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Abstract 

 Speciation of the complexes of zinc(II) with a dodecapeptide (Ac-SCPGDQGSDCSI-

NH2), inspired by the metal binding domain of MerR metalloregulatory proteins, have been 

studied by pH-potentiometric titrations, UV, SRCD (synchrotron radiation circular dichroism) 

and 
1
H NMR experiments. (MerR is a family of transcriptional regulators the archetype of 

which is the Hg
2+

-responsive transcriptional repressor-activator MerR protein.) The aim of the 

ligand-design was to retain the advantageous metal binding features of MerR proteins in a 

model peptide for the efficient capture of toxic metal ions. The peptide binds zinc(II) via two 

deprotonated Cys-thiol groups and one of the Asp-carboxylates in the ZnL parent complex, 

possessing a remarkably high stability (logK = 9.93). In spite of the relatively long peptide 

loop, bis-complexes are also formed with the metal ion under basic conditions. In a 

competition with cadmium(II) or mercury(II), zinc(II) cannot prevent the binding of toxic 

metal ions by the thiolate donor groups of the ligand. Around neutral pH one equivalent of 

mercury(II) was shown to fully replace zinc(II) from the ZnL species. Partial replacement of 

zinc(II) from the peptide by one equivalent of cadmium(II), relative to zinc(II) and the ligand, 

is also presumable, nevertheless, spectroscopic data may suggest the formation of mixed 

metal ion complexes, as well. Based on the obtained results the investigated dodecapeptide 

can be a promising candidate for capturing toxic metal ions in practical applications. 

 

Keywords: Toxic metal ions; Zinc(II); Peptide complexes; Competition; Solution studies 

 

1. Introduction 

 Nondegradable heavy metal contaminants appear in the environment [1] from natural 

or non-natural sources. Depending on the exposure level or chemical form, these pollutants 

may have adverse impacts on the environment and present a hazard for living organisms [2–
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5]. Consequently, there is a growing need for the detection, monitoring and removal of toxic 

metal constituents from contaminated media [4, 5]. The attributes for these techniques may 

overlap if preconcentration methodologies are required for assisting analytical detection [5]. 

Although there are efficient and sensitive analytical methods for the determination of low 

level metal ion concentrations, these techniques often suffer from the need of laboratory-

bound expensive equipments and highly skilled personnel [6–8]. The drawbacks of 

physicochemical technologies that aim at the elimination of toxic metal ions include e.g. the 

production of metal-bearing toxic sludge or other wastes requiring further handling, the need 

of additional chemicals and energy, the lack of selectivity and the often high costs [4, 5, 9].  

Novel approaches, either for the analysis or removal of heavy metal ions, are based on 

the use of natural systems [5]. Several reviews discuss the high potentials of bioremediation in 

toxic metal ion removal from a contaminated area. These methods apply either passive metal 

ion uptake by dead biomass [3, 4, 9–12], the accumulation by living cells of microorganisms 

[9, 11–15], or the use of immobilized biomolecules [5, 16]. Adsorption, ion exchange, 

chelation by small molecules, micro-precipitation or binding to oligopeptides/proteins may 

operate in the sorption/accumulation mechanisms [9, 11]. The latter is certainly one of the 

most if not the most important interactions in the dynamic metal uptake pathway of 

microorganisms. As a consequence, genetically engineered bacteria overexpressing specific 

metal binding proteins [15] (e.g. metalloregulatory proteins [17] or metallothioneins [18]) or 

pre-designed oligopeptides fused to carrier proteins [14, 15, 19–23] may be promising 

candidates in metal ion removal. Appropriate peptides [6, 24–26] or the highly efficient and 

selective bacterial metal responsive metalloregulatory proteins [27] are also utilized in the 

construction of biosensors [7, 8, 28–30] for the detection of toxic metal ions. The applied 

sequences generally contain cysteines with a soft sulfur donor atom showing high affinity 
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towards the heavy metal ions. However, these can also bind zinc(II) being an essential micro-

nutrient for bacteria. 

 In the present work we investigated the zinc(II)-binding of a novel 12-mer 

oligopeptide inspired by the metal binding domain of a CueR (Cu
+
-efflux regulator) protein 

belonging to the MerR family of metalloregulators [31]. The ligand (Scheme 1) contains two 

cysteine residues as the most potent binding sites for d
10

 metal ions close to the termini of the 

molecule..In order to increase the flexibility of the ligand one of the two proline units of the 

native sequence was replaced by a serine residue that is, indeed, present in a number of other 

MerR family member proteins [31] being sensitive for divalent metal ions. The metal-bound 

peptide may form a loop structure, as shown previously for the cadmium(II)-complexes of a 

related ligand [32]. It may be asked, however, whether zinc(II) and cadmium(II) or 

mercury(II) form similarly stable and structurally analogous complexes with the 

dodecapeptide. As the zinc(II) level may exceed those of either cadmium(II) or mercury(II) in 

potential target media, selectivity of the binding would be essential for practical applications. 

Therefore, we also studied the possible competition of zinc(II) with cadmium(II) or 

mercury(II) in binding to the dodecapeptide. 

 

2. Experimental 

2.1. Materials 

 The investigated peptide N-acetyl-Ser-Cys-Pro-Gly-Asp-Gln-Gly-Ser-Asp-Cys-Ser-Ile-

NH2 (Ac-SCPGDQGSDCSI-NH2, PS) was prepared by solid phase peptide synthesis using the 

Fmoc methodology (Fmoc = 9-fluorenylmethoxycarbonyl) and purified by reversed-phase 

HPLC, as described for a related ligand [32]. All other chemicals and solvents were obtained 

from Sigma-Aldrich and used without further purification unless otherwise described. 

Precisely weighed high purity HgCl2 was used to prepare solutions with known HgCl2 
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concentrations.  Metal ion stock solutions prepared from Zn(ClO4)26H2O and CdCl2xH2O 

were standardized complexometrically. pH-metric titrations were performed by NaOH 

(Aldrich) standard solution. 

 

2.2. pH-potentiometric measurements 

 The protonation and complex formation equilibria were investigated by potentiometric 

titrations in aqueous solution (I = 0.1 M NaClO4, T = 298.0 ± 0.1 K). Argon atmosphere                                                                                                                                                                                                       

in the titration cell was maintained with a special care throughout the titrations to avoid the 

oxidation of the peptide. An automatic titration set including a PC controlled Dosimat 665 

(Metrohm) autoburette and an Orion 710A precision digital pH-meter equipped with a 

Metrohm Micro pH glass electrode (125 mm) was used for the experiments. The electrode 

was calibrated in aqueous solution via the modified Nernst equation [33]: 

]H[
]H[]Hlog[ wOH

H0 

 


KJ
JKEE  

 where JH and JOH are fitting parameters in acidic and alkaline media for the correction of 

experimental errors mainly due to the liquid junction and to the alkaline and acidic errors of 

the glass electrode; Kw = 10
–13.75

 M
2
 is the autoprotolysis constant of water [34]. The 

parameters were calculated by the non-linear least squares method. 

The protonation and complex formation processes were characterized by the following 

general equilibrium process: 

rLqHpM  rqp LHM  

rqp

rqp

LHM
]L[]H[]M[

]LHM[

rqp


 

where M denotes the metal ion, L the non-protonated ligand molecule, and H the protons. 

Charges are omitted for simplicity, but can be easily calculated taking into account the 

composition of the fully protonated dodecapeptide (H4L). The corresponding formation 
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constants (MpHqLr ≡ pqr) were calculated using the PSEQUAD computer program [35]. The 

protonation constants were determined from 4 independent titrations (60-80 data points per 

titration) with a peptide concentration of 1.010
–3

 M. Different ratios of zinc(II) ions and the 

ligand, i.e. 0.5:1, 1:1 and 2:1, were applied in the titrations of the zinc(II) – peptide system. 

We could observe foam formation at the surface of the solutions and slight precipitate 

formation was also visible in the presence of metal ion excess above neutral pH. Under these 

conditions no sign of dinuclear complex formation was seen in the 
1
H NMR spectra. 

Accordingly, pH-potentiometric titrations with metal ion excess were not evaluated,. The 

complex formation constants were calculated from the remaining 4 titrations (60-80 data 

points per titration) where the applied ratio of zinc(II) and the ligand was 0.5:1 and 1:1 with 

the metal ion concentration varied between 4.010
–4

 and 1.010
–3

 M. 

 

2.3. Electronic absorption and SRCD measurements 

 UV–visible (UV–Vis) spectra were measured on a UNICAM HELIOS 

spectrophotometer using a cell with 0.5 cm optical pathlength equipped with a Teflon cap. 

Concentration of the ligand was 2.010
–4

 M and the metal ion concentration varied between 

1.010
–4

 and 210
–4

 M, depending on the metal-to-ligand ratio. Spectra were measured in the 

200-400 nm wavelength range. Samples were prepared under argon atmosphere and the 

optical cell was also filled with argon above the solution. 

 The synchrotron radiation CD (SRCD) spectra of the free ligand and the metal 

complexes were recorded at the SRCD facility at the CD1 beamline [36] on the storage ring 

ASTRID at the Institute for Storage Ring Facilities (ISA), University of Aarhus, Denmark. 

Camphor-sulfonic acid served as a calibration material for the instrument. All spectra were 

recorded with 1 nm steps and a dwell time of 2 s per step, using 0.1 mm quartz cells 

(SUPRASIL, Hellma GmbH, Germany), for the wavelength range of 170-330 nm. The 
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substances were initially dissolved in 1.010
–2

 M HCl in order to avoid the eventual oxidation 

process. The pH of the solutions of 1.010
–3

 M peptide concentration was adjusted by adding 

the appropriate amount of NaOH solution. For metal ion competition experiments different 

volumes of CdCl2 or HgCl2 stock solutions were added to the samples containing zinc(II) and 

PS in 1:1 molar ratio at pH ~ 6.5 to achieve a 0.33:1, 0.66:1, 1:1 and 2:1 molar ratio of the 

concentrations of the added metal ion and zinc(II), respectively. From raw spectra the water 

baseline was subtracted and spectra were normalized to a 1.010
–3

 M peptide concentration 

(to eliminate the effect of dilution). 

 

2.4. NMR experiments 

 NMR measurements were performed on a Bruker Avance DRX 500 spectrometer 

operating at 500.13 MHz for 
1
H. The spectra were recorded at T = 298 K in a mixture of 

H2O/D2O = 90:10 %v/v. In a typical sample the concentration of the peptide was 1.010
–3

 M. 

The pH of the samples was adjusted by NaOH solution. For the preparation of solutions 

containing cadmium(II) or mercury(II) ions besides zinc(II) calculated volumes of CdCl2 or 

HgCl2 stock solutions were added to the samples containing zinc(II) and PS in 1:1 molar ratio 

to achieve the desired molar ratio of the metal ion concentrations. The chemical shifts were 

calibrated to TSP (Trimethylsilyl propionate) as an external reference at 0.0 ppm 

(trimethylsilyl group). 1D 
1
H NMR spectra were recorded using the zgpr pulse sequence with 

presaturation to reduce the H2O/HDO resonances. All the spectra were recorded using a 

spectral width of 5 kHz and 128 scans.  

Data were processed by the ACD/NMR Processor Academic Edition software [37]. 

 

2.5. Mass spectrometry 
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Mass spectrometry was performed on a Waters Micromass
(R)

 Q-TOF Premier mass 

spectrometer operating in negative mode using electrospray ionization (ESI) source. In the 

samples the concentration of the peptide and those of the metal ions were 1.010
–4

 M and the 

pH of the solutions were set by ammonium hydrogen carbonate buffer (c = 10 mM) to pH = 

7.6. The samples were transferred into the mass spectrometer by direct infusion at a flow rate 

of 5 l/min. For better ionization methanol was infused at a flow rate of 5 l/min via static 

mixing tee. The capillary and cone voltages were set to (+) 3.0 kV and (+) 25 V. The 

desolvation temperature was set to 150 
o
C and the source temperature to 80 

o
C. The cone gas 

was at a flow rate of 60 L/h, whereas the desolvation gas flow was maintained at 500 L/h. For 

qualitative analysis the identified zinc(II) and cadmium(II) complex ions were detected in an 

MS survey scan of 1 s from an m/z of 50 to 1990 using 5 eV collision energy. The MS was 

calibrated on a daily basis using sodium-formate solution in negative mode. All data were 

acquired and the theoretical isotope patterns were determined by MassLynx Mass 

Spectrometry Software V4.1 (Waters Inc.). 

 

3. Results and Discussion 

3.1. Speciation analysis of the zinc(II) - peptide system 

 The formation constants (logβ) determined for the proton and zinc(II) complexes are 

summarized in Table 1, together with some representative pKa values and derived stability 

data. 

 The ligand possesses four donor groups that undergo protonation/deprotonation 

processes in the studied pH-range (pH ~ 2–10.5). The release of two protons from the aspartic 

acid residues takes place between pH ~ 3–5 while overlapping deprotonations of the two 

cysteines can be detected between pH ~ 8–9.5.  
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 Species distribution determined for the equimolar solution of zinc(II) and PS is 

presented in Fig. 1.A. Complex formation starts at pH ~ 4 and the appearance of ZnHL  is 

immediately followed by the parent complex ZnL where all the dissociable protons of the 

ligand are released. The pKa value for the process ZnHL  ZnL + H (= 5.02, see Table 1) is 

several log units lower compared to the pKa values of the two cysteines of the free ligand 

(pKCys = 9.09 and 8.30) which strongly suggests the binding of both Cys-thiolates to zinc(II) 

in the ZnL complex. The determined stability of this species (logK = 9.93) is somewhat 

higher than those of shorter peptides containing a CXC [38] or a longer ligand with a CASC 

motif [39], but lower compared to the stabilities formed with the Ac-CC-OH dipeptide [40] or 

longer peptides also containing neighboring cysteines and additional histidines in their 

sequences [41]. Even though the authors do not mention this possibility, in our view, the 

histidine residues may have a notable influence on the stability of the formed complexes (by 

metal ion coordination) which is very likely a stronger effect than that exerted by the aspartate 

units found in PS or in the ligand with a CASC sequence. This seems to be supported also by 

the significant differences between the stabilities determined for the three ligands containing 

the histidine residues in the peptide chain at different positions relative to the CC motif (Table 

2) [41]. All in all, the comparison of the stability constants of the mono-complexes formed 

with various peptides reflect a relatively high affinity of PS to zinc(II) in spite the long 

distance between the Cys units and the formation of a macrochelate. 

Further deprotonations occur above pH ~ 8 leading to the species ZnH–1L and ZnH–2L (Fig. 

1.A). Since formation of hydroxide precipitates or the deprotonation of coordinated water 

ligands are well known phenomena of zinc(II) peptide complexes at alkaline pH [42, 43], in 

the absence of other potential deprotonating groups in PS, ZnH–1L and ZnH–2L are most 

probably hydroxo mixed ligand complexes and their compositions are better described as 

Zn(OH)L and Zn(OH)2L, respectively. 
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 The mono-complexes ZnHL and ZnL dominate in the acidic/neutral pH-range when 

PS is applied in a twofold excess over zinc(II) (Fig. 1.B). Bis-ligand complexes ZnHL2 and 

ZnL2 start to form above pH ~ 6 and ZnL2 reaches a concentration maximum at ca. pH 9.4 

(Fig. 1.B). Nevertheless, mono-complexes are present in significant amounts even in the 

range where bis-ligand species dominate and under basic conditions the second ligand starts 

to be released from metal ion coordination (Fig. 1.B). The stability constant calculated for the 

binding of the second ligand (logK2 = 4.79) is several log units smaller than logK1 (see Table 

1) suggesting a relatively weak binding of the second coordinated PS within the parent bis-

complex. The overall stability is also substantially lower than those of some di-, tri- or 

tetrapeptides (Table 2) [41, 44]. It is not surprising if one takes into account the size of the 

ligand and the fact that the thiolate residues are relatively far from each other in the peptide 

chain which may cause a steric hindrance for the binding of the second molecule. No bis-

complex formation was suggested between zinc(II) and oligopeptides having two cysteine 

residues and similar size to that of PS [41]. However, as speculated above, histidine residues 

may participate in the binding of these ligands to zinc(II) that can stabilize mono-complexes 

and prevent the coordination of a second molecule. Additionally, the literature data are also 

somewhat incoherent regarding shorter peptides, since there has been opposite suggestions 

considering the existence of bis-complexes with tri- and tetrapeptides (see Refs. [38, 44] and 

data in Table 2). The fit of the potentiometric titration data of the zinc(II) – PS 0.5:1 system 

with a model containing no bis-complexes resulted in a significant deviation between the 

experimental and fitted curves (Fig. S1) and a three-fold higher fitting parameter as compared 

to the accepted model. This clearly suggests that under the conditions of our studies a second 

PS molecule, although with a relatively weak binding strength, coordinates to zinc(II). 

 

3.2. Spectroscopic studies on the zinc(II) - peptide complexes 
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 The coordination mode of the ligand within the complexes formed between zinc(II) 

and PS were investigated by UV, SRCD (synchrotron radiation circular dichroism) and 
1
H 

NMR spectroscopies. 

 UV spectra were recorded as a function of pH both in the equimolar solution of the 

metal ion and ligand and in the presence of twofold ligand excess. Coordination of 

deprotonated thiol groups to zinc(II) results in a -S
–
  Zn

2+
 LMCT band around 230 nm as it 

was shown for zinc(II)-metallothioneins [45, 46]. Such electron transitions have also been 

observed for the zinc(II) complexes of several cysteine containing oligopeptides [47–51]. pH-

dependent absorbance increase was found in the wavelength range of 220 – 270 nm during the 

titration of samples containing zinc(II) and PS in 1:1 and 0.5:1 ratios (Figs. S2.A-B). The 

measured absorbances at 235 nm are compared to the distribution of complex species on Fig. 

1.A and B. The absorbance starts to increase from pH ~ 4, in parallel with the coordination of 

zinc(II) to the peptide. In the presence of one equivalent metal ion per ligand the observed 

steep absorbance change and the plateau on the curve between pH ~ 6.5–8 is clearly related to 

the formation of the ZnL complex, strongly suggesting the binding of both Cys-thiolate 

groups to the metal ion. Further increase of the absorbance values at higher pH can be 

attributed to the formation of Zn(OH)L and Zn(OH)2L that might cause rearrangement in the 

coordination sphere of zinc(II) and a change of electron density on the metal ion center. At 

twofold excess of PS over zinc(II) a narrow break in the increase of absorbances can be 

observed between pH ~ 6–7.5 which is in a rather good correlation with the species 

distribution curves showing the maximum abundance of the parent mono-complex ZnL in the 

same pH-range. Above pH ~ 8 the A235nm vs. pH curve seems to follow the formation of bis-

complexes. It has to be noted, however, that deprotonated thiol groups also possess a 

relatively intense absorption around  = 236 nm assigned to an n  * transition [52]. Since 

the suggested bis-complex formation and deprotonation of the Cys residues of free PS take 
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place in a similar pH-range, the observed increase of absorbance above pH ~ 8 is very likely 

the result of parallel processes. The species distribution calculated from the determined 

stability constants (Table 1) for the concentrations applied in the UV experiments 

demonstrate, that the binding of additional thiolate groups of a second PS molecule to the 

zinc(II) center, and deprotonation of the thiol groups of the free PS or unbound cysteine 

residues of the ligand all contribute to the observed UV absorbance change in the alkaline pH-

range.  

 The pH-dependent series of 
1
H NMR spectra recorded in the zinc(II) – PS 1:1 system 

(Fig. 2) correlate well with the information provided by pH-potentiometric and UV data. The 

spectrum measured at pH = 4.65 is very similar to that of the free ligand at the same pH (see 

Fig. S3) suggesting that the major fraction of PS is not coordinated to the metal ion. The 

increase of pH results in a significant line broadening of most of the resonances referring to 

an intermediate exchange rate, relative to the NMR time scale, between species, i.e. 

complexed and unbound PS molecules. Signals become sharp at neutral pH where practically 

all the ligands are bound to zinc(II) in a form of ZnL. Under basic conditions the spectrum 

becomes less resolved again as several exchanging species co-exist. 

 SRCD spectra reflect the change of peptide conformation and thus may provide 

valuable information on the complex formation processes and complex structures, but from a 

different approach, as compared to 
1
H NMR spectra. The SRCD spectra of PS, even in the 

presence of zinc(II) resembles random coil like signatures of disordered protein structures, 

represented by a minimum around 197-200 nm and a weak shoulder around 220 nm (see Fig. 

3) [53, 54]. Spectra measured in the absence and presence of zinc(II) at pH = 3 are almost 

identical indicating no complex formation at this pH (spectra not shown). A significant 

decrease of ellipticity between 210-230 nm can be observed at pH = 6.5 (Fig. 3) in line with 

the formation of ZnL with two bound cysteine thiolates of PS. Similar type, but even more 
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pronounced change has been observed for a phytochelatin analogue ((Glu–Cys)4–Gly) in the 

presence of zinc(II) [50]. The relatively small deviation of the spectrum attributed to ZnL 

from that of free PS may suggest that the peptide backbone still has a lot of conformational 

flexibility in the bound form. Formation of dimeric Zn2L2 species with zinc(II) ions bridging 

the two ligands through the thiolate moieties, however, cannot be ruled out. At alkaline pH, 

where the formation of hydroxo mixed ligand complexes are indicated by potentiometric 

titrations, the structure of PS changes further, as demonstrated by the slight red shift of the 

CD-intensity minimum and the collapse of the shoulder at 220 nm (Fig. 3). 

 Fig. 4 shows a series of 
1
H NMR spectra recorded at selected pH values with varying 

zinc(II) – peptide ratio around neutral pH focusing on the resonances being the most affected 

by the metal ion – ligand interaction, i.e. the signals of CβH2 protons of the Cys and Asp 

residues. In the presence of ligand excess (spectrum ‘b’ in Fig. 4) all the observed signals are 

significantly broadened, similarly to what was seen at pH = 5.62 at 1:1 ratio of zinc(II) and 

PS (see Fig. 2). Species distribution curves reveal the presence of ca. 35 % of the total zinc(II) 

in bis-ligand complexes, which means that at least 3 species (ZnL, ZnH2L and unbound PS) 

co-exist with an intermediate ligand exchange between them. Concerning bis-complex 

formation, spectra measured at higher pH could be obviously more informative, however, 

even at higher pH one would see the influence of co-existing species on the shape of spectra. 

Furthermore, at higher pH we faced the problem that the oxidation of the ligand became a 

much more rapid process along with the deprotonation of thiol groups. 

At 1:1 ratio of zinc(II) and PS (spectrum ‘c’ in Fig. 4) the observed signals are well resolved 

and the splitting patterns of the 
2,10

Cys CH2 resonances remarkably differ from those of the 

same resonances of the free ligand (spectrum’a’ in Fig. 4). This, similarly to all the other 

experiments discussed so far, reflects thiolate binding to zinc(II). Although Cys and Asp 

related signals strongly overlap, it is clear, that the 
5,9

Asp CH2 resonances are also 
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significantly changed. They spread over a broader ppm range in comparison to the unbound 

ligand signals, i.e. a set of resonances, presumably belonging to one of the Asp residues is 

notably shifted downfield. Downfield shift of the CH2 resonances of an aspartic acid residue 

of a similar peptide has been attributed to carboxylate binding to cadmium(II) ion [32]. These 

findings suggest binding of one of the carboxylate side chains of PS to zinc(II), besides the 

two thiolates. 

The excess of zinc(II) ions over PS cause no change at any region of the 
1
H NMR spectrum as 

compared to the one recorded at 1:1 ratio (see spectrum ‘d’ in Fig. 4). This stands also for the 

spectra measured at lower or higher pH values, which undoubtedly suggests that dinuclear 

species are not formed even in the presence of metal ion excess. Indeed, around pH 9, white 

precipitate appeared in the samples containing twofold zinc(II) excess over PS due to the 

hydrolysis of free zinc(II) ions. On the other hand it has to be noted that in the cadmium(II) – 

PS or mercury(II) – PS systems the second metal ions apparently binds to the ligand (see 

later). 

 

3.3. Competition of zinc(II) with cadmium(II) or mercury(II) in binding to PS 

 Competition of the d
10

 metal ions in binding to the ligand PS was studied around 

neutral pH by means of SRCD and 
1
H NMR experiments. The question to be answered was: 

how the presence of zinc(II) ions might influence the binding of the oligopeptide to the toxic 

metal ions, cadmium(II) or mercury(II). Transition metal ions have typical preferences for 

certain type of donor ligands, but also for coordination geometries [55]. In proteins and 

peptides, mercury(II) is known to have an outstanding affinity for the soft sulfur ligands and a 

strong preference for linear [56–59] or trigonal coordination geometries [59–62], however, it 

can also adopt a tetrahedral coordination environment of donor groups [63–65]. In contrast, 

cadmium(II) and zinc(II) prefer tetrahedral coordination geometry [55, 59, 65], but higher 
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coordination numbers are also easily possible, especially for the more flexible zinc(II) ions 

[55, 66]. The binding affinities of d
10

 metal ions to cysteine follow the order of Hg
2+

 > Cd
2+

 > 

Zn
2+

 [67, 68] which usually also stands for metallothioneins [67] and MerR metalloregulatory 

proteins [68]. Considering the known ligand and geometry preferences of the three metal ions, 

PS is expected to have a higher affinity towards mercury(II), as compared to cadmium(II) or 

zinc(II). Nevertheless, metal ion affinities, especially within proteins, are influenced by 

several factors, and general predictions are not always possible [69]. It is nicely demonstrated 

by the almost identical dissociation constant of zinc(II) and cadmium(II) with the (Cys)4 zinc-

finger binding site of the Estrogen receptor DNA-binding domain [70]. 

 SRCD titration of the zinc(II) – PS 1:1 system with cadmium(II) ions resulted in a 

continuous change of the spectra up to the 1:1:1 zinc(II):PS:cadmium(II) concentration ratio, 

suggesting the binding of cadmium(II) ions to the ligand and the release of zinc(II) (Fig. 5). 

However, the spectrum obtained in the presence of one equivalent cadmium(II) slightly 

differs from that of the cadmium(II) – PS 1:1 system recorded at the same pH. 
1
H NMR 

titrations performed with the same series of samples also around neutral pH reflects the same 

process (Fig. 6), nevertheless the difference between the 
1
H NMR spectra of the ternary 

system (spectrum ‘b’ in Fig. 6) and the sample containing cadmium(II) and ligand in a 1:1 

ratio (spectrum’d’ in Fig. 6) is much more pronounced. This may originate from the presence 

of zinc(II) complexes even when one equivalent of cadmium(II) is added, which would imply 

comparable affinities of PS towards the two metal ions. However, the previously observed 

stabilities of zinc(II) and cadmium(II) complexes of some two Cys-containing short peptides, 

point to a ca. two orders of magnitude stronger affinity of the ligands in cadmium(II) binding 

[39, 41]. On the other hand, one should not exclude the possibility of the presence of 

heterodinuclear complexes in some extent, i.e. species where zinc(II) is also bound to the 

ligand besides cadmium(II). Although no specific structures for such species can be proposed 
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from our data, mixed binding of zinc(II) and other metal ions (including cadmium(II) and 

mercury(II)) to certain zinc finger sites has already been suggested [65, 69, 71, 72]. 

 ESI-MS spectra were also recorded to search for additional support for either of the 

above assumptions. As demonstrated in Fig. 7, isotope pattern representing a zinc(II) 

containing monomeric double charged species, i.e. [ZnL]
2–

 as a minor component was also 

observable together with the isotope pattern of [CdL]
2–

 being the most abundant ion in the 

solution containing zinc(II), PS and cadmium(II) in a 1:1:1 ratio. Not surprisingly, [ZnL]
2–

 

proved to be the most abundant ion in the sprayed sample of the equimolar solution of zinc(II) 

and the ligand. No signals representing ternary species of either dinuclear or dimeric type 

have been detected under the conditions of the MS experiments, which is of course not a 

conclusive proof against the presence of such complexes. Nevertheless, the information 

provided by the MS spectra nicely correlate with the other spectroscopic data representing the 

partial replacement of zinc(II) by cadmium(II) at the binding sites of PS when the three 

components are present in 1:1:1 concentration ratio. 

The addition of another equivalent of cadmium(II) to the titrated samples resulted in 

remarkable changes both on the SRCD (Fig. 5) and 
1
H NMR spectra (Fig. 6). More 

importantly, these spectra are almost identical to those recorded in the solutions containing 

only cadmium(II) and PS in a 2:1 ratio. This undoubtedly points to the formation of dinuclear 

cadmium(II) complexes, but also reflects the complete replacement of zinc(II) from the 

binding sites of the ligand. (Equilibrium and solution structural investigation of the 

cadmium(II) and mercury(II) complexes of the peptide will be published later.) 

 When mercury(II) is added gradually to the zinc(II) – PS 1:1 system the intensity of 

the CD-minimum around 198 nm decreases while the small negative ellipticity around 220 

nm increases (Fig. 8). The observed SRCD spectrum in the presence of one equivalent of 

mercury(II) besides zinc(II) and PS is very close to the one measured for the mercury(II) – PS 
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1:1 binary system. A perfect match of 
1
H NMR spectra for these two samples can be 

observed, too (see spectra ‘b’ and ‘d’ on Fig. 9). Mercury(II), when present in an even 

concentration compared to zinc(II) and PS, can fully replace the less soft zinc(II) ion from the 

binding sites of the ligand. 

A significant change occurs on the SRCD spectra when adding the second equivalent 

of mercury(II) to the sample (Fig. 8). The ellipticity around 198 nm is collapsed while the 

lower energy shoulder is shifted to  ~ 230 nm. Surprisingly, the observed spectrum is distinct 

from the one measured for the mercury(II) – PS 2:1 binary system. At the same time, 
1
H 

NMR spectra obtained for the samples of mercury(II) – PS with a 2:1 ratio in the presence 

and absence of zinc(II) look similar, but not exactly the same. Nevertheless, they are less 

informative due to the observed strong line broadening (spectra ‘c’ and ‘e’ on Fig. 9). We 

assume, that coordination of the second mercury(II) ion to the peptide breaks the loop-type 

coordination mode of the ligand adopted in the mono-complexes of either zinc(II) or 

mercury(II) and this conformational change makes the carboxylate groups of the ligand more 

available for weak zinc(II)-binding. 

According to these data, mercury(II) fully replaces zinc(II) from the thiolate binding sites of 

PS up to a 1:1 ratio of the metal ions, nevertheless, excess of mercury(II) results in a 

significantly altered ligand conformation likely to provide better access to the carboxylate 

moieties for other metal ions, including zinc(II). 

 

4. Conclusion 

 The investigated dodecapeptide, possessing two cysteine and two aspartate residues as 

potential metal binding sites, binds zinc(II) ions with a remarkably high affinity and forms 

differently protonated mono- and bis-complexes from pH ~ 4. Besides the coordination of the 

deprotonated thiol groups participation of one of the Asp-carboxylates is suggested in the ZnL 
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parent complex. Competition studies on the binding of zinc(II) and cadmium(II) or zinc(II) 

and mercury(II) ions to the ligand showed that zinc(II) cannot prevent the coordination of 

toxic metal ions to the thiolate donor groups of the ligand. However, while one equivalent of 

mercury(II) fully replaces zinc(II) from its mono-complex, formation of mixed metal ion 

complexes is also presumable besides zinc(II)-replacement, in case of cadmium(II). 

Nevertheless, excess of cadmium(II) over zinc(II) leads to the formation of dinuclear species 

and the complete release of zinc(II) from the peptide. 

 Based on our findings the investigated dodecapeptide can be considered as a 

promising candidate for toxic metal ion binding in practical applications, especially, for 

mercury(II) ions. 

 

5. Abbreviations 

Ac-SCPGDQGSDCSI-NH2 (PS): N-acetyl-Ser-Cys-Pro-Gly-Asp-Gln-Gly-Ser-Asp-Cys-Ser-

Ile-NH2 

MerR: a family of transcriptional regulators the archetype of which is the Hg
2+

-responsive 

transcriptional repressor-activator MerR protein 

CueR: Cu
+
-efflux regulator protein 

SRCD:  synchrotron radiation circular dichroism 

ESI source: electrospray ionization source 

LMCT: ligand-to-metal charge transfer 
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Table 1: Formation constants (log) of the proton and zinc(II) complexes of PS (with the 

estimated errors of the last digits in parentheses) together with derived data (I = 0.1 M 

NaClO4, T = 298 K). Charges of the species are given in the table, but omitted throughout the 

text for simplicity. 

Species pqr lgpqr  pKligand 

[HL]
3

 011 9.09(2) pKa,4 9.09 

[H2L]
2

 021 17.39(2) pKa,3 8.30 

[H3L]

 031 21.76(2) pKa,2 4.37 

H4L 041 25.26(3) pKa,1 3.50 

     

    pKpqr 
a
,  logK2

L
 
b
 

[ZnHL]

 111 14.95(8) pK111 5.02 

[ZnL]
2

 101 9.93(2) pK101 9.11 

[ZnH–1L]
3

 1–11 0.82(4) pK1–11 10.50 

[ZnH–2L]
4

 1–21  –9.68(4)   

[ZnHL2]
5

 112 23.0(1) pK112 8.3 

[ZnL2]
6

 102 14.72(7) lgK2
L
 4.79 

FP (cm
3
) 

c
  0.002   

a
 1)rp(qpqrpqr loglogp  K ; 

b
 101102

L

2 loglog log  K ; 
c
 FP = fitting parameter 
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Table 2: Stability data of the zinc(II) complexes of selected terminally protected oligopeptides 

containing two cysteines  

Ligand logZnL logZnL2
 logH2L Ref. 

Ac-CC-OH 11.0 21.8 18.94 [40] 

Ac-CC-NH2 – 17.63 17.31 [41] 

Ac-CVC-NH2 9.39 – 17.74 [38] 

Ac-CPC-NH2 9.31 – 17.85 [38] 

Ac-CGC-NH2 – 18.81 17.26 [44] 

Ac-CPCP-NH2 – 18.81 17.44 [44] 

Ac-GSCCHTGNHD-NH2 11.75 – 17.43 [41] 

Ac-EEGCCHGHHE-NH2 13.15 – 18.11 [41] 

Ac-CCSTSDSHHQ-NH2 10.90 – 17.28 [41] 

Ac-SCPGDQGSDCSI-NH2 (PS) 9.93 14.72 17.39 This work 

Ac-GCASCDNARAAKK-NH2 logZnHL = 20.11 
a
      pKLys = 10.90 [39] 

a
 Stability constant for ZnHL can be calculated by the equation: logKZnHL = logZnHL – logHL 

= 20.11 – 10.90 = 9.21. 
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Captions for Schemes and Figures 

 

Scheme 1.: Schematic structure of Ac-SCPGDQGSDCSI-NH2 (PS) 

 

Fig. 1: Species distribution diagram for zinc(II) : PS 1:1 (A), and 0.5:1 (B) systems (charges 

of the complex species are omitted for simplicity, cPS = 1.010
3

 M, I = 0.1 M NaClO4, T = 

298 K). The squares represent the change of absorbance at 235 nm. 

 

Fig. 2: Selected region of the 
1
H NMR spectra of the peptide PS recorded in the zinc(II) – PS 

1:1 system as a function of pH (cPS = 1.010
3

 M, T = 298 K, 10 % w/w D2O/H2O). Signals 

from the 
2,10

Cys CH2 and 
5,9

Asp CH2 resonances (marked on the figure) and those of the 

6
Gln CγH2, 

3
Pro CβH2, 

6
Gln CβH2, CH3CO-

1
Ser, 

3
Pro CγH2 and 

12
Ile CβH resonances (between 

 ~ 2.5 – 1.8 ppm) are shown. Tentative assignment has been made based on the fully 

assigned resonances of a closely related dodecapeptide [32]. 

 

Fig. 3: SRCD spectra recorded in the zinc(II) – PS 1:1 system at different pH values: triangle, 

pH = 5.5; circle, pH = 6.5; square, pH = 10.0.  As a comparison, spectrum of free PS at pH = 

6.5 (dashed line with open circles) is also shown. (cPS = 1.010
3

 M, T = 298 K) 

 

Fig. 4: Selected region of the 
1
H NMR spectra of the peptide PS recorded at pH ~ 7.6 as a 

function of the metal ion to peptide ratio: (a), free PS pH = 7.59; (b), 0.5 eq. Zn
2+

 + PS pH = 

7.76; (c), 1 eq. Zn
2+

 + PS pH = 7.67; (d), 2 eq. Zn
2+

 + PS pH = 7.66. (cPS = 1.010
3

 M, T = 

298 K, 10 % w/w D2O/H2O).  
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Fig 5: SRCD titration of the zinc(II) – PS 1:1 system at pH = 6.5 with cadmium(II) (only the 

characteristic curves at 0, 1 and 2 equivalents of Cd
2+

 is shown) and comparison of spectra 

with those recorded in the cadmium(II) – PS 1:1 and 2:1 systems: circle, Zn
2+

:PS 1:1; 

triangle, Zn
2+

:PS 1:1 + 1 eq. Cd
2+

; square, Zn
2+

:PS 1:1 + 2 eq. Cd
2+

; dashed line with open 

triangle, Cd
2+

:PS 1:1; dashed line with open square, Cd
2+

:PS 2:1. (cPS = 1.010
3

 M, T = 298 

K) 

 

Fig. 6: 
1
H NMR titration of the zinc(II) – PS 1:1 system at pH ~ 7.6 with cadmium(II) and 

comparison of spectra with those recorded in the cadmium(II) – PS 1:1 and 2:1 systems: (a), 

Zn
2+

:PS 1:1 pH = 7.65; (b) Zn
2+

:PS 1:1 + 1 eq. Cd
2+

 pH = 7.62; (c), Zn
2+

:PS 1:1 + 2 eq. Cd
2+

 

pH = 7.63; (d), Cd
2+

:PS 1:1 pH = 7.50; (e), Cd
2+

:PS 2:1 pH = 8.06. (cPS = 1.010
3

 M, T = 

298 K, 10 % w/w D2O/H2O) 

 

Fig. 7: Theoretical isotope pattern of [ZnL]
2–

 (at 634.171 monoisotopic m/z) (A), measured 

isotope pattern of [ZnL]
2–

 (at 634.149 monoisotopic m/z) (B) and [CdL]
2–

 (at 657.139 

monoisotopic m/z ) (C), and theoretical isotope pattern of [CdL]
2–

 (at 657.159 monoisotopic 

m/z) (D). L represents the fully deprotonated –4 charged PS molecule. 

 

Fig. 8: SRCD titration of the zinc(II) – PS 1:1 system with mercury(II) at pH = 6.5 (only the 

characteristic curves at 0, 1 and 2 equivalents of Hg
2+

 is shown) and comparison of spectra 

with those recorded in the mercury(II) – PS 1:1 and 2:1 systems: circle, Zn
2+

:PS 1:1; triangle, 

Zn
2+

:PS 1:1 + 1 eq. Hg
2+

; square, Zn
2+

:PS 1:1 + 2 eq. Hg
2+

; dashed line with open triangle, 

Hg
2+

:PS 1:1; dashed line with open square, Hg
2+

:PS 2:1. (cPS = 1.010
3

 M, T = 298 K) 
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Fig. 9: 
1
H NMR titration of the zinc(II) – PS 1:1 system at pH ~ 7.5 with mercury(II) and 

comparison of spectra with those recorded in the mercury(II) – PS 1:1 and 2:1 systems:  

(a), Zn
2+

:PS 1:1 pH = 7.65; (b) Zn
2+

:PS 1:1 + 1 eq. Hg
2+

 pH = 7.37; (c), Zn
2+

:PS 1:1 + 2 eq. 

Hg
2+

 pH = 7.36; (d), Hg
2+

:PS 1:1 pH = 7.08; (e), Hg
2+

:PS 2:1 pH = 7.23. (cPS = 1.010
3

 M, T 

= 298 K, 10 % w/w D2O/H2O) 
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Fig. S1: Experimental titration data (circles) and the fit (solid line) of the zinc(II) : PS 0.5:1 

system with the model presented in Table 1 (cPS = 1.0710
3

 M, cZn
2+ = 5.2510

4
 M, V0 = 

5.11 cm
3
, I = 0.1 M NaClO4, T = 298 K). The dashed line shows the best fit when the bis-

complexes (ZnHL2 and ZnL2) are omitted from the model. 
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Fig. S2.A-B: pH-dependent UV spectra recorded in the zinc(II) – PS 1:1 (A), and 0.5:1 (B) 

systems (cPS = 2.010
4

 M (A,B), I = 0.1 M NaClO4, T = 298 K, l = 0.5 cm). 
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Fig. S3: Comparison of selected region of the 
1
H NMR spectra of the peptide PS in the 

absence and presence of one equivalent of zinc(II) ions at pH ~ 4.7 and and pH ~ 7.6 (cPS = 

1.010
3

 M, T = 298 K, 10 % w/w D2O/H2O). 
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Graphical Abstract 

 

 

Interaction of Zn
2+

 with the Ac-SCPGDQGSDCSI-NH2 peptide, and competition with Cd
2+

 

and Hg
2+

 in binding to the ligand have been investigated. 

 

 

 

Highlights 

 

- The peptide Ac-SCPGDQGSDCSI-NH2 binds Zn
2+

 with a remarkably high affinity 

- We propose two Cys-thiolates and one Asp-carboxylates to bind Zn
2+

 in the ZnL complex 

- One equiv. of Hg
2+

 fully replaces Zn
2+

 from its ZnL complex 

- One equiv. of Cd
2+

 partially replaces Zn
2+

 and mixed metal complexes may also form 


