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Abstract 

Variants of path models have been widely used for the analysis of the social status 
attainment process. The methods presented here differ from earlier approaches in several 
ways. Social status is considered a categorical variable and path models are developed 
starting from graphical models, using the marginal log-linear approach. Overall model fit 
may be tested by standard techniques. Under these models, the status attainment process is 
completely characterized by a set of parameters that measure the strengths of the relevant 
effects. This is in sharp contrast with estimating and interpreting ad hoc parameters, 
without paying attention to overall model fit and to other effects influencing the process. 
The method is applied to the social status attainment process in the USA, Hungary and 
Czechoslovakia at the end of the last century, and shows that policies in the latter socialist 
countries to prevent status inheritance had little success.  
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“There has been a revolution in the study of social mobility: the once 

dominant Blau-Duncan paradigm has been overthrown by log-linear 

modeling. [...] The log-linear revolution was a noble experiment, and at 

first seemed to offer a bright new future beyond Blau and Duncan. [...] In 

the end, I believe Goldthorpe's experiment failed. A decade and more has 

passed. Endless models have been fitted; legions of design matrices passed 

in review; chi-squares marshaled. But we have learnt little new of 

substance. Frequencies in a crude cross-classification of father's 

occupation by son's occupation are described in loving detail, with some 

ad-hoc interpretation but little theory. [...] This compares poorly with the 

statistically simpler but conceptually more sophisticated results of the Blau-

Duncan paradigm.” 

 
     Jonathan Kelly: The failure of a paradigm (1990) 

 

Introduction 

The motto of our paper reveals the long-standing need for covering structural relationships 
as Blau and Duncan did but defining social status in Goldthorpe’s way with categorical 
variables. Discrete graphical models which this paper deals with are capable to achieve 
these two goals simultaneously. They generalize log-linear models and are able to model 
direction of influences. 

Graphical models (classic works are Whittaker, 1990, Cox and Wermuth, 1996 and 
Lauritzen, 1996) provide a well visualizable and easily interpretable representation of 
complex associations. The models are based on graphs in which nodes represent variables 
and missing edges represent conditional independence statements. Modifications of the 
hypotheses can be easily followed by drawing new or deleting old edges. Take as an 
example the classic model of Figure 1. There is no edge between father’s education and 
offspring’s occupation which means that they are conditionally independent, controlled for 
the predictors of occupation, father’s occupation and offspring’s education. This 
assumption is generally plausible for Western countries, but may fail in the case of socialist 
Eastern-European societies. For example in Czechoslovakia before the collapse of the State 
Socialist system, if higher status children could not study as a consequence of negative 
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educational discrimination, they found other ways to achievement with the help of inherited 
cultural capital and aspirations (Boguszak et al., 1990). Father’s education had a direct 
effect on offspring’s occupation; therefore the graph of Figure 1 should be completed with 
an arrow. 

Father's education

Father's occupation

Income

Education

Occupation

 
Figure 1. A status attainment model. 
In this paper, our focus is on categorical variables, but graphical models can also handle 
continuous data (e.g. Cox and Wermuth, 1996). Continuous data with normality assumed 
and categorical data turned out to be quite different from the perspective of graphical 
modeling. The study of discrete models is still an active research area (e.g. Drton, 2009, 
Rudas et al., 2010, Marchetti and Lupparelli, 2011), with some questions still open. 
However, several important results are already available; this paper introduces them 
through a concrete sociological example rather than through mathematics. The example 
concerns social mobility, however, extension of the present model to other research areas is 
straightforward. Németh and Rudas (2013) present the underlying theory in more detail. 

Graphical models 

Graphical models are models based on graphs in which nodes represent random variables, 
and missing edges represent conditional independence assumptions, hence the graphs 
provide a compact representation of characteristics of joint probability distributions. If the 
graph has only directed edges (arrows), but contains no directed cycles, is called a directed 
acyclic graph (DAG, also called as Bayesian network or belief network). The conditional 
independencies defining a DAG can be read off using the rule that a variable is 
conditionally independent of its non-descendants, given its parents. The graph of Figure 1 
is a DAG, and the rule implies that the following conditional independencies define the 
model:  

' ' | ,

' | ' ,

I E O OE

O E O E

⊥

⊥
           (1) 
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where I stands for income, E stands for education, O stands for occupation, and E’ and O’ 
stand for father’s characteristics. ' | 'O E O E⊥  means that father’s education has no direct 
effect on his offspring’s occupation controlled for the mediator variables, father’s 
occupation and offspring’s education. ' ' |I E O OE⊥  means that E’ and O’ do not have a 
direct effect neither separately nor jointly on I, controlled for O and E. The latter statement 
points to an important difference between discrete and Gaussian graphical models. The 
pairwise independence statements ' |I E OE⊥  and ' |I O OE⊥  imply ' ' |I E O OE⊥  only 
in the case of normally distributed variables, but not in the case of categorical data. In 
association with this, in the case of Gaussian data only effects associated with the edges 
exist, e.g., the effects of E and O on I might be separated. But in the discrete case this 
assumption does not hold automatically, rather needs to be imposed. Discrete graphical 
models fulfilling this assumption are inspired by Goodman (1973) and were discussed 
within the unified framework of marginal log-linear modeling by Rudas et al. (2006). 
Rudas et al. derived these models from DAG models and, following Goodman and 
emphasizing the parallelism with Gaussian path models, called them discrete path models. 
This important difference between continuous and categorical variables points to the fact 
that concerning conditional associations, categorical data allow for richer structure than 
continuous data do under the almost automatic assumption of multivariate normality. 

In the paper DAG models and path models derived from DAGs are considered. There are 
two other main types of graphical models which differ with regard to their edges, that is, 
with regard to the association structure capable to describe (Lauritzen, 1996). A graph with 
only undirected edges is called an undirected graph (also called Markov network or Markov 
random field). Variables in this case are considered on equal footing. Undirected graphs 
and DAGs were extended to permit both directed and undirected edges; such graphs are 
called chain graphs. Chain graphs allow both response-predictor and symmetric association 
relations between variables. In the last decade different competing approaches to chain 
graphs emerged, see e.g. Andersson et al. (2001), Drton (2009) and also Németh and Rudas 
(2013). 

Social mobility research context 

Sociological application of graphical models may arise in the field of intergenerational 
social mobility. Several shifts occurred in the last decades in research on social mobility, 
and the successive generations of researchers remarkably differed from a methodological 
viewpoint (Ganzeboom, Treiman and Ultee, 1991, Treiman and Ganzeboom, 2000, 
Wolbers et al., 2011). The first generation of mobility research (one of the main works is 
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Lipset and Bendix, 1959) focused on cross-tabulation of father's occupation by son's 
occupation, detecting patterns of mobility and measuring the openness of societies within 
this table. The second generation exchanged these tables for path models describing the 
whole status attainment process (Blau, Duncan, 1967). They operationalized occupation 
with continuous rather than categorical variables. Path models can handle more than two 
variables; hence intervening variables like son’s education could be also involved in the 
analysis. They „opened the black box of mobility” (expressive words of Kelley, 1990) 
constituted of the two-way table of the former generation. The third generation found again 
the categorical operationalization theoretically more adequate. They turned back to the two-
way table of the first generation, but used log-linear models which allow finer analysis of 
the table (Featherman and Hauser, 1978, Goldthorpe, Payne and Llewellyn, 1978, 
Goodman, 1973). The fourth generation does not represent a unified paradigm, neither from 
the perspective of their research questions nor from that of their methods. Methods of this 
generation important in the context of discrete graphical modeling are unidiff models 
(Erikson and Goldthorpe, 1992, Xie, 1992); extensions of path models to categorical 
variables, primarily within the framework of structural equation modeling (a good summary 
is Menard, 2010, chapter 8) and different generalizations of log-linear models continuing 
the third generation’s thinking (Zelterman and Youn, 1992, Rudas, Klimova, 2011). 

It is conspicuous how the viewpoint of successive generations altered regarding the 
operationalization of variables. Researchers divided into those who favor a class approach 
(categorical variables) and those who favor a hierarchical approach (continuous variables). 
The choice is not a technical one: it follows from the researcher’s sociological theory, and it 
has far reaching consequences on the kinds of analyses that are usually performed with the 
data. None of the two approaches is superior; the common argument that continuous coding 
containing more information is more precise, fails. The continuous variable approach 
assumes that only one dimension can capture the differences between occupational groups 
and it allows an unlimited number of groups. The categorical variable approach assumes 
that there exist a number of clearly distinguishable classes based on, for example, labor 
market position, skill level and sectoral differences. Classes are assumed to be not 
necessary ordered and relatively homogeneous internally. Regarding the statistical 
methods, while the continuous approaches usually seek simplicity and structure in some 
kind of a linear relationship, the categorical approach allows for much richer structures. 
The categorical approach shows us where the typical channels for or barriers to movement 
are in the social structure, providing clues about the stratification process. These “channels” 
and “barriers” (Blau and Duncan’s terminology, 1967:117) cannot be revealed within the 
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continuous approach, because it averages different recruitment patterns specific to different 
classes. 

Another alternation can also be observed in the history of mobility research: sometimes the 
research question of “how much mobility” (macro perspective, collective mobility, typical 
for the first generation), other times the question of “how mobility works” (micro 
perspective, individual process, typical for the second generation) was put forward. The 
first approach defines one specific measure of mobility, which makes across-country and 
across-time comparisons easier. Such a single measure has its statistical advantage as well, 
since it provides great statistical power to discern slight trends. For this very reason, the 
third generation’s log-linear models were criticized for estimating too many parameters and 
not being powerful instruments in comparative researches (Vallet, 2001). To solve this 
problem, unidiff models for two-way mobility tables were proposed (Erikson and 
Goldthorpe, 1992, also known as log-multiplicative layer effect model, Xie, 1992). The 
name, „unidiff” comes from „uniform difference”: the model assumes that all odds ratios of 
the table change in the same direction over time; this common change is measured by the 
unidiff parameter. 

Single measures of mobility make comparisons easier, but do not provide explanation. For 
this reason the two approaches could be well combined: process models like graphical 
models could describe the mechanisms which are behind the trends detected by aggregated 
measures. 

The earliest measures answering the question of “how much mobility” were functions of 
the margins of the occupational table, i.e. the fathers’ and the offsprings’ occupational 
structure, therefore they were inadequate for comparative analyses. This problem was 
recognized during the first generation and several proposals were put forward to solve it 
(Ganzeboom et al., 1991). The third generation’s log-linear models also achieved this 
requirement, since the log-linear parameters describing margins (main effects) and 
associations (interaction effects) are variation independent, which means that they can have 
any value independently from each other (Rudas, 1998). Parameters defining discrete 
graphical models can also be chosen to be variation independent (Bergsma, Rudas, 2002). 
On the contrary, the unidiff parameter is affected by structural changes (Breen and Luijkx, 
2004). 

Among methods answering „how mobility works” are path models and their generalization, 
structural equation modeling (SEM). SEM, similarly to graphical modeling, represents the 
associations by a graph. However, the two methods define this graph in different ways. 
Graphical models characterize the association structure with the lack of some edges, which 
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correspond to conditional independences. SEM, on the contrary, focuses on existing rather 
than missing edges and estimates direct effects pertaining to the edges. In SEM, a missing 
edge does not in general imply independence, neither conditional nor unconditional (Cox 
and Wermuth, 1993, Whittaker, 1990, Cox and Wermuth, 2001). Graphical modeling is 
preferable if the research question concerns conditional independences (which formerly 
attained resources are already irrelevant at a given step of the status attainment process). 

The other main difference to graphical models is the way in which categorical variables are 
modeled. The SEM approach, developed originally for Gaussian variables, has been 
extended to handle categorical variables in many ways; they most often are treated as a 
manifestation of an underlying continuous variable (see as a review Kupek, 2005, 2006). 
On the contrary, graphical models treat categorical data as inherent categories. Finally, both 
methods aim to identify direct and indirect effects of one variable on another, however, 
graphical modeling does not provide an additive decomposition of the total effect. Despite 
these differences, several new results at the intersection of the two areas emerged in the last 
years. An example is Koster (1999), who showed that the independence structure defined 
with any structural equation model for Gaussian variables can be read off from a 
corresponding graph. 

To sum up, selection of the appropriate method cannot be reduced to a statistical question. 
Background concepts and research questions affect when graphical models are preferable to 
other alternatives or can complement them by introducing a new viewpoint. 

Marginal log-linear parameterization 

If one decides to operationalize variables as categorical and to use graphical modeling, a 
basic question is how to parameterize the contingency table in order to easily define 
graphical models on it. This is an important issue, since (1) a graphical model could be 
given by restricting the parameters (preferably in an easy way, setting some of them to 
zero). Additionally, (2) it is very often the case that one moves from a poorly fitting model 
to a slightly less restrictive model in the hope of a better model fit, by adding new edges to 
the graph, one after the other. Or on the contrary, the initial model is a well fitting one, and 
one searches for a slightly more restrictive model in the hope of still good model fit, by 
removing edges in the graph. One can obtain the new model by omitting some (or 
introducing new) parameter restrictions. Furthermore, (3) interpretation of a model is 
usually based on estimated parameter values. An improper parameterization may consist of 
variationally dependent parameters which make the interpretation of the parameters 
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misleading. Finally, (4) some parameterizations lead to the standard results from 
asymptotic distribution and testing theory to fail. 

These problems can be avoided by defining graphical models with properly chosen 
marginal log-linear parameters (Bergsma and Rudas, 2002). These parameters are marginal, 
because they are defined not in the whole table rather within a marginal of it. Let us take as 
an example the 2X2X2X2 table of O’ (father’s occupation), E (educational level), O 
(occupation) and I (income). Recall that the usual log-linear parameter of an effect 
measures the association among the variables, conditioned on the categories of all other 
variables and averaged over these categories. For example the parameter of the EI effect 
pertaining to the E=1 and I=1 indices can be computed as3: 

1/ 4

1 1 2 2
*1*1

1 2 2 1,

1
log ,

4
O EOI i k i k

i k i ki k

p p

p p
λ

′  
=  

 
∑               (2) 

where pijkl is the probability of the cell O’=i, E=j, O=k and I=l. Note that the expression in 
the brackets is the odds ratio computed within the conditional table. The parameter may 
take any number, positive or negative. In case of positivity, on the average there are more 
observations in the four cells with E=1, I=1 indices than there would be if E and I were 
conditionally independent (holding O’ and O fixed, people with educational level of 1 are 
more likely to be in the first income category); and vice versa, in case of negativity having 
the first educational level is a barrier to achieving the first income category, when O’ and O 
are controlled for. 

If, instead of this, one is interested in the association measured in a marginal rather than the 
entire table, marginal log-linear parameters can be defined in a similar way. The EI effect, 
for example, can be measured within the EI marginal after marginalization over O’ and O: 

1/ 4

1 1 2 2
11

1 2 2 1

log ,EI p p
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=  

 
                          (3) 

or within the EOI marginal after marginalization over O’:  

1/ 4
1 1 2 2

1*1
1 2 2 1

1
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=  

 
∑               (4) 

                                                 
3 In this paper, as in the most applications of log-linear modeling, λ  parameters are 
calculated using effect coding (Agresti 2002). 
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where “+” is a marginalization operator. The parameters in (2), (3) and (4) all pertain to the 
EI effect, but apparently, their values heavily depend on the marginal from which they are 
computed. While the parameter 11

EI
λ , measuring the total effect of education on income, is 

expected to take a high positive value; the parameter 1*1
EOI

λ  is smaller, since it measures the 
direct effect of education on income controlled for occupation. 

Graphical models cannot be parameterized with usual log-linear parameters, since the 
conditional independence restrictions defining the model in general do not involve all 
variables, rather certain subsets of them. However, marginal log-linear parameters of the 
above kind can be used to parameterize such models. As it is readily implied by the results 
of Bergsma and Rudas (2002), marginal log-linear parameterizations which meet some 
simple criteria assure that missing edges correspond to some of the parameters being zero, 
and the non-restricted parameters of the model can be interpreted in a straightforward way. 
The way these combinatorial properties can be achieved was shown by Rudas et al. (2006) 
for DAGs and by Rudas et al. (2010) for a class of chain graphs, and this is illustrated next.  

As an example, let us take the DAG of Figure 1. Following Rudas et al. (2006), let us 
consider a complete ordering of the variables which suits the direction of the arrows. Let 
this ordering be E’O’EOI, where E, O, I and O’ is as before, while E’ is father’s education. 
The ordering gives the marginals used in the parameterization: E’O’, E’O’E, E’O’EO and 
E’O’EOI. Each subset of the five variables makes up an effect, the marginal within which 
an effect is computed is the smallest possible one (i.e. the parameterization is hierarchical, 
see Table 1).The conditional independencies in (1) can be obtained by setting those 
parameters to zero whose effect contains non-connected nodes. 

 

Table 1. Parameterization of the DAG of Figure 1. 
 
Marginal E’O’ E’O’E E’O’EO E’O’EOI 
Effect set 
to zero 

  E’O, E’O’O, 
E’EO, 
E’O’EO  

E’I, O’I, E’O’I, E’EI, O’EI, 
E’O’EI, E’OI, O’OI, E’O’OI, 
E’EOI, O’EOI, E’O’EOI 

Free effect empty, E’, 
O’, E’O’ 

E, E’E, 
O’E, 
E’O’E 

O, O’O, EO, 
O’EO 

I, EI, OI, EOI 
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The free parameters contain all information about the distributions in the model. The model 
can be parameterized in other ways as well, but the one obtained this way avoids the 
problems listed in the beginning of this section (for the proof see Bergsma and Rudas, 
2002). Namely, the parameters are variation independent and may be interpreted separately, 
maximum likelihood estimates exist and have an asymptotic normal distribution, and the 
likelihood ratio statistic for testing the model has an asymptotic chi-squared distribution 
with the number of zero parameters as the number of degrees of freedom. Data analysis 
happens in a straightforward way: data are fitted to the model by forcing some parameters 
to be zero, and in case of good fit the status attainment process is interpreted with the help 
of the estimated values of the free parameters. This method is in sharp contrast with 
estimating and interpreting ad hoc parameters, without paying attention to overall model fit 
and to other effects influencing the process. 

The marginals of the free parameters can be simplified in a way which makes the 
interpretation easier while keeping the parameterization’s favorable characteristics 
unchanged. Namely, if the above zero parameters are fixed, then those variables which are 
neither elements of the effect nor parents of the last variable in the marginal can be 
removed from the marginal without any change in the value of the parameters. For 
example, the strength of the O’O effect is the same whether computed within the E’O’EO 
or within the O’EO marginal, because E’ is neither an element of O’O nor the parent of O. 
Without proving this, we refer to the fact that conditional independence is equivalent to a 
simplification of the conditional probability function (e.g. Lauritzen, 1990): 

| ( | , ) ( | ).X Y Z p x y z p x z⊥ ⇔ =  

After simplifications, we obtain the final parameterization of Table 2, where the marginals 
of the free parameters contain only one variable with its parents. 

 

Table 2. Simplified parameterization of the DAG of Figure 1. 
 
Marginal E’O’ E’O’E O’EO E’O’EO EOI E’O’EOI 
Effect set 
to zero 

   E’O, 
E’O’O, 
E’EO, 
E’O’EO  

 E’I, O’I, E’O’I, E’EI, 
O’EI, E’O’EI, E’OI, 
O’OI, E’O’OI, E’EOI, 
O’EOI, E’O’EOI 

Free 
effect 

empty, 
E’, O’, 

E, E’E, 
O’E, 

O, O’O, 
EO, 

 I, EI, 
OI, 
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E’O’ E’O’E O’EO EOI 
 

Separate interpretability of the parameters permit that one could obtain new models by 
introducing new parameter restrictions. For example, if one wants to derive a discrete path 
model by introducing the assumption that automatically holds for Gaussian path models 
and Gaussian DAGs, namely, that only effects associated with the edges exist, then effects 
with more than two elements should be also set to zero. Less formally this assumption 
states that parents with common child do not have a joint effect on the child over and above 
their separate effects. The remaining free parameters parameterizing the distributions in the 
path model are listed in Table 3. 

 

Table 3. Parameterization of the path model of Figure 1. 
 
Marginal E’O’ E’O’E O’EO E’O’EO EOI E’O’EOI 
Effect set 
to zero 

 E’O’E O’EO E’O, 
E’O’O, 
E’EO, 
E’O’EO  

EOI E’I, O’I, E’O’I, E’EI, 
O’EI, E’O’EI, E’OI, 
O’OI, E’O’OI, E’EOI, 
O’EOI, E’O’EOI 

Free effect empty, 
E’, O’, 
E’O’ 

E, E’E, 
O’E,  

O, 
O’O, 
EO 

 I, 
EI, 
OI 

 

 

Status attainment in the USA, Hungary and Czechoslovakia 

The model of Figure 1 is a variant of the classic Blau-Duncan model; its original source is 
Duncan et al. (1968), but made widely known by Treiman (1970), whose often cited 
modernization hypothesis was defined using this model. According to Treiman’s 
modernization hypothesis, economical-technological development leads to a more open 
society as the increasing bureaucratization of work makes direct inheritance of positions 
more difficult: the job market of a developed economy rewards abilities achieved through 
formal education (Treiman, 1970). Treiman expressed his hypothesis in a formal way 
referring to the steps of the status attainment process: as societies develop, the direct 
influence of father’s occupation on education and occupation declines, similarly to the 
education-income direct effect, while the education-occupation and occupation-income 
direct effects become stronger. 
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In what follows, the model Figure 1 is fitted to data from the International Social Survey 
Programme, choosing the year of 1992 in order to detect the effects of socialist regimes on 
mobility. The analysis covers two former socialist states of Central Europe 
(Czechoslovakia, Hungary) and a liberal welfare state, the USA. Regarding these three 
countries, Treiman and other economic theories (e.g. Lipset and Zetterberg, 1959, Blau and 
Duncan, 1967, Jonsson, 1992) would predict that social mobility is highest in the 
economically more developed USA. However, apart from industrialization other factors, 
like political intervention might influence status attainment, possibly in a different 
direction. Socialist regimes had the proclaimed goal of creating an egalitarian society; and 
they favored the advancement of people with working class backgrounds. According to 
Boguszak et al. (1990) these policies could not completely achieve their goals in 
Czechoslovakia. They claim that inherited aspirations and cultural capital compensated for 
educational discrimination against politically undesirable higher status students. Thus 
regarding the USA-Hungary-Czechoslovakia comparison, political and economic 
approaches do not yield a consistent forecast. Our study aims to contribute to this question 
by fitting Treiman’s model and estimating the effects appearing in his modernization 
hypothesis. These effects correspond to the free parameters in Table 2. 

Wording their finding more formally, Boguszak et al. (1990) hypothesized that occupation 
is directly influenced by father’s education. The hypothesis corresponds to the addition of 
the arrow E’O to the graph (Figure 2). 

 

I

O'

E'

O

E

I

O' O

EE'  
Figure 2. Treiman’s model and its modification. 
 

A new arrow added always means some ease in the conditional independence restrictions; 
in the present case the new graph implies only one of the two statements listed in (1): 

' ' | .I O E OE⊥        

Since the conditional independence defining the model is given within only one marginal, 
the model is a log-linear one, which can be parameterized with the usual log-linear 
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parameters. However, the DAG-parameterization described above has the advantage of 
yielding better interpretable parameters, because it uses different marginals following the 
structure of the graph. Table 4 shows the parameters obtained this way. 

 

Table 4. Parameterization of the modified Treiman model of Figure 2. 
 
Marginal E’O’ E’O’E E’O’EO EOI E’O’EOI 
Effect set 
to zero 

    E’I, O’I, E’O’I, E’EI, 
O’EI, E’O’EI, E’OI, 
O’OI, E’O’OI, E’EOI, 
O’EOI, E’O’EOI 

Free effect empty, 
E’, O’, 
E’O’ 

E, E’E, 
O’E, 
E’O’E 

O, O’O, EO, 
O’EO, E’O, 
E’O’O, E’EO, 
E’O’EO 

I, EI, 
OI, 
EOI 

 

 

In the analysis these two models of status attainment process will be tested. The ISSP 1992 
data are restricted to those at least 25 years old with non-missing data for each variable. 
The sample size is 725 for Czechoslovakia, 857 for Hungary and 524 for the USA. The 
five-dimensional table of the joint distribution contains 28, 23 and 28 empty cells, 
respectively; therefore a value of 0.5 is added to each cell. 

Income is defined as a binary variable (above/below median); it is derived from the 
respondent’s average monthly income using the country-specific median as a cut point to 
allow cross-country comparison. Education is also binary (with or without a college 
degree). The questionnaires defined father’s occupation as the one he had when the 
respondent was 16 years old, while respondent’s occupation is her/his present job or the last 
job if she/he did not have one. We use a hierarchical three-class version of the EGP 
classification following the recommendation of Erikson and Goldthorpe (1992, pp.44-46.): 

1. upper class (professionals, administrators, officials, managers, higher-grade 
technicians), 

2. middle class (routine non-manual workers, pretty bourgeoisie, skilled workers, and for 
offsprings: farmers and other self-employed workers in primary production), 

3. lower class (non-skilled workers, agricultural and other workers in primary production, 
and for fathers: farmers and other self-employed workers in primary production). 
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The five variables yield a table with 72 cells, which can be parameterized with 72 
parameters, some of which are set to zero by the model. The number of non-redundant zero 
parameters equals to the number of degrees of freedom of the likelihood ratio test statistics 
(L2) that is used to test model fit. Since the log-linear parameters summed in any of its 
indices are 0, for a k level index, there are k-1 non-redundant parameters. Therefore the 
zero effects in Table 1 define four non-redundant parameters if they contain both O and O’. 
There are two non-redundant parameters if the effect contains only one of O and O’, and 
there is only one non-redundant parameter if the effect does not contain them. This yields 
altogether 42 non-redundant parameters for model 1 (Treiman’s original model) and 30 for 
model 2 (modified Treiman’s model). Since some empty cells may be structural (i.e. also 
empty in the population), the real degrees of freedom is between these values and the ones 
reduced by the number of empty cells, rather closer to the former ones.  

Model 1 is nested within model 2, therefore the difference of the likelihood ratio statistics 
can be used to compare them. The Bayesian Information Criterion (BIC) is also computed 
with taking the degrees of freedom at its maximum value. As the real degrees of freedom 
differs from this value to a different extent country by country, our BIC is proposed for 
within-country comparisons. 

Table 5 shows the results. The column df contains maximal and minimal values of the 
degrees of freedom, and according to this, the column p contains two, maximal and 
minimal, values. The real p values are between these, rather closer to the larger ones. 

 

Table 5. Fit statistics for model 1 and model 2. 
 

 Model 1 Model 2 Model 2 | Model 1 

 L2 df p BIC L2 df p BIC  ∆L2 ∆df p ∆BIC 

HU 38.1 42/14 .643/.000 -247.8 23.3 30/2 .802/.000 -180.9 14.8 12 .253 66.9 

CS 38.8 42/19 .614/.005 -239.9 25.5 30/7 .700/.000 -173.5 13.3 12 .348 66.4 

USA 25.6 42/14 .978/.030 -241.9 14.7 30/2 .991/.000 -176.3 10.9 12 .538 65.6 

 
Both models fit well in case of each country. Comparing model 1 to model 2, reduction in 
model fit is not significant even in the case of socialist countries, hence the more 
parsimonious model 1 is to be chosen. That is, the arrow E’O may be omitted from the 
graph. 
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In the next step the path model parameterized in Table 3 is fitted: the question is whether 
higher than first-order effects of Model 1 are relevant in the status attainment process. 
According to Table 6, the path model fits well in each country. The BIC prefers the path 
model to model 1, so does L

2 with the only exception of Hungary. Since the p value 
pertaining to the difference in L

2 is nearly 0.05 for Hungary, we choose the more 
parsimonious and well-fitting path model for each country. 

 

Table 6. Fit statistics for model 1 and its path version. 
 

 Model 1 Path model Path model | Model 1 

 L2 df p BIC L2 df p BIC ∆L2 ∆df p ∆BIC 

HU 38.1 42/14 .643/.000 -247.8 53.9 50/22 .327/.002 -286.4 15.8 8 .045 -38,6 

CS 38.8 42/19 .614/.005 -239.9 41.9 50/27 .786/.006 -289.8 3.1 8 .926 -49,9 

USA 25.6 42/14 .978/.030 -241.9 28.0 50/22 .995/.150 -290.4 2.4 8 .965 -48,5 

 

The estimated free parameters (listed in Table 3) pertaining to the arrows describe the 
country-specific mobility patterns (Table 7-Table 13). Recall that these values characterize 
average conditional effects, where the conditioning set is defined by the marginal within 
which the effects were computed. Greater absolute values denote stronger effects; 
positive/negative values increase/decrease the chance of falling into the given cell. The 
signs *, ** and *** denote significance at the 0.05, 0.01 and 0.001 level, respectively. 

Table 7 presents the estimates for the effect pertaining to the arrow E’O’, which is the 
(total) E’O’ effect computed within the E’O’ marginal. According to the results, there 
exists a strong, statistically significant relationship between fathers’ education and 
occupation. The association is weakest in the USA and strongest in Hungary. In the latter 
country, occupational classes are closed at top and bottom: the upper class is rather 
recruited from those with a degree, while the lower class is recruited from non-degree 
individuals. Czechoslovakia is closed at the top.  

 
Table 7. Estimates of parameter ' '.E O

ijλ  

 
E’-O’ USA Hungary Czechoslovakia 
 U M L U M L U M L 
Coll 0.78*** -0.29** -0.49*** 0.98*** -0.18 -0.80*** 0.97*** -0.54*** -0.43*** 
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No coll -0.78*** 0.29** 0.49*** -0.98*** 0.18 0.80*** -0.97*** 0.54*** 0.43*** 

 

There are two arrows pointing to education in the status attainment model: father’s education and his 

occupation. Their estimated (direct) effects, controlled for each other, are shown in  
Table 8 and Table 9. The E’E association (conditioned on and averaged over O’) is 
significant and positive; the weakest effect is observed in the USA, and the strongest in 
Hungary. One’s chance of getting a degree is largely dependent on the father’s education, 
even controlling for paternal occupation. The latter factor, father’s occupation has a weaker 
but positive direct effect conditioned on father’s education. The association is equally 
strong in the post-socialist countries and slight in the USA. 

 

Table 8. Estimates of parameter ' '
* .E O E

i kλ  

 
E’-E USA Hungary Czechoslovakia 
 Coll No coll Coll No coll Coll No coll 
Coll 0.26*** -0.26*** 0.56*** -0.56*** 0.39*** -0.39*** 
No coll -0.26*** 0.26*** -0.56*** 0.56*** -0.39*** 0.39*** 

 
Table 9. Estimates of parameter ' '

* .E O E
jkλ  

 
O’-E USA Hungary Czechoslovakia 
 Coll No coll Coll No coll Coll No coll 
U 0.21* -0.21* 0.30** -0.30** 0.32*** -0.32*** 
M -0.07 0.07 -0.02 0.02 -0.03 0.03 
L -0.14 0.14 -0.28*** 0.28*** -0.30*** 0.30*** 

 
Occupation is affected by paternal occupation and education; Table 10 and Table 11 
present the estimates for these direct effects. In the USA, paternal occupation has a weak 
effect: the American seems to be the most open of the three societies. Occupational 
inheritance is more marked at bottom in Hungary and at top in Czechoslovakia. Again, the 
effect is stronger in the post-socialist countries. The same is true for the effect of education 
(Table 11). The association is weakest in the USA, where, contrary to the post-socialist 
countries, the recruitments into the middle and lower class are similar ( ' '

*22 *23
O EO O EO

λ λ≈ ).  

 

Table 10. Estimates of parameter '
* .O EO

j lλ  
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O’-O USA Hungary Czechoslovakia 
 U M L U M L U M L 
U 0.36*** -0.17 -0.19 0.23* -0.03 -0.20 0.45*** -0.05 -0.40** 
M -0.09 0.09 0.00 0.22* 0.09 -0.31** -0.24** 0.10 0.14 
L -0.27** 0.09 0.19* -0.45*** -0.06 0.51*** -0.21* -0.05 0.26** 
 

 
Table 11. Estimates of parameter '

* .O EO
klλ  

 
E-O USA Hungary Czechoslovakia 
 U M L U M L U M L 
Coll 0.50*** -0.23 -0.26 0.85*** -0.24* -0.61*** 0.82*** -0.38*** -0.44*** 
No coll -0.50*** 0.23 0.26 -0.85*** 0.24* 0.61*** -0.82*** 0.38*** 0.44*** 

 
In the USA, the effect of education on income is completely mediated by occupation: the 
direct effect is almost zero and insignificant (Table 12), while the effect of occupation is 
significant and strong (Table 13). The picture is different for the post-socialist countries, 
where education has a strong direct effect over occupation, but the effect of occupation is 
much weaker in Czechoslovakia. Another feature of the USA/post-socialist opposition is 
the pattern in the OI effect: in the USA, upper class individuals are much more likely to 
earn over the median income, but the middle and lower classes do not really differ from this 
aspect. In Hungary, the gap is less deep between the upper and middle classes, but the 
middle and lower classes are far from each other.  

 
Table 12. Estimates of parameter * .EOI

k mλ  

 
E-I USA Hungary Czechoslovakia 
 High Low High Low High Low 
Coll 0.12 -0.12 0.348*** -0.348*** 0.257*** -0.257*** 
No coll -0.12 0.12 -0.348*** 0.348*** -0.257*** 0.257*** 

 
Table 13. Estimates of parameter * .EOI

lmλ  

 
O-I USA Hungary Czechoslovakia 
 Coll No coll Coll No coll Coll No coll 
U 0.51*** -0.51*** 0.25*** -0.25*** 0.13* -0.13* 
M -0.26*** 0.26*** 0.12* -0.12* 0.03 -0.03 
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L -0.26*** 0.26*** -0.36*** 0.36*** -0.16** 0.16** 

 

The graph of Figure 3 sums up these results by representing the size of the effects by the 
width of the arrows.  

 

E

I

O
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O'

E

I

O

E'

O'

Hungary Czechoslovakia

E

I

O

E'

O'

USA  
Figure 3. Results. 
 

There are clear tendencies in the estimates: 

1. a child with a lower status family faces more barriers to educational success in 
the post-socialist countries than in the USA (arrows E’E and O’E), and  

2. in these countries, the recruitment process into occupational classes is more 
strongly affected by education (arrow EO), than in the USA; 

3. contrary to the post-socialist countries, American income is strongly determined 
by occupation (a thick OI arrow) and  

4. in the USA, occupation completely mediates the effect of education (a thin EI 

arrow); finally, 

5. there is a deeper gap between the upper class and the other two classes in the 
USA than in the post-socialist countries, but the middle and lower classes are 
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closer to each other than their Eastern European counterparts (estimates of effect 
EO and OI). 

 

Points 1, 3 and 4 imply that, in Treiman’s sense, the American society is more developed 
than the Hungarian or the Czechoslovakian ones. Only point 2 contradicts to this 
conclusion, since in Treiman’s theory the job market of a developed economy more 
markedly rewards abilities achieved through formal education. Finally, in Hungary and 
Czechoslovakia, policies to weaken intergenerational educational transmission (effect E’E) 
were rather unsuccessful. 
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