
Condensed Matter Physics, ????, Vol. ?, No ?, ?????: 1–10

http://www.icmp.lviv.ua/journal

Regular article

The origin of the interparticle potential of
electrorheological fluids ∗

D. Boda1†, M. Valiskó1, I. Szalai2

1 Department of Physical Chemistry, University of Pannonia, P. O. Box 158, Veszprém, Hungary
2 Institute of Physics and Mechatronics, University of Pannonia, P. O. Box 158, Veszprém, Hungary

July 29, 2013

The particles of electrorheological fluids can be modelled as dielectric sphere (DS) immersed in a continuum
dielectric. When an external field is applied, polarization charges are induced on the surfaces of the spheres
that can be represented as point dipoles placed in the centres of the spheres. When the DSs are close
to each other, the induced charge distributions are distorted by the electric field of the neighbouring DSs.
This is the origin of the interaction potential between the DSs. The calculation of this energy is very time
consuming, therefore, the DS model cannot be used in molecular simulations. In this paper, we show that the
interaction between the point dipoles approximates the interaction of DSs appropriately. The polarizable point
dipole model provides better results, but this model is not pair-wise additive, so it is not so practical in particle
simulations.
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1. Introduction

Ele
trorheologi
al (ER) �uids are suspensions of �ne non-
ondu
ting solid parti
les (up to

50 µm diameter) in an ele
tri
ally insulating liquid. The diele
tri
 permittivity of the dispersed

parti
les is usually higher then that of the 
arrier liquid [1℄. The rheologi
al properties of ER �uids

are 
ontrollable by the appli
ation of an ele
tri
 �eld [2℄. The apparent vis
osity of an ER �uid

in
reases abruptly by the appli
ation of a strong ele
tri
 �eld of the order of kilovolts per millimeter

(sili
a parti
les (SiO2) dispersed in sili
one oil is a typi
al ele
trorheologi
al �uid). The ele
tri


�eld 
auses a reversible 
hange in the vis
osity. The in
rease of the apparent vis
osity is 
aused

by the 
hain and 
olumn formation of the grains 
arrying ele
tri
 dipole moments indu
ed by the

external �eld [1, 3℄. Be
ause of the ele
tri
-�eld-indu
ed aggregation, the diele
tri
 properties of

the ER �uids are also 
hanged [4℄.

Ele
trorheologi
al parti
les are beyond the mole
ular s
ale, therefore, their modeling ne
essarily

in
ludes some 
oarse graining. Coarse-graining means that the many-atom system is modeled by

averaging 
ertain degrees of freedom into a response fun
tion. The atoms of the ER grains are not

modeled expli
itly, instead, their diele
tri
 response is taken into a

ount by a diele
tri
 
ontinuum


hara
terized by a 
ertain diele
tri
 
onstant. The same is performed for the 
arrier liquid, but

with a di�erent diele
tri
 
onstant.

In this 
oarse-grained, but realisti
 pi
ture, therefore, the parti
le is modelled as a diele
-

tri
 sphere (DS) immersed in a diele
tri
 
ontinuum. The two intera
ting parti
les 
arry three-

dimensional surfa
e 
harge distributions on their surfa
es indu
ed by the external ele
tri
 �eld

and the ele
tri
 �eld inserted by the other parti
les. Computation of this indu
ed 
harge distribu-

tion is a non-trivial and time 
onsuming pro
ess, therefore, this model is not feasible in 
omputer
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simulations. Thus, a more simpli�ed model is needed for simulations, possibly a model with pair-

wise additive intera
tions. Su
h a model for the parti
les of ER �uids is a sphere 
arrying a point

dipole in its 
enter (we will refer to this model by DD). The dipoles are indu
ed by an external

ele
tri
 �eld E and all aligned in its dire
tion. The lowest energy 
on�guration of two dipoles are

the head-to-tail position where the two dipoles are aligned in the same dire
tion along the same

line. Therefore, as we have mentioned, the parti
les in ele
trorheologi
al �uids form 
hains in the

presen
e of an external �eld. This 
hain formation is responsible for the in
rease of vis
osity when

an ele
tri
 �eld is applied.

Simulation study of 
hain formation of ER �uids is based on di�erent models. Klingenberg et

al. [5℄ applied the intera
tion of single point dipoles with hard 
ore repulsion while Bonne
aze and

Brady [6℄ used a sophisti
ated polarization model for the dipole-dipole intera
tion. Chain formation

was also found in �uids of parti
les 
arrying strong permanent dipoles [7, 8℄. The orientation of

these dipoles, however, was not restri
ted. This distin
tion makes that 
ase di�erent from ER

�uids, where the dipoles are indu
ed dipoles with dire
tions �xed by the external �eld.

The ideal point dipole is 
learly an approximation to the 
harge distribution of the more realisti


DS model. The DD model ignores the fa
t the spheres are polarized not only by the external �eld,

but also by the other spheres. This e�e
t 
an be taken a

ount by the polarizable dipole (PD)

model, whi
h is a step further but still an approximation to the DS model. The PD model is not

pair-wise additive, but still feasible in simulations be
ause we have to 
ompute the potentials/�elds

only at the parti
le 
enters instead of on the whole parti
le surfa
es.

The PD model was also used in our simulation study [9℄ of the 
orre
tion to the Clausius-

Mosotti equation des
ribing the diele
tri
 
onstant of non-polar �uids. In this work, the non-polar

parti
les were also polarized by a uniform external �eld. The analogy with ele
trorheologi
al �uids

in unmistakable.

In this paper, we study the DS model and 
ompare its energeti
s with that given by the DD and

PD models by 
omputing the intera
tion energy between two spheres using all the three models.

We 
on
lude that the PD model is an ex
ellent, while the DD model is a reliable approximation

to the DS model.

2. The dielectric sphere model

The diele
tri
 
onstant inside the sphere ǫi is di�erent from that outside the sphere ǫw (the

subs
ript i refers to an ER parti
le spe
ies here). Then, a diele
tri
 boundary is formed at the

surfa
e of the sphere. The external ele
tri
 �eld indu
es a surfa
e 
harge distribution on this

boundary. Be
ause there is no free 
harge inside the sphere (it is neutral), the net indu
ed 
harge

is zero a

ording to Gauss's law. So the separation of 
harge on the surfa
e of the sphere 
orresponds

to a dipole-like distribution. Using basi
 ele
trostati
s in terms of Legendre polynomials [10, 11℄,

the dipole moment 
an be 
omputed as

pi =
ǫi − ǫw
ǫi + 2ǫw

a3iE = αiE (2.1)

where ai is the radius of the sphere and

αi =
ǫi − ǫw
ǫi + 2ǫw

a3i (2.2)

is the polarizability of the sphere. When the external �eld is uniform, it is an exa
t solution: the

ele
tri
 �eld outside the sphere is equal to the ele
tri
 �eld of a point dipole in the 
enter of the

sphere.

These 
harges on the surfa
e of the spheres are not free 
harges; they are bound (indu
ed)


harges. This means that they do not get there from some external 
ir
uit; they have always been

there. Their appearan
e is due to polarisation: an ele
tri
 �eld separates positive and negative


harges of the diele
tri
. When we 
ompute the energy of a ma
ros
opi
 diele
tri
 system, the

intera
tion between bound 
harges does not appear in the formulation. The total energy of the
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system is the work done against ele
tri
 �eld as we bring the free 
harges in from in�nity, namely

the work needed to build up the 
harge distribution in a 
harge-up pro
ess. If we denote the

distribution of free 
harges in the system by q(r), and that of the indu
ed 
harges by h(r), then
this work is 
omputed as

W =
1

2

∫

q(r)Ψ(r)dV (2.3)

where Ψ(r) = Ψq(r) + Ψh(r) 
ontains the potentials produ
ed both by the free 
harges

Ψq(r) =

∫

q(r′)

|r− r′|
dV ′

(2.4)

and the indu
ed (bound) 
harges

Ψh(r) =

∫

h(r′)

|r− r′|
dV ′. (2.5)

Equations use Gaussian units. If the free 
harges are point 
harges, the integral be
omes a sum. If

the diele
tri
 boundary is sharp, the indu
ed 
harge distribution is a surfa
e 
harge, so the integral

be
omes a surfa
e integral. In an experiment, the external ele
tri
 �eld is produ
ed by surfa
e


harges σ1 and σ2 on the plates of a 
apa
itor. In this 
ase, the integral also be
omes a surfa
e

integral.

In the above equations, the free 
harge � free 
harge intera
tion and the free 
harge � indu
ed


harge intera
tion appear. The indu
ed 
harge � indu
ed 
harge intera
tion is missing. If we write

up the energy as the sum of the intera
tions between all 
harges (in
luding free and indu
ed


harges), an additional term has to be added. This is the work involved in stret
hing the diele
tri


mole
ules, namely, the work ne
essary to polarize the diele
tri
. This work is equal in magnitude

and opposite in sign to the indu
ed 
harge � indu
ed 
harge intera
tion, so they 
an
el. That is

why only the energy of the free 
harges appears in the equation for the total ele
trostati
 energy

of the system (see Eq. 2.3).

This result is 
ounter-intuitive: one might think that we have to take into a

ount the intera
tion

between all 
harges in the system. Moreover, it is 
ounter-intuitive regarding the dipoles of the

ER parti
les. In the DD approa
h, the intera
tion energy is 
omputed from the intera
tion of the

dipoles. The dipoles are interpretations of the indu
ed 
harges. This stands a paradox: why do we

take into a

ount the dire
t intera
tion between the 
harge distributions of the parti
les in the

DD approa
h and why do not we take it into a

ount in the DS approa
h? A goal of this paper

is to resolve the apparent 
on�i
t between the two approa
hes. We will shed some light on the

me
hanism of the intera
tion between the ER parti
les.

The indu
ed 
harge is 
al
ulated by the Indu
ed Charge Computation (ICC) method [12�14℄.

This is a boundary element method where the diele
tri
 boundary surfa
e is divided into surfa
e

elements. Poisson's equation is transformed into an integral equation where the unknown variable

is the dis
retized indu
ed 
harge treated as 
onstant on a given surfa
e element. These 
harges are

in
luded in a 
olumn ve
tor h. This ve
tor 
an be 
omputed from a matrix-ve
tor multipli
ation

h = A−1
c, (2.6)

where ve
tor c 
ontains the normal 
omponents of the ele
tri
 �eld in the 
enters of the tiles

and the matrix A depends on the geometry of the diele
tri
 boundary. Filling and inverting the

matrix is a very time 
onsuming pro
ess. In our simulations for ion 
hannels [14�16℄ we used

the fa
t that the diele
tri
 boundary at the surfa
e of the protein does not 
hange during the

simulation so the matrix 
an be pre
al
ulated at the beginning of the simulation so it does not

really 
ontribute to simulation time. The matrix-ve
tor multipli
ation is also a time 
onsuming

step, but the simulations are still feasible. In the 
ase of an ER �uid, on the 
ontrary, the parti
les

are moving during the simulation, the geometry of the diele
tri
 boundary is 
onstantly 
hanging,

and the matrix should be �lled and inverted in every simulation step. This is why the the simulation

is te
hni
ally impossible using the DS model.
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3. The interaction energy between two dielectric spheres in an electric field

Let us 
onsider two DSs in a distan
e r12 from ea
h other. The diele
tri
 
onstant inside sphere

1 (S1) is ǫ1 and its radius is a1. Similarly, the diele
tri
 
onstant inside sphere 2 (S2) is ǫ2 and its

radius is a2. In our 
al
ulations, we use spheres of equal unit radii a1 = a2 = a = 1. The spheres

are embedded in a diele
tri
 ǫw. A homogeneous external ele
tri
 �eld E is exerted on the system

with strength of unity E = 1, so the only free 
harges in the system are the ele
trode 
harges σ
and −σ that raise this ele
tri
 �eld. The potential of this �eld is Ψq(r) = −E · r.

The total energy of the system is W = Wq + Wh, where Wq is the free 
harge � free 
harge

intera
tion energy, while Wh is the free 
harge � indu
ed 
harge intera
tion energy. The latter, by

symmetry, 
an be 
omputed as the energy of the indu
ed 
harges in the potential �eld of the free


harges:

Wh =
1

2

∫

h(r)Ψq(r)dV = −
1

2

∫

h(r)(E · r)dV. (3.1)

Be
ause the external �eld is 
onstant, E 
an be brought out from the integral and the energy

be
omes

Wh = −
1

2
E ·

∫

h(r)rdV. (3.2)

The integral 
an be divided into two integrals on the two spheres

∫

h(r)rdV =

∫

S1

h(r)rdV +

∫

S2

h(r)rdV = p1 + p2, (3.3)

where pi is the dipole moment on sphere Si. So the energy is

Wh = −
1

2
(E · p1 +E · p2) = −

1

2
E (p1 + p2) , (3.4)

where we de�ned the ele
tri
 �eld as pointing in the dire
tion of the z-axis E = Ek and pi is the
z-
omponent of the dipole moment. Of 
ourse, the dipole moment depends on the mutual position

r12 = r1 − r2 (with respe
t to the ele
tri
 �eld) of the parti
les: pi = pi(r12).
The interparti
le potential energy between the two spheres is de�ned as the di�eren
e between

the total energies for a given mutual position and for the 
ase when the the spheres are in�nitely

far from ea
h other:

φDS(r12) = Wh(r12)−Wh(∞). (3.5)

Realize that Wq drops out of this equation be
ause it does not depend on the mutual position of

the spheres. Be
ause the dipole moment for the isolated sphere is pi = αiE (when the two spheres

are in�nitely far), the self-energy is

Wh(∞) = −
1

2
E2(α1 + α2). (3.6)

4. The point dipole models

The intera
tion potential between two point dipoles is

φDD(r12,p1,p2) = −3
(p1 · r12)(p2 · r12)

r5
12

+
p1 · p2

r3
12

, (4.1)

where pi is the point dipole moment in the 
enter of sphere Si (given by Eq. 2.1, therefore, pi is

also a result of polarization) and r12 = |r12|. Be
ause p1 and p2 are parallel to ea
h other and E,

this potential 
an be written as

φDD(r12, cos θ, p1, p2) =
p1p2
r3
12

(−3 cos2 θ + 1), (4.2)
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Figure 1. The intera
tion energy between two spheres (parallel 
ase: ǫ1 = ǫ2 = 2, and antiparallel


ase: ǫ1 = 6 and ǫ2 = 2) in two di�erent positions: (1) the ele
tri
 �eld is parallel to the line


onne
ting the 
enters of the spheres (aligned 
ase) and (2) the ele
tri
 �eld is perpendi
ular

to the line 
onne
ting the 
enters of the spheres (alongside 
ase). The energy is 
omputed from

the three various models: symbols: the DS model, solid line: the PD model, and dashed line: the

DD model.

where θ is the angle between the ve
tors r12 and pi.

In the above potential, the dipole moments indu
ed by the external �elds on individual isolated

diele
tri
 spheres were used. When the spheres are 
lose to ea
h other, nevertheless, not only the

external ele
tri
 �eld, but the ele
tri
 �eld produ
ed by the dipole of the other parti
le also a
ts on

this sphere. This e�e
t 
an be taken into a

ount with the polarizable point dipole model, where,

in addition to the permanent dipole indu
ed by the external �eld, an indu
ed dipole appears

pind

1 (E2) = α1E2

pind

2 (E1) = α2E1, (4.3)

where the ele
tri
 �eld Ei is the ele
tri
 �eld produ
ed by the dipoles pi and pind
i at the position

of the other dipole:

E1(p1,p
ind

1 ) = 3

[

(p1 + pind
1 ) · r12

]

r12

r5
12

−
p1 + pind

1

r3
12

,

E2(p2,p
ind

2 ) = 3

[

(p2 + pind
2 ) · r12

]

r12

r5
12

−
p2 + pind

2

r3
12

. (4.4)

Be
ause the indu
ed dipoles produ
e �elds that, in turn, indu
e dipoles, Eqs. 4.3 and 4.4 have

to be solved iteratively [17℄. After the indu
ed dipoles are obtained, the intera
tion between p1

and pind
2 as well as the intera
tion between p2 and pind

1 is 
omputed using Eq. 4.1. Then we add
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Figure 2. The indu
ed 
harge on the surfa
e of the spheres for di�erent interparti
le distan
es

(r/a) for the aligned parallel 
ase (ǫ1 = ǫ2 = 2). The angle θ is 
losed by the ve
tor pointing

from the sphere 
enter to the point on the surfa
e and the ve
tor of the ele
tri
 �eld. Left panel

shows the indu
ed 
harge for the left hand side sphere, while the right panel shows the indu
ed


harge for the right hand side sphere. The points of the two spheres that are in the 
losest

proximity 
orrespond to θ = π for the left sphere and θ = 0 for the right sphere. These are the

regions where the indu
ed 
harge is the most distorted when r/a is small.

this 
orre
tion to φDD(r12,p1,p2) thus obtaining φPD(r12,p1,p
ind
1 ,p2,p

ind
2 ), where PD stands for

�polarizable dipole�.

5. Results and Discussion

We 
onsider two 
ases that we 
all parallel and antiparallel 
ases. In the parallel 
ase, both

spheres have diele
tri
 
onstants smaller than that of the surrounding medium. Thus, the dipoles

indu
ed on the spheres point into the same dire
tion. We use the the value ǫ1 = ǫ2 = 2 in this study.

The diele
tri
 
onstant of the solvent is ǫw = 4. In the antiparallel 
ase, the diele
tri
 
onstant

in one sphere is larger than ǫw, while the diele
tri
 
onstant in the other sphere is smaller than

ǫw. Thus, the dipoles indu
ed by E on the two spheres point into opposite dire
tions. We use the

values ǫ1 = 6 and ǫ2 = 2 in this study.

Figure 1 shows the intera
tion energies as a fun
tion of the distan
e between the two spheres

(this distan
e will be denoted by r = r12 hen
eforth) for various situations. On the basis of the

diele
tri
 
onstants of the spheres we 
an 
onsider the parallel (ǫ1 = ǫ2 = 2) and the antiparallel

(ǫ1 = 2 and ǫ2 = 6) 
ases. On the basis of the mutual position of the spheres, we 
an 
onsider the

aligned (E ‖ r12) and the alongside (E ⊥ r12) positions. As seen in Fig. 1, the aligned position

is the low-energy position for the parallel 
ase (the 
lassi
al head-to-tail situation), while the

the alongside position is the low-energy position for the antiparallel 
ase (negative, attra
tive

intera
tion energies). The intera
tions are repulsive for the other 
ases (aligned antiparallel and

alongside parallel). All these energies are larger in magnitude when the parti
les are 
loser to ea
h

other.

The agreement between the DD and DS potentials is surprisingly good (dashed lines vs. symbols

in Fig. 1). Some deviation o

urs for small interparti
le distan
es be
ause the DD approximation is

not satisfa
tory when the two 
harge distributions are 
lose to ea
h other. The mutual polarization

of the spheres 
an be taken into a

ount by the PD model (solid lines in Fig. 1). The agreement
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Figure 3. The distortion of the indu
ed 
harge shown in Fig. 2 
omputed from ∆hi(θ) = hi(θ)−
h0,i(θ) = hi(θ)−

3

4π
pi sin θ

with the DS results is ex
ellent.

These results imply that the DD potential is an appropriate model of ER �uids in 
omputer

simulations. The good agreement is, nonetheless, surprising and 
ounter-intuitive. It is not obvious

for a �rst look that the potential in Eq. 3.5 agrees with the potential in Eq. 4.1. To shed a light

on this, let us 
onsider that the dipole moment indu
ed on a sphere Si is

pi =

∫

Si

[h0,i(r) + ∆hi(r)] zda, (5.1)

where h0,i(r) is the distribution on the isolated sphere and ∆hi(r) is the distortion resulted from

the in�uen
e of the other parti
le. The energy is obtained by multiplying by − 1

2
E. The term


ontaining h0,i(r) is 
an
eled by Wh(∞), so the intera
tion energy is simply

Wh = −
1

2
E







∫

S1

∆h1(r)zda+

∫

S2

∆h2(r)zda






. (5.2)

The distortion of the indu
ed 
harge distribution on sphere S1, for example, is proportional to the

indu
ed 
harge on this sphere: more indu
ed 
harge 
an be distorted more (∆h1 ∝ h1 ∝ p1). It
is also proportional to the indu
ed 
harge on the other sphere, be
ause the ele
tri
 �eld of sphere

2 that polarizes sphere 1 depends linearly on p2. This ele
tri
 �eld depends on the 
ube of the

distan
e inversely (∝ r−3
). Finally, it will depend on the mutual position of the spheres whi
h

means an angle-dependent fa
tor. In summary,

Wh ∝ p1p2r
−3f(θ), (5.3)

whi
h is exa
tly the form of the dipole-dipole potential in Eq. 4.2 for the spe
ial 
ase of parallel

dipoles.

The mutual polarization of the two spheres is illustrated in Fig. 2 for the aligned parallel 
ase.

The indu
ed 
harges on the surfa
es of the spheres are plotted as fun
tions of the angle with

the ele
tri
 �eld for various interparti
le distan
es. For large distan
es the 
harge distribution is
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Figure 4. The intera
tion energy between two spheres for the parallel and antiparallel 
ases as

a fun
tion of the angle between the ele
tri
 �eld and the ve
tor 
onne
ting sphere 
enters for

r/a = 2.5. The energy is 
omputed from the three models. The meaning of 
urves and symbols

is the same as in Fig. 1.

symmetri
al and the dipole moments on both of the spheres are the values for isolated spheres

αi = (2− 4)/(2+2× 4) = −0.2 (for E = 1). The zero value of θ 
orresponds to the dire
tion of the

�eld, so the indu
ed 
harge is negative on the hemisphere in the dire
tion of the �eld and positive

on the opposite hemisphere. This means a dipole moment whose dire
tion is opposite to that of

the �eld in agreement with the negative value of the polarizability.

When the distan
e of the spheres is de
reased, the symmetri
al 
harge distribution is distorted.

The 
harge distribution of sphere S2 pulls some extra negative 
harge on the tip of sphere S1 that

is in the 
losest proximity to sphere S2. This extra negative 
harge is taken from all over the surfa
e

of the sphere so the opposite positive 
harge appears there but on a larger surfa
e, so this deviation

in surfa
e density is hardly distinguishable on the s
ale of Fig. 2.

The distortion of the hi(r) surfa
e 
harge is exa
tly the ∆hi(r) surfa
e 
harge introdu
ed in

Eq. 5.1 and shown in Fig. 3 for the 
ase 
onsidered in Fig. 2. The ∆hi(θ) fun
tion is multiplied by

sin θ, so the total 
harge on a ring at angle θ is plotted. It is visible now that the integral of this


harge distribution is zero.

The intera
tion energy of this 
harge with the external �eld (see Eq. 5.2) produ
es almost the

same energy as that 
omputed from the DD intera
tion potential (see Eq. 4.1) using the point

dipoles 
orresponding to the undistorted 
harge distributions, h0,i(r).
The negative value means that the dipole is dire
ted opposite to the ele
tri
 �eld. Therefore, the

total energy in this 
ase is 0.2. When the spheres are 
lose to ea
h other, the 
harge distributions are

slightly distorted on them due to polarization. This distortion is larger where the two spheres are

in the 
losest proximity to ea
h other. This 
orresponds to a slightly di�erent dipole moment and a

slightly di�erent energy. The di�eren
e between this energy and 0.2 gives the φDS(r12) intera
tion
energy. This energy is very 
lose to the φDD intera
tion energy between the dipoles, whi
h is quite

surprising given the fa
t that the φDS energy is the result of a distortion of the indu
ed 
harges

and thus, is the result of a 
hange of the dipoles, while φDD is 
omputed from the dipole moments

�xed at their values at in�nite separation.

In the next step, we study the e�e
t of the mutual angular position of the spheres for a given

distan
e: we �x r/a = 2.5 and 
hange the angle between r12 and E from 0 to π/2. Figure 4

shows the results as obtained from the various models. Similar 
on
lusions 
an be drawn as in the


ase of Fig. 1 for the 
omparison of the various methods. For the parallel 
ase, the angle θ = 0
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Figure 5. The indu
ed 
harge on the surfa
e of the spheres for di�erent interparti
le distan
es

(r/a) for the aligned antiparallel 
ase (ǫ1 = 6 and ǫ2 = 2). The angle θ is 
losed by the ve
tor

pointing from the sphere 
enter to the point on the surfa
e and the ve
tor of the ele
tri
 �eld.

Left panel shows the indu
ed 
harge for the left hand side sphere, while the right panel shows

the indu
ed 
harge for the right hand side sphere. The points of the two spheres that are in the


losest proximity 
orrespond to θ = π for the left sphere and θ = 0 for the right sphere. These

are the regions where the indu
ed 
harge is the most distorted when r/a is small.


orresponds to the minimum energy head-to-tail position. The angle θ = π/2 
orresponds to the

maximum energy position where the dipoles of the spheres are next to ea
h other pointing to the

same dire
tion. This means that the 
hains will repulse ea
h other if the parti
les are in the same

planes. A shifted position of 
hains 
orresponds a more stable 
on�guration at high densities when

the 
hains are for
ed to be 
lose to ea
h other.

For large distan
es the 
harge distributions are symmetri
al, whi
h 
orresponds to point dipoles

in the 
enters of the spheres with dipole moments α1 = (6 − 4)/(6 + 2 × 4) = 0.143 and α2 =
(2− 4)/(2 + 2× 4) = −0.2 (with E = 1).

In the antiparallel 
ase similar 
on
lusions 
an be drawn ex
ept that 
on�gurations for minimum

and maximum energy are inter
hanged. Here the minimum energy position is when the two spheres

are next to ea
h other with dipoles dire
ted in opposite dire
tions (blue symbols and 
urves in Fig.

1 and θ = π/2 in Fig. 4). The maximum energy position is when the two dipoles are aligned on

the same line, a �head-to-head� position (green symbols and 
urves in Fig. 1 and θ = 0 in Fig.

4). The indu
ed 
harge is shown in Fig. 5. The pro�les are di�erent for the two spheres be
ause

the polarizabilities of the two spheres are di�erent now; di�erent both in sign and magnitude.

The pro�le for the right (ǫ2 = 2) sphere is similar to those in Fig. 2, while the pro�le for the left

sphere (ǫ1 = 6) has a de
reasing tenden
y as a fun
tion of θ. The polarizability of this sphere is

positive and smaller in magitude than the the polarizability of the other sphere: |α1| = 0.143, while
|α2| = 0.2.

6. Summary

We have presented 
al
ulations for the intera
tion potential between two ele
trorheologi
al

parti
les, whi
h, in a more detailed des
ription, 
an be modeled as DSs immersed in a 
ontinuum

diele
tri
 that has a diele
tri
 
onstant di�erent from that of the sphere. We have shown that the

intera
tion energy originated from the distortion of the indu
ed 
harge distribution on the surfa
e
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of the sphere as an e�e
t of the presen
e of the other sphere is well reprodu
ed by point dipoles

pla
ed in the 
enters of the spheres. Surprisingly, even the DD model (where this dipole is �xed at

the value of the isolated sphere) gives a reasonable des
ription.

We 
on
lude that the DD or the PD models are useful simpli�ed representations of the DS

model for appli
ation in 
omputer simulations. The potential a
ting between ER parti
les is used

to 
al
ulate energies in Monte Carlo simulations. For
es used in mole
ular dynami
s or Brownian

dynami
s simulations 
an be straightforwardly derived from the potentials.
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