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Abstract

Brown, Nowakowski and Rall defined the ultimate categorical independence ratio of a graph G

as A(G) = lim
k→∞

i(G×k), where i(G) = α(G)
|V (G)| denotes the independence ratio of a graphG, andG×k is

the kth categorical power of G. Let a(G) = max{ |U |
|U |+|NG(U)| : U is an independent set of G}, where

NG(U) is the neighborhood of U in G. In this paper we answer a question of Alon and Lubetzky,

namely we prove that A(G) = a(G) if a(G) ≤ 1
2 , and A(G) = 1 otherwise. We also discuss some

other open problems related to A(G) which are immediately settled by this result.

1 Introduction

The independence ratio of a graph G is defined as i(G) = α(G)
|V (G)| , that is, as the ratio of the

independence number and the number of vertices. For two graphs G and H, their categorical product

(also called as direct or tensor product) G×H is defined on the vertex set V (G×H) = V (G)×V (H)

with edge set E(G ×H) = {{(x1, y1), (x2, y2)} : {x1, x2} ∈ E(G) and {y1, y2} ∈ E(H)}. The kth

categorical power G×k is the k-fold categorical product of G. The ultimate categorical independence

ratio of a graph G is defined as

A(G) = lim
k→∞

i(G×k).
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This parameter was introduced by Brown, Nowakowski and Rall in [2] where they proved that for

any independent set U of G the inequality A(G) ≥ |U |
|U |+|NG(U)| holds, where NG(U) denotes the

neighborhood of U in G. Furthermore, they showed that A(G) > 1
2 implies A(G) = 1.

Motivated by these results, Alon and Lubetzky [1] defined the parameters a(G) and a∗(G) as follows

a(G) = max
U is independent set of G

|U |
|U |+ |NG(U)| and a∗(G) =

a(G) if a(G) ≤ 1
2

1 if a(G) > 1
2

,

and they proposed the following two questions.

Question 1 ([1]). Does every graph G satisfy A(G) = a∗(G)? Or, equivalently, does every graph G

satisfy a∗(G×2) = a∗(G)?

Question 2 ([1]). Does the inequality i(G×H) ≤ max{a∗(G), a∗(H)} hold for every two graphs G

and H?

The above results from [2] give us the inequality A(G) ≥ a∗(G). One can easily see the equivalence

between the two forms of Question 1; moreover, it is not hard to show that an affirmative answer

to Question 1 would imply the same for Question 2 (see [1]).

Following [2] a graph G is called self-universal if A(G) = i(G). As a consequence, the equality

A(G) = a∗(G) in Question 1 is also satisfied for these graphs according to the chain inequality

i(G) ≤ a(G) ≤ a∗(G) ≤ A(G). Regular bipartite graphs, cliques and Cayley graphs of Abelian

groups belong to this class (see [2]). In [4] the author proved that a complete multipartite graph G

is self-universal, except for the case when i(G) > 1
2 . Therefore the equality A(G) = a∗(G) is also

verified for this class of graphs. (In the latter case A(G) = a∗(G) = 1.) In [1] it is shown that the

graphs which are disjoint union of cycles and complete graphs satisfy the inequality in Question 2.

In this paper we answer Question 1 affirmatively, thereby also obtaining a positive answer for

Question 2. Moreover it solves some other open problems related to A(G). In the proofs we exploit

an idea of Zhu [3] that he used on the way when proving the fractional version of Hedetniemi’s

conjecture. In Section 2 this tool is presented. Then, in Section 3, first we prove the inequality

i(G×H) ≤ max{a(G), a(H)}, for every two graphs G and H,

and give a positive answer to Question 2 (using a(G) ≤ a∗(G)). Afterwards we prove that

a(G×H) ≤ max{a(G), a(H)}, provided that a(G) ≤ 1

2
or a(H) ≤ 1

2
,

and from this result we conclude the affirmative answer to Question 1. (If a(G) > 1
2 then a∗(G×2) =

a∗(G) = 1. Otherwise applying the above result for G = H we get a(G×2) ≤ a(G), while the

reverse inequality clearly holds for every G. Thus we can conclude that a∗(G×2) = a∗(G) for

every graph G.) Finally, in Section 4, we discuss further open problems which are solved by our

result. For instance, we get a proof for the conjecture of Brown, Nowakowski and Rall, stating that

A(G+H) = max{A(G), A(H)}, where G+H denotes the disjoint union of the graphs G and H.
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2 Zhu’s lemma

Recently Zhu [3] proved the fractional version of Hedetniemi’s conjecture, that is, he showed that

for every graph G and H we have χf (G × H) = min{χf (G), χf (H)}, where χf (G) denotes the

fractional chromatic number of the graph G. During the proof he showed an interesting property

of the independent sets of categorical product of graphs. We discuss this result in detail, because

this will be the key idea also for our work.

In the sequel, we keep using the following notations for any Z ⊆ V (G×H).

For any y ∈ V (H), let

Z(y) = {x ∈ V (G) : (x, y) ∈ Z},

and similarly, for any x ∈ V (G), let

Z(x) = {y ∈ V (H) : (x, y) ∈ Z}.

In addition, let

NG(Z) = {(x, y) ∈ V (G×H) : x ∈ NG(Z(y))}.

In words, NG(Z) means that we decompose Z into sections corresponding to the elements of V (H),

and in each section we pick those points which are neighbors of the elements of Z(y) in the graph G.

Similarly, let

NH(Z) = {(x, y) ∈ V (G×H) : y ∈ NH(Z(x))}.

Keep in mind, that Z(y) ⊆ V (G) and Z(x) ⊆ V (H), while NG(Z), NH(Z) ⊆ V (G×H).

∈Z

∈NH(Z)

∈NG(Z)

V (G)

V (H)

x

∈Z(y)
x′

∈NG(Z(y))

Z(x)3 y

NH(Z(x))3 y′

Figure 1: The elements of Z, Z(x), Z(y), NG(Z) and NH(Z).

Let U be an independent set of G×H, and consider a partition of U into two sets, let

A = {(x, y) ∈ U : @(x′, y) ∈ U s.t. {x, x′} ∈ E(G)},
B = {(x, y) ∈ U : ∃(x′, y) ∈ U s.t. {x, x′} ∈ E(G)}.

(1)
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We have U = A ]B, where A ]B denotes the disjoint union of the sets A and B.

Zhu [3] proved the following statement.

Lemma 1 ([3]). Let G and H be graphs, U an independent set of G ×H. Then for the partition

of U into A ]B defined in (1), we have the following properties.

(i) For every y ∈ V (H), A(y) is an independent set of G. For every x ∈ V (G), B(x) is an

independent set of H.

(ii) A, B, NG(A) and NH(B) are pairwise disjoint subsets of V (G×H).

For the sake of completeness we prove this lemma.

Proof. We show the statements in (i). A(y) is independent for every y ∈ V (H) by definition. If for

any x ∈ V (G) the set B(x) was not independent in H, that is ∃y, y′ ∈ B(x), {y, y′} ∈ E(H), then

from (x, y′) ∈ B we would get that ∃(x′, y′) ∈ U , {x, x′} ∈ E(G). But this would be a contradiction,

because (x, y) ∈ B and (x′, y′) ∈ U were two adjacent elements of the independent set U .

We turn to the proof of (ii). By definition, A∩B = ∅. The first part of the lemma implies that

the pair (A,NG(A)) is also disjoint, as well as the pair (B,NH(B)).

If (x, y) ∈ A ∩ NH(B) then (by the definition of NH(B))

∃(x, y′) ∈ B, {y, y′} ∈ E(H), and so (by the definition of

B) ∃(x′, y′) ∈ U , {x, x′} ∈ E(G), which is a contradiction:

(x, y) ∈ A and (x′, y′) ∈ U are adjacent vertices in the indepen-

dent set U .

∈A∩NH(B)

∈B ∈U

V (G)

V (H)

x x′

y

y′

∈NG(A)∩NH(B)

∈B⊆U

∈A⊆U

V (G)

V (H)

x x′

y

y′
Similarly, if (x, y) ∈ NG(A) ∩ NH(B) then (by the definition

of NG(A)) ∃(x′, y) ∈ A ⊆ U , {x, x′} ∈ E(G) while (by the

definition of NH(B)) ∃(x, y′) ∈ B ⊆ U , {y, y′} ∈ E(H), which

contradicts the independence of U .

Finally, (x, y) ∈ B ∩NG(A) implies that ∃(x′, y) ∈ A, {x, x′} ∈
E(G) (by the definition of NG(A)), which is in contradiction

with the definition of A: there should not be an (x, y) ∈ B ⊆ U
satisfying {x, x′} ∈ E(G).

∈B∩NG(A)
∈A

V (G)

V (H)

x x′

y
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3 Proofs

In this section we prove the statements declared in the Introduction. In Subsection 3.1 we give an

upper bound for i(G ×H) in terms of a(G) and a(H). In Subsection 3.2 we prove that the same

upper bound holds also for a(G×H) provided that a(G) ≤ 1
2 or a(H) ≤ 1

2 . Thereby we will obtain

our main result, which states that A(G) = a∗(G) for every graph G.

3.1 Upper bound for i(G×H)

As a simple consequence of Zhu’s result the following inequality is obtained.

Theorem 2. For every two graphs G and H we have

i(G×H) ≤ max{a(G), a(H)}.

Proof. Let U be a maximum-size independent set of G×H, then we have

i(G×H) =
α(G×H)

|V (G×H)| =
|U |

|V (G×H)| . (2)

We partition U into U = A]B according to (1). We also use the notations A(y) for every y ∈ V (H),

B(x) for every x ∈ V (G), and NG(A), NH(B) defined in the previous section.

It is clear that |U | = |A| + |B|. From the second part of Lemma 1 we have that |A| + |B| +
|NG(A)|+ |NH(B)| ≤ |V (G×H)|. Observe that |NG(A)| = ∑

y∈V (H) |NG(A(y))| and |NH(B)| =∑
x∈V (G) |NH(B(x))|. Hence we get

|U |
|V (G×H)| ≤

|A|+ |B|
|A|+ |B|+ |NG(A)|+ |NH(B)| =

=

∑
y∈V (H) |A(y)|+∑x∈V (G) |B(x)|∑

y∈V (H)(|A(y)|+ |NG(A(y))|) +
∑

x∈V (G)(|B(x)|+ |NG(B(x))|) . (3)

From the first part of Lemma 1 and by the definition of a(G) and a(H) we have |A(y)|
|A(y)|+|NG(A(y))| ≤

a(G) for every y ∈ V (H), and |B(x)|
|B(x)|+|NH(B(x))| ≤ a(H) for every x ∈ V (G), respectively.

Using the fact that if t1
s1
≤ r and t2

s2
≤ r then t1+t2

s1+s2
≤ r, this yields∑

y∈V (H) |A(y)|+∑x∈V (G) |B(x)|∑
y∈V (H)(|A(y)|+ |NG(A(y))|) +

∑
x∈V (G)(|B(x)|+ |NH(B(x))|) ≤ max{a(G), a(H)}. (4)

Equality (2) and inequalities (3), (4) together give us the stated inequality,

i(G×H) ≤ max{a(G), a(H)}.

From Theorem 2 it follows that the answer to Question 2 is positive, as it is already stated.
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3.2 Upper bound for a(G×H)

In this subsection we answer Question 1 affirmatively. To show that a∗(G×2) = a∗(G) holds for

every graph G it is enough to prove that a(G×2) ≤ a(G) if a(G) ≤ 1
2 . Because every G satisfies

a(G×2) ≥ a(G), and, in addition, if a(G) > 1
2 then a∗(G×2) = a∗(G) = 1. (The condition a(G) ≤ 1

2

is necessary, since otherwise A(G) = 1, and therefore i(G×k), and a(G×k) as well, can be arbitrarily

close to 1 for sufficiently large k.) A bit more general, we prove the following theorem.

Theorem 3. If a(G) ≤ 1
2 or a(H) ≤ 1

2 then

a(G×H) ≤ max{a(G), a(H)}.

Proof. Let G and H be two graphs satisfying a(G) ≤ 1
2 or a(H) ≤ 1

2 . Without loss of generality,

we may assume that a(G) ≥ a(H). Therefore a(H) ≤ 1
2 .

We need to show that for every independent set U of G×H we have

|U |
|U |+ |NG×H(U)| ≤ a(G).

Observe that the above inequality can be rewritten as follows. Set b(G) = 1−a(G)
a(G) = 1

a(G) − 1. It is

enough to prove that

|NG×H(U)| ≥ b(G)|U |.

The definition of a(G) means that |NG(P )| ≥ b(G)|P | for any independent set P of G (and there is

an independent set R of G such that |NG(R)| = b(G)|R|). Similarly, using b(H) = 1−a(H)
a(H) we have

|NH(Q)| ≥ b(H)|Q| for any independent set Q of H.

First, we need some notations. Let Â, B̂ and C be the following subsets of U .

Â = {(x, y) ∈ U : @(x′, y) ∈ U s.t. {x, x′} ∈ E(G), but ∃(x, y′) ∈ U s.t. {y, y′} ∈ E(H)},
B̂ = {(x, y) ∈ U : @(x, y′) ∈ U s.t. {y, y′} ∈ E(H), but ∃(x′, y) ∈ U s.t. {x, x′} ∈ E(G)},
C = {(x, y) ∈ U : @(x′, y) ∈ U s.t. {x, x′} ∈ E(G), and @(x, y′) ∈ U s.t. {y, y′} ∈ E(H)}.

∈ Â

∈U

∈U

V (G)

V (H)

x x′

y

y′

∈B̂

∈U

∈U

V (G)

V (H)

x x′

y

y′

∈C

∈U

∈U

V (G)

V (H)

x x′

y

y′

Figure 2: The elements of sets Â, B̂ and C.
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We will also use the notations Z(x), Z(y), NG(Z) and NH(Z) for any Z ⊆ V (G×H), x ∈ V (G),

y ∈ V (H) defined in Section 2. We partition NG(Â ∪ C) into two parts, let

N1 = NG(Â ∪ C) ∩NG×H(U) and M = NG(Â ∪ C) \NG×H(U).

Let

N2 = NH(B̂ ∪M).

The above subsets of V (G×H) will play an important role in the proof.

∈N1

∈U

∈ Â∪C

V (G)

V (H)

x x′

y
∈M

∈U

∈ Â∪C

V (G)

V (H)

x x′

y ∈N2

∈B̂∪M

V (G)

V (H)

x

y

y′

Figure 3: The elements of N1, M and N2.

We obtain the desired lower bound for NG×H(U) in the following main steps.

(i) We show that U is partitioned into U = Â ] B̂ ] C.

(ii) We consider the elements of Â and C for every y ∈ V (H), and prove that

(a) (Â ∪ C)(y) is independent in G,

(b) |N1| ≥ b(G)
(
|Â|+ |C|

)
− |M |.

(iii) We consider the elements of B̂ and M for every x ∈ V (G), and prove that

(a) B̂(x) ∩M(x) = ∅,
(b) (B̂ ∪M)(x) is independent in H,

(c) |N2| ≥ b(H)
(
|B̂|+ |M |

)
.

(iv) For the sets N1, N2 we show that

(a) N1, N2 ⊆ NG×H(U),

(b) N1 ∩N2 = ∅,
(c) |NG×H(U)| ≥ |N1|+ |N2|.

(v) Finally, we prove that

|NG×H(U)| ≥ b(G)|U |.

Now we prove the statements above.
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(i) It is clear that Â, B̂ and C are pairwise disjoint. In addition, there is no (x, y) ∈ U

for which ∃(x′, y), (x, y′) ∈ U such that {x, x′} ∈ E(G) and {y, y′} ∈ E(H), because this would

imply that {(x′, y), (x, y′)} ∈ E(G×H), but U is an independent set. Hence U is partitioned into

U = Â ] B̂ ] C. (Clearly, the connection with the partition of Zhu described in (1) is A = Â ] C
and B = B̂.)

(ii) We consider the elements of Â and C for every y ∈ V (H).

(ii/a) By definition (Â ∪ C)(y) is independent in G.

(ii/b) From (ii/a) and by the definition of b(G) it follows that |NG((Â∪C)(y))| ≥ b(G)|(Â∪C)(y)|.
Considering the sum for all y ∈ V (H) we have |NG(Â ∪ C)| ≥ b(G)

(
|Â| + |C|

)
. By the definition

of N1 and M this yields |N1| ≥ b(G)
(
|Â|+ |C|

)
− |M |.

(iii) We consider the elements of B̂ and M for every x ∈ V (G).

(iii/a) By the definition of Â and C, the sets B̂(x) and M(x) are disjoint. Indeed, if (x, y) ∈M ⊆
NG(Â ∪ C) then ∃(x′, y) ∈ Â ∪ C, {x, x′} ∈ E(G) and so (x, y) cannot be in B̂ ⊆ U .

(iii/b) We claim that (B̂∪M)(x) is independent in H for every

x ∈ V (G). Clearly, B̂(x) is independent by definition. Further-

more, if y, y′ ∈ M(x), {y, y′} ∈ E(H) then from (x, y) ∈ M we

get that ∃(x′, y) ∈ Â∪C, {x, x′} ∈ E(G), hence (x, y′) ∈M is a

neighbor of (x′, y) ∈ U which contradicts to M ∩NG×H(U) = ∅.
Similarly if y ∈ B̂(x), y′ ∈ M(x), {y, y′} ∈ E(H) then from

(x, y) ∈ B̂ it follows that ∃(x′, y) ∈ U, {x, x′} ∈ E(G), but

again, as (x, y′) ∈M is a neighbor of (x′, y) ∈ U it is in contra-

diction with the definition of M .

∈M

∈M

∈ Â∪C
(∈B̂) (∈U)

V (G)

V (H)

x x′

y

y′

(iii/c) From (iii/b) it follows that |NH((B̂∪M)(x))| ≥ b(G)|(B̂∪M)(x)|. Considering the sum for

all x ∈ V (G) we get that |NH(B̂ ∪M)| ≥ b(G)|B̂ ∪M |. By the definition of N2 and the statement

(iii/a) we obtain |N2| ≥ b(H)
(
|B̂|+ |M |

)
.

(iv) Next, we investigate the sets N1, N2.

(iv/a) We have N1 ⊆ NG×H(U), by definition. We claim that

N2 ⊆ NG×H(U). On the one hand, NH(B̂) ⊆ NG×H(U). In-

deed, if (x, y′) ∈ NH(B̂), that is, for a neighbor y of y′ in

H we have y ∈ B̂(x), then by the definition of B̂, ∃(x′, y) ∈
U, {x, x′} ∈ E(G). Hence (x, y′) is a neighbor of (x′, y) ∈ U , and

so (x, y′) ∈ NG×H(U). On the other hand, if (x, y′) ∈ NH(M),

that is, for a neighbor y of y′ in H we have y ∈M(x), then by

the definition of M , ∃(x′, y) ∈ Â ∪ C, {x, x′} ∈ E(G), therefore

{(x′, y), (x, y′)} ∈ E(G × H), thus (x, y′) ∈ NG×H(U). This

yields NH(M) ⊆ NG×H(U).

∈N2=NH(B̂∪M)

∈B̂ ∈U

(∈M) (∈ Â∪C)

V (G)

V (H)

x x′

y

y′

(iv/b) We claim that N1 ∩N2 = ∅. Suppose indirectly, that ∃(x, y) ∈ N1 ∩N2. Then (x, y) ∈ N1

implies that ∃(x′, y) ∈ Â ∪ C, {x, x′} ∈ E(G). While from (x, y) ∈ N2 we get that ∃(x, y′) ∈ B̂ or
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∃(x, y′) ∈ M , {y, y′} ∈ E(H). It is a contradiction since (x′, y) and (x, y′) are adjacent in G ×H,

but no edge can go between Â ∪ C and B̂ ∪M by the independence of U and the definition of M .

(iv/c) The statements (iv/a), (iv/b) give |NG×H(U)| ≥ |N1|+ |N2|.
(v) From (ii/b), (iii/c) and (iv/c) we get that

|NG×H(U)| ≥ |N1|+ |N2| ≥
(
b(G)

(
|Â|+ |C|

)
− |M |

)
+

(
b(H)

(
|B̂|+ |M |

))
. (5)

From the assumption a(G) ≥ a(H) it follows b(G) = 1
a(G) − 1 ≤ 1

a(H) − 1 = b(H). We also have

a(H) ≤ 1
2 , that is b(H) ≥ 1. Thus we obtain(

b(G)
(
|Â|+ |C|

)
− |M |

)
+

(
b(H)

(
|B̂|+ |M |

))
≥

≥ b(G)

(
|Â|+ |B̂|+ |C|

)
+
(
b(H)− 1

)
|M | ≥ b(G)|U |. (6)

Combining the inequalities (5) and (6) we conclude |NG×H(U)| ≥ b(G)|U |.

Consequently, for every independent set U of G×H we showed that

|U |
|U |+ |NG×H(U)| ≤ a(G),

and the proof is complete.

We mentioned in the Introduction that the two forms of Question 1 are equivalent. Hence from

the equality a∗(G×2) = a∗(G) for every graph G we obtain that A(G) = a∗(G) is also holds for

every graph G. (Indeed, suppose on the contrary that G is a graph with a∗(G) < A(G) then ∃k
such that a∗(G) < i(G×k) ≤ a∗(G×k), and as the sequence {a∗(G×`)}∞`=1 is monotone increasing,

it follows that ∃m for which a∗(G×m) < a∗((G×m)×2), giving a contradiction.) Thus we have the

following corollary.

Corollary 4. For every graph G we have A(G) = a∗(G), that is

A(G)(= lim
k→∞

i(G×k)) =

a(G)
(

= max
U is independent in G

|U |
|U |+|NG(U)|

)
, if a(G) ≤ 1

2 ,

1, otherwise.
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4 Further consequences

Brown, Nowakowski and Rall in [2] asked whether A(G + H) = max{A(G), A(H)}, where G + H

is the disjoint union of G and H. From Corollary 4 we immediately receive this equality since the

analogous statement, a∗(G + H) = max{a∗(G), a∗(H)} is straightforward. In [1] it is shown that

A(G+H) = A(G×H), therefore we have

A(G+H) = A(G×H) = max{A(G), A(H)}, for every graph G and H.

The authors of [2] also addressed the question whether A(G) is computable, and if so what is

its complexity. They showed that if G is bipartite then A(G) = 1
2 if G has a perfect matching,

and A(G) = 1 otherwise. Hence for bipartite graphs A(G) can be determined in polynomial time.

Moreover, it is proven in [1] that a(G) ≤ 1
2 if and only if G contains a fractional perfect matching.

Therefore given an input graph G, determining whether A(G) = 1 or A(G) ≤ 1
2 can be done in

polynomial time. From Corollary 4 we can conclude that the problem of deciding whether A(G) > t

for a given graph G and a given value t, is in NP. Moreover, it is not hard to prove that it is in fact

NP-complete. (The maximum independent set problem has a Karp-reduction to this problem, by

adding sufficiently many vertices to the graph which are connected to each other and every other

vertex of the graph, and choosing t appropriately.)

Any rational number in (0, 12 ] ∪ {1} is the ultimate categorical independence ratio for some

graph G, as it is showed [2]. Here we remark that by Corollary 4, A(G) cannot be irrational,

solving another problem mentioned in [2].
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