
The Behavior of 2:1 and 3:1 Electrolytes at Polarizable Interfaces

T́ımea Nagy1, Mónika Valiskó1, Douglas Henderson∗2, and Dezső Boda1,2
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Abstract

The behavior of the electrical double layer (DL) is known to be different at polarizable in-

terfaces, specifically, at a metallic electrode (where the dielectric constant of the electrode is

infinitely large, ǫ1 → ∞) and at an air/electrolyte interface (where the dielectric constant of

the electrode is ǫ1 = 1) than is the case for unpolarized interfaces. For the polarized inter-

face, if multivalent ions are present, these ions are attracted/repelled more than is the case for

monovalent ions. Therefore, the divalent/trivalent ions (assumed to be cations to be specific)

accumulate near the metallic electrode more than for the unpolarized electrode and a charge

inversion occurs. In such asymmetric electrolytes, this results in a large potential at zero elec-

trode charge. The behavior is reversed for the air/electrolyte interface. This is more pronounced

at low reduced temperatures (or, equivalently, at high ionic couplings). The anomalous capaci-

tance behavior of the DL is seen for the unpolarized electrode, where the temperature derivative

of the capacitance is positive at low reduced temperatures (characteristic of electrolytes with

ions with high ionic couplings or molten salt DLs at room temperatures) while it is negative

at high reduced temperatures (characteristic or aqueous solutions of monovalent salts at room

temperatures). At least for the states we consider, this anomalous behavior is enhanced for the
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air/electrolyte interface but vanishes for a metallic electrode. Our Monte Carlo simulations of

these phenomena are reported.

1 Introduction

The authors are pleased to dedicate this article to John Prausnitz in recognition of his many

contributions to the theory of fluids.

An electrical double layer (DL) is formed when charged particles (say the ions in an electrolyte)

are near a charged electrode. The term DL is based on the intuitive idea that the charge of the

electrode and the excess charge in the electrolyte form two layers. In reality, the situation can be

more complex with layering and even charge reversal within one or both the electrode and electrolyte

layers. Thus, the electrode and electrolyte excess charges are layers only in an average sense. We

will use the term DL and layers in this average sense. In any case, there is a potential difference

between the two layers; these layers form a capacitor with a capacitance. Experiments typically

measure this capacitance as a function of the electrode charge or potential. A more detailed probe

of the nature of the DL would be the microscopic structure of the DL that is described by the

density and charge profiles. This has not been measured directly in an experiment but can be

obtained from theory or simulation.

Most simulations and theories are based on what is called the primitive model (PM) of the

electrolyte, in which the solvent is represented by a dielectric continuum and the ions are represented

by charged hard spheres. If the further assumption or restriction that the hard sphere ions all have

the same diameter, d, is made, the model is called the restricted primitive model (RPM). Further, a

primitive model of the electrode is usually assumed, where the electrode is a charged hard smooth

plane with all the electrode charge located on the surface of the plane (zero skin depth). It is

certainly possible to formulate more sophisticated models of the electrolyte and electrode but this

is rarely done because of the additional computational complexity. For example, including explicit

solvent molecules restricts a simulation to high concentrations because a very large number of

solvent molecules would be required at concentrations much below about 1M in order that there is

a reasonable number of ions and that reliable averages can be obtained.
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The conventional theory of the DL is the Poisson-Boltzmann theory of Gouy, Chapman, and

Stern1–3 (GCS). This is based on the PM but employs two further assumptions. Correlations among

the ions (except those provided directly by the interaction with the mean field) are neglected and

the size of the ions is neglected, other than assuming a nonzero distance of closest approach (or

Stern layer) between the ions and the electrode. The GCS theory suffers from at least four defects.

The GCS charge profiles are monotonic whereas simulations show that they can be nonmonotonic

when multivalent ions are present or the coupling is strong. Further, a good theory would give the

same result, or at least a close result, no matter whether it is the electrode charge or potential that

is specified. This is not the case for the GCS theory. The superficial observation is often made that

the GCS density profiles are in good agreement with simulation results for monovalent electrolytes.

However, this is true only if the electrode charge density is chosen as the independent variable. In

an experiment, it is the electrode potential that is commonly used. The GCS charge profiles are

in poor agreement with simulation results, even for monovalent ions, if the electrode potential is

specified.4 For multivalent ions, the GCS profiles are poor, independently of whether the electrode

charge or potential is fixed. Additionally, at lower temperatures (say frozen electrolytes), problems

are apparent in the GCS theory even when applied to monovalent ions.5, 6 The third problem with

the GCS theory is that for a symmetric electrolyte the coion profile is assumed to be the reciprocal

of the counterion profile. It has been known for a while (discussed recently7) that this is

not the case. Finally in the GCS theory, the ions can accumulate in unlimited numbers near the

electrode. Recent simulations have shown that the capacitance tends to zero at high

electrode charge.8 This is due to the well-known fact that there is a limit to how

many counterions can be accomodated near the electrode. The GCS theory exhibits

the opposite behavior.

The modified Poisson-Boltzmann (MPB) theory of Outhwaite and Bhuiyan9 and density func-

tional theory (DFT)10–14 seem to be reasonably satisfactory but should be tested further to verify

that they are useful for a specific application. Recent developments made DFT appropriate to

study inhomogeneous electrolytes at low temperatures15, 16 and in systems with large concentration

variations .17, 18 The extension of the theory to three dimensions is in progress.19 The more easily
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applied mean spherical approximation20 is fairly good for monovalent and divalent ions at room

temperature but fails under more extreme situations and, in any case, is a linear response theory

and can be applied only for very small electrode charge.

There have been several previous simulations of the DL for polarized and unpolarized electrodes

and for symmetric and asymmetric electrolytes. The earliest simulations of the DL were those of

Torrie, Valleau, Patey, and Outhwaite,21–28 followed by Snook and van Megen.29, 30 After a long

hiatus, new simulations of the DL have been performed recently by ourselves5–7, 31–36 to study the

question of whether the counterion and coion profiles are in symmetric electrolytes are reciprocals,7

contact value theorems,34–37 highly charged electrodes,38, 39 and high density charged hard spheres40

as a model for DLs with ionic liquids.

In this study, we consider polarizable interfaces where the boundary of the electrolyte and

the “electrode” separates two regions with different dielectric constants. The term “electrode” is

used in a general sense: it can be a metal (when its dielectric constant ǫ1 → ∞), air (ǫ1 = 1), or

various other objects such as a biological membrane, a macromolecule, a colloid particle, etc. In the

presence of a polarizable interface, the interactions are no longer pair-wise additive which makes the

theoretical study of such systems difficult.9, 23, 41–51 Simulations, on the other hand, can be applied

to polarizable interfaces straightforwardly. The calculation of the interaction with the polarization

charge is a challenge,52, 53 but when the interface is a single infinite flat wall, the interactions can

be handled with the image charge method (see section 2). Although several simulation studies have

been published using image charges,23, 27, 48, 54–63 the number of such studies is much smaller than

those for the unpolarizable interface. A polarizable electrode with a layer with a dielectric constant

that differed from that of both the electrode and the electrolyte has been studied by simulation.45

The capacitance anomaly at low reduced temperatures means that the capacitance of the DL

increases with decreasing temperature (in agreement with simple theories), have a maximum, and

decreases at low temperatures.5, 6 Only more developed theories were able to reproduce this be-

havior.16, 34, 64–66

We have calculated the anomalous capacitance behavior for 2:1 and 3:1 electrolytes and found

a behavior similar to the 1:1 case if the reduced temperature is scaled appropriately.31 Alawneh et
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al.59 have studied the capacitance anomaly for a symmetric 1:1 0.1 M electrolyte near a polarizable

electrode. They found that the capacitance anomaly was enhanced for the air/electrolyte interface

but vanishes if the electrode is metallic. This is in agreement with the results of Outhwaite

and Bhuiyan49 who used a modified Poisson-Boltzmann theory with point charges. In

this paper, we connect these two lines of studies and report our Monte Carlo results for 2:1 and 3:1

electrolytes near polarizable interfaces.

2 Model

In this simulation study, the electrode is considered to be uniform and the dielectric coefficient of

the electrode is ǫ1. The solvent is treated as a dielectric continuum whose dielectric coefficient is

ǫ2 = 78.5. The ions are charged hard spheres whose diameter is d. The charge of an ion of species

i is qi = zie, where zi is the valence and e is the elementary charge. The specific cases of 2:1 and

3:1 electrolytes are examined here. The electrode has a uniform surface charge density, σ.

When the dielectric constant of the solvent and electrode differ, polarization charges are induced

on the electrode by the ions. The potential of these polarization charges is equal to the potential

of an image charge located in an appropriate position. Let us assume a point charge qi located at

a point ri = (xi, yi, zi) in the ǫ2 region (zi > 0), where the dielectric boundary is at z = 0. The

image charge of this charge has a magnitude q′ = θq and is located at r′i = (xi, yi,−zi), where

θ =
ǫ1 − ǫ2
ǫ1 + ǫ2

. (1)

The potential produced by the charge and its image charge at a position R in the electrolyte (z > 0)

is

φi(R) =
1

4πǫ0ǫ2

(

qi
|ri −R|

+
θqi

|r′i −R|

)

, (2)

where ǫ0 is the permittivity of free space. The total electrostatic energy between ion pairs then is

computed as

Upair =
1

2

∑

i

∑

j 6=i

qjφi(rj). (3)
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This energy becomes infinite if any of the ion-pairs overlaps. The energy corresponding to the

interactions of the ions with their own image charges is

Uself =
1

8πǫ0ǫ2

∑

i

θq2i
2zi

. (4)

The interaction of a charge with the electrode charge is

Uwall = −
∑

i

(1 + θ)qiσ

2ǫ0ǫ2
zi. (5)

Again, this energy becomes infinite if a hard sphere ion overlaps with the electrode.

The cases ǫ1 = 1 and ǫ1 → ∞ correspond to θ = 0.975 and θ = −1, respectively. The first

case corresponds to an air/electrolyte, while the second case corresponds to a metal/electrolyte

interface. At first thought, one might think that ǫ2 = 78.5, the value for water, is large enough to

be well on its way to ∞. However, this case corresponds to θ = 0 and is almost midway between

the other two cases that we consider.

The electrostatic images are not real, just as the visual image seen in a mirror is not real. There

is no world behind the mirror. It is the induced charge that is real and this resides on the surface of

the electrode. However, the electrostatic potential of the images is identical to that of the induced

charges.

3 Monte Carlo Simulations

We have performed canonical MC simulations, where the temperature T = 300 K, the numbers

of the various ionic species Ni, and the volume of the simulation cell was fixed. The simulation

cell was placed between two hard walls, where the left hand side wall is the dielectric interface

carrying the σ surface charge, while the right hand side wall is uncharged. The typical number of

cations in a simulation was 200, while the number of anions was chosen so that the simulation cell

is charge neutral. In a simulation, 2 × 106 cycles were performed, where in one cycle all particles

were attempted to move. Metropolis sampling was applied with the usual particle displacements
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(50 % of the moves were a small move with respect to the old position, while the other 50 % of

the moves were - possibly long – jumps to randomly selected positions in the simulation cell). In

the lateral dimensions periodic boundary conditions were applied. To handle the effect of ions in

the periodic cells, the charged sheet method – originally introduced by Torrie and Valleau21, 22 and

developed further by Boda et al.67 – was used.

The results of the simulations are the density profiles ρi(z). From the density profiles the charge

profile is calculated as

q(z) =
∑

ziρi(z). (6)

To compute the potential profile from the charge profile, Poisson’s equation has to be solved with

appropriate boundary conditions. Here we use a method (developed recently68), in which Neumann

boundary conditions are used. The resulting equation is

Φ(z) = −
1

ǫ0

∫ z

−∞

[

∫ z′

−∞

q(z′′)dz′′

]

dz′ −
1

ǫ0
σz + C2, (7)

where the first integration constant is set by the Neumann boundary condition that the normal

electric field is zero outside the simulation cell and the second integration constant C2 can be chosen

arbitrarily. Here, we set the zero level of the potential to the central bulk region of the cell.

In this work, we use reduced units. The density profiles are plotted normalized by their bulk

values: gi(z) = ρi(z)/ρBi . The bulk density was chosen to yield 0.1 M salt concentration for d = 4.25

Å. The reduced temperature is T ∗ = 4πǫ0ǫ2dkT/e
2, the reduced surface charge is σ∗ = σd2/e,

and the reduced potential is Φ∗ = 4πǫ0ǫ2Φd/e. Using these definitions, the reduced differential

capacitance is defined as

C∗ =

(

dσ∗

dΦ∗

)

σ∗=0

(8)

and computed from fitting to the results of 3-5 simulations performed for various small surface

charges close to zero.
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4 Results

Density profiles, normalized to be unity, are shown in Figs. 1 and 2 for a 2:1 electrolyte at a

low (T ∗ = 0.22) and high (T ∗ = 0.9) reduced temperatures at an uncharged electrode. Figure 1

is for the air/electrolyte interface (ǫ1 = 1), while Fig. 2 is for the metallic electrode (ǫ1 → ∞).

For definiteness, the divalent ion is positive (black solid line) and the monovalent ion (red dashed

line) is negative. Both ions are attracted or repelled by the metallic or air/electrolyte interface,

respectively. The divalent ions are more strongly attracted or repelled than are the monovalent

ions. This is because divalent ions induce four times larger polarization charge (the image charge

is larger, see the self term in Eq. 4). For the metallic electrode, this induced charge is attractive,

while for the air/electrolyte interface it is repulsive.

Charge inversion can be observed which is a straight consequence of the asymmetry in the ionic

charges.33 This charge inversion results in a nonzero electrode potential at zero electrode charge

(PZC) as shown in Fig. 3. The PZC potential is negative for ǫ1 = 1, while it is positive for ǫ1 → ∞.

The charge inversion and the nonzero PZC potential are present for the nonpolarizable electrode

(ǫ1 = ǫ2) too,33 where it is a result of charge asymmetry only.

Electrode polarization influences this effect because there is an additional force that acts differ-

ently on cations and anions thus polarizing the DL. The PZC potential is more positive for lower

reduced temperatures for the metallic electrode (bottom panel). In this case, electrode polarization

enhances the effect of charge asymmetry. This is because the electrostatic correlations that produce

this phenomenon are stronger at lower T ∗. Stronger electrostatic correlations enhance both effects.

In the case of the air/electrolyte (top panel) the opposite behavior is observed. Again, stronger

electrostatic correlations enhance both effects but now they act in the opposite directions. Seem-

ingly, reducing the temperature has a stronger effect on charge asymmetry, thus the PZC potential

becomes less negative as T ∗ decreases.

The nonzero PZC potential is often taken as empirical evidence of specific adsorption (or

chemisorption). We see here that it can arise from purely physical phenomena.

The potential profiles for a 2:1 electrolyte are plotted in Figs. 4 and 5 for a small positive and

negative electrode charge density and an uncharged electrode. Figures 4 and 5 refer to reduced
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temperatures T ∗ = 0.9 and T ∗ = 0.22, respectively. For the air/electrolyte interface (top panels of

Figs. 4 and 5), changing the surface charge only a little (from σ∗ = −0.0032 to 0.0032) has a large

effect on the potential: it actually becomes positive. The change in potential has similar magnitudes

for the two temperatures, therefore the value of the capacitance is also similar in the two cases.

This can be seen explicitly in Fig. 6, where the inverse capacitance is plotted as a function of T ∗ for

a 2:1 (left side) and a 3:1 (right side) electrolyte. The inverse capacitance is similar for T ∗ = 0.22

and 0.9 (top-left panel) and there is a minimum in between (which corresponds to a maximum in

C∗ as seen before). Comparing the behavior of the potential profiles for ǫ1 = 1, it is seen that the

diffuse layer is much wider in the case of T ∗ = 0.22. As discussed before, depletion of the density

profiles at the interface due to stronger attraction between ions in the bulk phase than between

ions and the electrode is characteristic in the temperature-regime, where the capacitance anomaly

occurs.

In the case of the metallic electrode (bottom panels of Figs. 4 and 5), the situation is completely

different. For large T ∗ (Fig. 4), the small change in σ∗ results in a large change in Φ∗, which corre-

sponds to a small capacitance (or large 1/C∗ as seen in the bottom panels of Fig. 6). Decreasing the

temperature (Fig. 5), the DL becomes wider and the potential becomes more positive. The small

change in σ∗ now results in a small change in the potential that corresponds to a large capacitance

(or small 1/C∗ as seen in the bottom panels of Fig. 6). An explanation of this behavior can be

the following. The attractive induced charge enhanced by the low temperature produces a strong

charge inversion in the DL (top panel of Fig. 2). This means that there is a well pronounced layer

of divalent cations at the electrode and a well pronounced, but wider layer of anions in the adjacent

region farther from the electrode. This results in a long-range dipole field as seen in the bottom

panel of Fig. 5. It seems that a little change in the electrode charge influences mainly the inner

cation layer. The effect of the surface charge is a “short-range” effect as seen in the bottom panel

of Fig. 5 (magnified in the inset). Because of this, the anomalous temperature dependence of the

capacitance vanishes for the metallic electrode.

The inverse capacitance can be written up as a sum of two capacitances, those due to the

inner (or Helmholtz) layer and the diffuse layer (these two layers behave as capacitors connected
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in series):

1

C∗
=

1

C∗
H

+
1

C∗
D

= 2π +
1

C∗
D

. (9)

Figure 6 shows the diffuse layer capacitances too. Plotting this way has the advantage that 1/C∗
D

changes continuously. In the case of the 3:1 electrolyte at the metallic electrode (bottom-right

panel) the inverse diffuse layer capacitance becomes negative (so the capacitance diverges). This is

probably due to the strong charge inversion at the metallic electrode. For a negative surface charge,

for example, cations overcharge the electrode and from the point of view of the wide diffuse layer

the electrode has an apparent positive charge. Important changes occur as an effect of changing σ

in the compact tightly bound inner layer as seen in the bottom panel of Fig. 5.

Reduced units were used in this work. To connect the reported values to practical

applications, we give some representative values in real units. The reduced surface

charge σ∗ = 0.0032 corresponds to σ = 0.00284 Cm−2 for d = 4.25 Å. The reduced

potential Φ∗ = 1 corresponds to Φ = 43.16 mV, while the reduced capacitance C∗ = 1

corresponds to C = 20.55 Fm−2 for d = 4.25 Å and ǫ2 = 78.5. For these values of d and ǫ2,

the reduced temperatures T ∗ = 0.22 and 0.9 correspond to the temperatures T = 110.2

K and 450.8 K, respectively. The corresponding values for d = 3 Å are T = 156.1 K and

638.6 K. Alternatively, the small reduced temperature T ∗ = 0.22 at room temperature

T = 298.15 K corresponds to ǫ2 = 29 for d = 4.25 Å and ǫ2 = 41.1 for d = 3 Å.

These values for the dielectric constant are far from being unrealistic even for an

aqueous electrolyte. Based on the measurements of Barthel et al.,69 Fawcett and

Tikanen70 suggested using the experimental dielectric constant of the solution instead

of the dielectric constant of the pure solvent. The dielectric constant of concentrated

electrolytes is smaller than that of dilute electrolytes due to dielectric saturation. For

example, the dielectric constant of a 3 M NaCl solution is about 46.2, while that of

a 2 M CaCl2 solution is 38.9. In a recent paper, Vincze et al.71 suggested using

experimental data for the dielectric constant of the electrolyte together with the radii

of “bare” ions (for example, the Pauling radii). They have shown that taking into

account the explicit change in the solvation energy with increasing concentration,
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the nonmonotonic concentration dependence of the activity coefficient of electrolytes

can be reproduced without the assumption of a “solvated” ion radius, such as the

“historical” value (d = 4.25 Å) used since the works of Torrie and Valleau. Vincze

et al. proposed that using this enlarged, “solvated” ion radius is unphysical and

unnecessary.

5 Summary

Our results extend the earlier study of Alawneh et al.59 who observed that the anomalous capaci-

tance behavior vanishes at the metallic electrode. Our results for 2:1 and 3:1 electrolytes confirm

their findings.

Our earlier results for 2:1 and 3:1 electrolytes near an unpolarizable electrode31 has been ex-

tended to polarizable electrodes. In the case of the air/electrolyte interface we find similar ca-

pacitance behavior as in the ǫ1 = ǫ2 case. The maximum of the capacitance occurs at a larger

temperature when a multivalent cation is present. As we have shown before, the C∗ vs. T ∗ func-

tions behave similarly if we scale the reduced temperature as T ∗/(z+z−).31 The same behavior is

also observed here (see Fig. 6).

In the case of the metallic electrode, an interesting phenomenon is observed for 2:1 and 3:1

electrolytes. The strong attraction of induced charges at low reduced temperatures produces a

compact dipole layer of cations and anions at the electrode. This results in a very wide diffuse layer

with properties uninfluenced by the surface charge (large capacitance), while changing the surface

charge has its major effect in the dipole layer close to the electrode.
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Figure 1: Normalized density profiles for a 2:1 electrolyte near an air/solution interface (ǫ1 = 1)
for T ∗ = 0.22 (top panel) and T ∗ = 0.9 (bottom panel). The electrode is uncharged (σ∗ = 0).
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Figure 2: Normalized density profiles for a 2:1 electrolyte near a metal/solution interface (ǫ1 → ∞)
for T ∗ = 0.22 (top panel) and T ∗ = 0.9 (bottom panel). The electrode is uncharged (σ∗ = 0).
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