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Abstract

We propose a simple model to explain the non-monotonic concentration dependence of the mean

activity coefficient of simple electrolytes without using any adjustable parameters. The Primitive

Model of electrolytes is used to describe the interaction between ions computed by the Adaptive

Grand Canonical Monte Carlo method. For the dielectric constant of the electrolyte, we use experi-

mental concentration dependent values. This is included through a solvation term in our treatment

to describe the interaction between ions and water that changes as the dielectric constant changes

with concentration. This term is computed by a Born-treatment fitted to experimental hydration

energies. Our results for LiCl, NaCl, KCl, CsCl, NaBr, NaI, MgCl2, CaCl2, SrCl2, and BaCl2

demonstrate that the principal reason of the non-monotonic behavior of the activity coefficient is a

balance between the solvation and ion-ion correlation terms. This conclusion differs from previous

studies that assumed that it is the balance of hard sphere repulsion and electrostatic attraction

that produces the non-monotonic behavior. Our results indicate that the earlier assumption that

solvation can be taken into account by a larger, ‘solvated’ ionic radius should be reconsidered. To

explain second order effects (such as dependence on ionic size), we conclude that explicit water

models are needed.
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I. INTRODUCTION

It is well known that the mean activity coefficient, γ±, of many electrolytes shows a non-

monotonic behavior as a function of concentration: (1) increasing the concentration from

zero (the infinite dilution limit) γ± decreases from 1 with a slope obeying the Debye-Hückel

(DH) limiting law1, (2) reaches a minimum at a large concentration, then (3) increases again

(often above unity) as the concentration approaches saturation. The explanation of this

behavior has been a topic of several attempts starting from various empirical modifications2–7

of the DH theory, through more developed statistical mechanical theories8–19, to computer

simulations5,6,21. It is also the topic of this letter.

The activity coefficient describes the deviation from ideality through the excess chemical

potential

γi = exp (µex
i /kT ) , (1)

with

µi = µ0
i + kT ln ci + µex

i , (2)

where µi is the chemical potential of species i, ci is the concentration of species i, µ0
i is

a reference chemical potential independent of the concentration, µex
i is the excess chemical

potential characterizing the effect of interaction between particles, k is Boltzmann’s constant,

and T is the temperature. The reference point is chosen in such a way that µex
i → 0 when

ci → 0 for every i. The mean activity coefficient of a simple electrolyte with a stoichiometry

Cν+Aν
−

⇄ ν+C
z+ + ν−A

z
− is defined as

γ± = ν++ν
−

√

γ
ν+
+ γ

ν
−

− , (3)

where C and A refer to cations and anions, ν+ and ν− refer to their respective stoichiometric

coefficients, and z+ and z− refer to their respective valences. In this study, we restrict

ourselves to pure electrolytes, where only one concentration is present as an independent

variable (the other is bound by electroneutrality). We will express our results as a function

of the salt concentration denoted by c, where c = c+/ν+ = c−/ν−.

It has been believed for a long time that the primary reason of the failure of the DH theory

is that it treats the ions as point charges2–4. Therefore, modifications of the DH theory

involved an adjustable size parameter (usually denoted by a) characterizing the excluded

volume of ions. When modern statistical mechanical theories became available, the Primitive
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Model (PM) of electrolytes became the subject of extensive study because it includes finite

ion size in a natural way using a well-defined molecular model: ions are modeled as charged

hard spheres (HS), while the solvent is modeled as a dielectric continuum with a dielectric

constant ǫ. The corresponding interparticle potential is

uPM
ij (r) =











∞ for r <
Ri +Rj

2
zizje

2

4πǫ0ǫr
for r ≥

Ri +Rj

2
,

(4)

where Ri is the radius of ionic species i, e is the electronic charge, ǫ0 is the permittivity of

vacuum, and r is the distance between ions.

Extensions of the DH theory5–7, as well as MSA11–19 and simulation5,6 studies of the PM

showed that agreement with experiments can be achieved only if an ionic radius larger than

the Pauling radius20 is used. The large radius was interpreted as the ‘solvated’ radius of the

ion and thus as representing solvation effects beyond those described by the interaction with

a continuum dielectric. The optimal ion size was obtained by fitting to experimental γ±(c).

In most cases, the Pauling radius was used for the anions and R+ was fitted. In some cases

R+ was constant5,11,12,16–18; in other cases R+ was concentration-dependent5,13–15,19.

The reason that an increased ion size can reproduce the increase in γ±(c) at high concen-

trations is that larger ‘solvated’ radius produces larger excluded volume interactions among

the ions, and, thus, a larger HS component in the chemical potential, which can compensate

for the attractive electrostatic term and even overcompensate at large concentrations. There-

fore, it was believed that the reason of the non-monotonic behavior is a balance between the

repulsive volume exclusion and the attractive electrostatic terms.

With solvation represented in an empirical ‘solvated’ ionic radius the contribution of

ion-water (IW) interaction to the excess chemical potential was rarely discussed in implicit

solvent based electrolyte models. Here, the dielectric constant carries the information about

the ability of water to screen the ion. If the dielectric constant does not change with

concentration, the IW interaction is unchanged and solvation does not contribute to µex
i .

This was assumed in several studies5,11,13,19, where the dielectric constant was kept fixed at

that of pure water.

The dielectric constant, however, decreases with increasing concentration, a well known

experimental fact22. This decrease is mainly due to dielectric saturation23. Increasing electric

field produced by the ions orients the water molecules in the solution thus decreasing their
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ability to adjust their orientation in the solvation shell of an ion. Consequently, the screening

ability of the solvent (expressed by its dielectric constant) decreases as the concentration of

ions increases.

If the dielectric constant is concentration dependent, the IW interaction cannot be ig-

nored. One must compute the change in the direct interaction with water as the dielectric

environment changes with concentration.

The concentration dependence of the dielectric constant has been considered by many

workers. In several studies, it was an adjustable parameter12,14,15. In these calculations,

both the ionic radius and the dielectric constant were adjusted to reproduce experimental

γ±.

The dielectric constant of an electrolyte, however, is a measurable thermodynamic quan-

tity rather than an adjustable parameter. Fawcett and Tikanen16–18 proposed using an

experimental concentration dependent dielectric constant expressed in the form

ǫ(c) = ǫw − δSc+ bSc
3/2, (5)

where ǫw = 78.46 is the dielectric constant of the infinitely dilute solution (pure water).

The coefficients δS and bS are tabulated in Table I for the electrolytes studied in this work.

Fawcett and Tikanen16–18 used the MSA similar to that of Simonin et al.14,15. The IW inter-

action, however, was not included in these calculations14–18. The concentration dependence

of the dielectric constant was taken into account by differentiating the free energy with re-

spect to concentration thus obtaining a contribution involving ∂ǫ/∂c. Again, the ionic radii

were adjusted to fit the results to experimental γ±.

In the works cited so far5–7,11–19, a wide variety of fitting procedures were used to bring

calculations into agreement with experiments. This sometimes resulted in exotic values of

the fitted parameters such as an ionic radius smaller than the crystallographic value or

dielectric constant at infinite dilution smaller than that of water.

Instead of using fittable parameters, we propose a model where all the parameters have an

experimental origin. It is not our goal to reproduce experimental data for γ±(c) accurately.

Our primary intention in this letter is to understand the physics behind the non-monotonic

behavior of the activity coefficient. We use experimental parameters so we can see how well

the PM deals with experimental data without adjustable parameters. The second goal of

our study then is to explore the domain of applicability of the PM in describing activity
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coefficients.

II. MODEL AND METHODS

In our approach, the excess chemical potential splits into two terms

µex
i = µII

i + µIW
i , (6)

where II refers to ion-ion interactions. For the ionic radii, the Pauling radii were used

(Table II), while for the dielectric constant the experimental value was used for a given

concentration (see Eq. 5 with the data of Table I). The II term is determined from the

Adaptive Grand Canonical Monte Carlo (A-GCMC) simulation method using the PM of

electrolytes (Eq. 4). For details of the A-GCMC method, we refer the reader to the original

papers24,25. In short, it is an iterative procedure that allows the computation of the chemical

potentials that correspond to prescribed concentrations. In the Grand Canonical ensemble,

the number of ions fluctuate due to ion insertion/deletion steps. The chemical potentials

(which are independent variables of the ensemble) are adjusted during the iteration process

to obtain the desired concentrations during iteration. A cubic simulation cell was used with

periodic boundary condition and the minimum image convention.

We assume that the IW term contains the interaction of an inserted ion only with the

surrounding water represented as a continuum dielectrics. This corresponds to an electrolyte

at infinite dilution. The free energy change at infinite dilution can be interpreted as the

excess chemical potential, an intensive quantity. The information that the electrolyte is, in

fact, not infinitely diluted and ions are present at large concentration is included only in the

concentration dependent dielectric constant.

We estimate the ǫ-dependence of the IW term using the treatment of Born26 for solvation,

which is probably the simplest way to compute an ion’s energy in a dielectric environment.

The Born term is the electrostatic energy required to bring a charged spherical ion from

vacuum (ǫ = 1) to the solution (ǫ = ǫ(c)). This term estimates only the electrostatic energy

of this ion insertion, the change in entropy is not included. The Born expression usually

overestimates the experimental Gibbs free energy of solvation, ∆Gs
i. Therefore, following

Nonner et al.27, we use the Born equation for the mere purpose to estimate the ǫ-dependence

of the solvation free energy.
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As a first step, we approximate the experimental Gibbs free energy of solvation, ∆Gs
i,

(tabulated in Table II, taken from Fawcett4) with the Born expression:

∆Gs
i[ǫ(c)] =

z2i e
2

8πǫ0RB
i

(

1

ǫ(c)
− 1

)

. (7)

The output of this equation is the Born radius, RB
i , that does not have to be the same as

the Pauling radius, Ri. As a matter of fact, it is usually larger than the Pauling radius

and, in an approximative way, it includes all the contributions that are beyond the crude

Born-model.

The reference state of µex
i is the infinitely dilute electrolyte. Therefore, in the second step,

we express the free energy required to bring the ion from the infinitely dilute electrolyte (ǫw)

to a concentrated electrolyte (ǫ(c)) and identify this free energy difference with the solvation

(IW) term of the excess chemical potential:

µIW
i (c) = ∆Gs

i(c)−∆Gs
i(c → 0) = ∆Gs

i [ǫ(c)]−∆Gs
i[ǫw] =

z2i e
2

8πǫ0R
B
i

(

1

ǫ(c)
−

1

ǫw

)

. (8)

Expressing the Born radius RB
i from Eq. 7 and substituting it into Eq. 8, we obtain

µIW
i [ǫ(c)] = ∆Gs

i

ǫ(c)− ǫw
ǫ(c) (ǫw − 1)

, (9)

which scales the experimental ∆Gs
i in inverse proportion to the dielectric coefficient. This

way, we constructed a model that does not contain any adjustable parameter.

Note that the II and IW terms are coupled only by the dielectric constant and computed

with independent methods. The IW term is computed as if only water were present and

the effect of ions appears only via the concentration dependence of ǫ(c). The II term is

simulated on the basis of the PM, where the effect of water appears only in the dielectric

constant.

The need for a treatment of solvation when the dielectric constant is changed was also

considered by Abbas et al.5 and Inchekel et al.28 We will discuss these studies later in

comparison with our results.

We have also calculated the II term with the MSA using the formulae given by Nonner

et al.29. Our primary method, however, is computer simulation because it reproduces the

II term exactly within certain statistical accuracy. Our results then show how accurately

the model can reproduce experimental results. Using an approximate theory we introduce

another kind of error into our calculations: the error within which the theory can reproduce
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results for a given model compared to simulation data. Separation of these two kinds of errors

is possible if we know the accuracy of the applied theory from comparison to simulations.

III. RESULTS AND DISCUSSION

Figure 1 presents experimental activity coefficients30 for NaCl (Fig. 1a) and CaCl2 (Fig.

1b) together with the predictions of our model. The II interaction in the model is solved

by both A-GCMC simulation and MSA theory, and the II and IW contributions to the

activity coefficient are presented for either treatment. The non-monotonic dependence on

concentration seen in the activity coefficient is predicted by the model. The increase of the

model activity coefficient at high concentration is the consequence of the increase of the IW

term (Eq. 9) – the II term (which includes electrostatic and excluded volume interactions)

is monotonic and increasingly negative. The variations of both the II and IW terms involve

the substantial variation of dielectric constant with salt concentration.

The sum of the two large terms with opposite signs is quite close to the experimental data.

Because the sum of these two terms of large absolute values is sensitive to errors in the two

terms and because our model does not contain any adjustable parameters, we are satisfied

with the results. Any of the two terms could be adjusted by changing Ri and/or R
B
i , but

our goal is not to obtain perfect agreement with experimental results using an admittedly

imperfect theory.

Our attention in this paper is rather to understanding principles and to the physical

implications of our results. Our results imply that it is not the balance of the HS and

electrostatic terms what causes the non-monotonic behavior of γ±, but rather the balance

of the II and IW terms. More properly, because the II term contains the HS and the

electrostatic terms, it is the balance of three terms: HS exclusion, electrostatic attraction,

and solvation (IW). Only two of these terms are formally separated in our formalism (the II

and IW terms), although the HS and electrostatic terms are formally separated in the MSA

treatment.

This behavior was also found by Inchekel et al.28 (see Fig. 1 of their paper). They used

an extension to the Cubic Plus Association equation of state. They had several free energy

terms with many adjustable parameters, but they found that the two dominant terms are

those corresponding to our II and IW terms, although computed differently. They used a
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simplified MSA for the II term, while they interpreted the Born term (Eq. 7) as a Gibbs free

energy and obtained the chemical potential by differentiation. The factor ∂ǫ/∂c, therefore,

appeared in their equations similarly to those of Simonin et al.14,15.

Abbas et al.5 used practically the same formalism that we used (Eq. 8), and their results

are in accordance with ours. To obtain the II term, they applied canonical MC simulations

with Widom’s particle insertion method31 modified by Svensson and Woodward32. They

had, however, different ways of choosing the model parameters. (1) They used the same

radius for both ions and this radius was an adjustable parameter. (2) They used the same

radius in the Born-term and in the calculations for the II term. Because of this, they

overestimated the IW term. Therefore, when they used a fitted ‘solvated’ radius 0.199 Å for

KI (fitted without the Born term), they concluded that “the Born model gives unrealistically

high activity coefficients” in agreement with Cruz and Renon33. When they fitted the radius

with the Born term included, they also obtained large radii that were necessary to make the

Born term small enough (2.2 Å for LiBr and 1.775 Å for KI).

In this paper we suggest that the Pauling radii20 should be used in the II term, while

the IW term should be fitted to experimental solvation data, which results in a Born radius

larger than the Pauling radius. Pair correlation functions given by molecular dynamics

(MD) simulations using explicit water indicate34 that the cations and anions approach each

other and can be in contact without any water molecules between them. Using a ‘solvated’

radius for the ions, therefore, seems unphysical. Solvation should be taken into account

through the different screening properties of the solvent as the dielectric constant is changed

with electrolyte concentration. We emphasize that the IW term must be computed when

a concentration dependent dielectric constant is used. It is a non-vanishing term and it is

necessary to make the model consistent.

The agreement between simulation and MSA results is qualitative at best. The two

kinds of error described previously have similar magnitudes as seen in Fig. 1. The error

within which the model can reproduce experiments is the difference of experimental points

(filled black circles) and the II+IW curve optained with A-GCMC (solid blue line with

open triangles). The error within which MSA can reproduce simulations for the PM is the

difference between II curves obtained with MSA (red dotted line) and A-GCMC (solid red

line with open squares). These differences have similar magnitudes in our calculations. With

using MSA, therefore, we introduce an error that sometimes improves results (NaCl), while

8



in other cases worsen results (CaCl2) accidentally. In the absence of simulation data it would

be hard to separate the effects of the two kinds of errors when we intend to elucidate the

disagreement of our results with experiments. The advantage of MSA, nevertheless, is that

it is easy to compute.

Having described the basic mechanism behind the non-monotonic concentration depen-

dence of the activity coefficient, we now show our results for various sequences of electrolytes

where only one kind of ion is changed. We have performed calculations for the series (1)

LiCl, NaCl, KCl, and CsCl; (2) NaCl, NaBr, and NaI; and (3) MgCl2, CaCl2, SrCl2, and

BaCl2. The shape of the II and IW curves as well as their sum is quite similar to those

shown for NaCl and CaCl2 (Fig. 1), therefore, we discuss the effect of ionic species on mean

activity coefficient considering the results for the fixed salt concentration of 1 M. Results for

this concentration will characterize the agreement with experimental data for the whole con-

centration range: if γ± is under/overestimated for c = 1M, then it is under/overestimated

for other concentrations too (Fig. 1).

Figure 2 shows the excess chemical potential and its II and IW components determined

from A-GCMC in comparison to experiments. The net excess potentials are close to the

experimental values for all tested salts. Our model, however, does not reproduce the slope

of the ln(γ±) versus ionic radius curves properly. The experimental slopes have opposite

signs for cations and anions (filled black symbols in Fig. 2). Our model gives positive slope

in every case.

The asymmetrical nature of this behavior might arise from the asymmetric nature of water

molecules. Calculations with explicit water are needed to get a clue. MD simulations using

classical force fields is one possibility although consideration of quantum effects might be

necessary. Such simulations are very difficult technically: the chemical potential is computed

by a thermodynamic integration process35. The simulations of Zhang et al.36 provided larger

mean activity coefficients for NaCl than for KCl in agreement with experiments but in

disagreement with our results. This behavior seems to be closely connected to the molecular

nature of water, and in this respect, it is beyond the capabilities of the PM. We would

probably need a better theory for solvation (that distinguishes between anions and cations)

in order to reproduce this behavior in our model37.

We have proposed a simple treatment for the activity coefficient of electrolytes based

on computer simulations of the PM to compute the interaction between ions and a Born-
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treatment of solvation to compute the interation between ions and water. We demonstrated

that without using any adjustable parameter, the non-monotonic behavior of the mean

activity coefficient can be explained by the balance of these two basic physical interactions.

Proper agreement with experiments can be achieved if we use the Pauling radius20 in the

PM to simulate the II interactions, while we use the usually larger Born radius (obtained

from fit to experimental solvation data) in the calculation of the IW term. Note that using

the Shannon-Prewitt ionic radii38 instead of the Pauling radii does not change our results.

The reason is that the Pauling radius for cations is a little bit larger than the Shannon-

Prewitt radius, while the reverse is true for the anions (at least, for the ions considered in

this paper). The net result is that the mean activity coefficient does not depend on this

choice. Our results imply the the idea of using a ‘solvated’ ion radius in computation of the

II term to take solvation into account should be reconsidered.
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Salt δS bS

NaCl18 16.2 3.1

KCl18 14.7 3.0

CsCl18 13.1 2.9

NaBr16 20.0 5.0

NaI16 21.0 5.0

TABLE I: Coefficients of series expansion of ǫ(c) (Eq. 5) for salts used in the calculations. For

LiCl, the expression ǫ(c) = ǫw− 15.5c+1.96c2 − 0.306c5/2 was used18. For 2:1 electrolytes (MgCl2,

CaCl2, SrCl2, and BaCl2), the values δS = 34 and bS = 10 were used (W. R. Fawcett, personal

communication).

Ion zi Ri/Å RB
i /Å ∆Gs

i/kJmol−1

Li+ 1 0.6 1.3 -529

Na+ 1 0.95 1.62 -424

K+ 1 1.33 1.95 -352

Cs+ 1 1.69 2.24 -306

Mg2+ 2 0.65 1.42 -1931

Ca2+ 2 0.99 1.71 -1608

Sr2+ 2 1.13 1.85 -1479

Ba2+ 2 1.35 2.03 -1352

Cl− -1 1.81 2.26 -304

Br− -1 1.95 2.47 -278

I− -1 2.16 2.82 -243

TABLE II: Experimental parameters of the ions used in the calculations. Ri denotes Pauling

radius. The Born radius, RB
i , was obtained by fitting Eq. 7 to the experimental hydration free

energy ∆Gs
i . We used the data for ∆Gs

i found in the book of Fawcett4. Values from other sources

provided similar results.
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Captions of figures

Figure 1 The mean activity coefficient of NaCl (a) and CaCl2 (b) as a function of
√
c as

obtained from simulations and MSA compared with experiments30.

Figure 2 The mean activity coefficient (computed from A-GCMC) of different electrolytes

at concentration c = 1 M. Left panel: the monovalent cation is changed with Cl− kept

fixed (alkali metal chlorides); middle panel: the monovalent anion is changed with

Na+ kept fixed (sodium halides); right panel: the divalent cation is changed with Cl−

kept fixed (alkaline earth metal chlorides). The results are plotted as functions of the

Pauling radii of the ion which is changed in the given sequence.

14



0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

c
1/2

 [M
1/2

]

-2

-1

0

1

2

ln
(γ

±)

Experiment
IW (Born)
II (A-GCMC)
II+IW (A-GCMC)
II (MSA)
II+IW (MSA)

NaCl

(a)

0 0.3 0.6 0.9 1.2

c
1/2

 [M
1/2

]

-4

-2

0

2

4

ln
(γ

±)

Experiment
IW (Born)
II (A-GCMC)
II+IW (A-GCMC)
II (MSA)
II+IW (MSA)

CaCl2

(b)

FIG. 1: Vincze et al. J. Chem. Phys.

15



0.6 1 1.4 1.8

R
+

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
ln

(γ
±
)

0.7 1 1.3

R
2+

-3

-2

-1

0

1

2

1.8 2 2.2

R
-

Experiment
IW
II
II+IW

C
sC

l

K
C

l

N
aC

l

Li
C

l

M
gC

l 2

C
aC

l 2

S
rC

l 2

B
aC

l 2

N
aI

N
aB

r

N
aC

l

c=1M

FIG. 2: Vincze et al. J. Chem. Phys.

16


	Introduction
	Model and methods
	Results and Discussion
	Acknowledgment
	References
	Captions of figures

