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Abstract 

 
Graphical models are defined by general and possibly complex conditional 
independence assumptions and are well suited to model direct and indirect 
associations and effects that are of central importance in many problems of 
sociology. Such relevance is apparent in research on social mobility. Graphical 
models are discussed in the marginal modeling framework, and a general version 
of path models for categorical data is also introduced. These models are applied to 
the social status attainment process and, as substantive results, new insights into 
the difference between liberal and conservative welfare systems are gained. To 
help the use of these models, all details of the analyses are posted on a website so 
that readers can easily modify the analyses to their own data and models. 
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1 Introduction 
A graphical model (see, e.g. Lauritzen and Wermuth 1989, Frydenberg 1990, Whittaker 1990, 
Cox and Wermuth 1996, Lauritzen 1996, Andersson et al. 2001, Richardson 2003, Wermuth 
and Cox 2004, and Drton 2009) is defined over a graph whose vertices correspond to the 
variables of interest and the missing edges of the graph encode conditional independence 
restrictions. Since these conditional independence restrictions for certain kinds of graphs do 
not involve all variables, rather certain marginal distributions, graphical models based on 
graphs are, in general, marginal models. 

The present paper helps social scientists to apply graphical models by (a) giving an intuitive 
overview of the most important properties of graphical models, (b) providing this overview 
from the perspective of marginal modeling (Bergsma and Rudas 2002), which leads to a 
deeper insight than other approaches, including easily interpretable parameters, (c) 
concentrating on discrete variables, which have many interesting characteristics not shared by 
continuous data and (d) providing all details of the analyses presented on an accompanying 
website (anonymous version for the review of the manuscript: discrete-graphical-
models.site40.net), so that readers may modify the files to perform similar analyses on their 
own data and using their own models. Many of the analyses presented concern comparisons 
of various welfare regimes. The analyses use the cmm function of R (Bergsma and van der 
Ark, 2009). The main methodological contribution of the paper is presenting graphical models 
as marginal models and providing tools for their application within this framework, and the 
introduction of general path models for categorical data. 

Although defining a model by drawing a graph with undirected lines to represent associations 
or with arrows to represent effects, or perhaps with both lines and arrows, may seem a very 
intuitive way of thinking about relationships among the variables, to associate a coherent 
meaning with the graphs, one has to apply certain rules, called Markov properties. As a 
simple example, a status attainment model may assume that the father’s education does not 
have a direct effect on the son’s social position, only an indirect effect through the son’s 
educational level. This is a conditional independence assumption, specified in the graph 
model by a Markov property, between the first two variables, given the third one. Several 
more relevant examples of the application of graphical models to problems in social mobility 
research will be given throughout the paper. 

It will be illustrated (see, e.g., Example 5) that it is the Markov properties that define the 
model and it may happen that different graphs imply the same conditional independences 
(Markov equivalence). These Markov properties are specific to categorical data. The choice 
between continuous or categorical data is sometimes conceptual but sometimes is only 
implied by choices made during data collection. A celebrated example of a conceptual choice 
is social position. In American sociological thinking, social position is traditionally 
conceptualized as social prestige measured by continuous variables (e.g. Blau and Duncan 
1967, Treiman 1970). In Europe, to the contrary, social position is defined as social class, not 
necessarily of a fully ordered kind, and is being treated as a nominal variable (see, e.g., the 
EGP class scheme, Erikson and Goldthorpe 1992). These choices have far reaching 
consequences on the kinds of analyses that are usually performed with such data. While the 
continuous approaches usually seek simplicity and structure in some kind of a linear 
relationship, the categorical approach allows for much finer modeling. Indeed, as far as the 
conditional independence structure, or more generally, the structure of conditional 
associations among variables is concerned, categorical data allow for richer structure than 
continuous data do under the almost automatic assumption of multivariate normality. This is 
illustrated in the next example.  
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Example 1 

 
Spouses tend to be similar with respect to education, socio-economic status, personality etc. 
Spouse similarity is a widely investigated topic in sociology, psychology and epidemiology 
(see, e.g., Watkins and Meredith 1981). The question of interest here is whether similarity in 
cognitive abilities changes over time during marriage. Let the hypothesis be that the cognitive 
abilities of the male (M) and female partner (F) are independent of the length of marriage (L): 

,  .M L F L⊥ ⊥  However, similarity between spouses may be stronger (positive association) if 
marriage is longer, that is MF L⊥ . The following hypothetical data illustrate this possibility 
(F and M: 1 - low, 2 - high, L: 1 – short, 2 – long): 

 

 L=1 L=2   L=1 L=2  L=1 F=1 F=2  L=2 F=1 F=2 

M=1 60 30  F=1 80 40  M=1 50 10  M=1 27 3 

M=2 40 20  F=2 20 10  M=2 30 10  M=2 13 7 

 

Note that the first two tables are marginal, the last two are conditional. The corresponding 
odds ratios (see Rudas 1998) are 

( ) ,1, =LMOR    ( ) ,1, =LFOR  

( ) ( ), | 1 1.67 , | 2 4.85,OR M F L OR M F L= = < = =  

that is, the independence assumptions and the assumption of increasing similarity hold. If the 
three variables had a joint normal distribution, the independences ,  .⊥ ⊥M L F L  would also 
imply that the association between M and F is independent of L, that is, similarity would not 
increase with time.                 ■ 
The exposition in this paper assumes that the reader is familiar with the fundamentals of log-
linear modeling (Rudas 1998, Agresti 2002). Sections 2, 3 and 0 present graphical models of 
increasing complexity and illustrate their applications for associations, effects, and both 
associations and effects, respectively. Section 5 defines path models derived from discrete 
graphical models that impose a very simple structure that is well represented by graphs and 
has readily interpretable parameters. The theory is illustrated by several worked out examples, 
some of which give new insight into certain aspects of social mobility (see, e.g., Example 8). 

2 Associations only – undirected graphs  
Undirected graphical models (abbreviated as UG models, also called Markov random fields) 
are defined over a graph whose vertices are connected with lines (undirected edges). The 
underlying assumption is that all variables are considered “on an equal footing” (a term used 
by Cox and Wermuth 1996). UGs can be used to study symmetric associations conditioned on 
all remaining variables.  

The graph encodes a set of conditional independence relations, known as the Markov property 
(MP) associated with the graph. An MP translates missing edges between vertices into 
conditional independence statements between variables. The conditional independence 
properties embodied in an undirected graph may be formulated on three different levels 
(Lauritzen 1996); they differ in the size of variable sets claimed to be conditionally 
independent. The first property is about two variables, the second is about one variable and a 
set of variables, and the third is about two sets of variables. 
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Pairwise Markov property (P): Any two non-adjacent variables are conditionally independent 
given all other variables. Two variables are non-adjacent if there is no line between them. 

Local Markov property (L): A variable is conditionally independent of all variables non-
adjacent to it, given all variables adjacent to it. 

Global Markov property (G): Let A, B and C disjoint subsets of variables. A and B are 

conditionally independent given C, if C separates them. C separates A and B if every path 

from a variable in A to a variable in B goes through a variable in C.  

Though the three properties above seem to give different interpretation to graphs, assuming a 
positive joint distribution, they are equivalent (Lauritzen 1996). Throughout the paper, 
positivity is assumed, hence P, L and G are equivalent. However, it may be beneficial to keep 
in mind all of them. For example, it may be useful to know that if two variables are not 
connected, then they are conditionally independent given all others (P), but also given the 
adjacent vertices of one of them (L) or given any of their separating sets (G). 

The Markov properties show that the presence of a particular edge has no intrinsic meaning, 
because its interpretation depends on the presence or absence of other edges. Consider, for 
example, variables A, B, and C, with edges AB and BC. The meaning of the AB edge depends 
on whether A and C are also connected. If they are, the AB edge means that A and B may have 
an association conditioned on C, and the conditional association may be different at different 
levels of C. If they are not, this conditional association may be present but cannot be affected 
by C. 

The next example illustrates the equivalence of the MPs.  

Example 2 

 
Consider, again, the three variables M, F, L (cognitive abilities of the male or female partner, 
length of marriage) as in Example 1. To represent the models in which |M L F⊥  or 

|F L M⊥  holds, the ML or FL lines should be deleted, respectively, from the complete 
graph. The graph from which both ML and FL edges are deleted represents the model 

• ( ) ( )| |⊥ ∩ ⊥M L F F L M , according to P, 

• ( ) ( ) ( )L MF F L| M M L| F⊥ ∩ ⊥ ∩ ⊥ , according to L, 

• ( ) ( ) ( )⊥ ∩ ⊥ ∩ ⊥L MF L F L M , according to G. 

With the help of the general properties of conditional independence (see Lauritzen 1996:29) 
these can be proved to be also equivalent to the simple multiple independence L MF⊥ .        ■ 

A real-valued function of the probabilities of a distribution is called a parameter, while a set 
of parameters is a parameterization if it is one-to-one (and, thus, invertible) mapping from the 
distributions onto the parameter values. Statistical models may be defined by restrictions on 
the parameters. The non-restricted, free parameters measure the strength of effects allowed in 
the model and parameterize (characterize) all distributions in the model. Conditional 
independence (CI) models, like the one considered above, can be defined by setting the values 
of appropriate log-linear parameters (see e.g., Agresti 2002) to zero. 

For example, the model CBA |⊥  may be parameterized by setting the AB and ABC effects to 
zero: 
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 0, 0,∗ = =ABC ABC

ij ijkλ λ  (1) 

for all i, j and k, where the ABC superscript denotes that the parameters are calculated within 
the ABC three-dimensional table. The subscript denotes the indices of the variables to which 
the parameter pertains. The omitted variables are denoted by an asterisk. We shall refer to the 
variables in the superscript as the marginal and to the variables in the subscript as the effect. 
In this paper, the λ  parameters are calculated using the usual effect coding (Agresti 2002). 
Some of the restrictions in (1) are redundant, since the sum of the parameters corresponding 
to the same effect is equal to zero. In the following, this notation refers only to non-redundant 
restrictions by omitting the last level of the variables, e.g. 0=∗

ABC

ijλ  abbreviates 
ABC

ij 0, i 1,...,I 1, j 1,...,J 1.λ ∗ = = − = −
 

The free parameters not restricted by the model are 

, , , , , .ABC ABC ABC ABC ABC ABC

i j k jk i kλ λ λ λ λ λ∗∗∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗  

In general, if A, B and C are sets of variables, define, with ( )P .  denoting the set of all subsets, 

 ( ) ( ), , = ∪ ∪D PA B C A B C ( ) ( )( ) .∪ ∪ ∪P PA C B C  (2) 

Then |⊥A B C  can be defined by setting those parameters to zero which are associated with 

any of the effects that are elements of ( ), ,D A B C . For example, with A, DE= =A� B  and 

C=C� , CDEA |⊥  can be parameterized as 

 0,ACDE ACDE ACDE ACDE ACDE ACDE

i m i lm ik m ikl iklmi l
λ λ λ λ λ λ∗∗ ∗ ∗ ∗∗ ∗= = = = = =�  (3) 

where those effects are restricted to zero which contain A and at least one of D and E.  

Example 2 (continued) 
 
The log-linear parameterization of the model in Example 2 can be based, for example, on the 
conditional independences |M L F⊥  and |F L M⊥ :  

0,FML FML FML

jk i k ijkλ λ λ∗ ∗= = =  

while the free parameters, parameterizing the distributions in the model are: 

                       
, , , .∗∗ ∗ ∗ ∗∗ ∗

FML FML FML FML

i j k ijλ λ λ λ
                 

■ 

The next example shows a more complex UG and also illustrates that although a log-linear 
parameterization is possible, substantive interest may require different parameters to be used.  

Example 3 

 
Spouses tend to be similar with respect to not only cognitive abilities (C) but education (E) 
and socio-economic status (S) as well (e.g. Watkins and Meredith 1981). Consider the UG 
model in Figure 1 for these characteristics. 
 

C

E

S  
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Figure 1 An undirected graph model for the association of cognitive abilities (C), education 
(E) and socio-economic status (S). 
 

The UG can be translated as |S C E⊥ , which is a plausible assumption. Note that this model 

does not imply that |C E S⊥  or C E⊥ . If one is interested in whether the edge CE may be 
deleted, the models with and without the edge CE need to be compared on the basis of the 
observed data.  

Spouse similarity may be due to partner selection factors and/or the effects of marriage and 
common environment. In order to exclude the effect of the latter factors, only newly married 
couples are considered in the partner selection model of Figure 2. Letters with/without prime 
denote the male partner’s/female partner’s characteristics, respectively. 

 

E

C

S

C'

E'

S'  

Figure 2 Expanding the model in Figure 1 with partner’s characteristics 
 

It is a natural expectation that |S C E⊥  and ' ' | 'S C E⊥ , encoded by the initial graph, still 
hold. In the new graph E separates S and C, while E’ separates S’ and C’, hence these 
statements still really hold in the new model. 

The missing edge between S and S’ can be translated by the global MP as ' | 'S S EE⊥ . That 
is, a woman with, for example, university degree may tend to select a partner taking into 
account his education (the EE’ edge is present), but the potential spouses’ socio-economic 
status does not affect her decision additionally. In other words, socio-economic status affects 
partner selection only indirectly, through education. Regarding S and S’, the global MP 
implies other conditional independences as well. For example ' |S S E⊥  also holds. 

If the edge between C and C’ was also deleted, then EE’ would separate CS and C’S’, hence 
' ' | 'CS C S EE⊥  would hold in the corresponding model. That is, both cognitive abilities and 

socio-economic status would affect partner selection only indirectly, through education.  

The model of Figure 2 can be easily parameterized within the CSEC’S’E’ table with log-linear 
parameters. However, if one is interested in estimating the strength of association between 
educational levels of spouses given their socio-economic statuses, but not given their 

cognitive abilities, the analysis of EE’SS’ marginal table is relevant. The ''SSEE

ij∗∗λ parameter in 

this table is a log-linear parameter which is not computed from the entire contingency table 
rather from a marginal of it. The next section shows parameterizations using marginal log-
linear parameters. 

3 Effects only - directed acyclic graphs 
UGs can be used to study symmetric associations. However, in some cases associations are 
not symmetric, but represent relations of response and dependence. Such situations motivate 
introducing directed acyclic graph models (DAG models, also called Bayesian networks). 
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DAG models may be illustrated with a graph whose vertices are connected with arrows 
(directed edges) under the constraint that no directed cycles are present. 

In the case of DAGs we give only the pairwise and local MPs. For the global MP see, e.g., 
Lauritzen (1996). In a directed graph, parents are those vertices from whom arrows point to 
the given vertex, while descendants are the vertices that are reachable from the given vertex 
through a directed path. 

Directed Pairwise Markov property (DP): If variables A and B are such that B is neither a 
parent nor a descendant of A, then A is independent of B given the other non-descendants of 
A. 

Directed Local Markov property (DL): A variable is conditionally independent of its non-
descendants (excluding its parents), given its parents. 

Arrows of a DAG have no individual meaning, only the graph structure as a whole has an 
interpretation. However, directed MPs are sensitive to the direction of the arrows, in an 
intuitively plausible way: parents have direct effect on their children, grandparents affect their 
grandchildren only indirectly etc. The next example illustrates this with a DAG model of a 
classical problem in sociology. 

Example 4 

 
Figure 3 presents a status attainment model. The variables are E - Education, O - Occupation, 
I - Income, F - Father’s education, G - Father’s occupation. There is a time order among the 
variables here, so the directions of the arrows are unambiguous. 

F

G

E

I

O  

Figure 3 Directed acyclic graph model for status attainment 
 

The Local Markov property gives that 

 | , |⊥ ⊥O F EG I FG EO  (4) 

that is, the father’s education does not affect the offspring’s occupation directly, however, 
taking into account edges FE and EO, it may have an indirect effect, through education. 
Similarly, social origin does not affect income directly, possibly only through education and 
occupation.                         ■ 

The original source of the graph in Figure 3 is Duncan et al. (1968), but it was also used by 
Treiman (1970), whose industrialization hypothesis was formulated within this model. They 
obtained the graph through path analysis and used continuous variables to operationalize 
social status. Path modeling and graphical modeling interpret missing arrows in different 
ways. Discussion of the relationships between graphical modeling and structural equation 
modeling (SEM), which is an extension of classical path analysis, has been given by Wermuth 
(1988), Whittaker (1990), Cox and Wermuth (2001), and Wermuth (2003) for the Gaussian 
case. The SEM approach has been extended to handle categorical data in many ways. For a 
summary of the relationship between categorical SEM and DAGs, see Bergsma et al.(2009), 
Chapter 5.1. 
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DAG models restrict marginals, hence the usual log-linear parameterization cannot be used to 
parameterize them. A general method of obtaining a proper parameterization is based on a 
well-numbering of the variables. A well-numbering is an order of the vertices, in which if A 

precedes B, then A is a nondescendant of B. Such an ordering is always possible. If the 
variables of the graph are well-numbered, then a variable A is conditionally independent of 
those nondescendants (excluding the parents of A) that precede A, given the parents of A 

(Lauritzen et al. 1990). The set of these new CIs is equivalent to the set of the original CIs 
read-off by the MPs. 

Such a parameterization was proposed by Rudas et al. (2006) and is based on the n (=number 
of variables) marginals containing the first k (k=1,…,n) elements of the well-numbering. All 
effects appear within the marginal that comes first from among those that contain it. This is 
illustrated now on the model in Example 4. 

Example 4 (continued) 

A well-numbering of the variables is F, G, E, O, I, so the marginals are F, FG, FGE, FGEO, 
FGEOI. The CIs implied by the well-numbering are identical with the original CIs of (4) The 
log-linear parameterization of the FGEOI table is obtained as: 

, , , , , , , , , , , , ,

, , , , , , , ,

F FG FG FGE FGE FGE FGE FGEO FGEO FGEO FGEO FGEO FGEO

i j ij k i k jk ijk l i l j l kl ij l i kl

FGEO FGEO FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI

jkl ijkl m i m j m k m lm ij m

λ λ λ λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ

∗ ∗∗ ∗ ∗ ∗∗∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗

∗ ∗∗∗∗ ∗∗∗ ∗ ∗∗ ∗∗ ∗ ∗∗∗ ∗∗ , , ,

, , , , , , .

FGEOI FGEOI FGEOI

i k m i lm ijk m

FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI

ij lm i klm jk m j lm jklm klm ijklm

λ λ λ

λ λ λ λ λ λ λ

∗ ∗ ∗∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

 (5) 

To define |O F EG⊥ , all the parameters are set to zero which are associated with any of the 

effects that are elements of ( ), ,O F EGD  within the FGEO marginal: 

 , , , ,FGEO FGEO FGEO FGEO

i l ij l i kl ijklλ λ λ λ∗∗ ∗ ∗  (6) 

while |I FG EO⊥  can be parameterized with restrictions on any of the effects being elements 

of ( ), ,I FG EOD  within the FGEOI table: 

, , , , , , , , , , ,

.

FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI

i m j m ij m i k m i lm ijk m ij lm i klm jk m j lm jklm

FGEOI

ijklm

λ λ λ λ λ λ λ λ λ λ λ

λ

∗∗∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(7) 

From the perspective of the FGEOI table, the parameters in (6) are marginal log-linear 
parameters. Marginal log-linear parameters can be interpreted as measuring average 
conditional association among the variables involved in the effect, conditioned on all other 
variables in the marginal and then averaged over all possible categories of the conditioning 
variables. For an in-depth discussion of how the marginal log-linear parameters can be 
interpreted, see Bergsma and Rudas (2003) and Rudas and Bersgma (2004). 

An important characteristic of models and parameterizations is smoothness. This aids the 
interpretation of models, and guarantees the applicability of standard asymptotic theory. It is 
needed to compute maximum likelihood estimates and to test model fit, as will be done in this 
paper. Rudas et al. (2010) identified hierarchical conditional independence models with 
parameters having a simple combinatorial property that implies that the model and its 
parameterization are smooth. The hierarchy property can be checked easily: it holds if the 
marginals in which the model is defined can be arranged in a non-decreasing order (i.e., no 
marginal contains one which comes later in the sequence) so that every effect is 
parameterized in the earliest marginal containing it. For to the status attainment model of 
Figure 3, the parameterization in (5) is hierarchical, hence smooth. 
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Another characteristic of parameterizations important for interpretation is variation 
independence. Variation independence means that the joint range of the parameters is the 
combination of the separate ranges of the parameters involved. If the parameters are not 
variation independent, they cannot be interpreted without paying attention to the other 
parameters, moreover, improperly combined parameters may lead to non-existing models. 
Bergsma and Rudas (2002) gave a simple combinatorial condition called ordered 
decomposability for hierarchical marginal log-linear parameterizations to be variation 
independent. The parameter set of (5) is ordered decomposable, so the parameters are 
variation independent. Parameterizations produced by the well-numbering algorithm 
described above are always hierarchical and ordered decomposable. 

Bergsma and Van der Ark (2009) developed the R package cmm to fit categorical marginal 
models. A model specification with no redundant restriction is necessary to apply the fitting 
algorithm and to calculate the degrees of the freedom of chi-squared statistics to test 
goodness-of-fit. If the parameterization is hierarchical, then the specification does not have 
redundancies, and the likelihood-ratio statistic has an asymptotic chi-squared distribution with 
the number of degrees of freedom being equal to the number of restricted parameters 
(Bergsma and Rudas 2002). 

Example 4 (continued) 

The model is now applied to the International Social Survey Programme data (ISSP Research 
Group 1999). For the analysis, all respondents who actually worked and for whom all 
variables were recorded are included. Occupation variables G and O have three levels 
according to the country-specific terciles of the Standard International Occupational Prestige 
Scale (1: top third, 3: bottom third). Income (I) is binary (above/below country-specific 
median), father’s education (F) and respondent’s education (E) are also binary (respondent: 
with/without college degree; father: secondary school completed/not completed). It can be 
easily calculated that altogether 42 non-redundant parameters are restricted in (7). The 
number of degrees of freedom of the likelihood-ratio test is therefore equal to 42. 

The model is fitted separately to data from different welfare systems, because welfare states 
can be thought to increase or decrease the impact of social origins on destinations (DiPrete 
and Grusky 1990). Nations are classified into five welfare-state types – conservative, liberal, 
social-democratic, Mediterranean and post-socialist – adding Mediterranean and post-socialist 
to the welfare capitalism model of Esping-Andersen (1990). Mediterranean was argued to be 
included as a distinct type by e.g., Leibfried (1992), Ferrera (1996) and Bonoli (1997). ISSP 
countries with data on each of the five variables that are representatives of the five types of 
welfare regimes were included: conservative (France, West-Germany), social-democratic 
(Sweden, Norway), liberal (United States, Australia, New Zealand), Mediterranean (Portugal, 
Spain) and post-socialist (Hungary, Czech Republic, Slovakia, Slovenia, Latvia, East-
Germany, Poland). There are some empty cells in the five-dimensional FGEOI tables. Since 
the fitting algorithm does not converge when empty cells are present (odds ratios involving 
zero cells are not defined), the observed zeroes were replaced by a small constant (1.0e-10). 

The results are reported in Table 1. Details of the fitting procedure can be found on the article 
webpage. 

***Insert Table 1 near here *** 

According to the p values, the model fits reasonably well for all regimes expect the post-
socialist one. However, the BIC shows only a slightly worse fit for the latter regime type. A 
detailed analysis of the post-socialist regimes (see the article webpage) shows that, according 
to the likelihood-ratio statistics, only the arrow GI could be deleted from the complete graph, 
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but not FO and FI. That is, father’s education has a direct effect on the offspring’s occupation 
and income. This is possibly a consequence of the negative educational discrimination during 
state socialism: children with highly educated fathers who suffered negative discrimination 
nevertheless inherited the cultural capital, and they found other ways to make achievements.  

Making sense of the above results involves interpretation of the parameter estimates. 
Estimates of the free parameters are given on the article webpage for each regime separately. 
In case of post-socialist regimes, the adjusted standardized residuals are of particular interest. 
These measure deviations between observed and fitted cell frequencies, and deeper insight 
can be gained into the reason for lack of fit by analyzing them. 

As was mentioned earlier, good fit of a model containing an arrow does not imply the 
presence of that arrow, therefore the size and the standard error of the effects are also of 
interest. As Table 2 shows, in the case of liberal regimes, the GO effect, which is calculated 
conditioned and averaged over FE, is not significant in any of its categories. Within the 
FGEO marginal, effects FGO and FGEO have zero parameters, while GEO is also non-
significant (see the article webpage), that is, the GO effect is zero not only on an average but 
also conditioned on either F or E or both. In other words, occupational prestige ascription 
does not operate directly in liberal regimes. Indeed, if the GO arrow is deleted from the graph 
for liberal regimes (for the details see the article webpage), the increase in likelihood-ratio 
statistic is not significant (10.1 on 8 degrees of freedom, BIC=-299). 

A look at the last two columns of Table 2 reveals a different picture for conservative regimes. 
There are significant, strong effects here, with signs denoting that entry into high-prestige jobs 
is easier for those with high-prestige father even when controlled for education. The estimate 
of the effect GEO (see the article webpage) refines these findings. FGEO

313∗λ  and FGEO

321∗λ  are near 

significant negative and positive effects, respectively, showing that disadvantage of persons 
with low-prestige father is eased if the father completed secondary school, and vice versa, 
their disadvantage is enhanced if the father did not even finish his secondary education. 

***Insert Table 2 near here *** 

                                                                                                                                                    ■ 

The examples below illustrate the scope and the limitation of directional interpretation of 
DAGs. 

Example 5 

 
In some cases, a comparison of model fit permits conclusions on the direction of a particular 
effect. Consider three variables F – having Friends, H - Happiness and S - Subjective general 
health, and let the arrow F → S be present, along with S ← H or S → H, as in Figure 4. 

 

F

H

S F

H

S

 

Figure 4 Directed acyclic graph models for the association of happiness (H), subjective health 
(S) and having friends (F). 
 
The first graph implies marginal independence between F and H, while the second graph 
implies conditional independence between them. That is, in this case it can be decided based 
on the data, which directions to choose.  
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This is illustrated with data from the European Social Survey (Norwegian Social Science Data 
Services 2008) for France. The variables are operationalized as F - “Anyone to discuss 
intimate and personal matters with”: yes/no, H - “How happy are you”: rather happy/rather 
unhappy) and S – “How is your health in general?”: fair or good / bad). The model tests give a 
likelihood-ratio statistics of 4.80 and 1.68, on 1 and 2 degrees of freedom, respectively, which 
means the first model fits poorly but the second model fits reasonably well. Note that this 
result, in itself, does not imply a claim that someone’s subjective health would determine the 
individual’s happiness in France and even less that there would be a causal effect between 
these variables. General rules of the parameterization of DAG models are described later in 
this section. Details of this example are on the article webpage, where other DAG variants can 
be also found, fitted to data from several countries. For example, none of the two models fit 
the data from the Netherlands and Great Britain, but a third model, F → H → S, fits well the 
Dutch data.                 ■ 

In general, data cannot determine the direction of an effect. As an extreme example, consider 
the graphical representation of a spurious relationship (A ← B → C) and an intervening 
relationship (A → B → C). They suggest logically entirely different association structures 
between A and C, however, the two graphs are Markov-equivalent implying the same model: 

BCA |⊥ . Additionally, reversing both arrows of the intervening relationship graph the same 
conditional independence is obtained, again. The example illustrates the fact that arrows of a 
DAG have no actual meaning: by reversing one or both arrows of the intervening relationship 
graph, the model remains the same, showing that the intuitive notion of causality conveyed by 
these arrows is unfounded. If BCA |⊥  holds, each of the three graphs is appropriate. 
However, as always, substantive knowledge may make some of them less relevant than 
others. A DAG may be Markov-equivalent not only with another DAG but also with an UG or 
with a chain graph, see Section 0.  

These examples warn against naïve interpretations of graphs and are also relevant for data-
driven approaches for identifying a best-fitting graph. The resulting graph is to be interpreted 
solely on the basis of conditional independences, other characteristics may not be justified by 
the data. If more than one best-fitting Markov-equivalent graphs turn up, the equivalences can 
be exploited in the interpretation (some examples are in Wermuth and Lauritzen 1990), or, if 
background knowledge is available, the graphs can be considered in the order of their 
plausibility. 

4 Both associations and effects – chain graphs  
UG and DAG models allow modeling exclusively either associations (lines) or effects 
(arrows). Chain graphs (CGs) with lines and arrows allow a distinction between response or 
intermediate response and explanatory variables (Wermuth and Lauritzen 1990) and 
generalize UGs and DAGs. The statistical properties of CG models were investigated by 
Lauritzen (1996), Cox and Wermuth, (1996), Frydenberg (1990), Andersson et al. (2001), 
Drton (2009). There are different competing approaches in defining the Markov properties 
associated with them, classified by Drton (2009) as Type I - IV properties. In the sequel only 
block-recursive Type-IV chain graph models will be discussed, also investigated by Marchetti 
and Luparelli (2010) and Rudas et al. (2010).  

A chain graph may have both arrows and lines under the constraint that semi-directed circles 
do not exist. This implies that the vertices can be partitioned into components such that 
vertices within a component are reachable from each other through an undirected path. 
Markov properties of Type-IV (Wermuth and Cox 1992) consider each variable conditionally 
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on other variables in the preceding components (explanatory variables), but ignore the 
variables in the same component (intermediate variables). 

The block-recursive Type-IV (in the following: block-recursive) Markov property is defined 
by Properties 1, 2 and 3 below. Property 1 is defined over the DAG formed by the chain 
components analogously to the directed local MP. Properties 2 and 3 interpret lack of lines 
and of arrows, respectively. 

Property 1. Any component is conditionally independent of its non-descendant components 
(excluding its parent components), given its parent components. 

Property 2. A subset B of a component C is conditionally independent of all non-adjacent 

variables within C, given the parent components of C. 

Property 3. A subset B of a component C is conditionally independent of those variables in 

the parent components of C which are themselves not parents of B, given the parents of B. 

The next example shows a CG model that is obtained as a modification of a DAG model.  

Example 6 

 
 The intergenerational mobility process of Figure 5 with Education and Occupation 
considered on an equal footing would be reasonable if lifelong learning was a widespread 
phenomenon. A plausible formulation of this is to omit E from the conditioning set of the 
independence of O and F, since E does not precede O anymore. The chain graph in Figure 5, 
under the block-recursive interpretation, yields that 

 | , |⊥ ⊥O F G I FG EO  (8) 

(Boxes are drawn around non-singleton components.)            ■ 

 

F

G

E

I

O  

Figure 5 Chain graph model for status attainment 
 

Just like in the case of DAGs, one should be warned against seemingly plausible, but in fact 
fallacious interpretations which also affect model selection and model interpretation. Some 
main points (the first two hold for UGS and DAGs as well): 

a) Edges in the graph do not correspond to, but only allow direct associations or effects. 

b) The interpretation should be based solely on the conditional independences, see the case of 
Markov-equivalent graphs.  

c) Type-IV CG models are not generalizations of UG models in the sense that a graph with 
only lines would give necessarily the same set of independences interpreted as a UG model or 
as a CG model. The reason is that Type-IV Markov properties define conditioning sets by 
ignoring variables in the same component. However, CG models of any type are real 
generalizations of DAG models. 
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d) A line in a CG model does not correspond to an arrow with unspecified direction, or to the 
existence of a latent common parent or child. Lauritzen and Richardson (2002) show this for 
Type-I CG models but their findings can be extended to Type-IV models, see the article 
webpage. 

A method for smooth hierarchical parameterizations of block-recursive Type-IV models was 
given by Rudas et al. (2010). Let C1…CT, be a well-numbered order of the T components. 
Then, the marginals of the parameterization are the sets 

• ( )k kPA C : C , k 1...T ,∪ ⊆ =B B  in a hierarchical order, where PA(Ck) are the parent-

components of Ck, and, as the last marginal 

• ∪ ∪ =1 kC ... C , k 1...T .  

Each effect has its parameter in the first marginal containing it. The parameters set to zero to 
define the model are those associated with the effects in 

( ) ( )( ){ } ( ) ( ) ( )( ){ }
( ) ( ) ( )( )

k k k k k

k k k k

,C \ \ nb ,PA C : C ,PA C \ pa , pa : C

C ,PRE C \ PA C ,PA C ,

⊆ ∪ ⊆ ∪

∪

D D

D

B B B B B B BB
 

for all Ck, where ( ).D  was defined in (2), nb(B) and pa(B) are the vertices from which lines 

go or arrows point to B, respectively, and PRE(Ck) is the set of components that precede Ck in 

the well-numbering. 

Ordered decomposability implying variation independence (Bergsma and Rudas 2002) is not 
generally ensured by the parameterization procedure but can be easily checked for a particular 
parameterization. 

The above method produces smooth hierarchical parameterizations for block-recursive CG 
models. There is no method developed yet to obtain such parameterization for other types of 
CG models. See Rudas et al. (2010) and Forcina et al. (2010) for related results. 

The next example illustrates the procedure of parameterizing block-recursive CG models. 

 

Example 6 (continued)  

A hierarchical parameterization of the mobility model can be given using the marginals F, 
FG, FGO, FGE, FGEO, FGEOI. Here 

 ( ) ( ) ( )( ) ( )O,PA EO \ pa O , pa O O,F ,G=D D  

and 

 ( ) ( ) ( )( ) ( )I ,PRE I \ PA I ,PA I I ,FG,EO=D D  

contain the effects with which the following zero valued parameters are associated to define 
the model: 

∗ ∗∗∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

FGO FGO FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI FGEOI

i k ijk i m j m ij m i k m i lm ijk m ij lm i klm jk m j lm

FGEOI FGEOI

jklm ijklm

, , , , , , , , , , , ,

, .

λ λ λ λ λ λ λ λ λ λ λ λ

λ λ
 

The remaining non-zero effects parameterize the distributions within the model. Ordered 
decomposability holds, as well, thus the parameters are variation independent. 
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This model was fitted to the ISSP data, and the results are reported in Table 3, details can be 
found on the article webpage. Both the LR-test and the BIC suggest that the model does not 
fit to the post-socialist data, while the conservative regimes show poor fit according to the 
LR-test. The present CG model and the DAG model discussed in Example 4 can be compared 
by BIC, and the DAG model turns out to fit better for each regime.                   ■ 

***Insert Table 3 near here *** 

The next example illustrates that whether two variables are to be connected by a line or an 
arrow, may or may not be derived from the analysis of data.  

Example 7  

Consider the three CG models in Figure 6 describing development of depression from 
working conditions through work stress. The variables are C = control over work pace, 
amount of work and others’ work, T = able to complete work in working time, S = work 
stress, D = depression and I = inadequate social support. The three models differ only in the 
type of association between D and I. 

 

C

T

S D

I

C

T

S

D

I

C

T

S D I~ ~

CG1 CG2 CG3  

 

Figure 6 Chain graph models for the association of control over work (C), being able to 
complete work in working time (T), work stress (S), depression (D) and inadequate social 
support (I).  

 
The three graphs imply the following set of CIs, respectively: 

 1: | ,⊥ ⊥CG D CT SI I CTS  (9) 

 2 : | ,⊥ ⊥CG DI CT S I S  (10) 

 3: | , |⊥ ⊥CG D CT S I CTS D  (11) 

Properties (9) and (10) can be seen to be equivalent using the properties of conditional 
independence (see Lauritzen 1996: 29) however, their parameterizations implied by the above 
procedure are different and the better interpretable one should be chosen. The CIs in (11) 
define a model not equivalent to the other two, that is, the direction of DI association may be 
partially judged on the basis of data.  

The models can be easily parameterized by the procedure described above. The 
parameterizations are given on the article webpage; they are hierarchical by definition and 
ordered decomposability holds as well so the parameters are variation independent. The 
webpage contains details of fitting these models to real data.              ■ 

5 Path models  
Further meaningful restrictions on graphical models may lead to models that are not 
graphical. E.g., if mother’s and father’s social status are both considered in an 
intergenerational mobility model, a plausible question is whether they have a joint effect on 
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the offspring’s status over and above their separate effects, more formally, whether the 
corresponding second-order effect exists. Rudas et al. (2006), inspired by the modified path 
models of Goodman (1973), defined discrete path models by restricting discrete DAG models, 
setting higher than first-order effects in the hierarchical marginal log-linear parameterization 
to zero. Path models may be similarly derived from UG and CG models. 

These models have only effects related to edges, and are analogous to those used in Gaussian 
path analysis since a multivariate normal distribution allows only two-way interactions. Path 
models are marginal log-linear models and, in addition to having a straightforward 
interpretation, inherit all the desirable statistical properties of the initial graphical model 
through an implied parameterization. Consider for example CG1 in Example 7. One may be 
interested in whether the predictors of depression act independently. The path model restricts 
also ,CTS SDI

CTS SDIλ λ  to zero, implying that C and T have only separate effects on D and also S and I 

have separate effects. The parameterization remains smooth and variation independent. 

The semantics of path models depends heavily on the parameterization of the initial graphical 
model. E.g., in the case of CGs, if there is no complete ordering among the components, then 
different well-numberings yielding different parameterizations exist. The usual log-linear 
parameterization of UG models is unique, therefore only one path model can be derived from 
them. However, as we have shown in Example 3, a UG model may need to be 
reparameterized by marginal parameters more suitable to the research question. In this case 
the corresponding path model may change as well. 

The final example applies a path model derived from a DAG to the status attainment problem.  
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Example 8 

The model is derived from the DAG in Example 4. In addition to the zero parameters listed in 

(6) and (7), the path model restricts to zero , ,∗ ∗∗

FGE FGEO FGEOI

ijk jkl klmλ λ λ  from among the free 

parameters. The model assumes that the factors influencing social status have only separable 
effects. The parameterization inherited from that of the DAG remains smooth and variation 
independent. 

The path model is fitted to the conservative, social-democratic, liberal and Mediterranean 
regimes to which the DAG model fitted well (see the article webpage for details). The path 
model is nested within the DAG model, hence the likelihood-ratio statistic can be used for 
comparison of model fit. The results are given in Table 4. 

***Insert Table 4 near here *** 

The path model fits quite well to the liberal and conservative regimes, and in their cases, 
according to both G2 and BIC, the path model performs better than the DAG model. It’s fit is 
also acceptable in the case of the other regimes. 

Parameter estimates are given in Figure 7. For binary variables, only the non-redundant 
parameters pertaining to the smaller values are presented, while for variables with three 
categories each parameter is given. The parameters on the arrows are arranged in two 
matrices, where C denotes conservative, L denotes liberal regimes. A parameter estimate in 
the ith row and jth column of a matrix of the arrow AB pertain to the ith level of A and the jth 
level of B. The asterisks *, **, and *** indicate significance at the p < .05, p < .01, and p < 
.001 levels, respectively. 

 

F

G

E

I

O

   0.40*** -0.10 -0.30***

C 0.01      -0.03  0.02

  -0.41*** 0.13* 0.28***

      0.11 -0.09 -0.03

  L -0.02  0.00  0.01

     -0.10  0.09  0.01

     0.91***

 C -0.38***

   - 0.53***

     0.49***

 L -0.12**

    -0.37***

C 0.45***   L 0.18***

C  0.12**  -0.08 -0.04

L  0.20***  0.01 -0.21***

    0.44***

C  0.06

   -0.49***

    0.51***

L -0.03

   -0.47***

C  0.17***

L  0.16***

C  0.52***  0.02 -0.54***

L  0.33***  0.05 -0.38***

 

Figure 7 Parameter estimates for the path model 
 

The results show, among others, that mobility operates through different channels in different 
welfare regimes. In liberal regimes, one sees significant GE, EO and non-significant GO 
association. In conservative regimes G has a strong direct effect on O, while its effect on E is 
weak. That is, in liberal regimes education mediates the association between origin and 
occupation, while in conservative regimes, the origin-occupation association is rather direct. 

Social mobility in contemporary mobility research is often measured by the unidiff parameter 
of two-dimensional tables of respondent’s by father’s occupation (Erikson and Goldthorpe 
1992, Breen 2004). When explaining cross-country differences in the value of the unidiff 
parameter, country-level (contextual) variables like type of the welfare regime or educational 
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policy are used, see e.g., Beller and Hout (2006). As our analysis shows, graphical modeling 
may add a more micro-level (individual) perspective to these results.                                      ■ 
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7 Tables 
 

Regime type G
2
 p (df=42) BIC n 

Conservative 48.0 0.244 -247 1124 

Social-democratic 49.9 0.189 -241 1007 

Liberal 46.6 0.290 -252 1236 

Mediterranean 45.2 0.338 -243 954 

Post-socialist 94.6 0.000 -239 2831 

Table 1. Fit statistics for the model in Figure 1 
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Parameter 
Liberal regimes Conservative regimes 

Estimate Standard error Estimate Standard error 

FGEO

11∗∗λ  0.098 0.067 0.420 0.075 

FGEO

21∗∗λ  -0.017 0.066 -0.010 0.077 

FGEO

31∗∗λ  -0.081 0.066 -0.410 0.068 

FGEO

12∗∗λ  -0.063 0.062 -0.103 0.081 

FGEO

22∗∗λ  -0.021 0.061 -0.043 0.079 

FGEO

32∗∗λ  0.084 0.061 0.147 0.068 

FGEO

13∗∗λ  -0.035 0.064 -0.317 0.082 

FGEO

23∗∗λ  0.038 0.063 0.053 0.075 

FGEO

33∗∗λ  -0.003 0.065 0.264 0.065 

Table 2. Estimated values of the GO effect  
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Regime type G
2
 p (df=36) BIC n 

Conservative 60.1 0.007 -193 1124 

Social-democratic 40.8 0.268 -208 1007 

Liberal 50.8 0.05 -206 1236 

Mediterranean 47.2 0.101 -200 954 

Post-socialist 138.6 0.000 -148 2831 

Table 3 Fit statistics for the model in Figure 5 
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 Path model Path model |DAG model 

Regime type G2 p (df=50) BIC Difference in G2 p (df=8) 

Conservative 57.0 0.230 -294 9.08116 0.335496 

Social-democratic 66.6 0.058 -279 16.7937 0.03233 

Liberal 58.5 0.192 -297 11.91966 0.154825 

Mediterranean 67.4 0.051 -276 22.19558 0.004566 

Table 4 Fit of the path model and its relative fit given the DAG model 
 
 

 


