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The particles of electrorheological fluids can be modelled as dielectric sphere (DS) immersed in a continuum
dielectric. When an external field is applied, polarization charges are induced on the surfaces of the spheres
that can be represented as point dipoles placed in the centres of the spheres. When the DSs are close
to each other, the induced charge distributions are distorted by the electric field of the neighbouring DSs.
This is the origin of the interaction potential between the DSs. The calculation of this energy is very time
consuming, therefore, the DS model cannot be used in molecular simulations. In this paper, we show that the
interaction between the point dipoles approximates the interaction of DSs appropriately. The polarizable point
dipole model provides better results, but this model is not pair-wise additive, so it is not so practical in particle
simulations.
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1. Introduction

Electrorheological (ER) fluids are suspensions of fine non-conducting solid particles (up to
50 pum diameter) in an electrically insulating liquid. The dielectric permittivity of the dispersed
particles is usually higher then that of the carrier liquid Ng] The rheological properties of ER fluids
are controllable by the application of an electric field [2]. The apparent viscosity of an ER fluid
increases abruptly by the application of a strong electric field of the order of kilovolts per millimeter
(silica particles (SiO2) dispersed in silicone oil is a typical electrorheological fluid). The electric
field causes a reversible change in the viscosity. The increase of the apparent viscosity is caused
by the chain and column formation of the grains carrying electric dipole moments induced by the
external field @, E] Because of the electric-field-induced aggregation, the dielectric properties of
the ER fluids are also changed M]

Electrorheological particles are beyond the molecular scale, therefore, their modeling necessarily
includes some coarse graining. Coarse-graining means that the many-atom system is modeled by
averaging certain degrees of freedom into a response function. The atoms of the ER grains are not
modeled explicitly, instead, their dielectric response is taken into account by a dielectric continuum
characterized by a certain dielectric constant. The same is performed for the carrier liquid, but
with a different dielectric constant.

In this coarse-grained, but realistic picture, therefore, the particle is modelled as a dielec-
tric sphere (DS) immersed in a dielectric continuum. The two interacting particles carry three-
dimensional surface charge distributions on their surfaces induced by the external electric field
and the electric field inserted by the other particles. Computation of this induced charge distribu-
tion is a non-trivial and time consuming process, therefore, this model is not feasible in computer
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simulations. Thus, a more simplified model is needed for simulations, possibly a model with pair-
wise additive interactions. Such a model for the particles of ER fluids is a sphere carrying a point
dipole in its center (we will refer to this model by DD). The dipoles are induced by an external
electric field E and all aligned in its direction. The lowest energy configuration of two dipoles are
the head-to-tail position where the two dipoles are aligned in the same direction along the same
line. Therefore, as we have mentioned, the particles in electrorheological fluids form chains in the
presence of an external field. This chain formation is responsible for the increase of viscosity when
an electric field is applied.

Simulation study of chain formation of ER fluids is based on different models. Klingenberg et
al. [5] applied the interaction of single point dipoles with hard core repulsion while Bonnecaze and
Brady [6] used a sophisticated polarization model for the dipole-dipole interaction. Chain formation
was also found in fluids of particles carrying strong permanent dipoles [7, [8]. The orientation of
these dipoles, however, was not restricted. This distinction makes that case different from ER
fluids, where the dipoles are induced dipoles with directions fixed by the external field.

The ideal point dipole is clearly an approximation to the charge distribution of the more realistic
DS model. The DD model ignores the fact the spheres are polarized not only by the external field,
but also by the other spheres. This effect can be taken account by the polarizable dipole (PD)
model, which is a step further but still an approximation to the DS model. The PD model is not
pair-wise additive, but still feasible in simulations because we have to compute the potentials/fields
only at the particle centers instead of on the whole particle surfaces.

The PD model was also used in our simulation study [9] of the correction to the Clausius-
Mosotti equation describing the dielectric constant of non-polar fluids. In this work, the non-polar
particles were also polarized by a uniform external field. The analogy with electrorheological fluids
in unmistakable.

In this paper, we study the DS model and compare its energetics with that given by the DD and
PD models by computing the interaction energy between two spheres using all the three models.
We conclude that the PD model is an excellent, while the DD model is a reliable approximation
to the DS model.

2. The dielectric sphere model

The dielectric constant inside the sphere ¢; is different from that outside the sphere e, (the
subscript ¢ refers to an ER particle species here). Then, a dielectric boundary is formed at the
surface of the sphere. The external electric field induces a surface charge distribution on this
boundary. Because there is no free charge inside the sphere (it is neutral), the net induced charge
is zero according to Gauss’s law. So the separation of charge on the surface of the sphere corresponds
to a dipole-like distribution. Using basic electrostatics in terms of Legendre polynomials [10, [11],
the dipole moment can be computed as

€ —€w 3
= — Y 3E = ,E 2.1
pl € + 26w az 6% ( )
where a; is the radius of the sphere and
€ —€w 3
_ W3 2.2
i €+ 26y i (2:2)

is the polarizability of the sphere. When the external field is uniform, it is an exact solution: the
electric field outside the sphere is equal to the electric field of a point dipole in the center of the
sphere.

These charges on the surface of the spheres are not free charges; they are bound (induced)
charges. This means that they do not get there from some external circuit; they have always been
there. Their appearance is due to polarisation: an electric field separates positive and negative
charges of the dielectric. When we compute the energy of a macroscopic dielectric system, the
interaction between bound charges does not appear in the formulation. The total energy of the
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system is the work done against electric field as we bring the free charges in from infinity, namely
the work needed to build up the charge distribution in a charge-up process. If we denote the
distribution of free charges in the system by ¢(r), and that of the induced charges by h(r), then

this work is computed as
1

W= 3 /q(r)\ll(r)dV (2.3)

where ¥(r) = ¥,(r) + ¥ (r) contains the potentials produced both by the free charges

- Q(rl) /
U, (r) = / /|dV (2.4)

r—r

and the induced (bound) charges

h(r!
Uy (r) = / E (_ 2/|dvl' (2.5)
Equations use Gaussian units. If the free charges are point charges, the integral becomes a sum. If
the dielectric boundary is sharp, the induced charge distribution is a surface charge, so the integral
becomes a surface integral. In an experiment, the external electric field is produced by surface
charges 01 and o9 on the plates of a capacitor. In this case, the integral also becomes a surface
integral.

In the above equations, the free charge — free charge interaction and the free charge — induced
charge interaction appear. The induced charge — induced charge interaction is missing. If we write
up the energy as the sum of the interactions between all charges (including free and induced
charges), an additional term has to be added. This is the work involved in stretching the dielectric
molecules, namely, the work necessary to polarize the dielectric. This work is equal in magnitude
and opposite in sign to the induced charge — induced charge interaction, so they cancel. That is
why only the energy of the free charges appears in the equation for the total electrostatic energy
of the system (see Eq. 2Z.3)).

This result is counter-intuitive: one might think that we have to take into account the interaction
between all charges in the system. Moreover, it is counter-intuitive regarding the dipoles of the
ER particles. In the DD approach, the interaction energy is computed from the interaction of the
dipoles. The dipoles are interpretations of the induced charges. This stands a paradox: why do we
take into account the direct interaction between the charge distributions of the particles in the
DD approach and why do not we take it into account in the DS approach? A goal of this paper
is to resolve the apparent conflict between the two approaches. We will shed some light on the
mechanism of the interaction between the ER particles.

The induced charge is calculated by the Induced Charge Computation (ICC) method ﬂﬁ@]
This is a boundary element method where the dielectric boundary surface is divided into surface
elements. Poisson’s equation is transformed into an integral equation where the unknown variable
is the discretized induced charge treated as constant on a given surface element. These charges are
included in a column vector h. This vector can be computed from a matrix-vector multiplication

h=A""c, (2.6)

where vector ¢ contains the normal components of the electric field in the centers of the tiles
and the matrix A depends on the geometry of the dielectric boundary. Filling and inverting the
matrix is a very time consuming process. In our simulations for ion channels ﬂﬂ—@] we used
the fact that the dielectric boundary at the surface of the protein does not change during the
simulation so the matrix can be precalculated at the beginning of the simulation so it does not
really contribute to simulation time. The matrix-vector multiplication is also a time consuming
step, but the simulations are still feasible. In the case of an ER fluid, on the contrary, the particles
are moving during the simulation, the geometry of the dielectric boundary is constantly changing,
and the matrix should be filled and inverted in every simulation step. This is why the the simulation
is technically impossible using the DS model.
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3. The interaction energy between two dielectric spheres in an electric field

Let us consider two DSs in a distance r15 from each other. The dielectric constant inside sphere
1 (S1) is €1 and its radius is a1. Similarly, the dielectric constant inside sphere 2 (S2) is €5 and its
radius is as. In our calculations, we use spheres of equal unit radii a; = as = a = 1. The spheres
are embedded in a dielectric €. A homogeneous external electric field E is exerted on the system
with strength of unity £ = 1, so the only free charges in the system are the electrode charges o
and —o that raise this electric field. The potential of this field is ¥, (r) = —E - r.

The total energy of the system is W = W, + W}, where W, is the free charge — free charge
interaction energy, while W}, is the free charge — induced charge interaction energy. The latter, by
symmetry, can be computed as the energy of the induced charges in the potential field of the free

charges:
1 1

Wy, = 3 /h(r)\Ilq(r)dV = fi/h(r)(E -r)dV. (3.1)

Because the external field is constant, E can be brought out from the integral and the energy
becomes )
Wy =3B / h(r)rdV. (3.2)

The integral can be divided into two integrals on the two spheres

/h(r)rdV = /h(r)rdV + / h(r)rdV = p1 + p2, (3.3)

Sl S2
where p; is the dipole moment on sphere S;. So the energy is

1 1
—Q(E'P1+E'P2)=——E(P1 +p2), (3.4)

Wi = 5

where we defined the electric field as pointing in the direction of the z-axis E = Fk and p; is the
z-component of the dipole moment. Of course, the dipole moment depends on the mutual position
ri2 = r; —ro (with respect to the electric field) of the particles: p; = p;(ri2).

The interparticle potential energy between the two spheres is defined as the difference between
the total energies for a given mutual position and for the case when the the spheres are infinitely
far from each other:

¢ps(riz) = Wi(riz) — Wi(o0). (3.5)

Realize that W, drops out of this equation because it does not depend on the mutual position of
the spheres. Because the dipole moment for the isolated sphere is p; = @;E (when the two spheres
are infinitely far), the self-energy is

Wi(o0) = —%EQ(al + ). (3.6)

4. The point dipole models

The interaction potential between two point dipoles is

. I' . r .
¢DD(P12,p1,P2) _ _3(1)1 12)5(1)2 12) + P1 3P2, (4.1)
T12 12

where p; is the point dipole moment in the center of sphere S; (given by Eq. 21} therefore, p; is
also a result of polarization) and 12 = |r12|. Because p; and po are parallel to each other and E,
this potential can be written as

¢pD(r12,0080,p1,p2) = 2%(—3 cos? 0 + 1), (4.2)

12
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Figure 1. The interaction energy between two spheres (parallel case: e1 = e2 = 2, and antiparallel
case: € = 6 and ez = 2) in two different positions: (1) the electric field is parallel to the line
connecting the centers of the spheres (aligned case) and (2) the electric field is perpendicular
to the line connecting the centers of the spheres (alongside case). The energy is computed from
the three various models: symbols: the DS model, solid line: the PD model, and dashed line: the
DD model.

where 6 is the angle between the vectors ri5 and p;.

In the above potential, the dipole moments induced by the external fields on individual isolated
dielectric spheres were used. When the spheres are close to each other, nevertheless, not only the
external electric field, but the electric field produced by the dipole of the other particle also acts on
this sphere. This effect can be taken into account with the polarizable point dipole model, where,
in addition to the permanent dipole induced by the external field, an induced dipole appears

P (Es) = i Ey
Py (E1) = azEy, (4.3)

ind
4

where the electric field E; is the electric field produced by the dipoles p; and p
of the other dipole:

at the position

ind ind
ind (p1+p") -ri2jri2 p1+p
El(plapl ):3[ 3 ] - 3 ! )
12 12
; (P2 +pP3Y) - ri2] rio + pipd
By (po, pi) = 3. RRLEILEN, Th i (4.4)
12 12

Because the induced dipoles produce fields that, in turn, induce dipoles, Eqs. 43| and 4.4 have

to be solved iteratively [17]. After the induced dipoles are obtained, the interaction between p;
and pi? as well as the interaction between p, and pi"? is computed using Eq. Bl Then we add
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Figure 2. The induced charge on the surface of the spheres for different interparticle distances
(r/a) for the aligned parallel case (e1 = e2 = 2). The angle 6 is closed by the vector pointing
from the sphere center to the point on the surface and the vector of the electric field. Left panel
shows the induced charge for the left hand side sphere, while the right panel shows the induced
charge for the right hand side sphere. The points of the two spheres that are in the closest
proximity correspond to 6 = 7 for the left sphere and § = 0 for the right sphere. These are the
regions where the induced charge is the most distorted when r/a is small.

this correction to ¢pp(ri2, P1, p2) thus obtaining ¢pp(ris, p1, PY, P2, PF?), where PD stands for
“polarizable dipole”.

5. Results and Discussion

We consider two cases that we call parallel and antiparallel cases. In the parallel case, both
spheres have dielectric constants smaller than that of the surrounding medium. Thus, the dipoles
induced on the spheres point into the same direction. We use the the value €¢; = €5 = 2 in this study.
The dielectric constant of the solvent is e, = 4. In the antiparallel case, the dielectric constant
in one sphere is larger than ey, while the dielectric constant in the other sphere is smaller than
€w- Thus, the dipoles induced by E on the two spheres point into opposite directions. We use the
values €; = 6 and €5 = 2 in this study.

Figure [0 shows the interaction energies as a function of the distance between the two spheres
(this distance will be denoted by r = 712 henceforth) for various situations. On the basis of the
dielectric constants of the spheres we can consider the parallel (¢; = eo = 2) and the antiparallel
(e1 = 2 and €2 = 6) cases. On the basis of the mutual position of the spheres, we can consider the
aligned (E || r12) and the alongside (E L ri2) positions. As seen in Fig. [l the aligned position
is the low-energy position for the parallel case (the classical head-to-tail situation), while the
the alongside position is the low-energy position for the antiparallel case (negative, attractive
interaction energies). The interactions are repulsive for the other cases (aligned antiparallel and
alongside parallel). All these energies are larger in magnitude when the particles are closer to each
other.

The agreement between the DD and DS potentials is surprisingly good (dashed lines vs. symbols
in Fig.[)). Some deviation occurs for small interparticle distances because the DD approximation is
not satisfactory when the two charge distributions are close to each other. The mutual polarization
of the spheres can be taken into account by the PD model (solid lines in Fig. ). The agreement
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Figure 3. The distortion of the induced charge shown in Fig. 2lcomputed from Ah;(0) = h;(0) —
ho,i(0) = hi(0) — 2 pisin6

with the DS results is excellent.

These results imply that the DD potential is an appropriate model of ER, fluids in computer
simulations. The good agreement is, nonetheless, surprising and counter-intuitive. It is not obvious
for a first look that the potential in Eq. agrees with the potential in Eq. [£1l To shed a light
on this, let us consider that the dipole moment induced on a sphere S; is

pi = /[hoyi(r> —+ Ahl(r)] zda, (51)
S

where hg ;(r) is the distribution on the isolated sphere and Ah;(r) is the distortion resulted from
the influence of the other particle. The energy is obtained by multiplying by f%E. The term
containing hg ;(r) is canceled by W} (00), so the interaction energy is simply

W, = —%E /Ahl(r)zda—i—/AhQ(r)Zda . (5.2)
S1 SZ

The distortion of the induced charge distribution on sphere Si, for example, is proportional to the
induced charge on this sphere: more induced charge can be distorted more (Ah; o< hy o p1). It
is also proportional to the induced charge on the other sphere, because the electric field of sphere
2 that polarizes sphere 1 depends linearly on ps. This electric field depends on the cube of the
distance inversely (o< 772). Finally, it will depend on the mutual position of the spheres which
means an angle-dependent factor. In summary,

Wi, oc pipar 2 £(6), (5.3)

which is exactly the form of the dipole-dipole potential in Eq. for the special case of parallel
dipoles.

The mutual polarization of the two spheres is illustrated in Fig. 2l for the aligned parallel case.
The induced charges on the surfaces of the spheres are plotted as functions of the angle with
the electric field for various interparticle distances. For large distances the charge distribution is
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Figure 4. The interaction energy between two spheres for the parallel and antiparallel cases as
a function of the angle between the electric field and the vector connecting sphere centers for
r/a = 2.5. The energy is computed from the three models. The meaning of curves and symbols
is the same as in Fig.[1

symmetrical and the dipole moments on both of the spheres are the values for isolated spheres
a;=(2-4)/(2+2x4)=—0.2 (for E = 1). The zero value of 6 corresponds to the direction of the
field, so the induced charge is negative on the hemisphere in the direction of the field and positive
on the opposite hemisphere. This means a dipole moment whose direction is opposite to that of
the field in agreement with the negative value of the polarizability.

When the distance of the spheres is decreased, the symmetrical charge distribution is distorted.
The charge distribution of sphere So pulls some extra negative charge on the tip of sphere S; that
is in the closest proximity to sphere So. This extra negative charge is taken from all over the surface
of the sphere so the opposite positive charge appears there but on a larger surface, so this deviation
in surface density is hardly distinguishable on the scale of Fig.

The distortion of the h;(r) surface charge is exactly the Ah;(r) surface charge introduced in
Eq. BEIland shown in Fig.[Blfor the case considered in Fig.[21 The Ah;() function is multiplied by
sin#, so the total charge on a ring at angle 6 is plotted. It is visible now that the integral of this
charge distribution is zero.

The interaction energy of this charge with the external field (see Eq.[5.2) produces almost the
same energy as that computed from the DD interaction potential (see Eq. dJ]) using the point
dipoles corresponding to the undistorted charge distributions, hg;(r).

The negative value means that the dipole is directed opposite to the electric field. Therefore, the
total energy in this case is 0.2. When the spheres are close to each other, the charge distributions are
slightly distorted on them due to polarization. This distortion is larger where the two spheres are
in the closest proximity to each other. This corresponds to a slightly different dipole moment and a
slightly different energy. The difference between this energy and 0.2 gives the ¢pg(ri2) interaction
energy. This energy is very close to the ¢pp interaction energy between the dipoles, which is quite
surprising given the fact that the ¢pg energy is the result of a distortion of the induced charges
and thus, is the result of a change of the dipoles, while ¢pp is computed from the dipole moments
fixed at their values at infinite separation.

In the next step, we study the effect of the mutual angular position of the spheres for a given
distance: we fix r/a = 2.5 and change the angle between ri2 and E from 0 to n/2. Figure @
shows the results as obtained from the various models. Similar conclusions can be drawn as in the
case of Fig. [ for the comparison of the various methods. For the parallel case, the angle § = 0
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Figure 5. The induced charge on the surface of the spheres for different interparticle distances
(r/a) for the aligned antiparallel case (e1 = 6 and ez = 2). The angle 6 is closed by the vector
pointing from the sphere center to the point on the surface and the vector of the electric field.
Left panel shows the induced charge for the left hand side sphere, while the right panel shows
the induced charge for the right hand side sphere. The points of the two spheres that are in the
closest proximity correspond to § = 7 for the left sphere and 6 = 0 for the right sphere. These
are the regions where the induced charge is the most distorted when r/a is small.

corresponds to the minimum energy head-to-tail position. The angle § = 7/2 corresponds to the
maximum energy position where the dipoles of the spheres are next to each other pointing to the
same direction. This means that the chains will repulse each other if the particles are in the same
planes. A shifted position of chains corresponds a more stable configuration at high densities when
the chains are forced to be close to each other.

For large distances the charge distributions are symmetrical, which corresponds to point dipoles
in the centers of the spheres with dipole moments «; = (6 — 4)/(6 + 2 x 4) = 0.143 and ay =
(2—4)/(242x4)=—-0.2 (with £ =1).

In the antiparallel case similar conclusions can be drawn except that configurations for minimum
and maximum energy are interchanged. Here the minimum energy position is when the two spheres
are next to each other with dipoles directed in opposite directions (blue symbols and curves in Fig.
@M and € = 7/2 in Fig. ). The maximum energy position is when the two dipoles are aligned on
the same line, a “head-to-head” position (green symbols and curves in Fig. [l and § = 0 in Fig.
M). The induced charge is shown in Fig. Bl The profiles are different for the two spheres because
the polarizabilities of the two spheres are different now; different both in sign and magnitude.
The profile for the right (eo = 2) sphere is similar to those in Fig. 2] while the profile for the left
sphere (e; = 6) has a decreasing tendency as a function of #. The polarizability of this sphere is
positive and smaller in magitude than the the polarizability of the other sphere: || = 0.143, while
|042| =0.2.

6. Summary

We have presented calculations for the interaction potential between two electrorheological
particles, which, in a more detailed description, can be modeled as DSs immersed in a continuum
dielectric that has a dielectric constant different from that of the sphere. We have shown that the
interaction energy originated from the distortion of the induced charge distribution on the surface
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of the sphere as an effect of the presence of the other sphere is well reproduced by point dipoles
placed in the centers of the spheres. Surprisingly, even the DD model (where this dipole is fixed at
the value of the isolated sphere) gives a reasonable description.

We conclude that the DD or the PD models are useful simplified representations of the DS
model for application in computer simulations. The potential acting between ER particles is used
to calculate energies in Monte Carlo simulations. Forces used in molecular dynamics or Brownian
dynamics simulations can be straightforwardly derived from the potentials.
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