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Abstract

The linear complexity is an important and frequently used measure

of unpredictably and pseudorandomness of binary sequences. In Part

I of this paper we extended this notion to two dimensions: we defined

and studied the linear complexity of binary and bit lattices. In this

paper first we will estimate the linear complexity of a truly random

bit (M,N)-lattice. Next we will extend the notion of k-error linear

complexity to bit lattices. Finally, we will present another alternative

definition of linear complexity of bit lattices.

1 Introduction

The linear complexity is an important and frequently used measure of

pseudorandomness of bit sequences which is closely related to the crypto-

graphic applications.

Definition 1 The linear complexity L(SN) (over the field F2) of the finite

bit sequence

SN = (s0, s1, . . . , sN−1) ∈ {0, 1}N (1.1)

is the length L of the shortest linear recursion

sn+L = cL−1sn+L−1+cL−2sn+L−2+ · · ·+c0sn, n = 0, 1, . . . , N−L−1 (1.2)

over F2 which is satisfied by the sequence SN , with the convention that

L(SN ) = 0 if s0 = s1 = · · · = sN−1 = 0 and L(SN ) = N if s0 = s1 =

· · · = sN−2 = 0 and sN−1 = 1.

Note that one may also define the linear complexity of infinite (periodic)

bit sequences, and one may also study linear complexity over other finite

fields Fq but we will not need these definitions here.
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Pseudorandomness of bit sequences also has other important quantita-

tive measures. In particular Mauduit and Sárközy [8] introduced the well-

distribution measure W (EN), correlation measure Ck(EN) of order k and

the combined (well-distribution-correlation) measure Qk(EN ) of order k of

binary sequences

EN = (e0, e1, . . . , eN−1) ∈ {−1,+1}N (1.3)

(the definition of these measures is presented in Part I [2], here we will not

need these definitions). Although the linear complexity is defined for bit

sequences of form (1.1) while the other measures of pseudorandomness are

defined for binary sequences of form (1.3), all these measures can be used

in both cases since there is a natural bijection ϕ : {0, 1}N → {−1,+1}N .

Namely, if the sequence SN in (1.1) is given then ϕ(SN) can be defined by

ϕ(SN) = ϕ((s0, s1, . . . , sN−1)) = EN = (e0, e1, . . . , eN−1) with

ei = (−1)si (= 1− 2si) for i = 0, 1, . . . , N − 1, (1.4)

while the inverse mapping is given by

ϕ−1(EN) = ϕ−1((e0, e1, . . . , eN−1)) = SN = (s0, s1, . . . , sN−1) with

si =
1− ei
2

for i = 0, 1, . . . , N − 1.

Then the linear complexity of the binary sequence EN in (1.3) can be defined

by

L(EN) = L(ϕ−1(EN)) = L(SN ).. (1.5)

In [6] Hubert, Mauduit and Sárközy extended the notion of binary se-

quence and the measure Qk of pseudorandomness to n dimensions. As in

Part I we will restrict ourselves to the n = 2 special case, the case of general

n could be handled similarly.

For M,N ∈ N let IM,N denote the lattice point rectangle

IM,N = {(x, y) : x ∈ {0, 1, . . . ,M − 1}, y ∈ {0, 1, . . . , N − 1}}. (1.6)
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Definition 2 A function of type η(x) : IM,N → {−1,+1} is called a binary

(M.N)-lattice.

(Note that in [6] and other earlier papers only the M = N special case

was studied, the case of general pairs M,N was introduced only in Part I of

this paper, and all the earlier definitions and nearly all the earlier results can

be extended to this general case.) Replacing all η values equal to +1 by 0

and all values equal to −1 by +1 we get a function of type δ(x) → {1, 0}.

Definition 3 A function of type δ(x) → {1, 0} is called bit (M,N)-lattice.

As in one dimension, there is a bijection Φ between bit lattices and binary

lattices: if the bit (M,N)-lattice δ is given then the binary (M,N)-lattice

η = Φδ is defined by

η(i, j) = Φδ(i, j) = (−1)δ(i,j) (= 1− 2δ(i, j)) for

i ∈ {0, 1, . . . ,M − 1}, j ∈ {0, 1, . . . , N − 1}, (1.7)

while the inverse mapping is given by

Φ
−1η(i, j) = δ(i, j) =

1− η(i, j)

2
for

i ∈ {0, 1, . . . ,M − 1}, j ∈ {0, 1, . . . , N − 1}.

In [6] and [3] we extended the definitions of the measures Qk resp. Ck of

pseudorandomness from one dimension to n dimensions (while the measure

W is the k = 1 special case of the measure Qk) we will not need these

definitions here. (See also [4] and [5], and we also recalled these definitions

in Part I.) In this series our goal is to continue the work by defining and

studying the linear complexity of bit (and binary) lattices.

In Part I we gave two equivalent definitions for the linear complexity of

bit lattices:
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Definition 4 Let δ be a bit (M,N)-lattice, and write δ(i, j) = si,j for i =

0, 1, . . . ,M − 1, j = 0, 1, . . . , N − 1. Then the linear complexity L(δ) (over

the field F2) of the lattice δ is the smallest non-negative integer L that can

be written in the form L = (U + 1)(V + 1)− 1 where U, V are integers with

0 ≤ U < M , 0 ≤ V < N so that the M × N matrix (si,j) satisfies a double

(two variable) linear recursion over F2 of form

sm+U,n+V =
∑

max{0,−m}≤i≤U
max{0,−n}≤j≤V

(i,j)6=(U,V )

ci,jsm+i,n+j (1.8)

for all integers m,n with

(m,n) ∈ {(m,n) : 0 < m < M − U, −V ≤ n < N − V }∪

∪ {(m,n) : 0 < n < N − V, −U ≤ m < M − U} ∪ {(0, 0)} (1.9)

with the convention that L(δ) = 0 if si,j = 0 for all 0 ≤ i ≤ M − 1, 0 ≤ j ≤
N − 1, and L(δ) = MN if si,j = 0 for all 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1,

(i, j) 6= (M − 1, N − 1) and sM−1,N−1 = 1.

(Note that the number (U + 1)(V + 1) − 1 defining L is the number of

terms on the right hand side of (1.8) for m ≥ 0, n ≥ 0.)

Definition 4’ Define the bit lattice δ as in Definition 4, and assign the

polynomial

f(x, y) =
M−1
∑

m=0

N−1
∑

n=0

sm,nx
myn ∈ F2[x, y]

to it. Then the linear complexity of δ is defined as the smallest positive integer

L that can be written in the form L = (U + 1)(V + 1)− 1 with non-negative

integers U, V so that there is a polynomial

g(x, y) =
∑

0≤i≤U
0≤j≤V

(i,j)6=(0,0)

cU−i,V−jx
iyj ∈ F2[x, y]
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with the property that the coefficient of xmyn in the polynomial f(x, y)g(x, y)

is sm,n for 0 ≤ m < M , 0 ≤ n < N except for the terms xmyn with 0 ≤ m ≤
U , 0 ≤ n ≤ V , (m,n) 6= (U, V ).

As in the one dimensional case in (1.5), the linear complexity of the binary

(M,N)-lattice η in (1.7) can be defined by

L(η) = L(Φ−1η) = L(δ).

Example 1 Let M,N,K be positive integers with K < M , and define the

M ×N bit lattice δ by

δ(i, j) = si,j =







0 if 0 ≤ i ≤ K − 1

1 if K ≤ i ≤ M − 1

for i ∈ {0, 1, . . . ,M − 1}, j ∈ {0, 1, . . . , N − 1}. Then using the notations

above (1.8) becomes

sm+K+1,n = sm+K,n

for the pairs (m,n) given in (1.9) with

U = K + 1, V = 0,

and we have

L = (U + 1)(V + 1)− 1 = K + 1.

Moreover we have

f(x, y) =
M−1
∑

m=K

N−1
∑

n=0

xmyn

and

g(x, y) = x.

(Here and the other examples later we will present only the facts and the

values of the parameters, we leave the details and the computations to the

reader.)
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Example 2 Let N, d be positive integers with d | N , and define the N × N

bit lattice δ by

δ(i, j) = si,j =







0 if i 6= j, or i = j but d ∤ i

1 if i = j and d | i

for i ∈ {0, 1, . . . , N − 1}, j ∈ {0, 1, . . . , N − 1}. Then (1.8) becomes

sm+d,n+d = sm,n (1.10)

for the pairs (m,n) given in (1.9) with

U = V = d,

and we have

L = (U + 1)(V + 1)− 1 = (d+ 1)2 − 1 = d2 + 2d. (1.11)

Moreover we have

f(x, y) =

N/d−1
∑

k=0

(xy)kd

and

g(x, y) = (xy)d.

In Part I we proved that the N = 1 special case of Definition 4 for the

linear complexity of bit (M,N)-lattices is identical with the one dimensional

definition of linear complexity; we showed that the study of the linear com-

plexity (of two dimensional binary lattices) cannot be reduced to the one

dimensional case by studying the linear complexity of the binary sequence

which can be assigned to the given binary lattice in the natural way; we

also showed that to guarantee the pseudorandomness of a bit lattice it is not

enough to estimate the linear complexity of it since it may occur that the

linear complexity is large, however, the correlation is also extremely large; we
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studied the connection between the linear complexity of a bit lattice δ and

the correlations Ck(δ) of it; we applied the inequalities obtained in this way

for estimating the linear complexity of an important special binary lattice

studied in an earlier paper.

Moreover, we wrote in Part I about the continuation of our program to

be presented in Part II:

“Clearly, the maximal value of the linear complexity of bit (resp. binary)

(M,N)-lattices is MN , and by Rueppel’s theorem [9] on the linear complexity

of a (truly) random binary sequence one may guess that there is a c > 0 so

that the linear complexity of a (truly) random bit (or binary) (M,N)-lattice

is greater than cMN ; if this is true then a “good” pseudorandom bit (M,N)-

lattice must have large linear complexity, and the lattices of small linear

complexity are useless in the applications.” (Here and in what follows we

use the word “random” in the same sense as it is used in Rueppel’s paper,

i.e. each of the 2N bit sequences is selected with probability 1/2Nand later

each of the 2MN (M×N) bit lattices will be selected with probability 1/2MN

We will sometimes also say “(truly) random” bit sequence or lattice not to

mistake it for a pseudorandom one, or a special one prepared by a physical

device, etc. When we say that a random bit sequence of length N or M ×N

bit lattice possesses a certain property then we mean that this property holds

with probability approaching 1 as N , resp. MN tends to infinity.) “Indeed,

we conjecture the following:

Conjecture 1 The linear complexity of a (truly) random bit (M,N)-lattice

δ : IM,N → {0, 1} and binary (M,N)-lattice η : IM,N → {−1,+1} is
(

1
2
+ o(1)

)

MN .”

Indeed, this is true for (N, 1)-lattices. Namely, as we have seen in Section

3 of Part I, there is a one-to-one correspondence between bit (N, 1)-lattices

δ : IN,1 → {1, 0} and bit sequences

SN ∈ {1, 0}N (1.12)

7



of length N with L(δ) = L(SN), and for a random bit sequence of type (1.12)

we have

L(SN) =

(

1

2
+ o(1)

)

N

by Rueppel’s theorem which proves Conjecture 1 in this special case.

We continued in Part I:

“We can prove the lower bound part of this conjecture and also a slightly

weaker upper bound.” (The difficulty in proving the upper bound is that

the proof of Rueppel’s theorem on bit sequences is based on the Berlekamp-

Massey algorithm for determining the linear complexity of a sequence, and

we have not been able to extend this algorithm to 2 dimensions.) “However,

the proofs are lengthy and complicated, thus we will present these results

only in Part II of this paper.”

Indeed, in this paper first we will prove the lower bound in Section 2,

while the upper bound will be proved in Section 3. In Section 4 we will

define and study the k-error linear complexity of binary (or bit) (M,N)-

lattices. Finally, in Section 5 we will present an alternative extension of the

one dimensional linear complexity notion to two dimensions.

2 Lower bound for the linear complexity of a

random bit (M,N)-lattice

We will prove

Theorem 1 For every ε1 > 0, ε2 > 0 there is a number C = C(ε1, ε2)

such that if M,N ∈ N, MN > C, then choosing each bit (M,N)-lattice

δ : IM,N → {1, 0} with equal probability 1
2MN , we have

P

(

L(δ) >
1

2
MN −

(

1

2
+ ε1

)

logMN

log logMN

)

> 1− ε2. (2.1)

Proof of Theorem 1.

We will need
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Lemma 1 For every integer K with 0 < K < MN we have

|{δ : IM,N → {1, 0}, L(δ) = K}| ≤ τ(K + 1)22K (2.2)

where τ(n) denotes the number of positive divisors of n.

Proof of Lemma 1. Let δ : IM,N → {1, 0} be a bit (M,N)-lattice with

L(δ) = K, (2.3)

and write δ(i, j) = si,j for i = 0, 1, . . . ,M − 1, j = 0, 1, . . . , N − 1. Then by

Definition 4 and (2.3), there are non-negative integers U, V and coefficients

ci,j(∈ F2) such that

L(δ) = K = (U + 1)(V + 1)− 1 (2.4)

and (1.8) holds. (2.4) can be rewritten as

(U + 1)(V + 1) = K + 1. (2.5)

It follows that U +1 | K+1, thus U can be chosen in at most τ(K+1) ways,

and by (2.5), U and K determine V uniquely.

Now fix U and V . The number of the coefficients

ci,j with 0 ≤ i ≤ U, 0 ≤ j ≤ V, (i, j) 6= (U, V ) (2.6)

in (1.8) is (U + 1)(V + 1) − 1 = K (by (2.5)) so that these coefficients can

be chosen in at most 2K ways, and the number of initial values

si,j with 0 ≤ i ≤ U, 0 ≤ j ≤ V, (i, j) 6= (U, V ) (2.7)

in (1.8) is also K, so they can be also chosen in at most 2K ways. Thus the

coefficients in (2.6) and the initial values in (2.7) can be chosen in at most

2K · 2K = 22K ways independently of U and V . Since U, V , the coefficients

ci,j and the initial values si,j determine the lattice δ uniquely, thus δ can be
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chosen in at most τ(K + 1)22K ways which proves (2.2), and this completes

the proof of Lemma 1.

Now we return to the proof of Theorem 1. Write

H =

[

1

2
MN −

(

1

2
+ ε1

)

logMN

log logMN

]

.

If the event considered in (2.1) does not hold for some δ : IM,N → {1, 0},
then there is a K ≤ H such that L(δ) = K. Thus by Lemma 1 we have

P (L(δ) ≤ H) =

H
∑

K=0

|{δ : IM,N → {1, 0}, L(δ) = K}| 1

2MN

≤
(

|{δ : IM,N → {1, 0}, L(δ) = K}|+
H
∑

K=0

τ(K + 1)22K

)

1

2MN

≤ 1

2MN
+

1

2MN

(

max
n≤2H

τ(n)

) H
∑

K=0

22K

≤ 1

2MN
+

(

max
n≤MN

τ(n)

)

22H+1−MN . (2.8)

By Wigert’s theorem [11] (see also [7]) we have

τ(n) ≤ 2(1+o(1)) log n

log log n . (2.9)

It follows from (2.8) and (2.9) for MN large enough that

P (L(δ) ≤ H) ≤ 1

2MN
+ 2(o(1)−2ε1)(logMN)/(log logMN) < ε2

which proves (2.1).

3 Upper bounds for the linear complexity of a

random bit (M,N)-lattice.

We will prove
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Theorem 2 Let 0 < ε ≤ 1 and M,N ∈ N with

max{M,N} ≥ 15

ε
. (3.1)

Then choosing each bit (M,N)-lattice δ : IM,N → {1, 0} with equal probabil-

ity 1
2MN , we have

P

(

L(δ) <
3

4
MN +

1√
ε
(MN)3/4

)

≥ 1− ε. (3.2)

Proof of Theorem 2 We will derive the theorem from the following

Lemma 2 Let 0 < ε ≤ 1 and M,N ∈ N with

M ≥ 15

ε
and N ≤ M. (3.3)

Define L̃ and U by

L̃ =
M

2
+

5

18
+

√

86

81ε
N1/2, U =

⌈

L̃+M − 1

2

⌉

.

Then there are at least (1−ε)2MN different bit (M,N)-lattices such that there

exist coefficients ci,j ∈ {0, 1} (0 ≤ i ≤ U, 0 ≤ j ≤ N − 1) depending only on

δ for which for

m ∈ {U, U + 1, . . . ,M − 1}, n ∈ {0, 1, . . . , N − 1}

we have

δ(m,n) =
U
∑

i=1

n
∑

j=0

ci,jδ(m− i, n− j)

over F2.

Indeed, it follows from Lemma 2 that if (3.3) holds then

P (L(δ) ≤ (U + 1)N − 1) ≥ 1− ε. (3.4)
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Here by (3.3) and 0 < ε ≤ 1 we have

(U + 1)N − 1 < (U + 1)N

≤ L̃+M + 2

2
N

=
3

4
MN +

41

36
N +

√

43

162ε
N3/2

<
3

4
MN +

1

3
√
ε
(MN)3/4 +

2

3
√
ε
(MN)3/4

=
3

4
MN +

1√
ε
(MN)3/4. (3.5)

By symmetry reasons we may suppose that N ≤ M holds in Theorem 2.

Thus by (3.5) we get from (3.4) that

P

(

L(δ) <
3

4
MN +

1√
ε
(MN)3/4

)

≥ 1− ε.

In order to complete the proof of Theorem 2, we need to prove Lemma 2.

Proof of Lemma 2 First we prove that

L̃ ≤ U. (3.6)

Indeed, by (3.3) we get

M1/2 >

√

86

81ε
+

√

86

81ε
+

23

9ε
≥
√

86

81ε
+

√

86

81ε
+

23

9

By (3.3) and (3.6) we get

0 ≤ M

2
−
√

86

81ε
M1/2 − 23

18
≤ M

2
−
√

86

81ε
N1/2 − 23

18

= M − L̃− 1,

from which (3.6) follows.

Definition 5 Let P(−1) denote the set of all different bit (M,N)-lattices.

Moreover for 0 ≤ k ≤ N − 1 let P(k) denote the set of all different bit

12



(M,N)-lattices δ for which there exist coefficients ci,j ∈ {0, 1} (U − L̃+ 1 ≤
i ≤ U, 0 ≤ j ≤ k), depending only on the following elements of δ:

δ(i, j) : 0 ≤ i ≤ M − 1, 0 ≤ j ≤ k

such that for

U ≤ m ≤ M − 1, 0 ≤ n ≤ k

we have

δ(m,n) =

U
∑

i=U−L̃+1

n
∑

j=0

ci,jδ(m− i, n− j). (3.7)

First we note that

|P(−1)| = 2MN . (3.8)

Clearly, for δ ∈ P(N − 1) we have

L(δ) ≤ (U + 1)N − 1.

Thus it is sufficient to prove

|P(N − 1)| ≥ (1− ε)2MN , (3.9)

since then (3.4) holds, which completes the proof of Lemma 2. We will prove

by induction the following

Lemma 3

|P(r)| ≥
(

1− ε(r + 1)

N

)

2MN (3.10)

for −1 ≤ r ≤ N − 1.

Indeed, using (3.10) with r = N − 1 we get (3.9). Thus in order to prove

Theorem 2 we have to prove Lemma 3.

For every −1 ≤ k ≤ N − 2 and δ ∈ P(k) we define a sequence s(δ, k) ∈
{0, 1}M .
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Definition 6 For k = −1 and δ ∈ P(−1) we define the sequence s(δ, k) =

s(δ,−1) = (s0, s1, . . . , sM−1) ∈ {0, 1}M by

sm = δ(m, 0). (3.11)

For 0 ≤ k ≤ N − 2 and δ ∈ P(k) we define the sequence s(δ, k) =

(s0, s1, . . . , sM−1) ∈ {0, 1}M by

sm =











δ(m, 0) for m ≤ U − 1,

δ(m, k + 1) +
U
∑

i=U−L̃+1

k
∑

j=0

ci,jδ(m− i, k + 1− j) for m ≥ U

(3.12)

over F2, where the coefficients ci,j (U− L̃+1 ≤ i ≤ U, 0 ≤ j ≤ k) are chosen

so that (3.7) holds for the coefficients ci,j (U − L̃ + 1 ≤ i ≤ U, 0 ≤ j ≤ k)

for U ≤ m ≤ M − 1, 0 ≤ n ≤ k (if there are more possibilities for choosing

the coefficients ci,j in such a way, then we pick one of these possibilities and

fix it).

The proof of Lemma 3 is based on the following two lemmas.

Lemma 4 Let 0 ≤ r ≤ N − 1. If δ ∈ P(r − 1) and L(s(δ, r − 1)) ≤ L̃, then

δ ∈ P(r).

Lemma 5 Let −1 ≤ r ≤ N − 2 and let A(r) denote the number of bit

(M,N)-lattices δ for which δ ∈ P(r) and L(s(δ, r)) > L̃. Then

A(r) ≤ ε

N
2MN .

We will prove these two lemmas later, now we will deduce Lemma 3 from

the two lemmas above.

Indeed, by (3.8) for r = −1 we have

|P(r)| = |P(−1)| = 2MN =

(

1− ε(r + 1)

N

)

2MN .
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By Lemma 4 and Lemma 5 for 0 ≤ r ≤ N − 1 we have

|P(r)| ≥ |P(r − 1)| −A(r − 1)

≥ |P(r − 1)| − ε

N
2MN .

By iterating this argument we get

|P(r)| ≥ |P(−1)| − ε(r + 1)

N
2MN

=

(

1− ε(r + 1)

N

)

2MN

which was to be proved.

Thus in order to prove Theorem 2 we need to prove Lemma 4 and Lemma

5.

Proof of Lemma 4 We will use the following lemma:

Lemma 6 Let s = (s0, s1, . . . , sM−1) ∈ {0, 1}M−1 be a sequence for which

L(s) ≤ L̃. Then for every L̃ ≤ U ≤ M − 1 there exist constants c
(U)
i (where

U − L̃+ 1 ≤ i ≤ U) such that for m ≥ U we have

sm =
U
∑

i=U−L̃+1

c
(U)
i sm−i.

Proof of Lemma 6 We will prove the lemma by induction on U . Indeed,

for U = L̃, Lemma 6 follows from the definition of linear complexity. Thus

there exist coefficients c
(L̃)
i (1 ≤ i ≤ L̃) such that for m ≥ L̃ we have

sm =
L̃
∑

i=1

c
(L̃)
i sm−i (3.13)

Now suppose that Lemma 6 is true for U = L̃, L̃ + 1, . . . , k − 1 (where

k ≥ L̃+ 1), and now we will prove it for U = k.

By the induction hypothesis there exist coefficients c
(k−1)
i (k−1− L̃+1 ≤

i ≤ k − 1) such that for m ≥ k − 1 we have

sm =
k−1
∑

i=k−L̃

c
(k−1)
i sm−i. (3.14)
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Let now m ≥ k. Then m− (k − L̃) ≥ L̃, thus by (3.13)

sm−(k−L̃) =
L̃
∑

i=1

c
(L̃)
i sm−(k−L̃)−i.

Replacing k + i− L̃ by i we get

sm−(k−L̃) =
k
∑

i=k−L̃+1

c
(L̃)

i+L̃−k
sm−i.

Replacing sm−(k−L̃) on the right hand side of (3.14) by the sum above we get

from m ≥ k that

sm =

k−1
∑

i=k−L̃

c
(k−1)
i sm−i

= c
(k−1)

k−L̃
sm−(k−L̃) +

k−1
∑

i=k−L̃+1

c
(k−1)
i sm−i

= c
(k−1)

k−L̃

k
∑

i=k−L̃+1

c
(L̃)

i+L̃−k
sm−i +

k−1
∑

i=k−L̃+1

c
(k−1)
i sm−i.

Thus writing

c
(k)
i =







c
(k−1)

k−L̃
c
(L̃)

i+L̃−k
+ c

(k−1)
i for k − L̃+ 1 ≤ i ≤ k − 1,

c
(k−1)

k−L̃
c
(L̃)

L̃
for i = k

we get

sm =

k
∑

i=k−L̃+1

c
(k)
i sm−i

which proves Lemma 6 for U = k. This completes the proof of Lemma 6.

Now we continue the proof of Lemma 4. First consider the case r = 0.

Let δ ∈ P(−1) and L(s(δ,−1)) ≤ L̃. Then by (3.11)

s(δ,−1) = (δ(0, 0), δ(1, 0), . . . , δ(M − 1, 0)).

By (3.6) we have L̃ ≤ U , thus we may use Lemma 6 which says that there

exist coefficients ci (U − L̃+ 1 ≤ i ≤ U) such that for m ≥ U we have

δ(m, 0) =
U
∑

i=U−L̃+1

ciδ(m− i, 0).
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Thus it follows from the definition of P(0) that we have δ ∈ P(0).

Next consider the case 1 ≤ r ≤ N − 2. Let δ ∈ P(r − 1) with L(s(δ, r −
1)) ≤ L̃. We will determine coefficients ci,j (U − L̃+ 1 ≤ i ≤ U, 0 ≤ j ≤ r)

such that for

U ≤ m ≤ M − 1, 0 ≤ n ≤ r

we have

δ(m,n) =

U
∑

i=U−L̃+1

n
∑

j=0

ci,jδ(m− i, n− j). (3.15)

First we will fix the coefficients ci,j for U − L̃+ 1 ≤ i ≤ U , 1 ≤ j ≤ r − 1.

Since δ ∈ P(r−1) by Definition 6 we can fix the constant ci,j (U−L̃+1 ≤
i ≤ U , 1 ≤ j ≤ r − 1) so that for

U ≤ m ≤ M − 1, 0 ≤ n ≤ r − 1

we have (3.15) and the sequence s(δ, r− 1) = (s0, s1, . . . , sM−1) is defined by

sm =











δ(m, 0) for m ≤ U − 1,

δ(m, r) +
U
∑

i=U−L̃+1

r−1
∑

j=0

ci,jδ(m− i, r + 1− j) for m ≥ U

(3.16)

Next we will determine the remaining coefficients ci,r (U − L̃ + 1 ≤ i ≤ U)

so that (3.15) also holds for U ≤ m ≤ M − 1, n = r. In other words

δ(m, r) =
U
∑

i=U−L̃+1

r
∑

j=0

ci,jδ(m− i, r − j). (3.17)

(3.17) is equivalent with

δ(m, r) +
U
∑

i=U−L̃+1

r−1
∑

j=0

ci,jδ(m− i, r − j) =
U
∑

i=U−L̃+1

ci,rδ(m− i, 0). (3.18)

For m ≥ U the left hand side of (3.18) is sm, where sm was defined by (3.16)

and s(δ, r − 1) = (s0, s1, . . . , sN−1). The right hand side of (3.18) involves

17



δ(m − i, 0)’s with U − L̃ + 1 ≤ i ≤ U . Then by the definition of L̃ we have

m− i ≤ M − 1− i ≤ M − 1− (U − L̃+ 1) ≤ U − 1, hence by (3.16) then

δ(m− i, 0) = sm−i.

Thus we have to prove that there exist coefficients ci,r = ci (U−L̃+1 ≤ i ≤ U)

such that for m ≥ U we have

sm =

U
∑

i=U−L̃+1

cism−i. (3.19)

The existence of these coefficients follows from Lemma 6 since for s(δ, r−1) =

(s0, s1, . . . , sM−1) we have L(s(δ, r − 1)) ≤ L̃. This completes the proof of

Lemma 4.

Proof of Lemma 5 We will use the following theorem of Rueppel [9, pp.

177-179].

Lemma 7 Let s ∈ {0, 1}M . Then

E(L(s)) =
M

2
+

4 +R2(M)

18
− 2−M

(

M

3
+

2

9

)

,

where R2(M) denotes the remainder when M is divided by 2. Moreover, for

any k > 0, we have

P (|L(s)− E(L(s))| ≥ k) ≤ 86

81k2
.

Using Lemma 7 with k =
√

86
81ε

N we get the following

Lemma 8 Let H denote the number of sequences s ∈ {0, 1}M for which

L(s) >
M

2
+

5

18
+

√

86

81ε
N1/2 = L̃.

Then

H ≤ ε

N
2M .
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Now we are ready to prove Lemma 5. First we prove the statement for

r = −1. For δ ∈ P(−1) we have

s(δ,−1) = (δ(0, 0), δ(1, 0), . . . , δ(M − 1, 0)).

By Lemma 8 we can choose the elements δ(i, 0) (0 ≤ i ≤ M − 1) in at most

ε
N
2M different ways so that

L(s(δ,−1)) > L̃. (3.20)

All the other elements of δ can be chosen arbitrarily, thus the number of δ’s

for which (3.20) holds is at most ε
N
2M2(N−1)M = ε

N
2MN which was to be

proved.

Next we prove Lemma 5 for 0 ≤ r ≤ N − 2. First we define two

types of addition of sequences. For A = (a0, a1, . . . , an) ∈ {0, 1}n and

B = (b0, b1, . . . , bm) ∈ {0, 1}m we define A⊕ B by

A⊕ B = (a0, a1, . . . , an, b0, b1, . . . , bm) ∈ {0, 1}n+m.

If A and B are sequences of the same length so that A = (a0, a1, . . . , an) ∈
{0, 1}n and B = (b0, b1, . . . , bn) ∈ {0, 1}n, then we define A⊞ B by

A⊞ B = (a0 + b0, a1 + b1, . . . , an + bn) ∈ {0, 1}n,

where the elements of the sequences are added by modulo 2.
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For δ ∈ P(r) we define the following quantities:

H1(δ) = (δ(0, 0), δ(1, 0), . . . , δ(U − 1, 0))

H2(δ) = (δ(U, 0), δ(U + 1, 0), . . . , δ(M − 1, 0))

H3(δ) = (δ(0, 1), δ(1, 1), . . . , δ(M − 1, 1),

δ(0, 2), δ(1, 2), . . . , δ(M − 1, 2),

...

δ(0, r), δ(1, r), . . . , δ(M − 1, r))

H4(δ) = (δ(0, r + 1), δ(1, r + 1), . . . , δ(U − 1, r + 1))

H5(δ) = (δ(U, r + 1), δ(U + 1, r + 1), . . . , δ(M − 1, r + 1))

H6(δ) = (δ(0, r + 2), δ(1, r + 2), . . . , δ(M − 1, r + 2),

δ(0, r + 3), δ(1, r + 3), . . . , δ(M − 1, r + 3),

...

δ(0, N − 1), δ(1, N − 1), . . . , δ(M − 1, N − 1))

(if r = 0 then H3(δ) is the empty sequence and if r = N − 2 then H6(δ) is

the empty sequence.) Define V = {(H1(δ), H2(δ), H3(δ)) : δ ∈ P(r)}.
Suppose that δ ∈ P(r). Then by Definition 6 there exist coefficients

ci,j such that (3.7) holds for U ≤ m ≤ M − 1, n ≤ r and s(δ, r + 1) =

(s0, s1, . . . , sM−1) can be defined by

sm =











δ(m, 0) for m ≤ U − 1,

δ(m, r + 1) +
U
∑

i=U−L̃+1

r
∑

j=0

ci,jδ(m− i, k + 1− j) for m ≥ U

(3.21)

Here the summation
U
∑

i=U−L̃+1

r
∑

j=0

ci,jδ(m − i, r + 1 − j) depends on values

δ(a, b)’s with a ≤ M − 1 − (U − L̃ + 1) ≤ U − 1, 1 ≤ b ≤ M − 1. Thus

the summation
U
∑

i=U−L̃+1

r
∑

j=0

ci,jδ(m − i, r + 1 − j) depends only on (some

20



elements of) H1(δ), H2(δ), H3(δ), and H4(δ). Thus we may define a function

T : {0, 1}U ×{0, 1}M−U ×{0, 1}rM ×{0, 1}U → {0, 1}M−U for which for every

δ ∈ P(r) we have

T (H1(δ), H2(δ), H3(δ), H4(δ)) = (yU(δ), yU+1(δ), . . . , yM−1(δ)),

with

ym(δ) =
U
∑

i=U−L̃+1

r
∑

j=0

ci,jδ(b− i, r + 1− j)

for U ≤ m ≤ M − 1.

By (3.21) for δ ∈ P(r) we have

s(δ, r) = H1(δ)⊕ (H5(δ)⊞ T (H1(δ), H2(δ), H3(δ), H4(δ))) .

Thus A(r) can be estimated as

A(r) ≤
∑

V1∈{0,1}U

∑

V2∈{0,1}M−U

∑

V3∈{0,1}rU

(V1,V2,V3)∈V

∑

V4∈{0,1}U

∑

V5∈{0,1}M−U

L(V1⊕(V5⊞T (V1,V2,V3,V4))>L̃
∑

V6∈{0,1}(N−r)M

1.

For fixed V1, V2, V3, V4, in the fifth sum we substitute V5 ⊞ T (V1, V2, V3, V4)

by V ′
5 (indeed, if V ′

5 = V5⊞T (V1, V2, V3, V4) then V5 = V ′
5 ⊞T (V1, V2, V3, V4).

Thus

A(r) ≤
∑

V1∈{0,1}U

∑

V2∈{0,1}M−U

∑

V3∈{0,1}rU

(V1,V2,V3)∈V

∑

V4∈{0,1}U

∑

V ′

5∈{0,1}
M−U

L(V1⊕V ′

5)>L̃

∑

V6∈{0,1}(N−r)M

1

≤
∑

V1∈{0,1}U

∑

V2∈{0,1}M−U

∑

V3∈{0,1}rU

∑

V4∈{0,1}U

∑

V ′

5∈{0,1}
M−U

L(V1⊕V ′

5)>L̃

∑

V6∈{0,1}(N−r)M

1

=
∑

V2∈{0,1}M−U

∑

V3∈{0,1}rU

∑

V4∈{0,1}U

∑

V6∈{0,1}(N−r)M

∑

V1∈{0,1}U

∑

V ′

5∈{0,1}
M−U

L(V1⊕V ′

5)>L̃

1.

(3.22)
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Here by using Lemma 8 we get

∑

V1∈{0,1}U

∑

V ′

5∈{0,1}
M−U

L(V1⊕V ′

5)>L̃

1 =
∑

s∈{0,1}M

L(s)>L̃

1 = H ≤ ε

N
2M .

Putting this in (3.22) we get

A(r) ≤ ε

N
2NM

which was to be proved.

4 On the k-error linear complexity

Aly, Meidl and Winterhof write in [1]: “The linear complexity is of fun-

damental importance as a complexity measure for periodic sequences. Moti-

vated by security issues of stream ciphers, in [10] Stamp and Martin proposed

a different measure of the complexity of periodic sequences, the k-error linear

complexity, which is defined by

Lk(S) = min
T

L(T ),

where the minimum is taken over all N -periodic sequences T = (τ0, τ1, . . . )

over Fp for which the Hamming distance of the vectors (σ0, σ1, . . . , σN−1) and

(τ0, τ1, . . . , τN−1) is at most k. Evidently we have

N ≥ L0(S) = L(S) ≥ L1(S) ≥ L2(S) ≥ · · · ≥ LN (S) = 0.′′ (4.1)

(See also the survey paper [12].)

Throughout both Parts I and II of this paper we consider finite bit se-

quences SN of form (1.1), and we define their linear complexity over F2. In

this situation the definition of the k-error linear complexity can be formulated

in the following way:
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Definition 7 The k-error linear complexity of the bit sequence SN =

(s0, s1, . . . , sN−1) is defined as

Lk(SN) = min
T

L(TN )

where the minimum is taken over all bit sequences TN = (t0, t1, . . . , tN−1)

such that the Hamming distance of the vectors (s0, s1, . . . , sN−1) and

(t0, t1, . . . , tN−1) is at most k (while the k-error linear complexity of the bi-

nary sequence EN = (e0, e1, . . . , eN−1) ∈ {−1,+1}N is defined as Lk(EN) =

Lk(ϕ
−1(EN)) with the mapping ϕ given in (1.4)).

(Note that (4.1) also holds in this situation.)

This definition can be extended to bit (and binary) lattices easily:

Definition 8 The k-error linear complexity of the bit (M,N) lattice δ =

δ(i, j) (i ∈ {0, 1, . . . ,M − 1}, j ∈ {0, 1, . . . , N − 1}) is defined as

Lk(δ) = min
ρ

L(ρ)

where the minimum is taken over all bit (M,N)-lattices ρ = ρ(i, j) such that

the Hamming distance

d(δ, ρ) = |{(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N, η(i, j) 6= ρ(i, j)}| (4.2)

of the lattices δ = δ(i, j) and ρ = ρ(i, j) is at most k (while the k-error linear

complexity of the binary (M,N)-lattice η = η(i, j) is defined as Lk(η) =

L(µ−1(η)) with the mapping µ given in (1.7)).

Then clearly the 2 dimensional analogue of (4.1) also holds:

MN ≥ L0(δ) = L(δ) ≥ L1(δ) ≥ L2(δ) ≥ · · · ≥ LMN(δ) = 0. (4.3)

By (4.3), the k-error linear complexity of a bit lattice is smaller (or at

least not greater) than the linear complexity of it. The former can be much

smaller than the latter:
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Example 3 Define the bit (M,N)-lattice δ by

δ(i, j) =















1 if i = M − 1, j = N − 1

0 if 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1 and

(i, j) 6= (M − 1, N − 1).

Then L(δ) = MN by Definition 4. On the other hand, define the bit (M,N)-

lattice ρ by

ρ(i, j) = 0 for all 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1.

Then by Definition 4 we have L(ρ) = 0, and clearly the Hamming distance

of δ and ρ is

d(δ, ρ) = 1.

It follows that

L1(δ) ≤ L(ρ) = 0

whence L1(δ) = 0.

It is a question of basic importance: for fixed k,M and N , and for a

(truly) random bit (M,N)-lattice, how much smaller is the k-error linear

complexity than the linear complexity? Namely, if in the random case the k-

error linear complexity is also large as (by Theorem 1) the linear complexity

is, than in the cryptographic applications we may use only bit lattices of large

k-error linear complexity, while the lattices of small k-error linear complexity

must be discarded. Indeed, it can be shown easily by using Lemma 1 that

this is the case for small k (for k < εMN):

Theorem 3 For every ε1 > 0 and ε2 > 0 there are numbers ε3 = ε3(ε1)

(independent of ε2) and C ′ = C ′(ε1, ε2, ε3) such that if M,N, k ∈ N, MN >

C ′, k < ε3MN , then choosing each bit (M,N)-lattice δ : IM,N → {1, 0} with

equal probability 1
2MN , we have

P

(

Lk(δ) >

(

1

2
− ε1

)

MN

)

> 1− ε2. (4.4)
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Proof of Theorem 3. Write U =
[(

1
2
− ε1

)

MN
]

. If Lk(δ) ≤ U , then by

the definition of the k-error linear complexity there is a ρ : IM,N → {1, 0}
with

L(ρ) = Lk(δ) ≤ U

and

d(δ, ρ) ≤ k. (4.5)

If ρ with L(ρ) ≤ U is fixed, then a δ : IM,N → {1, 0} satisfying (4.5) can be

obtained from ρ by changing ρ(i, j) for at most k of the MN pairs (i, j), and

this can be done in
∑k

ℓ=0

(

MN
ℓ

)

ways for every ρ. Thus the number of the bit

(M,N)-lattices δ satisfying Lk(δ) ≤ U is

|{δ : IM,N → {1, 0}, Lk(δ) ≤ U}|

≤ |{ρ : IM,N → {1, 0}, L(ρ) ≤ U}|
k
∑

ℓ=0

(

MN

ℓ

)

. (4.6)

It follows from k < ε3MN with a little computation that if ε3 is small enough

in terms of ε1 and MN is large enough in terms of ε1 and ε3, then the last

sum is
k
∑

ℓ=0

(

MN

ℓ

)

< 2(ε1/2)MN .

Then using also Lemma 1, Wigert’s theorem [11] and the definition of U , we
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obtain from (4.6) for MN large enough that

|{δ : IM,N → {1, 0}, Lk(δ) ≤ U}|

≤
U
∑

h=0

|{ρ : IM,N → {1, 0}, L(ρ) = h}| · 2(ε1/2)MN

=

(

|{ρ : IM,N → {1, 0}, L(ρ) = 0}|

+

U
∑

h=1

|{ρ : IM,N → {1, 0}, L(ρ) = h}|
)

2(ε1/2)MN

< 2(1+o(1)) logMN

log logMN
+(1−2ε1)MN+O(1)+(ε1/2)MN

≤
(

1 +

U
∑

h=1

τ(h + 1)22h

)

2(ε1/2)MN

< 2(1−ε1)MN

whence

P

(

Lk(δ) >

(

1

2
− ε1

)

MN

)

= 1− P (Lk(δ) ≤ U)

= 1− 1

2MN
|{δ : IM,N → {1, 0}, Lk(δ) ≤ U}| > 1− 1

2ε1MN
> 1− ε2

if MN is large enough in terms of ε1 and ε2 which completes the proof of

Theorem 3.

Note that by (4.3), Theorem 2 also gives an upper bound of Lk(δ) for a

truly random lattice δ.

Example 4 By Dirichlet’s approximation theorem there are infinitely many

positive integers q such that there is also a positive integer p with
∣

∣

∣

∣

1√
2
− p

q

∣

∣

∣

∣

<
1

q2
. (4.7)

Consider a q large enough with this property, and define the q × q bit lattice

δ by

δ(i, j) = si,j =







1 if i = j 6= p− 2

0 if i 6= j or i = j = p− 2
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for i, j ∈ {0, 1, . . . , q − 1}. Then (1.8) becomes

sm+p−1,n+p−1 = sm,n

for the pairs (m,n) defined in (1.9) with

U = V = p− 1

and we have

f(x, y) =
∑

0≤n<N
n 6=p−2

(xy)n

and

g(x, y) = (xy)p−1.

Thus it follows from (4.7) that

L(δ) = (U + 1)(V + 1)− 1 = p2 − 1 =

(

q√
2
+O

(

1

q

))2

=
q2

2
+O(1).

(4.8)

If our Conjecture 1 is true (and Theorems 1 and 2 point in this direction),

then the linear complexity of a random q× q bit lattice is also
(

1
2
+ o(1)

)

q2.

Thus by (4.8) our bit lattice δ mimics the behaviour of a (truly) random

q× q bit lattice ideally as far as the linear complexity is concerned so that if

we test its applicability in cryptography by computing its linear complexity,

then we may conclude that our lattice is just ideal for this purpose. However,

taking a look at this lattice we can feel immediately that it is of too special

structure for using it in cryptography and, indeed, we can show that this

is the case if we go just one step beyond linear complexity by studying the

1-error linear complexity of the lattice. Let ρ denote the lattice defined in

Example 2 with q and 1 in place of N and d, respectively:

ρ(i, j) =







0 if i 6= j

1 if i = j
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(for i, j ∈ {0, 1, . . . , q − 1}). Then the Hamming distance of δ and ρ is

d(δ, ρ) = 1

since δ(i, j) 6= ρ(i, j) holds only if i = j = p−2. Moreover, by (1.11) we have

L(ρ) = 12 + 2 · 1 = 3.

Thus by Definition 8 we have

L1(δ) ≤ L(ρ) = 3

so that, indeed, L1(δ) is very small thus the bit lattice δ is useless in the

applications.

5 Alternative extensions of the notion of linear

complexity

First we write the definition of the one dimensional linear complexity in

Definition 1. Consider again the bit sequence SN in (1.1), and let (0 ≤)k1 <

k2 < · · · < kt (≤ L− 1) denote the subscripts of the coefficients c with c = 1

in (1.2). Then writing also kt+1 = L, (1.2) can be rewritten in the following

form over F2:

sn+k1 + sn+k2 + · · ·+ sn+kt + sn+kt+1 = 0 for n = 0, 1, . . . , N − L− 1. (5.1)

Thus Definition 1 is equivalent with the following one:

Definition 1’ The linear complexity L(SN) (over the field F2) of the finite

bit sequence (1.1) is defined as the smallest positive integer L such that there

are pairwise distinct non-negative integers k1, k2, . . . , kt, kt+1 = L:

ki 6= kj for 1 ≤ i, j,≤ t + 1, i 6= j (5.2)

such that

ki < kt+1 = L for i = 1, 2, . . . , t (5.3)
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and

sn+k1 + sn+k2 + · · ·+ sn+kt + sn+L = 0 for n = 0, 1, . . . , N − L− 1.

(with the conventions at the end of Definition 1).

If one tries to extend this definition to 2 dimensions (to bit lattices), then

the difficulty is that the plane vectors are not ordered, thus we cannot speak

on the smallest of certain vectors, and it is not clear how to extend inequality

(5.3) to vectors. The situation can be saved in the first case by comparing

the length of the vectors not the vectors themselves, and in the second case

by using the partial ordering.

u = (u1, u2) < v = (v1, v2) if and only if u1 ≤ v1, u2 ≤ v2 and u 6= v. (5.4)

Definition 9 The linear complexity L(1)(δ) (over the field F2) of the bit

(M,N)-lattice δ is defined as the length of the shortest vector L = (ℓ1, ℓ2) 6=
(0, 0) with (ℓ1, ℓ2) ∈ IM,N such that there are pairwise distinct vectors

k1,k2, . . . ,kt,kt+1 = L:

ki 6= kj for 1 ≤ i, j,≤ t+ 1, i 6= j

such that

ki < kt+1 = L for i = 1, 2, . . . , t (5.5)

in terms of partial ordering (5.4), and

δ(h+ k1) + δ(h+ k2) + · · ·+ δ(h+ kt) + δ(h+ kt+1) = 0 (5.6)

(over F2) for every h = (m,n) such that

0 ≤ m, 0 ≤ n (5.7)

and

h+ ki ∈ IM,N for i = 1, 2, . . . , t+ 1 (5.8)

(with the conventions at the end of Definition 4).
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Note that it is easy to see that this definition of 2 dimensional linear com-

plexity (in the same way as Definition 4 does) includes the one dimensional

definition (Definition 1) as a special case so that, indeed, the former is an

extension of the latter.

While in the other definitions the linear complexity is always an integer,

here (by using the above notation) the linear complexity is

L(1)(δ) = |L| = |(ℓ1, ℓ2)| =
(

ℓ21 + ℓ22
)1/2

which is not necessarily an integer. If we want to use an integral valued

linear complexity, then we may replace quantity |L| by its square, and we

get another definition of linear complexity:

L(2)(δ) = |L|2 = |(ℓ1, ℓ2)|2 = ℓ21 + ℓ22.

This definition also has the advantage that if the order of magnitude of M and

N is the same then it makes the order of magnitude of the linear complexity

MN which is the same as in case of Definitions 4 and 4’ (on the other hand,

it has disadvantage that in the special case of M × 1 lattices it makes the

order of magnitude of the linear complexity very much different from the one

dimensional linear complexity).

There is a third option to define the linear complexity of the lattice δ

studied in Definition 9: instead of defining L(δ) as the length of the vec-

tor L = (ℓ1, ℓ2), we may take the area ℓ1ℓ2 of the rectangle R1 of vertices

(0, 0), (0, ℓ1), (ℓ1, ℓ2), (ℓ2, 0):

L(3)(δ) = ℓ1ℓ2.

(Moreover we may modify Definition 9 further by replacing the shortest vec-

tor L by the vector L = (ℓ1, ℓ2) for which the area ℓ1ℓ2 of the rectangle

R1 is minimal.) It is easy to see that all the linear complexity notions

L(1)(δ), L(2)(δ), L(3)(δ) introduced in this section plus the one L(δ) introduced

in Definitions 4 and 4’ are pairwise distinct.
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Note that (5.6) can be rewritten in an algebraic form similar to (1.8).

Indeed, again we write δ(i, j) = si,j for i = 0, 1, . . . ,M−1, j = 0, 1, . . . , N−1,

and define the coefficients ci,j by

ci,j =







1 if (i, j) ∈ {k1,k2, . . . ,kt}
0 if (i, j) /∈ {k1,k2, . . . ,kt}

for

i ∈ {0, 1, . . . , ℓ1}, j ∈ {0, 1, . . . , ℓ2}, (i, j) 6= (ℓ1, ℓ2).

Then (5.6) can be rewritten as

δ(h+ kt+1) = δ(h+ k1) + δ(h+ k2) + · · ·+ δ(h+ kt),

in other words,

sm+ℓ1,n+ℓ2 =
∑

0≤i≤ℓ1
0,≤j≤ℓ2

(i,j)6=(ℓ1,ℓ2)

ci,jsm+i,n+j . (5.9)

for all integers (m,n) with

(m,n) ∈ {(m,n) : 0 ≤ m < M − ℓ1, 0 ≤ n < N − ℓ2}. (5.10)

Observe that the recursive formula in (5.9) is much simpler than the recursion

(1.8) in Definition 4 (since here the conditions on i and j are simpler), and

the condition on m and n in (5.10) is much simpler than condition (1.9) in

Definition 4 (this is due to assumption (5.5)); namely, by this assumption it

suffices to ensure that (5.8) holds for i = t+ 1, from this it also follows from

i = 1, 2, . . . , t). This simplicity and transparency of (5.9) and (5.10) is the

greatest advantage of the approach used in this section. However, there is a

price paid for this. Namely, observe that (5.9) and (5.10) say that the δ values

assumed at the points (i, j) belonging to the rectangle R1 = R1(δ) = {(i, j) :
0 ≤ i ≤ ℓ1, 0 ≤ j ≤ ℓ2} determine the values of δ assumed at the points (i, j)

31



belonging to the rectangle R2 = R2(δ) = {(i, j) : ℓ1 ≤ i < M, ℓ2 ≤ j < N}
uniquely but nothing is said on the values of δ assumed at the points with

(i, j) ∈ IM.N \ (R1 ∪ R2). (5.11)

Thus the values of the linear complexities L(1)(δ), L(2)(δ), L(3)(δ) are inde-

pendent of the δ(i, j) values assumed at the points (i, j) satisfying (5.11).

On the other hand, the recursion described by (1.8) and (1.9) in Definition

4 determines δ(i, j) uniquely for every (i, j) ∈ IM,N so that the linear com-

plexity L(δ) introduced in Section 1 gives a more complete information on

the bit lattice δ than the ones introduced in this section. Thus in general

we propose to use the linear complexity L(δ) introduced in Section 1, but

in some simple applications the study of L(1)(δ), L(2)(δ), L(3)(δ) can be also

useful.

Example 5 Consider first the d = 2 special case of the bit lattice δ studied

in Example 2. In other words, let M ∈ N, N = 2M , and define the N × N

bit lattice δ by

δ(i, j) = si,j =







0 if i 6= j or i = j and i, j are odd

1 if i = j and i, j are even
(5.12)

for i, j ∈ {0, 1, . . . , N − 1}. Then δ satisfies the recursion (1.10):

sm+2,n+2 = sm,n (5.13)

for all integers m,n with

(m,n) ∈{(m,n) : 0 < m < N − 2, −2 ≤ n < N − 2}

∪ {(m,n) : 0 < n < N − 2, −2 ≤ m < N − 2} ∪ {(0, 0)}, (5.14)

and by (1.11) the linear complexity L(δ) defined in Section 1 of this lattice is

L(δ) = 22 + 2 · 2 = 8 (5.15)

which is very small.
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If we specify the recursion (5.9), (5.10) in Section 5 to this bit lattice δ

then (5.9) also becomes (5.13), but condition (5.10) becomes

(m,n) ∈ {(m,n) : 0 ≤ m < N − 1, 0 ≤ n < N − 1},

and we have ℓ1 = ℓ2 = 1, L = (ℓ1, ℓ2) = (1, 1) so that

L(1)(δ) = |L| =
√
2, (5.16)

L(2)(δ) = |L|2 = 2, (5.17)

and

L(3)(δ) = ℓ1ℓ2 = 1, (5.18)

so that the linear complexities L(1), L(2), L(3) introduced in Section 5 are also

small.

Now we modify this bit lattice δ by changing its values assumed at the

points (0, N − 1), (N − 1, 0) from 0 to 1. Denote the lattice obtained in this

way by ρ:

ρ(i, j) =



























0 if either i 6= j and (i, j) 6= (0, N − 1), (i, j) 6= (N − 1, 0)

or i = j and i, j are odd

1 if either i = j and i, j are even or one of

(i, j) = (0, N − 1) and (i, j) = (N − 1, 0) holds

for i, j ∈ {0, 1, . . . , N − 1}. For the lattice δ defined by (5.12) the rectangles

R1, R2 defined earlier in this section are

R1 = R1(δ) = {(i, j) : 0 ≤ i ≤ 1, 0 ≤ j ≤ 1}

and

R2 = R2(δ) = {(i, j) : 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1}.

Clearly, for (i, j) ∈ R1 ∪ R2 we have δ(i, j) = ρ(i, j); the only points (i, j)

with δ(i, j) 6= ρ(i, j) are the points (0, N−1), (N −1, 0) which satisfy (5.11).
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Thus by the discussion above the linear complexities L(1), L(2), L(3) of δ and

ρ are equal so that by (5.16), (5.17) and (5.18) we have

L(1)(ρ) = L(1)(δ) =
√
2,

L(2)(ρ) = L(2)(δ) = 2

and

L(3)(ρ) = L(3)(δ) = 1.

On the other hand the situation is very much different if we compare

L(ρ) and L(δ) (where L(. . . ) is the linear complexity introduced in Section

1). Indeed, in order to determine L(ρ) we start out from formulas (1.8) and

(1.9) in Section 1. Substituting m = −U we get from (1.8) that

s0,n+V =

V−1
∑

j=0

cU,js0,n+j (5.19)

(note that by the condition max(0,−m) = max(0, U) ≤ i ≤ U we must have

i = U in (1.8), and by the condition (i, j) = (U, j) 6= (U, V )) here j cannot

assume the value V ) where by (1.9) the subscript n may assume any integer

value with

0 < n < N − V. (5.20)

If

N − V − 1 > 0

or, in equivalent form,

V < N − 1, (5.21)

then the number

n = N − V − 1

satisfies inequality (5.20), thus we may substitute this n value in (5.19). Then

on the left hand side we get

s0,n+V = s0,N−1 = ρ(0, N − 1) = 1. (5.22)
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On the other hand, the last sum on the right hand side of (5.19) becomes

∑

0≤j≤V−1

cU,js0,N−V−1+j =
∑

0≤j≤V−1

cU,jρ(0, N − V − 1 + j). (5.23)

By (5.21), for every 0 ≤ j ≤ V − 1 we have

1 ≤ N − V − 1 ≤ N − V − 1 + j ≤ N − V − 1 + V − 1 = N − 2,

thus the second factor in each term of the last sum is of the form

ρ(0, k) with k ∈ {1, 2, . . . , N − 2}.

By the definition of the bit lattice ρ each of these values is 0, thus the sum

in (5.23) is 0 which contradicts (5.19) and (5.22). This contradiction shows

that (5.21) cannot hold, in other words, we have

V ≥ N − 1.

By symmetry reasons it can be proved in the same way

U ≥ N − 1.

Thus we may conclude that

L(ρ) = (U + 1)(V + 1)− 1 ≥ N2 − 1

so that the linear complexity introduced in Section 1 is very large for the bit

lattice ρ; compare this with the small values of L(1)(ρ), L(2)(ρ) and L(3)(ρ)

in (5.16), (5.17) and (5.18).
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