 3 and Group 4, respectively (Figure
3a, b; Supplementary Figures 13, 14, 17–20; Supplementary Tables 12–15). Group 3 MYC
amplicons were mutually exclusive from those affecting the known medulloblastoma
oncogene OTX216 and were highly prognostic (Supplementary Figure 21)3,16. Type II
activin receptors, ACVR2A and ACVR2B and family member TGFBR1 are highly
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amplified in Group 3 tumours, suggesting deregulation of TGFβ signaling as a driver event
in Group 3 (Figure 3c–e; Supplementary Figure 22). The Group 3-enriched
medulloblastoma oncogene OTX2 is a prominent target of TGFβ signaling in the developing
nervous system17 and TGFβ pathway inhibitors, CD10918, FKBP1A19,20, and SNX620 are
recurrently deleted in Group 3 (Figure 3a, d). SCNAs in TGFβ pathway genes were heavily
enriched in Group 3 (P=5.37E-05, Fisher’s exact test) and found in at least 20.2% of cases,
suggesting that TGFβ signaling represents the first rational target for this poor prognosis
subgroup (Figure 3d). Similarly, novel deletions affecting regulators of the NF-κB pathway,
including NFKBIA21 and USP422 were identified in Group 4 (Supplementary Figure 23),
proposing that NF-κB signaling may represent a rational Group 4 therapeutic target.

Network analysis of Group 3 and Group 4 SCNAs illustrates the different pathways over-
represented in each subgroup. Only TGFβ signaling is unique to Group 3 (Figure 3e). In
contrast, cell cycle control, chromatin modification, and neuronal development are all Group
4-enriched. Cumulatively, the dismal prognosis of Group 3 patients, the lack of published
targets for rationale therapy, and the prior targeting of TGFβ signaling in other diseases
suggest that TGFβ may represent an appealing target for Group 3 rational therapies
(Supplementary Table 16).

SNCAIP tandem duplication is common in Group 4
Although Group 4 is the most prevalent medulloblastoma subgroup its pathogenesis remains
poorly understood. The most frequent SCNA observed in Group 4 (33/317; 10.4%) is a
recurrent region of single copy gain on chr5q23.2 targeting a single gene – SNCAIP
(synuclein, alpha interacting protein) (Figure 4a; Supplementary Figure 24). SNCAIP,
encodes SYNPHILIN-1, which binds to α-SYNUCLEIN to promote the formation of Lewy
bodies in the brains of patients with Parkinson’s disease23,24. Additionally, rare germline
mutations of SNCAIP have been described in Parkinson’s families25. Large insert, mate-
pair, whole genome sequencing (WGS) demonstrates that SNCAIP copy number gains arise
from tandem duplication of a truncated SNCAIP (lacking non-coding exon 1), inserted
telomeric to the germline SNCAIP allele (Figure 4b, c; Supplementary Figure 25). SNP6
profiling of patient-matched germline material confirmed that SNCAIP duplications are
somatic (Supplementary Figure 26) and subsequent whole transcriptome sequencing
(RNASeq) of select Group 4 cases (n=5) verified that SNCAIP is the only gene expressed in
the duplicated region (Supplementary Figure 27). Analysis of published copy number
profiles for 3131 primary tumours26 and 947 cancer cell lines27 (total of 4078 cases)
revealed only four cases with apparent duplication of SNCAIP, all of which were inferred as
Group 4 medulloblastomas (data not shown). We conclude that SNCAIP duplication is a
somatic event highly specific to Group 4 medulloblastoma.

Re-analysis of 499 published medulloblastoma expression profiles confirmed that SNCAIP
is one of the most highly up-regulated Group 4 signature genes (Figure 4d; Supplementary
Figure 28). Profiling of 188 Group 4 tumours on expression microarrays followed by
consensus non-negative matrix factorization (NMF) clustering delineates two subtypes of
Group 4 (4α and 4β; Figure 4e; Supplementary Figure 29). Strikingly, 21/22 SNCAIP
duplicated cases belonged to Group 4α (P=3.12E-08, Fisher’s exact test). SNCAIP is more
highly expressed in Group 4α than 4β (Figure 4f), and 4α samples with tandem duplication
showed ~1.5-fold increased expression, consistent with gene dosage (Figure 4g;
Supplementary Figures 35, 36). Group 4α exhibits a relatively balanced genome compared
to 4β (Supplementary Figures 30–32), and several 4α cases harbour SNCAIP duplication in
conjunction with i17q and no other SCNAs (Supplementary Figure 33). Importantly,
SNCAIP duplications are mutually exclusive from other prominent SCNAs in Group 4,
including MYCN and CDK6 amplifications (Supplementary Figure 34).
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PVT1 fusions arise via chromothripsis in Group 3
Although recurrent gene fusions have recently been discovered in solid tumours, none have
been reported in medulloblastoma. RNASeq of Group 3 tumours (n=13) identified two
independent gene fusions in two different tumours (MB-182 and MB-586, both involving
the 5’ end of PVT1 - a non-coding gene frequently co-amplified with MYC in Group 3
(Figure 5a, b; Supplementary Figure 37; Supplementary Tables 17–18). Sanger sequencing
confirmed a fusion transcript consisting of exons 1 and 3 of PVT1 fused to the coding
sequence of MYC (exons 2 & 3) in MB-182, and a fusion involving PVT1 exon 1 fused to
the 3’ end of NDRG1 in MB-586 (Figure 5a, b).

Group 3 copy number data at the MYC/PVT1 locus suggested that additional samples might
harbour PVT1 gene fusions (Figure 5c). RT-PCR profiling of select Group 3 cases
confirmed PVT1-MYC fusions in at least 60% (12/20) MYC-amplified cases (Figure 5d;
Supplementary Table 19). Fusion transcripts included many other portions of chr8q, with up
to four different genomic loci mapping to a single transcript, a pattern reminiscent of
chromothripsis28,29 (Figure 5d). WGS performed on four MYC-amplified Group 3s
harbouring PVT1 fusion transcripts identified a series of complex genomic rearrangements
on chr8q (Figure 5e, f; Supplementary Figure 38; Supplementary Tables 20–21).
Chromosome 8 copy number profile for MB-586 (PVT1-NDRG1) derived from WGS
showed that PVT1 and NDRG1 are structurally linked as predicted by RNASeq, and several
adjacent regions of 8q24 were extensively rearranged (Figure 5e, f; Supplementary Table
21). Monte Carlo simulation suggests that this fragmented 8q amplicon arose through
chromothripsis, a process of erroneous DNA repair following a single catastrophic event in
which a chromosome is shattered into many pieces (Supplementary Figure 39). Further
examination of our copy number dataset revealed rare examples of chromothripsis across
subgroups (Supplementary Figure 40), with only chr8 in Group 3 demonstrating statistically
significant, region-specific chromothripsis (q=0.0004, FDR-corrected Fisher’s exact test).
Among Group 3 tumours, the occurrence of chr8q chromothripsis is correlated with deletion
of chr17p (location of TP53; data not shown), in keeping with the association of loss of
TP53 and chromothripsis recently described in medulloblastoma (P=0.0199, Fisher’s exact
test)28. While the PVT1 locus has been suggested to be a genomically fragile site, we
observe that the majority of MYC-amplified Group 3 tumours harbour PVT1 fusions that
arise through a process consistent with chromothripsis.

PVT1 is a non-coding host gene for 4 miRNAs – miR-1204–1207. Previous studies have
implicated miR-1204 as a candidate oncogene that enhances oncogenesis in combination
with MYC30,31. PVT1 fusions identified in this study involve only PVT1 exon 1 and
miR-1204. Importantly, miR-1204, but not the adjacent miR-1205 and miR-1206, is
expressed at a higher level in PVT1-MYC fusion(+) Group 3 tumours compared to fusion(−)
cases (P=0.0008, Mann-Whitney test; Figure 6a). To evaluate whether aberrant expression
of miR-1204 contributes to the malignant phenotype, we inhibited miR-1204 in MED8A
cells, a Group 3 medulloblastoma cell line with a confirmed PVT1-MYC fusion (Figure 5d).
Antagomir-mediated RNAi of miR-1204 had a pronounced effect on MED8A growth
(Figure 6b). A comparable reduction in proliferative capacity was achieved with knockdown
of MYC. Conversely, the medulloblastoma cell line ONS76 exhibits neither MYC
amplification, nor a detectable PVT1-MYC fusion gene and knockdown of miR-1204 had
no effect in this line (Figure 6c).

PVT1 has been reported previously in fusion transcripts with a number of partners30,32,33.
The most prevalent form of the PVT1-MYC fusion in Group 3 tumours lacks the first, non-
coding exon of MYC, similar to forms of MYC that have been described in Burkitt’s
lymphoma34 (Figure 5a, d). The PVT1 promoter contains two non-canonical E-boxes and
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can be activated by MYC31. This suggests a positive feedback model where MYC can
reinforce its own expression from the PVT1 promoter in PVT1-MYC fusion(+) tumours.
Indeed, knockdown of MYC alone in MED8A cells resulted in diminished expression of
both MYC and miR-1204, suggesting MYC may positively regulate PVT1 (i.e. miR-1204)
expression in medulloblastoma cells (Supplementary Figure 41).

Discussion
Medulloblastomas have few SNVs as compared to many adult epithelial malignancies11,
while SCNAs appear to be quite common. Medulloblastoma is a heterogeneous disease7,
there-by requiring large cohorts to detect subgroup specific events. Through the
accumulation of >1200 medulloblastomas in MAGIC, we have identified novel and
significant SCNAs. Many of the significant SCNAs are subgroup restricted, highly
supporting their role as driver events in their respective subgroups.

Expression of SYNPHILIN-1 in neuronal cells results in decreased cell doubling time35,
decreased caspase-3 activation36, decreased TP53 transcriptional activity and mRNA levels,
and decreased apoptosis37. SYNPHILIN-1 is ubiquitinated by PARKIN, which is encoded
by the hereditary Parkinson’s disease gene PARK224, a candidate tumour suppressor gene38.
While patients with Parkinson’s disease have an overall decreased risk of cancer, they may
have an increased incidence of brain tumours39,40. As tandem duplications of SNCAIP are
highly recurrent, stereotypical, subgroup restricted, affect only a single gene, and as
SNCAIP-duplicated tumours have few if any other SCNAs, SNCAIP is a probable driver
gene, and merits investigation as a target for therapy of Group 4α. Similarly, PVT1 fusion
genes are highly recurrent, restricted to Group 3, arise through a chromothripsis-like
process, and are the first recurrent translocation reported in medulloblastoma.

We identify a number of highly targetable, recurrent, subgroup-specific SCNAs that could
form the basis for future clinical trials (i.e. PI3K signaling in SHH, TGFβ signaling in
Group 3, and NF-κB signaling in Group 4). Activation of these pathways through
alternative, currently unknown genetic and epigenetic events could increase the percentage
of patients amenable to targeted therapy. We also identify a number of highly ‘druggable’
events that occur in a minority of cases. The co-operative, global approach of the MAGIC
consortium has allowed us to overcome the barrier of intertumoural heterogeneity in an
uncommon pediatric tumour, and to identify the relevant and targetable SCNAs for the
affected children.

Methods Summary
All patient samples were obtained with consent as outlined by individual institutional review
boards. Genomic DNA was prepared, processed, and hybridized to Affymetrix SNP6 arrays
according to manufacturer’s instructions. Raw copy number estimates were obtained in
dChip, followed by CBS segmentation in R. SCNAs were identified using GISTIC213.
Driver genes within SCNAs were inferred by integrating matched expressions, literature
evidence, and other datasets. Pathway enrichment of SCNAs was analyzed with g:Profiler
and visualized in Cytoscape by enrichment mapping. FISH was performed as described
previously8,10. Medulloblastoma subgroup was assigned using a custom nanoString CodeSet
as described12. Tandem duplication of SNCAIP was confirmed by paired-end mapping as
previously reported28. RNA was extracted, processed and hybridized to Affymetrix Gene
1.1 ST Arrays as recommended by the manufacturer. Consensus NMF clustering was
performed in GenePattern. Gene fusions were identified from RNASeq data using Trans-
ABySS. Medulloblastoma cell lines were maintained as described10. Proliferation assays
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were performed with the Promega CellTiter 96 Assay. Additional methods are detailed in
full in Supplementary Methods available online at Nature.com.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genomic heterogeneity of medulloblastoma subgroups
a, The medulloblastoma genome classified by subgroup. b, Frequency and significance (q-
value≤ 0.1) of broad cytogenetic events across medulloblastoma subgroups. c, Significant
regions of focal SCNA identified by GISTIC2 in either pan-cohort or subgroup-specific
analyses. d, e, Recurrent high-level amplifications (d; segmented CN≥5) and homozygous
deletions (e; segmented CN≤0.7) in medulloblastoma. The number of genes mapping to the
GISTIC2 peak region (where applicable) is listed in brackets after the suspected driver gene,
as is the frequency of each event.
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Figure 2. Genomic alterations affect core signaling pathways in SHH medulloblastoma
a, GISTIC2 significance plot of amplifications (red) and deletions (blue) observed in SHH.
The number of genes mapping to each significant region are included in brackets and
regions enriched in SHH are shaded red. b, c, Recurrent amplifications of PPM1D (b) and
PIK3C2B/MDM4 (c) are restricted to SHH. d, FISH validation of MDM4 amplification. e,
SHH signaling, TP53 signaling, and RTK/PI3K signaling represent the core pathways
genomically targeted in SHH. P-values indicate the prevalence with which the respective
pathway is targeted in SHH vs. non-SHH cases (Fisher’s exact test). Frequencies of focal
and broad (parentheses) SCNAs are listed. f, Mutual exclusivity analysis of focal SCNAs in
SHH. g, Clinical implications of SCNAs affecting MYCN, GLI2, or PTCH1 in SHH (log-
rank tests).
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Figure 3. The genomic landscape of Group 3 and Group 4 medulloblastoma
a, b, GISTIC2 plots depicting significant SCNAs in Group 3 (a) and Group 4 (b) with
subgroup-enriched regions shaded in yellow and green, respectively. c, Recurrent
amplifications targeting type II (ACVR2A and ACVR2B) and type I (TGFBR1) activin
receptors in Group 3. d, Recurrent SCNAs affecting the TGFβ pathway in Group 3
(P=5.73E-05, Fisher’s exact test). Frequencies of focal and broad (parentheses) SCNAs are
listed. e, Enrichment plot of gene sets affected by SCNAs in Group 3 vs. Group 4.
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Figure 4. Tandem duplication of SNCAIP defines a novel subtype of Group 4
a, Highly recurrent, focal, single copy gain of SNCAIP in Group 4. b, Paired-end mapping
verifies recurrent tandem duplication of SNCAIP in Group 4. c, Schematic representation of
SNCAIP tandem duplication. d, SNCAIP is a Group 4 signature gene. Upper panel.
SNCAIP expression across subgroups in a published series of 103 primary
medulloblastomas. Lower panel. SNCAIP ranks among the top 1% (rank=39/16,758) of
highly expressed genes in Group 4. e, NMF consensus clustering of 188 expression-profiled
Group 4s supports two transcriptionally distinct subtypes designated 4α and 4β (Cophenetic
coefficient=0.9956). 21/22 SNCAIP duplicated cases belong to Group 4α (P=3.12E-08,
Fisher’s exact test). f, SNCAIP expression is significantly elevated in Group 4α vs. 4β
(P=9.31E-14, Mann-Whitney test). g, Group 4α cases harboring SNCAIP duplication
exhibit a ~1.5-fold increase in SNCAIP expression.
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Figure 5. Identification of frequent PVT1-MYC fusion genes in Group 3
a, b, RNASeq identifies multiple fusion transcripts driven by PVT1 in Group 3. Schematics
depict the structures of verified PVT1-MYC (b) and PVT1-NDRG1 (c) fusion genes. c,
Heatmap of the MYC/PVT1 locus showing a subset of 13 MYC-amplified Group 3 cases
subsequently verified to exhibit PVT1 gene fusions (shown in d). Yellow box highlights the
common breakpoint affecting the first exon/intron of PVT1, including miR-1204. d,
Summary of PVT1 fusion transcripts identified in Group 3. e, f, WGS confirms complex
patterns of rearrangement on chr8q24 in PVT1 fusion(+) Group 3.
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Figure 6. Functional synergy between miR-1204 and MYC secondary to PVT1-MYC fusion
a, qRT-PCR of PVT1-encoded microRNAs confirms up-regulation of miR-1204 in PVT1-
MYC fusion(+) Group 3s: MYC-balanced/fusion(−), n=4; MYC-amplified/fusion(−), n=6;
MYC-amplified/fusion(+), n=8. Error bars represent standard error of the mean (SEM) and
reflect variability among samples. b, c Knockdown of miR-1204 attenuates the proliferative
capacity of PVT1-MYC fusion(+) MED8A medulloblastoma cells (b) but has no effect on
fusion(−) ONS76 cells (c). Error bars represent the standard deviation (SD) of triplicate
experiments.
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