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A systematic analytical approach to simulate the propagation of electromagnetic plane waves in multilayer anisotropic structures, where the layers can have arbitrary oriented optical 
axis is presented. The explicit expressions for the vector polarizations of electric and magnetic fields inside a randomly oriented anisotropic medium are derived. The developed 
algorithm operates with analytic 4×4 matrices to calculate the transmission and reflection coefficients. This algorithm is suitable to investigate the near-field/far-field electromagnetic 
wave interaction at any angle of incidence for numerous intriguing applications. The procedure is applied to design anisotropic single and multilayer lenses for sub-wavelength 
imaging. 
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 I. Introduction 

 

     The state of the art technology of the nano-fabrication 
facilitates the science and engineering society to imple-
ment intriguing applications with multilayer anisotropic 
structures. Novel layered anisotropic structures are 
applied in material science [1], electroanalytical chemistry 
[2, 3], biological interfaces and tissue engineering [4, 5], 
physics and optics [1]. To characterize the microscopic 
structural changes in these thin films [1-5], various 
techniques such as x-ray reflectivity, Raman spectroscopy, 
fluorescent spectroscopy, optical ellipsometric   spectro-
scopy, and infrared reflection spectroscopy are used [6]. 
The functionality of these techniques depends on the 
propagation of the light in thin films. Usually the electric 
field component of the light interacts with the sample. This 
interaction is governed by the dielectric functions of the 
material and the sample geometry. The properties and the 
performance of the sample is then obtained by the 
information gained from the reflected and/or transmitted 
field. Consequently, a clear and relatively simple analytical 
approach that can derive the required information from 
the reflected or transmitted spectra is required.  

Although the analytical investigation for electromagnetic 
wave propagation in anisotropic layered media has been a  

 

subject of interest for many years [7-18], the presented 
solutions are either not systematic enough for the 
treatment of general multilayer birefringent media [7-11], 
or in the case of general solutions, the solution becomes 
singular for isotropic layers [12, 14]. The general solution 
offered in [13] is involved with power series expansions 
and no explicit expressions are provided for the interaction 
of the wave with the incident and exit medium. In [16], the 
wave propagation is treated in more detail, but only for a 
single uniaxial layer. None of the papers [7-18] provides 
explicit expressions for the polarization of the electric and 
magnetic fields in each layer. The explicit expressions for 
the polarization of the electric field,  magnetic field, and 
the wave vector [14] in each layer, provides accurate 
information about the behavior of the electromagnetic 
wave propagating through layered structure for different 
applications [7-11, 13-15] and how the layered structure 
eventually transmits and reflects the incident wave [12-
14]. Moreover, the polarization-dependent optical   invest-
igations have become standard methods to explore the 
properties of anisotropic solids and liquids [17-19], and 
hence it is important to derive analytical expressions for 
the polarizations in each layer for characterization 
purposes. 
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The paper is organized as follow. In the first part, based on 
the full-wave solution of the Maxwell equations, we 
present the explicit expressions of the electromagnetic field 
components in a multilayer with arbitrary oriented optical 
axis. In section II, the Maxwell equations are solved in the 
k-space to find the explicit expressions of the partial fields. 
As it is convenient to reduce the number of electromagnetic 
field variables to a minimum, the six components of the E-
field and H-field in each medium are expressed in terms of 
only one component. In section III a brief review of 
monochromatic plane wave propagation in layered 
structures is presented. Based on the analytical 
expressions of vector field’s polarizations in section II, the 
boundary condition and propagation matrices are 
introduced for each layer, as the building blocks of the 
transfer matrix method in this paper. The methodology is 
suitable to calculate the transfer matrix of a layer with 
arbitrary thickness and anisotropy, for any angle of 
incidence under plane wave illumination. The reflection 
and transmission coefficients for the multilayer system, is 
derived from the relations between the amplitudes of the 
incident, reflected, and transmitted waves. It is shown that 
similar boundary condition matrix relates the transfer 
function of the layered structure to the amplitudes of the 
waves in the incident and exit media. The method is 
suitable for propagating wave and evanescent wave 
calculations as well. In section IV the derived transfer 
function method is applied to calculate the transmission of 
images with propagating and evanescent components with 
sub-wavelength details, through anisotropic single or 
multilayer flat lenses. Section V is allocated to the 
investigation of the effect of gyrotropy on sub-wavelength 
imaging process. In appendix A, it is shown that the 
derived anisotropic relation can be reduced to the isotropic 
case without any singularity in contrast to the method 
presented in [12, 14].  

 II. Explicit Expressions of the Electric and Magnetic fields 
in Arbitrary Anisotropic Media  

   In this section the polarizations of vector fields from 
Maxwell equations is provided. Without loss of generality a 
coordinate system with the z axis perpendicular to the 
multilayer structure is introduced as it is presented in Fig. 
1. For a non-magnetic medium with arbitrary anisotropy, 
the polarizations of the fields depend on the permittivity 
tensor ߝ ̿ and the wave vector k in each medium. The 
tangential component of the wave vector, here ݇௫, is 
conserved through the interfaces, therefore it is known in 
all layers. The normal component, ݇௭ can be obtained 
combining the following Maxwell equations   

                                ∇ × ܪ = ∇																														                    (1a)      ܦ݆߱ × ܧ =   (1b)                                ܪߤ݆߱−

Where D =  which results in the wave equation in k ,ܧ̿ߝ
space. The nontrivial solution of the wave equation in the 
anisotropic medium is a quadratic dispersion relation that 
yields four roots, (݅ = 1 − 4). These four roots are the z 
components of the wave vectors in the anisotropic layer. 
The four explicit expressions for ݇௭ are given in [14]. Two 
solutions have a real positive part and constitute the 
forward-traveling plane waves with respect to +z, while the 
other two solutions with negative real-parts are the back-
propagating waves. In order to find the explicit expressions 
for the E-field and H-field polarization vectors, equations 
(1a) and (1b) are used. From equation (1a), 

                          

ەۖۖ
۔ۖ
ۓۖ − డு೤డ௭ = 		௫ܦ݆߱
డுೣడ௭ − డு೥డ௫ = ௬ܦ݆߱

డு೤డ௫ = ௭ܦ݆߱
                                (2)  

From the first and the third relations in equation 2, 

݇௭(݅)ܪ௬ = ߱( zxzyxyxxx EEE εεε ++ )      (3a)                    ݇௫ܪ௬ = −߱( zzzyzyxzx EEE εεε ++ )               (3b) 

Here ߝ௡௠ (݊,݉	 ∈ ,ݔ} ,ݕ  is the component of the ({ݖ
permittivity tensor connecting ܦ௡	to ܧ௠	 where D and E are 
the electric displacement and electric field, respectively. 
The combination of Equations (3a), (3b), and (1b) results in 
the explicit expressions for the E-field polarization vector,  

ሬԦܧ                          = ێێۏ
ۍێ 1ିఈఊ − ఉఒకఊఒక ۑۑے

ېۑ  ௫                                      (4)ܧ

Where ߙ	, ,	ߚ ,	ߛ ,ߦ and	ߣ  are defined as  

௟ߚ                              = ఌೣ೥௞೥(௜) + ఌ೥೥௞ೣ                                      (5-a) 

௟ߙ                                = ఌೣೣ௞೥(௜) + ఌ೥ೣ௞ೣ                                    (5-b)        

௟ߛ                                = ఌೣ೤௞೥(௜) + ఌ೥೤௞ೣ                                     (5-c) 



௟ߣ  = ݇௫ߝ௫௫ + ݇௭(݅)ߝ௫௭ − ௫௬ߝ) − (௬௭ߝ ఈ೗ఊ೗            (5-d)                    ߦ௟ = ݇௫ߝ௭௫ + ݇௭(݅)ߝ௭௭ + ௫௬ߝ) − (௭௬ߝ ఉ೗ఊ೗                     (5-e)  

Where ‘i’ refers to the numbers of the partial waves 
propagating in one layer. The polarization vector for H-
field is determined by 

ሬሬԦܪ        = ∇×ாି௝ఠఓ = ێێۏ
ۍێێ
ି௞೥(௜)ఠఓ (ିఈఊ − ఉఒకఊ)
ଵఓఠ (݇௭(݅) − ݇௫ ఒక)௞ೣఠఓ (ିఈఊ − ఉఒకఊ) ۑۑے

ېۑۑ   ௫                       (6)ܧ

 As is expected for arbitrary anisotropic material, the field 
components are coupled to each other and no TE/ TM 
polarization with respect to the direction of propagation is 
possible. In fact a plane wave in the arbitrary anisotropic 
medium can be decomposed into two orthogonal waves, 
called a-wave and b-wave which are generalizations of the 
TE and TM waves in isotropic and uniaxially anisotropic 
media. The vectors, a and b, each with six components, are 
defined by the optical properties of the medium [20]. 

III. General Transfer Matrix  

 Consider the source plane wave propagating from the 
incident (-∞<z<0) medium with a complex relative 
permittivity of		ߝ௜, at an angle of incidence ߠ௜ and 	ܣ௜,்ா, ,	௜,்ெܣ	 ,௥,்ாܤ and	ܤ௥,்ெ are the complex amplitudes of 
the TE and TM modes of the incident and reflected waves, 
respectively. After interaction with the layered structure, 
the wave enters the exit medium, ݖ௡<z<∞ and is 
characterized with the complex transmission amplitude of 	ܣ௧,்ா		and	ܣ௧,்ெ	 for transmitted TE and TM polarization 
respectively. The propagation occurs along the z direction 
and the layers are in the x-z plane. The origin is set at the 
plane which constitutes the interface of the incident 
ambient and the first layer as it is plotted in Fig. 1 

 

 

 

 

In this paper, the sign convention  ݁ି௜௫௞೥೔ is chosen  for 
propagation in +z direction. The wave vector of the 
incident field is chosen, without loss of generality, to have 
x and z components. The incident wave, transmitted wave, 
and reflected wave, are related to each other by the 
transfer matrix of the layered system as   

ێێۏ                            
௥,்ாܤ௜,்ாܣ௥,்ெܤ௜.்ெܣۍ ۑۑے

ې = ܨܶ ൦ܣ௧,்ெ0ܣ௧,்ா0 ൪                                 (7) 

TF is,   

ܨܶ                     = ଴ିܥܤ ଵ(∏ ௟ܶ(݀௟, ேே௜ୀଵܥܤ(	௟̿ߝ                          (8) 

Where ܥܤ଴ relates the incident and the reflected 
amplitudes to the tangential components of the E-field and 
H-field in the incident medium and ܥܤே connects the 
transmitted amplitude to the tangential components of the 
E-field and H-field in the exit medium, then ௟ܶ 	represents 
the transfer function of each layer, as follows to the 
tangential components of E-field and H-field in the exit 
medium and ௟ܶ 	represents the transfer function of each 
layer.  

 The flowchart of the algorithm showing the development 
of the transfer matrix explicitly for the ݈௧௛ layer, is 
presented in figure 2. The ordered product of the layers’ 
transfer functions from the first interface, at z=0, to the 
last interface at, z = ݖ௡, in figure 1, results in the transfer 
function of the layered structure. In the absence of the 
surface current density and charge density at the interface 
regions, the tangential components of electric- and 
magnetic-field are continuous across the interfaces. BCl-1, 
BCl, and BCl+1 in figure 2 represent the boundary condition 
matrixes which realize the continuity of the tangential 
components of the E-field and H-field in the l-1, l , and l+1 
layers respectively. To form the BC matrix, four tangential 
components of the E-field and H-field in each medium are 
required. However, since the polarization vectors of the 
electric field and magnetic field were found analytically the 
number of variables can be minimized to one. Here, the y 
component of the H-field,	ܪ௬, is chosen, but others may be 

selected as well. As there are four different wave vectors, 
with the same kx value but different kz values, there are 
four partial fields which constitute each tangential 
component. The BC matrix presents the association of 
tangential components to the amplitude of the partial 
fields that constituteܪ௬, as shown in the following: 

 ࡱࢀ,࢏࡭

 ࡹࢀ,࢏࡭

 ࡹࢀ,࢘࡮

 ࡱࢀ,࢘࡮
. . .    .. . . 

ࡱࢀ,࢚࡭ࡹࢀ,࢚࡭
z 

x 

y 

Figure1. Incidence, reflectance and transmittance of a plane 
wave 
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Where ܪ௟ଵ −  ௟ସ are the amplitudes of the four partialܪ
fields that form the ܪ௬. The explicit expressions for the BC 

matrix are provided as follows: 

௟ܥܤ                 = ێێۏ
ଵ,௟ܥଵ,௟ܤଵ,௟1ܣۍ 			

ଶ,௟ܥଶ,௟ܤଶ,௟1ܣ 					
ଷ,௟ܥଷ,௟ܤଷ,௟1ܣ 					

ସ,௟ܥସ,௟ܤସ,௟1ܣ ۑۑے
ې
                         (10-a)    

 

௜,௟ܣ          = ௞೥(௜)ఠ[ఌೣೣାఌೣ೤൤ഁ೗ഊ೗ം೗഍೗ିഀ೗ം೗൨ିഊ೗഍೗ఌೣ೥                         (10-b) 

 

௜,௟ܤ                        = (ఉ೗ఒ೗ఊ೗క೗ − ఈ೗ఊ೗)ܣ௜,௟                                 (10-c) 

௜,௟ܥ                           = ି௞೥(௜)ఠఓ         ௜,௟                                     (10-d)ܤ

 The forward and backward propagation coefficients of the 
partial fields, inside the ݈௧௛ layer, from the ݈௧௛ interface 
denoted by [ܪ௟ଵ	ܪ௟ଶ	ܪଷ௟		ܪ௟ସ]்	 to (݈ + 1)௧௛ denoted by 
 is shown analytically in equation (11-a) ,்[௟ସ′ܪ		ଷ௟′ܪ	௟ଶ′ܪ	௟ଵ′ܪ]
and (11-b). ݀௟ is the thickness of the layer and ݇௭௟,௜ is the z 
component of the wave vector in section II. 

                             ൦ܪ௟ଵܪ௟ଶܪ௟ଷܪ௟ସ൪ = ௟ܲ ൦ܪ′௟ଵܪ′௟ଶܪ′ଷ௟ܪ′௟ସ൪                               (11-a) 

        ௟ܲ = ൦݁௜௞೥೗,భௗ೗000 				 0݁௜௞೥೗,మௗ೗00 					 00݁௜௞೥೗,యௗ೗0 					 000݁௜௞೥೗,రௗ೗൪        (11-b) 

According to figure 2, the transfer function ௟ܶ 	connects the 
tangential components of E-field and H-field of (݈ − 1)௧௛ 
layer to (݈ + 1)௧௛ layer. 

ێێێۏ                              
ۑۑۑے௫௟ିଵܪ∑௬௟ିଵܧ∑௫௟ିଵܧ∑௬௟ିଵܪ∑ۍ

ې = 	 ௟ܶ ێێێۏ
ۑۑۑے௫௟ାଵܪ∑௬௟ାଵܧ∑௫௟ାଵܧ∑௬௟ାଵܪ∑ۍ

ې
                  (12) 

According to the flowchart of figure 2 and equations 10, 11, 
and 12 the transfer function of the ݈௧௛ layer is  

                        ௟ܶ = ௟ܥܤ ௟ܲܥܤ௟ି ଵ                                      (13-a) 

The ordered product of the layers’ transfer function from 
the first interface at z=0 to the last interface at z = ݖ௡ 
connects the tangential field components at z=0 and z=ݖ௡.	 
                              ܶ = 	∏ ௟ܶே௟ୀଵ                                          (14) 

The TF in equation (7) is the relation between the 
amplitudes of incident, reflected, and transmitted waves. 
In most of the cases the incident and exit medium are 
isotropic and ܥܤ௟ in equation (8) is simplified to, 

଴ܥܤ                    = ێێێۏ
ۍ 1௞೥బఠఌబ00 			

1− ௞೥బఠఌబ00 					 001௞೥బఠఓబ
					 001− ௞೥బఠఓబۑۑۑے

ې
              (15-a) 

Figuer 2. The flowchart of transfer matrix development for the 
lth layer 

l             (l+1)     				ઽധܔ									 ઽധܔା૚
࢒࡯࡮ ێێۏ

ۑۑے૝࢒′ࡴ૜࢒′ࡴ૛࢒′ࡴ૚࢒′ࡴۍ
ې 					= (ାଵ࢒)࡯࡮ ێێێۏ
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ې
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ேܥܤ                  = ێێێۏ
ۍ 1௞೥ಿఠఌಿ00 			 1− ௞೥ಿఠఌಿ00 					 001௞೥ಿఠఓಿ

					 001− ௞೥ಿఠఓಿۑۑۑے
ې
             (15-b) 

Here ݇௭଴ and ݇௭ே are the z components of the k vector in 
isotropic incident and exit medium respectively which 
become imaginary for the incident evanescent waves. In 
lossless medium, ݇௭଴ and ݇௭ே are real for propagating 
waves and imaginary for evanescent waves. 

IV. Transmission of Evanescent Wave with Layered 
Isotropic-Anisotropic for Sub-wavelength Imaging 
Application    

i . Transmission through a single layer of anisotropic 
material 

It is well-known that the resolution of the conventional 
optical imaging systems is restricted by the Abbe diffraction 
limit.  The observation of the sub-wavelength details of an 
object is difficult due to the considerable attenuation of the 
scattered waves with high spatial frequency, in the 
nanometric vicinity of the object. An anisotropic slab with 
specific permittivity tensor is able to transmit the high 
spatial frequencies without major loss due to its hyperbolic 
dispersion curve [22]. Based on the transfer matrix 
calculation of section IV, here we show the transmission of 
evanescent waves from the source to image plane with an 
anisotropic slab. The parameters of the permittivity tensor 
of the slab are from [23]. As it is shown in Fig. 3, for the 
calculated transfer function is in excellent agreement with 
the data given in [23]. The anisotropic slab is nonmagnetic 
and described with a diagonal permittivity tensor,   

̿ߝ                       = ቎ߝ௫௫ 0 00 ௬௬ߝ 00 0  ௭௭቏                              (21)ߝ

The incident wave is the TM polarized wave with magnetic 
field in y direction. In [23] the sign of the real part of ߝ௫௫ 
and ߝ௬௬ is chosen to be positive and the real part of ߝ௭௭ is 

negative, which leads to hyperbolic dispersion relation for 
the anisotropic slab. The z components of k vectors are, 

            ݇௭,ଵ = −݇௭,ଶ = ට݇଴ଶߝ௫௫ − ఌೣೣఌ೥೥ ݇௫ଶ                  (22-a) 

            ݇௭,ଷ = −݇௭,ସ = ටߝ௬௬݇଴ଶ − ݇௫ଶ                       (22-b) 

The dispersion relation (22-a) shows that for the opposite 
signs of  ߝ௫௫ and ߝ௭௭ , the waves with large spatial 
frequencies,݇௫ , will not decay in the anisotropic medium(kzi 
remains real). According to the expressions in section IV 
the transfer function for the TM incident wave is   

                		 ்ܶெ = ஼೟,೅ಾ஺೔,೅ಾ = ୘యయ୘భభ୘యయି୘భయ୘యభ                       (23) 

Figure 3 demonstrates the transfer function of an 
anisotropic slab in interaction with propagating (݇௫ = 0 −݇଴) incident waves and evanescent (݇௫ = ݇଴ − 10݇଴) 
incident, the thickness of the slab in 400 nm and the 
wavelength of incident wave 700	nm.According to the figure 
3, the anisotropic slab with specific permittivity tensor is 
capable to preserve the evanescent waves, which can be a 
considerable achievement in sub-wavelength imaging 
techniques. Having the explicit expressions for the transfer 
function facilitates one to study the destructive and 
constructive effects i.e. loss, thickness, and operating 
frequency, precisely and design an optimum imaging device 
in this case. As an example in Fig. 4, sub-wavelength 
imaging with an anisotropic slab for two Gaussian pulses 
separated 23 nm is realized. The monochromatic wave is 
illuminated with the wavelength of 700 nm which result in ~	 ఒଷହ  sub-wavelength resolution.   

 

         Figure 3 .Transfer functions for lossy and optically active 
anisotropic slab 

 

 

Figure 4. Sub-wavelength imaging with an anisotropic slab             ߝ௫௫ = ௬௬ߝ = 1 − ݆. ௭௭ߝ	02 = −1, d= 400 nm, λ = 700	nm 
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ii. Multilayer anisotropic structure 

 

       In sub-wavelength imaging systems with isotropic 
metal layer based superlenses, the evanescent waves grow 
exponentially until a particular film thickness thereafter; 
the material loss becomes more prominent [24]. Hence, the 
multilayer lens is greatly advantageous to establish a 
feasible spacing between the sample and its image. Based 
on the analytical algorithm derived in section III, here the 
sub-wavelength imaging with the layered isotropic-
anisotropic structure is shown. The layered structure is 
made of successive arrangement of anisotropic layers and 
isotropic slabs. In conventional layered superlens with 
metallic and dielectric slabs, the optimal imaging occurs 
when the overall thickness of metal slabs and dielectric 
slabs are equal. However for the layered isotropic-
anisotropic structure, this ratio is not required due to the 
different imaging mechanism. In metal-dielectric lenses the 
sub-wavelength imaging is possible due to the amplification 
of evanescent waves while the sub-wavelength imaging in 
anisotropic-isotropic layers is due to the preservation of 
evanescent waves. 

 

 

 

 

 

 

 Consequently the isotropic layers can be chosen as thin as 
possible to minimize the attenuation of the evanescent 
waves which result in higher resolution compared to only 
isotropic multilayer designs. Figure 5 demonstrates the 
transfer function of two different arrangements for layered 
structures, the specifications of each structure is provided 
in table 1.  

   Figure 5. Transfer function for layered anisotropic-isotropic     
lens, the specifications of the layered strictures are provided in 

table 1 

 

 

Figure 6, shows the realization of sub-wavelength imaging 
for two Gaussian pulses which are 40 nm away at  λ =500nm	 and λ = 700	nm which result in the sub-wavelength 

resolution of ఒଵଶ.ହ and ఒଵ଻.ହ  respectively , far beyond the 

diffraction limit. 

 

Figure 6. Sub-wavelength imaging with layered anisotropic- 
isotropic lens 

 

 

 

 

 

 

V. The effect of gyrotropy on Sub-wavelength imaging 

Recently, it is shown that magnetized plasma with 
appropriately designed parameters supports subdiffraction 
propagation of electromagnetic waves along the direction of 
the applied magnetic field [25]. The electromagnetic 
properties of magnetized plasma can be tuned by varying 
the external magnetic field or the density of the plasma. 
Under strong external DC magnetic field, the plasma 
exhibits the following dielectric function, 

ߝ                        = ቎ߝ௫௫ ௚ߝ݅− ௚ߝ0݅ ௫௫ߝ 00 0 ௭௭ߝ ቏                      (23) 

where ߝ௫௫ = 1 + ఠ೛మఠ೎మିఠమ ,	ߝ௚ = 1 + ఠ೛మఠ೎ఠ(ఠ೎మିఠమ) and ߝ௭௭ = 1 − ఠ೛మఠమ 
[25] , ߱௣ is the plasma frequency and ߱௖is the cyclotron 
frequency. In this section the effect of off-diagonal 
element,ߝ௚, is investigated on the quality of subwavelength 
imaging in layered structure. The four explicit expressions 
for the normal component of propagation vector are as 
follows, 
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Table 1. Specifications of 5 layer and 7 layer superlens

௫௫ߝ = 2 − ݅. ௬௬ߝ , 05 = 2 − ݅. ௭௭ߝ ,  05 = −2 400  4  400  4 400

100 2 100 2 100 2 100 ௫௫ߝ  = 1− ݅. ௬௬ߝ , 02 = 1− ݅. ௭௭ߝ ,  02 = −1 



 

 

 

 

 

 

 

Note that the dispersion relations (24-a) and (24-b) are 
simplified to equation (22-a) and (22-b), when ߝ௚ is set to 
zero. The overall quality of imaging depends on how well 
the large wave vectors are transferred through the layered 
structure. Figure 7(a) shows the normal components of the 
wave vector ݇௭,ଵ, 	݇௭,ଷ in function of ݇௫ and ߝ௚, when the 
diagonal elements of the tensor are ߝ௫ = 1 − ݅	0.02	and	ߝ௭ =	−1,	݇௭,ଶ, 	݇௭,ସ are different from ݇௭,ଵ, 	݇௭,ଷ only in a negative 
sign, equation (24). For reference, figure 7(b) presents the 
normal components of the wave vector in the in the 
absence of ߝ௚ which is the material with diagonal 
permittivity tensor. 

 

 Figure 7 Normal component of k vector as function of ݇௫ and ߝ௚ (a) 
Gyrotropic dielectric function (b) Diagonally anisotropic dielectric 

function 

A it can be observed in figure 7, the off-diagonal elements 
of the electric permittivity tensor in case of gyrotropic 
media provides additional degree of freedom compared to 
the anisotropic case to engineer the normal components of 
the wave vector. As there are four partial waves, which 
contribute to the transmission and reflection of harmonics 

with different wave vectors, it is not obvious whether this 
variation is constructive or destructive. Therefore the 
quality of image is investigated in function of the off-
diagonal elements ߝ௚ for the superlens made of 7 layers as 
specified in table 1. Figure 8 plots the transfer function of 
the layered structure for several values of the off-diagonal 
tensor element	ߝ௚, while figure 9 presents the correspo-
nding intensity distributions in the image plane. 

 
Figure 8 Transfer function of the 7 layer thick superlens for 

different values of the off-diagonal tensor element .  ௚ߝ

 

 

As it is shown in figure 9, the effect of gyrotropy can be 
constructive (ߝ௚ = 1) or destructive (	ߝ௚ = 0.1, 0.3, 0.7, 3, 5). 

It is also shown in [25] that for external DC magnetic field 
of 1 and 2 T, the imaging process is not satisfactorily, while 
applying DC magnetic field of 3 and 4 T results in the 
formation of image with sub-wavelength features. 
Consequently carefully designed gyrotropic permittivity 
tensor results in dispersion curves required for improved 
subwavelength imaging. It should be noted that the 
optimum value of ߝ௚ depends on the other elements of the 

permittivity tensor as well. For instance, figure 10 shows 
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Figure 9 Sub-wavelength imaging with layered gyrotropic- 
isotropic lens 

ඩ(ߝ௫௫ + ௭௭)݇௫ଶߝ − ௭௭݇଴ଶߝ௫௫ߝ2 + ට(ߝ௫௫݇௫ଶ − ௭௭݇௫௫ଶߝ )ଶ + ௭௭݇଴ଶߝ)௚ଶߝ௭௭ߝ4 − ݇௫ଶ)−2ߝ௭௭  

ඩ2ߝ௫௫ߝ௭௭݇଴ଶ − ௫௫ߝ) + ௭௭)݇௫ଶߝ + ට(ߝ௫௫݇௫ଶ − ௭௭݇௫ଶ)ଶߝ + ௭௭݇଴ଶߝ)௚ଶߝ௭௭ߝ4 − ݇௫ଶ)2ߝ௭௭

   	݇௭,ଵ = −	݇௭,ଶ	                                                                         (24.a) 

  ݇௭,ଷ = −	݇௭,ସ	                                                          (24.b) 

     ܴ݁	(݇௭)                                    ݉ܫ(݇௭)    

         ܴ݁	(݇௭)                                  ݉ܫ(݇௭)    

(b)



the imaging features for two layered superlenes with 
identical geometry and the same value of the off-diagonal 
tensor element ߝ௚, while the diagonal elements of the 

permittivity tensor differ (see table 2). Consequently, in 
case of gyrotropic materials, the sub-wavelength imaging 
can be improved by relative adjustment of the diagonal 
elements of the permittivity tensor.   

 

 

Acknowledgement 

This research is supported by the Agency for Science and 
Technology Research (A*STAR), Singapore. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. Conclusion   

 The explicit expressions are derived for the polarizations of 
the electric and magnetic field in general anisotropic 
medium. Based on the vector fields’ polarizations, a  
procedure is introduced to calculate the transmission 
matrix for  the structure with arbirary numbers of 
anisotropic layers .In addition, it is shown that the provided  
solution is also suitable for propagation of monochromatic 
wave in isotropic medium and an explicit exprassion for 
transfer function of isotropic medium which is compatible 
with 4×4 matrix algebra is presented. The 4×4 matrixes 
which connect the amplitudes of the waves in incident and 
exit medium, to the tangential fields’ components are 
provided for both propagating and evanescent waves. Based 
on the presented explicit solution, it is shown that the 
single layer and multilayer anisotropic structure is capable 
of deep sub-wavelength imaging. For the anisotropic layer 
with the specified optical properties, the provided analytical 
solutions for ݇௭ prove the transmission of the evanescent 
waves  through the layered structure, which results in 
increase of the resolution much beyond the diffraction limit. 
The effect of gyrotropy on sub-wavelength imaging is 
investigated and it is shown that based on the value of off-
diagonal parameter of the permittivity tensor, gyrotropy 
might has constructive or destructive effect on imaging. 
Hence, the carefully designed permittivity tensors with 
gyrotropy are promising for advancement in sub-
wavelength imaging. 
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Figure 10 Imaging with gyrotropic layered superlens varying the 
diagonal elements of the dielectric tensor 

Table 2. Specifications of layered superlens  

௫௫ߝ = 2 − ݅. ௬௬ߝ , 05 = 2 − ݅. ௭௭ߝ ,  05 = ௚ߝ 2− = 0.3 

100 2 100 2 100 2 100 ௫௫ߝ  = 1− ݅. ௬௬ߝ , 05 = 1− ݅. ௭௭ߝ ,  05 = ௚ߝ  1− = 0.3 

100 2 100 2 100 2 100  



 

 

      The general solution for the wave propagation in 
anisotropic media presented in [12,14], fails for the isotropic 
case. Here we use the expressions provided for the 
polarizations of E-field and H-field in equations (4-6), and 
propagation matrix given in equation (11) to derive the 
expression of the transfer function for isotropic layer. As 
the transfer function of each layer connects the tangential 
components of E-fields and H-fields across the two 
interfaces of the layer and, equations (6-8) provides the 
relations between the tangential components, 

ێێۏ																
ۑۑے௫ܪ௬ܧ௫ܧ௬ܪۍ

ې = ێێێۏ
ۍ 1ఠఌ೗௞೥೗00 			

௞೥೗ఠఌ೗100 					
001௞೥೗ఠఓ೗
					 00ఠఓ೗௞೥೗1 ۑۑۑے

ې
ێێۏ
ۑۑے௫ܪ௬ܧ௫ܧ௬ܪۍ

ې
                       (A1) 

As it is expected ܪ௬	and	ܧ௫		are	not	coupled	to	 ܧ௬	and   ܪ௫		anymore and wave propagation in the isotropic layer can 
be decomposed for TE and TM waves. The 4×4 boundary 
condition matrix and propagation matrix is then reduced to 
two 2×2 matrices as 

௟,்ெܥܤ                        = ቈ 1 1௞೥೗ఠఌ೗ − ௞೥೗ఠఌ೗቉                              (A2) 

 
 
 
 
 
 
 
 
 
                                                                                                          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                

  

௟,்ாܥܤ                     = ቈ 1 1௞೥೗ఠఓ೗ − ௞೥೗ఠఓ೗቉                             (A3)      

               ௟ܲ,்ெ = ௟ܲ,்ா = ൤݁௜௞೥೗೏೗ 00 ݁ି௜௞೥೗೏೗൨                    (A4) 

 

The propagation matrix in equation (A4) shows that in the 
isotropic layer, there are two partial waves, one propagates 
forward and the other propagates backward, which is in 
agreement with the number and sign of eigenvectors of the 
wave equation matrix for the isotropic medium. Following 
the same procedure as presented in figure 2, the 4x4 matrix 
for the transfer function, which is compatible with the 
calculations of the anisotropic system is 

                           ௟ܶ,௜௦௢ = ௟.௜௦௢ܥܤ ௟ܲ,௜௦௢ܥܤ௟,௜௦௢ିଵ                        (A5) 

  

Where,ܥܤ௟,௜௦௢ = ൤ܥܤ௟,்ெ [0][0] ௟,்ா൨andܥܤ ௟ܲ,௜௦௢ = ൤ ௟ܲ,்ெ [0][0] ௟ܲ,்ா൨.The 

explicit expression for the transfer matrix on the isotropic 
slab is , 
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Appendix A . Transfer Function of Isotropic Layer 

௟ܶ,௜௦௢ = ێێۏ
ۍێ cos	(݇௭௟݀௟)݅ ݇௭௟߱ߝ௟ sin	(݇௭௟݀௟)00 			݅ ௟݇௭௟ߝ߱ sin (݇௭௟݀௟)cos	(݇௭௟݀௟)00 				 00cos	(݇௭௟݀௟)−݅ ݇௭௟߱ߤ௟ sin	(݇௭௟݀௟) 			− ݅	 ௟݇௭௟ߤ00߱ sin	(݇௭௟݀௟)cos	(݇௭௟݀௟) ۑۑے
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