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The particles of electrorheological fluids can be modelled as dielectric sphere (DS) immersed in a continuum
dielectric. When an external field is applied, polarization charges are induced on the surfaces of the spheres
that can be represented as point dipoles placed in the centres of the spheres. When the DSs are close
to each other, the induced charge distributions are distorted by the electric field of the neighbouring DSs.
This is the origin of the interaction potential between the DSs. The calculation of this energy is very time
consuming, therefore, the DS model cannot be used in molecular simulations. In this paper, we show that the
interaction between the point dipoles approximates the interaction of DSs appropriately. The polarizable point
dipole model provides better results, but this model is not pair-wise additive, so it is not so practical in particle
simulations.
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1. Introduction

Eletrorheologial (ER) �uids are suspensions of �ne non-onduting solid partiles (up to

50 µm diameter) in an eletrially insulating liquid. The dieletri permittivity of the dispersed

partiles is usually higher then that of the arrier liquid [1℄. The rheologial properties of ER �uids

are ontrollable by the appliation of an eletri �eld [2℄. The apparent visosity of an ER �uid

inreases abruptly by the appliation of a strong eletri �eld of the order of kilovolts per millimeter

(silia partiles (SiO2) dispersed in silione oil is a typial eletrorheologial �uid). The eletri

�eld auses a reversible hange in the visosity. The inrease of the apparent visosity is aused

by the hain and olumn formation of the grains arrying eletri dipole moments indued by the

external �eld [1, 3℄. Beause of the eletri-�eld-indued aggregation, the dieletri properties of

the ER �uids are also hanged [4℄.

Eletrorheologial partiles are beyond the moleular sale, therefore, their modeling neessarily

inludes some oarse graining. Coarse-graining means that the many-atom system is modeled by

averaging ertain degrees of freedom into a response funtion. The atoms of the ER grains are not

modeled expliitly, instead, their dieletri response is taken into aount by a dieletri ontinuum

haraterized by a ertain dieletri onstant. The same is performed for the arrier liquid, but

with a di�erent dieletri onstant.

In this oarse-grained, but realisti piture, therefore, the partile is modelled as a diele-

tri sphere (DS) immersed in a dieletri ontinuum. The two interating partiles arry three-

dimensional surfae harge distributions on their surfaes indued by the external eletri �eld

and the eletri �eld inserted by the other partiles. Computation of this indued harge distribu-

tion is a non-trivial and time onsuming proess, therefore, this model is not feasible in omputer
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simulations. Thus, a more simpli�ed model is needed for simulations, possibly a model with pair-

wise additive interations. Suh a model for the partiles of ER �uids is a sphere arrying a point

dipole in its enter (we will refer to this model by DD). The dipoles are indued by an external

eletri �eld E and all aligned in its diretion. The lowest energy on�guration of two dipoles are

the head-to-tail position where the two dipoles are aligned in the same diretion along the same

line. Therefore, as we have mentioned, the partiles in eletrorheologial �uids form hains in the

presene of an external �eld. This hain formation is responsible for the inrease of visosity when

an eletri �eld is applied.

Simulation study of hain formation of ER �uids is based on di�erent models. Klingenberg et

al. [5℄ applied the interation of single point dipoles with hard ore repulsion while Bonneaze and

Brady [6℄ used a sophistiated polarization model for the dipole-dipole interation. Chain formation

was also found in �uids of partiles arrying strong permanent dipoles [7, 8℄. The orientation of

these dipoles, however, was not restrited. This distintion makes that ase di�erent from ER

�uids, where the dipoles are indued dipoles with diretions �xed by the external �eld.

The ideal point dipole is learly an approximation to the harge distribution of the more realisti

DS model. The DD model ignores the fat the spheres are polarized not only by the external �eld,

but also by the other spheres. This e�et an be taken aount by the polarizable dipole (PD)

model, whih is a step further but still an approximation to the DS model. The PD model is not

pair-wise additive, but still feasible in simulations beause we have to ompute the potentials/�elds

only at the partile enters instead of on the whole partile surfaes.

The PD model was also used in our simulation study [9℄ of the orretion to the Clausius-

Mosotti equation desribing the dieletri onstant of non-polar �uids. In this work, the non-polar

partiles were also polarized by a uniform external �eld. The analogy with eletrorheologial �uids

in unmistakable.

In this paper, we study the DS model and ompare its energetis with that given by the DD and

PD models by omputing the interation energy between two spheres using all the three models.

We onlude that the PD model is an exellent, while the DD model is a reliable approximation

to the DS model.

2. The dielectric sphere model

The dieletri onstant inside the sphere ǫi is di�erent from that outside the sphere ǫw (the

subsript i refers to an ER partile speies here). Then, a dieletri boundary is formed at the

surfae of the sphere. The external eletri �eld indues a surfae harge distribution on this

boundary. Beause there is no free harge inside the sphere (it is neutral), the net indued harge

is zero aording to Gauss's law. So the separation of harge on the surfae of the sphere orresponds

to a dipole-like distribution. Using basi eletrostatis in terms of Legendre polynomials [10, 11℄,

the dipole moment an be omputed as

pi =
ǫi − ǫw
ǫi + 2ǫw

a3iE = αiE (2.1)

where ai is the radius of the sphere and

αi =
ǫi − ǫw
ǫi + 2ǫw

a3i (2.2)

is the polarizability of the sphere. When the external �eld is uniform, it is an exat solution: the

eletri �eld outside the sphere is equal to the eletri �eld of a point dipole in the enter of the

sphere.

These harges on the surfae of the spheres are not free harges; they are bound (indued)

harges. This means that they do not get there from some external iruit; they have always been

there. Their appearane is due to polarisation: an eletri �eld separates positive and negative

harges of the dieletri. When we ompute the energy of a marosopi dieletri system, the

interation between bound harges does not appear in the formulation. The total energy of the
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system is the work done against eletri �eld as we bring the free harges in from in�nity, namely

the work needed to build up the harge distribution in a harge-up proess. If we denote the

distribution of free harges in the system by q(r), and that of the indued harges by h(r), then
this work is omputed as

W =
1

2

∫

q(r)Ψ(r)dV (2.3)

where Ψ(r) = Ψq(r) + Ψh(r) ontains the potentials produed both by the free harges

Ψq(r) =

∫

q(r′)

|r− r′|
dV ′

(2.4)

and the indued (bound) harges

Ψh(r) =

∫

h(r′)

|r− r′|
dV ′. (2.5)

Equations use Gaussian units. If the free harges are point harges, the integral beomes a sum. If

the dieletri boundary is sharp, the indued harge distribution is a surfae harge, so the integral

beomes a surfae integral. In an experiment, the external eletri �eld is produed by surfae

harges σ1 and σ2 on the plates of a apaitor. In this ase, the integral also beomes a surfae

integral.

In the above equations, the free harge � free harge interation and the free harge � indued

harge interation appear. The indued harge � indued harge interation is missing. If we write

up the energy as the sum of the interations between all harges (inluding free and indued

harges), an additional term has to be added. This is the work involved in strething the dieletri

moleules, namely, the work neessary to polarize the dieletri. This work is equal in magnitude

and opposite in sign to the indued harge � indued harge interation, so they anel. That is

why only the energy of the free harges appears in the equation for the total eletrostati energy

of the system (see Eq. 2.3).

This result is ounter-intuitive: one might think that we have to take into aount the interation

between all harges in the system. Moreover, it is ounter-intuitive regarding the dipoles of the

ER partiles. In the DD approah, the interation energy is omputed from the interation of the

dipoles. The dipoles are interpretations of the indued harges. This stands a paradox: why do we

take into aount the diret interation between the harge distributions of the partiles in the

DD approah and why do not we take it into aount in the DS approah? A goal of this paper

is to resolve the apparent on�it between the two approahes. We will shed some light on the

mehanism of the interation between the ER partiles.

The indued harge is alulated by the Indued Charge Computation (ICC) method [12�14℄.

This is a boundary element method where the dieletri boundary surfae is divided into surfae

elements. Poisson's equation is transformed into an integral equation where the unknown variable

is the disretized indued harge treated as onstant on a given surfae element. These harges are

inluded in a olumn vetor h. This vetor an be omputed from a matrix-vetor multipliation

h = A−1
c, (2.6)

where vetor c ontains the normal omponents of the eletri �eld in the enters of the tiles

and the matrix A depends on the geometry of the dieletri boundary. Filling and inverting the

matrix is a very time onsuming proess. In our simulations for ion hannels [14�16℄ we used

the fat that the dieletri boundary at the surfae of the protein does not hange during the

simulation so the matrix an be prealulated at the beginning of the simulation so it does not

really ontribute to simulation time. The matrix-vetor multipliation is also a time onsuming

step, but the simulations are still feasible. In the ase of an ER �uid, on the ontrary, the partiles

are moving during the simulation, the geometry of the dieletri boundary is onstantly hanging,

and the matrix should be �lled and inverted in every simulation step. This is why the the simulation

is tehnially impossible using the DS model.
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3. The interaction energy between two dielectric spheres in an electric field

Let us onsider two DSs in a distane r12 from eah other. The dieletri onstant inside sphere

1 (S1) is ǫ1 and its radius is a1. Similarly, the dieletri onstant inside sphere 2 (S2) is ǫ2 and its

radius is a2. In our alulations, we use spheres of equal unit radii a1 = a2 = a = 1. The spheres

are embedded in a dieletri ǫw. A homogeneous external eletri �eld E is exerted on the system

with strength of unity E = 1, so the only free harges in the system are the eletrode harges σ
and −σ that raise this eletri �eld. The potential of this �eld is Ψq(r) = −E · r.

The total energy of the system is W = Wq + Wh, where Wq is the free harge � free harge

interation energy, while Wh is the free harge � indued harge interation energy. The latter, by

symmetry, an be omputed as the energy of the indued harges in the potential �eld of the free

harges:

Wh =
1

2

∫

h(r)Ψq(r)dV = −
1

2

∫

h(r)(E · r)dV. (3.1)

Beause the external �eld is onstant, E an be brought out from the integral and the energy

beomes

Wh = −
1

2
E ·

∫

h(r)rdV. (3.2)

The integral an be divided into two integrals on the two spheres

∫

h(r)rdV =

∫

S1

h(r)rdV +

∫

S2

h(r)rdV = p1 + p2, (3.3)

where pi is the dipole moment on sphere Si. So the energy is

Wh = −
1

2
(E · p1 +E · p2) = −

1

2
E (p1 + p2) , (3.4)

where we de�ned the eletri �eld as pointing in the diretion of the z-axis E = Ek and pi is the
z-omponent of the dipole moment. Of ourse, the dipole moment depends on the mutual position

r12 = r1 − r2 (with respet to the eletri �eld) of the partiles: pi = pi(r12).
The interpartile potential energy between the two spheres is de�ned as the di�erene between

the total energies for a given mutual position and for the ase when the the spheres are in�nitely

far from eah other:

φDS(r12) = Wh(r12)−Wh(∞). (3.5)

Realize that Wq drops out of this equation beause it does not depend on the mutual position of

the spheres. Beause the dipole moment for the isolated sphere is pi = αiE (when the two spheres

are in�nitely far), the self-energy is

Wh(∞) = −
1

2
E2(α1 + α2). (3.6)

4. The point dipole models

The interation potential between two point dipoles is

φDD(r12,p1,p2) = −3
(p1 · r12)(p2 · r12)

r5
12

+
p1 · p2

r3
12

, (4.1)

where pi is the point dipole moment in the enter of sphere Si (given by Eq. 2.1, therefore, pi is

also a result of polarization) and r12 = |r12|. Beause p1 and p2 are parallel to eah other and E,

this potential an be written as

φDD(r12, cos θ, p1, p2) =
p1p2
r3
12

(−3 cos2 θ + 1), (4.2)
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Figure 1. The interation energy between two spheres (parallel ase: ǫ1 = ǫ2 = 2, and antiparallel

ase: ǫ1 = 6 and ǫ2 = 2) in two di�erent positions: (1) the eletri �eld is parallel to the line

onneting the enters of the spheres (aligned ase) and (2) the eletri �eld is perpendiular

to the line onneting the enters of the spheres (alongside ase). The energy is omputed from

the three various models: symbols: the DS model, solid line: the PD model, and dashed line: the

DD model.

where θ is the angle between the vetors r12 and pi.

In the above potential, the dipole moments indued by the external �elds on individual isolated

dieletri spheres were used. When the spheres are lose to eah other, nevertheless, not only the

external eletri �eld, but the eletri �eld produed by the dipole of the other partile also ats on

this sphere. This e�et an be taken into aount with the polarizable point dipole model, where,

in addition to the permanent dipole indued by the external �eld, an indued dipole appears

pind

1 (E2) = α1E2

pind

2 (E1) = α2E1, (4.3)

where the eletri �eld Ei is the eletri �eld produed by the dipoles pi and pind
i at the position

of the other dipole:

E1(p1,p
ind

1 ) = 3

[

(p1 + pind
1 ) · r12

]

r12

r5
12

−
p1 + pind

1

r3
12

,

E2(p2,p
ind

2 ) = 3

[

(p2 + pind
2 ) · r12

]

r12

r5
12

−
p2 + pind

2

r3
12

. (4.4)

Beause the indued dipoles produe �elds that, in turn, indue dipoles, Eqs. 4.3 and 4.4 have

to be solved iteratively [17℄. After the indued dipoles are obtained, the interation between p1

and pind
2 as well as the interation between p2 and pind

1 is omputed using Eq. 4.1. Then we add
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Figure 2. The indued harge on the surfae of the spheres for di�erent interpartile distanes

(r/a) for the aligned parallel ase (ǫ1 = ǫ2 = 2). The angle θ is losed by the vetor pointing

from the sphere enter to the point on the surfae and the vetor of the eletri �eld. Left panel

shows the indued harge for the left hand side sphere, while the right panel shows the indued

harge for the right hand side sphere. The points of the two spheres that are in the losest

proximity orrespond to θ = π for the left sphere and θ = 0 for the right sphere. These are the

regions where the indued harge is the most distorted when r/a is small.

this orretion to φDD(r12,p1,p2) thus obtaining φPD(r12,p1,p
ind
1 ,p2,p

ind
2 ), where PD stands for

�polarizable dipole�.

5. Results and Discussion

We onsider two ases that we all parallel and antiparallel ases. In the parallel ase, both

spheres have dieletri onstants smaller than that of the surrounding medium. Thus, the dipoles

indued on the spheres point into the same diretion. We use the the value ǫ1 = ǫ2 = 2 in this study.

The dieletri onstant of the solvent is ǫw = 4. In the antiparallel ase, the dieletri onstant

in one sphere is larger than ǫw, while the dieletri onstant in the other sphere is smaller than

ǫw. Thus, the dipoles indued by E on the two spheres point into opposite diretions. We use the

values ǫ1 = 6 and ǫ2 = 2 in this study.

Figure 1 shows the interation energies as a funtion of the distane between the two spheres

(this distane will be denoted by r = r12 heneforth) for various situations. On the basis of the

dieletri onstants of the spheres we an onsider the parallel (ǫ1 = ǫ2 = 2) and the antiparallel

(ǫ1 = 2 and ǫ2 = 6) ases. On the basis of the mutual position of the spheres, we an onsider the

aligned (E ‖ r12) and the alongside (E ⊥ r12) positions. As seen in Fig. 1, the aligned position

is the low-energy position for the parallel ase (the lassial head-to-tail situation), while the

the alongside position is the low-energy position for the antiparallel ase (negative, attrative

interation energies). The interations are repulsive for the other ases (aligned antiparallel and

alongside parallel). All these energies are larger in magnitude when the partiles are loser to eah

other.

The agreement between the DD and DS potentials is surprisingly good (dashed lines vs. symbols

in Fig. 1). Some deviation ours for small interpartile distanes beause the DD approximation is

not satisfatory when the two harge distributions are lose to eah other. The mutual polarization

of the spheres an be taken into aount by the PD model (solid lines in Fig. 1). The agreement
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Figure 3. The distortion of the indued harge shown in Fig. 2 omputed from ∆hi(θ) = hi(θ)−
h0,i(θ) = hi(θ)−

3

4π
pi sin θ

with the DS results is exellent.

These results imply that the DD potential is an appropriate model of ER �uids in omputer

simulations. The good agreement is, nonetheless, surprising and ounter-intuitive. It is not obvious

for a �rst look that the potential in Eq. 3.5 agrees with the potential in Eq. 4.1. To shed a light

on this, let us onsider that the dipole moment indued on a sphere Si is

pi =

∫

Si

[h0,i(r) + ∆hi(r)] zda, (5.1)

where h0,i(r) is the distribution on the isolated sphere and ∆hi(r) is the distortion resulted from

the in�uene of the other partile. The energy is obtained by multiplying by − 1

2
E. The term

ontaining h0,i(r) is aneled by Wh(∞), so the interation energy is simply

Wh = −
1

2
E







∫

S1

∆h1(r)zda+

∫

S2

∆h2(r)zda






. (5.2)

The distortion of the indued harge distribution on sphere S1, for example, is proportional to the

indued harge on this sphere: more indued harge an be distorted more (∆h1 ∝ h1 ∝ p1). It
is also proportional to the indued harge on the other sphere, beause the eletri �eld of sphere

2 that polarizes sphere 1 depends linearly on p2. This eletri �eld depends on the ube of the

distane inversely (∝ r−3
). Finally, it will depend on the mutual position of the spheres whih

means an angle-dependent fator. In summary,

Wh ∝ p1p2r
−3f(θ), (5.3)

whih is exatly the form of the dipole-dipole potential in Eq. 4.2 for the speial ase of parallel

dipoles.

The mutual polarization of the two spheres is illustrated in Fig. 2 for the aligned parallel ase.

The indued harges on the surfaes of the spheres are plotted as funtions of the angle with

the eletri �eld for various interpartile distanes. For large distanes the harge distribution is
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Figure 4. The interation energy between two spheres for the parallel and antiparallel ases as

a funtion of the angle between the eletri �eld and the vetor onneting sphere enters for

r/a = 2.5. The energy is omputed from the three models. The meaning of urves and symbols

is the same as in Fig. 1.

symmetrial and the dipole moments on both of the spheres are the values for isolated spheres

αi = (2− 4)/(2+2× 4) = −0.2 (for E = 1). The zero value of θ orresponds to the diretion of the

�eld, so the indued harge is negative on the hemisphere in the diretion of the �eld and positive

on the opposite hemisphere. This means a dipole moment whose diretion is opposite to that of

the �eld in agreement with the negative value of the polarizability.

When the distane of the spheres is dereased, the symmetrial harge distribution is distorted.

The harge distribution of sphere S2 pulls some extra negative harge on the tip of sphere S1 that

is in the losest proximity to sphere S2. This extra negative harge is taken from all over the surfae

of the sphere so the opposite positive harge appears there but on a larger surfae, so this deviation

in surfae density is hardly distinguishable on the sale of Fig. 2.

The distortion of the hi(r) surfae harge is exatly the ∆hi(r) surfae harge introdued in

Eq. 5.1 and shown in Fig. 3 for the ase onsidered in Fig. 2. The ∆hi(θ) funtion is multiplied by

sin θ, so the total harge on a ring at angle θ is plotted. It is visible now that the integral of this

harge distribution is zero.

The interation energy of this harge with the external �eld (see Eq. 5.2) produes almost the

same energy as that omputed from the DD interation potential (see Eq. 4.1) using the point

dipoles orresponding to the undistorted harge distributions, h0,i(r).
The negative value means that the dipole is direted opposite to the eletri �eld. Therefore, the

total energy in this ase is 0.2. When the spheres are lose to eah other, the harge distributions are

slightly distorted on them due to polarization. This distortion is larger where the two spheres are

in the losest proximity to eah other. This orresponds to a slightly di�erent dipole moment and a

slightly di�erent energy. The di�erene between this energy and 0.2 gives the φDS(r12) interation
energy. This energy is very lose to the φDD interation energy between the dipoles, whih is quite

surprising given the fat that the φDS energy is the result of a distortion of the indued harges

and thus, is the result of a hange of the dipoles, while φDD is omputed from the dipole moments

�xed at their values at in�nite separation.

In the next step, we study the e�et of the mutual angular position of the spheres for a given

distane: we �x r/a = 2.5 and hange the angle between r12 and E from 0 to π/2. Figure 4

shows the results as obtained from the various models. Similar onlusions an be drawn as in the

ase of Fig. 1 for the omparison of the various methods. For the parallel ase, the angle θ = 0
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Figure 5. The indued harge on the surfae of the spheres for di�erent interpartile distanes

(r/a) for the aligned antiparallel ase (ǫ1 = 6 and ǫ2 = 2). The angle θ is losed by the vetor

pointing from the sphere enter to the point on the surfae and the vetor of the eletri �eld.

Left panel shows the indued harge for the left hand side sphere, while the right panel shows

the indued harge for the right hand side sphere. The points of the two spheres that are in the

losest proximity orrespond to θ = π for the left sphere and θ = 0 for the right sphere. These

are the regions where the indued harge is the most distorted when r/a is small.

orresponds to the minimum energy head-to-tail position. The angle θ = π/2 orresponds to the

maximum energy position where the dipoles of the spheres are next to eah other pointing to the

same diretion. This means that the hains will repulse eah other if the partiles are in the same

planes. A shifted position of hains orresponds a more stable on�guration at high densities when

the hains are fored to be lose to eah other.

For large distanes the harge distributions are symmetrial, whih orresponds to point dipoles

in the enters of the spheres with dipole moments α1 = (6 − 4)/(6 + 2 × 4) = 0.143 and α2 =
(2− 4)/(2 + 2× 4) = −0.2 (with E = 1).

In the antiparallel ase similar onlusions an be drawn exept that on�gurations for minimum

and maximum energy are interhanged. Here the minimum energy position is when the two spheres

are next to eah other with dipoles direted in opposite diretions (blue symbols and urves in Fig.

1 and θ = π/2 in Fig. 4). The maximum energy position is when the two dipoles are aligned on

the same line, a �head-to-head� position (green symbols and urves in Fig. 1 and θ = 0 in Fig.

4). The indued harge is shown in Fig. 5. The pro�les are di�erent for the two spheres beause

the polarizabilities of the two spheres are di�erent now; di�erent both in sign and magnitude.

The pro�le for the right (ǫ2 = 2) sphere is similar to those in Fig. 2, while the pro�le for the left

sphere (ǫ1 = 6) has a dereasing tendeny as a funtion of θ. The polarizability of this sphere is

positive and smaller in magitude than the the polarizability of the other sphere: |α1| = 0.143, while
|α2| = 0.2.

6. Summary

We have presented alulations for the interation potential between two eletrorheologial

partiles, whih, in a more detailed desription, an be modeled as DSs immersed in a ontinuum

dieletri that has a dieletri onstant di�erent from that of the sphere. We have shown that the

interation energy originated from the distortion of the indued harge distribution on the surfae
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of the sphere as an e�et of the presene of the other sphere is well reprodued by point dipoles

plaed in the enters of the spheres. Surprisingly, even the DD model (where this dipole is �xed at

the value of the isolated sphere) gives a reasonable desription.

We onlude that the DD or the PD models are useful simpli�ed representations of the DS

model for appliation in omputer simulations. The potential ating between ER partiles is used

to alulate energies in Monte Carlo simulations. Fores used in moleular dynamis or Brownian

dynamis simulations an be straightforwardly derived from the potentials.
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