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Abstract. We show that an interaction decaying as a stretched exponential function

of the distance, J(l) ∼ e−cla , is able to alter the universality class of short-range

systems having an infinite-disorder critical point. To do so, we study the low-energy

properties of the random transverse-field Ising chain with the above form of interaction

by a strong-disorder renormalization group (SDRG) approach. We obtain that the

critical behavior of the model is controlled by infinite-disorder fixed points different

from that of the short-range one if 0 < a < 1/2. In this range, the critical exponents

calculated analytically by a simplified SDRG scheme are found to vary with a, while,

for a > 1/2, the model belongs to the same universality class as its short-range variant.

The entanglement entropy of a block of size L increases logarithmically with L in the

critical point but, as opposed to the short-range model, the prefactor is disorder-

dependent in the range 0 < a < 1/2. Numerical results obtained by an improved

SDRG scheme are found to be in agreement with the analytical predictions. The same

fixed points are expected to describe the critical behavior of, among others, the random

contact process with stretched exponentially decaying activation rates.
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1. Introduction

Long-range interactions are known to affect the cooperative behavior of many-particle

systems in the vicinity of critical points. In the case that the strength of the interaction

decays as a power d+ σ of the distance in d dimensions, a frequently observed scenario

is that, for a slow enough decay, i.e. for σ < σMF, the critical behavior is of mean-

field-like; for a sufficiently rapid decay, i.e. σ > σSR, the phase transition falls into

the universality class of the same model with short-range, i.e. finite-range interactions,

while, in the intermediate regime σMF < σ < σSR, the critical exponents vary with σ.

Another factor that can change the universality class of a phase transition is quenched

disorder, which is inevitably present in many real systems [1, 2]. The description of the

critical behavior of systems with long-range interactions in the presence of disorder is,

in general, a hard problem, which is cumbersome to approach by analytical and even

by numerical methods. Many works have been devoted to classical systems with the

above two ingredients such as random-field ferromagnetic models [3] or spin glasses [4]

but, to quantum systems with long-range interactions with or even without disorder [5],

less attention have been paid. Recently, the critical behavior of the zero-temperature

random transverse-field Ising chain with algebraically decaying, long-range couplings has

been studied [6]. The quantum critical behavior of the short-range variant of this model

is known to be controlled by an infinite-disorder fixed point (IDFP) of a sequential,

real-space renormalization procedure termed as strong-disorder renormalization group

(SDRG) [7, 8, 9]. The hallmark of an IDFP is an anisotropic relationship ln τ ∼ ξψSR

between the time scale τ and length scale ξ, meaning that the dynamical exponent is

formally infinite here. The conclusion of the SDRG study of the long-range variant of

the above model was that the critical behavior is controlled by a strong-disorder fixed

point with a finite dynamical exponent z = 1+σ for any σ > 0 [6]. Thus the scenario in

(pure) long-range systems depicted above fails here, since the IDFP of the short-range

model cannot be recovered no matter how large σ is. In the above model, the form of the

dynamical relationship τ ∼ ξd+σ in the critical point seems to be dictated by the form of

the distance-dependence of the interaction strength, J(l) ∼ l−(d+σ), the inverse coupling

corresponding to the time scale. This suggests that, even a more rapidly decreasing

interaction, which decays as a stretched exponential, J(l) ∼ e−(l/l0)a , is able to change

the dynamical relationship to ln τ ∼ ξa if a < ψSR, while it is expected to be irrelevant

if a > ψSR.

The aim of this work is to study how the critical behavior of models having an

IDFP is affected by the presence of a stretched exponentially decaying interaction. For

concreteness, we will investigate the low-energy properties of the random transverse-

field Ising chain by applying an SDRG approach, which, in its simplified form, provides

analytical predictions on the large-scale behavior of the model. These will be shown to be

in agreement with results of a more complete numerical SDRG scheme. According to the

results, the critical behavior is controlled by an IDFP with ψ = a for 0 < a < ψSR = 1/2.

The scaling dimension of the average magnetization calculated analytically is found
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to vary with a, as well, and the entanglement entropy of a block of spins increases

logarithmically with the size of the block with a disorder-dependent prefactor. The

conclusions drawn here are expected to be generally valid for other models having an

IDFP in their short-range form. In particular, we highlight a stochastic, nonequilibrium

model, the random contact process [10, 11, 12], the absorbing phase transition of which

is expected to fall into the same universality class as the critical point of the random

transverse-field Ising model.

The structure of the paper is the following. In section 2, an analytically tractable

SDRG scheme of the model is presented. The properties of the fixed-point solution of

the SDRG evolution equations are discussed in section 3, and various physical quantities

are calculated in section 4. In section 5, the analytical predictions are compared against

numerical results obtained by an improved SDRG scheme. Finally, the results are

discussed in section 6.

2. The SDRG method

Let us consider the random transverse-field Ising model (RTIM) defined by the

Hamiltonian

H = −
∑

i 6=j

J(lij)σ
x
i σ

x
j −

∑

i

hiσ
z
i , (1)

where σxi and σzi are Pauli operators on site i. The couplings depend on the distance lij
as

J(lij) = ωije
−(lij/l0)a (2)

where l0 and a are positive constants, while the prefactors {ωij} and the transverse

fields {hi} are i.i.d. positive, quenched random variables. For the sake of simplicity, the

prefactors will be chosen to be non-random, ωij = J0, in the subsequent calculations;

nevertheless, this variant of the model is expected to be in the same universality

class as that with random prefactors. For a fixed l0, a and distribution ρ(h) of the

transverse fields, the prefactor J0 can be used as a control parameter of the quantum

phase transition of the model at zero temperature. For large enough J0, the model is

ferromagnetic with a positive average spontaneous magnetizationm0 = limH→0 〈σx0 〉(H),

where H is the magnitude of a magnetic field applied only on spin 0 in the x direction

and the overbar denotes an average over disorder. At some critical value Jc0 , the model

undergoes a quantum phase transition, and, for J0 < Jc0 , it will be paramagnetic with a

vanishing spontaneous magnetization.

In the calculations, we will restrict ourselves to the model in Eq. (1) in one

dimension and assume that 0 < a < ψSR = 1/2. In the SDRG approach of the RTIM,

the energy scale set by the largest coupling or transverse field Ω = max{Jij, hi} is

gradually reduced by eliminating terms in the Hamiltonian with the largest parameter

and calculating the remaining effective parameters perturbatively [8, 9]. Two kinds of

reduction steps are applied iteratively. If the largest parameter is a coupling, Ω = Jij,
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the spins i and j form a spin cluster, which is subjected to an effective transverse field

h̃ = hihj/Jij and has a magnetic moment µ̃ = µi + µj. If spin i and j had been

coupled to another spin (cluster) k before the decimation then the effective coupling of

the cluster ij to k will be either J̃ij,k = Jik + Jjk if the so called “sum rule” is applied

or J̃ij,k = max{Jik, Jjk} if the “maximum rule” is followed. If the largest parameter is a

transverse field, Ω = hi, the spin cluster i is decimated and new couplings between all

pairs (j, k) of spin clusters that were coupled to i before the decimation are generated

with the effective strength J̃0
jk = JjiJik/hi. If a coupling Jjk between cluster j and

k existed before the decimation then, according to the sum rule, J̃jk = J̃0
jk + Jjk

whereas, according to the maximum rule, J̃jk = max{J̃0
jk, Jjk}. In an IDFP, where

the distributions of logarithmic couplings and fields are broadening without limits, the

SDRG approach both with the sum rule and the maximum rule becomes asymptotically

exact and is conjectured to provide the correct critical exponents [8, 9].

First, we shall consider the SDRG scheme with the maximum rule, which, by further

simplifying assumptions valid close to the fixed point in the spirit of Ref. [6], reduces to

an analytically tractable scheme. Let us investigate what consequences the maximum

rule has in the model under study. When a bond Ji,i+1 connecting the adjacent clusters

i and i + 1 is decimated, the effective field of the new cluster formed from them will

be h̃ = hihi+1/Ji,i+1 and the effective coupling of this cluster to clusters k > i + 1

(k < i) will be given by the couplings Ji+1,k (Jk,i) of its constituent i+ 1 (i) before the

decimation. If a transverse field hi is decimated, the indirect coupling J̃0
jk = JjiJik/hi

through the decimated cluster i between j and k has to be compared to the existing

long-range coupling J(ljk). According to numerical SDRG investigations, the long-

range couplings almost always exceed the indirect ones as the critical fixed point is

approached. This can be understood intuitively, since, in the critical short-range model,

the effective couplings between adjacent clusters decrease with the spacing l between

them as J(l) ∼ exp(−clψSR), i.e. more rapidly than long-range couplings in Eq. (2) for

a < ψSR = 1/2. On the basis of this observation, we postulate that the renormalized

coupling between clusters i− 1 and i+ 1 is

J̃i−1,i+1 = J(li−1,i+1), (3)

where the distance lij between clusters is defined as the distance between their closest

constituent spins, while other couplings remain unchanged when hi is decimated.

Applying these simplified decimation rules, one can see that, at any stadium of the

SDRG procedure, the coupling between any pairs of clusters will be given by the

long-range coupling between their closest spins, and exclusively couplings between

neighboring clusters are chosen for decimation. If a cluster having a transverse field

Ω = hi is eliminated, it is expedient to formulate the decimation rule in terms of length

variables

lij ≡ l0

[

ln

(

J0
Jij

)]1/a

(4)
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rather than in terms of couplings as

l̃i−1,i+1 = li−1,i + li,i+1 + wi, (5)

where wi denotes the distance between the end spins of cluster i. We can see that,

within the simplified scheme, besides the transverse field hi and length wi of clusters,

it is sufficient to the keep track of the couplings or, equivalently, the distances li,i+1

between neighboring clusters only. In this respect, the SDRG scheme is similar to that

of the one-dimensional short-range model, although the decimation rules are different.

Before turning to the analysis of the above scheme, a caveat is in order concerning its

validity. The application of the maximum rule, which leads to that only the interactions

between closest spins of clusters are kept, is justified by that the interaction strength

decreases rapidly with the distance. In the paramagnetic phase and in the critical

point, where the spin clusters produced by the method are sparse, this approximation

is expected to be reasonable. In the ferromagnetic phase, however, where the SDRG

method produces large, compact clusters, its reliability is questionable, therefore we will

not analyze it in that phase.

To write the decimation rules in an additive form, let us introduce the logarithmic

energy scale

Γ = ln(J0/Ω), (6)

and the reduced variables

βi = ln(Ω/hi), χi =
wi

l0Γ1/a
, ζi =

[

ln(J0/Ji,i+1)

Γ

]1/a

− 1, (7)

which lie in the range [0,∞) as soon as Ω is reduced below J0 ‡. In terms of these

variables, the transformation rule for the decimation of a coupling Ω = Ji,i+1 takes the

simple form

β̃ = βi + βi+1, (8)

χ̃ = χi + χi+1 + ζi + 1, (9)

while, if a transverse field Ω = hi is decimated, we have

ζ̃ = ζi−1 + ζi + χi + 1. (10)

We can see that the variables βi and ζj on different places remain independent during

the SDRG procedure, while βi and χi become correlated. Thus, for a complete

characterization of the model, one should follow up the evolution of the probability

density fΓ(ζ) and that of the joint probability density pΓ(β, χ) as the parameter Γ

increases during the SDRG procedure. Instead of this full problem, which is difficult to

treat, we concentrate on the evolution of fΓ(ζ) and that of the marginal probability

density gΓ(β), and will see that many asymptotic properties of the model can be

‡ Note that, as li,i+1 and wi take on integer values, the variables ζ and χ are discrete for any finite

Γ but become quasicontinuous in the limit Γ → ∞. For the sake of simplicity, we will treat them as

continuous variables in the followings.
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extracted from these functions. The evolution equations of these distributions under

the progression of the SDRG procedure can be derived in a standard way and read as

∂gΓ(β)

∂Γ
=
∂gΓ(β)

∂β
+

+
f0
aΓ

∫

dβ1

∫

dβ2gΓ(β1)gΓ(β2)δ(β − β1 − β2) + gΓ(β)

(

g0 −
f0
aΓ

)

(11)

∂fΓ(ζ)

∂Γ
=
ζ + 1

aΓ

∂fΓ(ζ)

∂ζ
+

+g0

∫

dζ1

∫

dζ2

∫

dχfΓ(ζ1)fΓ(ζ2)qΓ(χ)δ(ζ − ζ1 − ζ2 − χ− 1) + fΓ(ζ)

(

f0 + 1

aΓ
− g0

)

,

(12)

where g0(Γ) ≡ gΓ(0), f0(Γ) ≡ fΓ(0), qΓ(χ) ≡ pΓ(0, χ)/gΓ(0) is the conditional

probability density of χ given the occurrence of β = 0, and δ denotes the Dirac delta

function. The first terms on the r.h.s. of the equations appear owing to that β and ζ

depend on Γ; the integrals are related to the generation of effective parameters according

to the rules in Eqs. (8) and (10), while the last terms ensure the normalization of the

distributions.

3. Properties of the fixed-point solution

3.1. Paramagnetic phase

The fixed-point solution of Eq. (11) is of the form

gΓ(β) = g0(Γ) exp[−g0(Γ)β], (13)

which, by substituting into Eq. (11), leads to the differential equation

dg0(Γ)

dΓ
= −

f0(Γ)g0(Γ)

aΓ
. (14)

for the functions g0(Γ) and f0(Γ). Let us first consider the paramagnetic phase of the

model. We will see a posteriori that f0(Γ) tends to zero here in the limit Γ → ∞

and, accordingly, the typical ζ will increase without limits. Moreover, since the

ratio r(Γ) of the frequency of bond and field decimations tends to zero, the typical

distance between adjacent clusters will increase much faster than their typical extension.

Therefore, typically ζ ≫ χ, and the delta function in Eq. (12) can be replaced by

δ(ζ−ζ1−ζ2) close to the fixed point. The fixed-point solution of this simplified equation

is fΓ(ζ) = f0(Γ) exp[−f0(Γ)ζ ], provided that f0(Γ) satisfies the differential equation

df0(Γ)

dΓ
= f0(Γ)

[

1

aΓ
− g0(Γ)

]

. (15)

The functional form f0(g0) of the renormalization group trajectories in the f0−g0 plane

can be derived as follows. Using the function G(Γ) ≡ Γg0(Γ), instead of g0(Γ), the above
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differential equations can be reformulated as

dG(Γ)

dΓ
=
G(Γ)

Γ

(

1−
f0(Γ)

a

)

,

df0(Γ)

dΓ
=
f0(Γ)

Γ

(

1

a
−G(Γ)

)

. (16)

Eliminating Γ from these equations, we obtain

df0
dG

=
f0(1/a−G)

G(1− f0/a)
, (17)

which, after integration, results in

f0e
−f0/a = G1/ae−GC (18)

with a constant C. This relation can be recast in an explicit form with respect to f0 by

the help of the Lambert W function

f0 = −aW (−a−1G1/ae−GC). (19)

The trajectories in the paramagnetic phase have the limits g0(Γ) → const = δ > 0 and

f0(Γ) → 0 for Γ → ∞. Then, according to Eq. (19), f0(Γ) tends to zero asymptotically

as

f0(Γ) = −aW (−a−1(Γg0)
1/ae−Γg0C) ≃ C(Γδ)1/ae−Γδ. (20)

The ratio of the frequency of bond and field decimations thus vanishes as

r(Γ) =
f0(Γ)

aΓg0(Γ)
∼ (Γδ)1/a−1e−Γδ (21)

for large Γ. To the constant δ, a physical meaning can be assigned by deriving a

relationship between the energy scale Ω and the length scale ℓ = 1/n, where n is the

mean number of active (non-decimated) spin clusters per unit length of the chain. The

function n(Γ) obeys the differential equation

dn(Γ)

dΓ
= −n(Γ)

[

g0(Γ) +
f0(Γ)

aΓ

]

, (22)

and, using that g0(Γ) + f0(Γ)/aΓ ≃ δ for large Γ, we obtain

ℓ(Γ) ≃ CeδΓ = C

(

J0
Ω

)δ

(23)

with a constant of integration C. Thus, the constant δ can be interpreted as the inverse

of the dynamical exponent:

δ = 1/z. (24)

The lowest energy gap ǫL of a large but finite system of size L is given in the

paramagnetic phase by the twice of the effective transverse field of the last decimated

cluster. From Eq. (13), we obtain that the distribution of transverse fields is a power

law, p(h) ≃ 1
zΩ
(h/Ω)−1+1/z, close to the fixed point. Therefore the energy gap, being the

twice of the smallest one among O(L) transverse fields, will follow a Fréchet distribution
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and scale as ǫL ∼ L−z for large L, according to extreme value statistics [13, 14]. Thus,

the system is gapless in this phase due to the occurrence of ferromagnetic clusters of

unbounded size and expected to show Griffiths-McCoy singularities analogous to the

short-range model [15, 2].

3.2. Critical point

In the limit δ → 0, the critical point of the model is approached, and, in that point, the

form of the functions g0(Γ) and f0(Γ) will be different from those in the paramagnetic

phase. Considering still the simplified equation, the limiting values will be g0(Γ) → 0 and

f0(Γ) → a. Thus, f∞ ≡ limΓ→∞ f0(Γ) being non-zero, the neglections in the argument of

the delta function are not justified in the critical point and, consequently, the fixed-point

distribution fΓ(ζ) is not a pure exponential here. Nevertheless, according to numerical

investigations of the SDRG procedure, the simplified equation predicts qualitatively

correctly that the limiting value f∞ is finite and positive. With this assumption, Eq.

(14) then gives the leading order Γ-dependence of g0(Γ) in the form g0(Γ) ≃ b/Γα with

α = f∞/a and an unknown positive constant b. Let us first consider the possibility

α > 1. Then the terms proportional to g0(Γ) in Eq. (12) can be neglected and the

resulting equation would have the fixed-point solution fΓ(ζ) = f0(Γ) exp[−f0(Γ)ζ ] with

f0(Γ) obeying df0(Γ)
dΓ

= f0(Γ)
aΓ

. But this gives f0(Γ) ∼ Γ1/a, which is in contradiction

with the assumption that f∞ is finite. Now, let us consider the possibility α < 1 and

restrict ourselves to the range 0 ≤ ζ ≤ 1, where the integral on the r.h.s. of Eq. (12) is

identically zero. Then, keeping the leading order terms in 1/Γ, Eq. (12) reduces in this

range to ∂fΓ(ζ)
∂Γ

≃ −g0(Γ)fΓ(ζ). This leads to f∞ = 0, again in contradiction with the

assumption f∞ > 0. We thus conclude that α = 1 or, equivalently, f∞ = a. In order

to determine the unknown constant b, one should be able to treat the full problem of

the evolution of the functions pΓ(β, χ) and fΓ(ζ). But fortunately, there is a simple,

alternative way of finding b. Substituting the expressions g0(Γ) ≃ b/Γ and f0(Γ) ≃ a

into Eq.(22), one obtains the relationship

ℓ(Γ) ≃ (Γ/Γ0)
1+b, (25)

where the constant Γ0 depends on the initial parameters of the model. On the other

hand, the length scale ℓ(Γ) is asymptotically proportional to the average distance

l(Γ) between adjacent clusters. Using that the distribution of the scaling variable

ζ = l/l0Γ
1/a − 1 converges to a Γ-independent limit distribution, we conclude that

ℓ(Γ) ∼ l(Γ) ∼ Γ1/a. Comparing this relation to Eq. (25), we obtain

b = (1− a)/a. (26)

The ratio of the frequency of bond and field decimations will thus tend to a finite limit

r(Γ) =
f0(Γ)

aΓg0(Γ)
→

a

1− a
, (27)

which is different from one, indicating that the duality between the couplings and

transverse fields characteristic of the critical fixed point of the short-range model [8]
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is broken here. We will see in the subsequent sections that, knowing the leading terms

of the functions g0(Γ) and f0(Γ) for large Γ, several asymptotic properties of the model

can be calculated.

Let us now turn to the question of how the correlation length ξ of the average

spatial correlations of the operator σxi diverges as the critical point is approached in the

paramagnetic phase, and use the inverse dynamical exponent δ as a quantum control

parameter. In the paramagnetic phase, at some δ, the average length of spin clusters,

which is of the same order of magnitude as the correlation length ξδ, is finite, and,

in the SDRG procedure, essentially no coupling decimations occur beyond this scale,

ℓ ≫ ξδ. Close to the critical point, δ ≪ 1, the logarithmic energy scale corresponding

to ξδ is Γδ ∼ ξaδ . As can be observed e.g. in Eq. (20), the solutions contain the scaling

combination Γδ, suggesting the relation Γδ ∼ δ−1 close to the critical point. This yields

for the divergence of the correlation length

ξδ ∼ δ−ν (28)

with the correlation-length exponent

ν = 1/a. (29)

4. Scaling of physical quantities in the critical point

4.1. Magnetization

Within the SDRG approach, the scaling of the average spontaneous magnetization m0

can be determined from that of the probability S(Γ) that a given spin is part of an

active cluster at the logarithmic energy scale Γ. In order to obtain S(Γ), let us consider

the probability sΓ(β)dβ that, at the scale Γ, a given spin is part of an active cluster

with a logarithmic transverse field β. Similarly to Eqs. (11-12), we can formulate an

evolution equation for sΓ(β) under the change of Γ, which reads as

∂sΓ(β)

∂Γ
=
∂sΓ(β)

∂β
−

2f0(Γ)

aΓ

[

sΓ(β)−

∫ β

0

dβ ′sΓ(β
′)gΓ(β − β ′)

]

. (30)

The solution of such an equation can be found by the ansatz [16]

sΓ(β) = [u(Γ) + v(Γ)g0(Γ)β]g0(Γ)e
−g0(Γ)β , (31)

where u(Γ) and v(Γ) are unknown functions of Γ. Substituting this and the fixed-point

solution gΓ(β) in Eq. (13) into Eq. (30), it turns out to be a solution, indeed, provided

that u(Γ) and v(Γ) satisfy the differential equations

du(Γ)

dΓ
= −

[

g0(Γ) +
f0(Γ)

aΓ

]

u(Γ) + g0(Γ)v(Γ)

dv(Γ)

dΓ
=
f0(Γ)

aΓ
u(Γ)− g0(Γ)v(Γ). (32)
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Using now the asymptotic forms g0(Γ) ≃
1−a
aΓ

and f0(Γ) ≃ a valid in the critical point for

large Γ, these can be rewritten as linear differential equations with constant coefficients

du

dγ
≃ −

(

1− a

a
+ 1

)

u+
1− a

a
v

dv

dγ
≃ u−

1− a

a
v, (33)

in terms of the new independent variable γ ≡ ln Γ. The solutions of these equations

decay with Γ asymptotically as u(Γ) ∼ v(Γ) ∼ eγǫ+ ∼ Γǫ+, where ǫ+ = −1−a
a

− 1
2
+

√

1−a
a

+ 1
4
is the larger eigenvalue of the coefficient matrix. The probability S(Γ) we are

looking for can be expressed by these functions as

S(Γ) =

∫ ∞

0

sΓ(β)dβ = u(Γ) + v(Γ), (34)

and thus scales as S(Γ) ∼ Γǫ+. This yields for the scaling of the average spontaneous

magnetization with the size L of finite systems, using Γ ∼ La,

m0(L) ∼ L−x (35)

with the scaling dimension

x = a|ǫ+| = a

(

1− a

a
+

1

2
−

√

1− a

a
+

1

4

)

. (36)

4.2. Surface magnetization

Next, let us consider the average spontaneous magnetization ms
0 at the end spin of semi-

infinite chains. Concerning the end spin, the evolution of the corresponding function

sΓ(β) is governed by the equation

∂sΓ(β)

∂Γ
=
∂sΓ(β)

∂β
−
f0(Γ)

aΓ

[

sΓ(β)−

∫ β

0

dβ ′sΓ(β
′)gΓ(β − β ′)

]

, (37)

which differs from Eq. (30) in that the factor 2 is absent in front of the 2nd term on

the r.h.s. since the end spin has only one neighbor. The fixed-point solution of this

equation has the form

sΓ(β) = S(Γ)g0(Γ)e
−g0(Γ)β . (38)

Substituting this and the fixed-point distribution gΓ(β) in Eq. (13) into Eq. (37) results

in
dS(Γ)

dΓ
= −g0(Γ)S(Γ). (39)

Using the asymptotic form g0(Γ) ≃
1−a
aΓ

valid in the critical point, we obtain ultimately

S(Γ) ≃ (Γ/Γ0)
−(1−a)/a . (40)

This yields for the finite-size scaling of the surface magnetization

ms
0(L) ∼ L−xs (41)

with the surface scaling dimension

xs = 1− a. (42)



Infinite-disorder critical points of models with stretched exponential interactions 11

4.3. Entanglement entropy

The entanglement entropy of critical quantum systems has attracted much interest

recently [17]. Let us assume that the model under study is in its ground-state |0〉

and consider a block of L contiguous spins in it; the rest of the (infinitely large) total

system is referred to as the environment. The entanglement entropy SL is the von

Neumann entropy of the reduced density operator ρL = TrE|0〉〈0| of the block, where

TrE denotes a partial trace over the environment:

SL = −Tr(ρL ln ρL). (43)

Within the SDRG approach, the entanglement entropy of a block is given by the number

of clusters containing spins both inside and outside the block, multiplied by ln 2 [16]. The

asymptotic dependence of the average entanglement entropy SL on L can be obtained

in the following way. Let us assume that the model is renormalized down to Γ = 0, so

that, ultimately, all spins of the original model are organized into clusters, which were

decimated at some Γ. Consider then the length l of spacings between neighboring spins

belonging to the same cluster and let N (l) denote the mean number of the occurrence

of the distance l per unit length of the chain. Obviously, a spacing of length l appears

in a cluster whenever a bond of length l is decimated during the SDRG procedure, and

this event occurs precisely at the scale

Γ = (l/l0)
a (44)

since the strength and the length of a bond are connected according to Eq. (2). When

the mean concentration of clusters n is reduced to n + dn during the procedure, the

mean number of bond decimations per unit length of the chain will be |dn| multiplied

by the relative frequency f0/aΓ
g0+f0/aΓ

of bond decimations. Approximating l by a continuous

variable, we can write

f0/aΓ

g0 + f0/aΓ
|dn| =

f0/aΓ

g0 + f0/aΓ

∣

∣

∣

∣

dn

dΓ

∣

∣

∣

∣

dΓ

dl
dl =

= n[Γ(l)]
f0
aΓ
aΓl−1dl = n[Γ(l)]f0[Γ(l)]l

−1dl, (45)

where we have used Eq. (22) and Eq. (44). For large l, we have thus N (l) ≃

n[Γ(l)]f0[Γ(l)]l
−1. The fraction of the chain covered by bonds of length l is given by

lN (l) and has the asymptotic form for large l

lN (l) ≃ n[Γ(l)]f0[Γ(l)] ≃ a[Γ(l)/Γ0]
−1/a = aΓ

1/a
0

l0
l
, (46)

where we have used Eq. (25). The large-L asymptotics of the average entanglement

entropy can be obtained from N (l) as

SL/ ln 2 ≃ 2

∫ L

lN (l)dl + 2L

∫ ∞

L

N (l)dl ≃ 2aΓ
1/a
0 l0 lnL+ const. (47)
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5. Numerical SDRG analysis

We have performed a numerical investigation of the model by an improved SDRG

scheme. This differs from the one treated analytically in that it takes into account

the long-range interaction between all pairs of spins of adjacent clusters by using the

sum rule. To be concrete, the effective interactions between neighboring clusters are

described by a single coupling Jn,n+1 as before, but the decimation rules are modified

as follows. If a coupling Jn,n+1 is decimated, the effective transverse field of the new

cluster Cñ = Cn ∪ Cn+1 is calculated as h̃ = hnhn+1/Jn,n+1 but, at the same time, the

coupling of Cñ to Cn+2 will be modified to

Jñ,n+2 = Jn+1,n+2 +
∑

i∈Cn,j∈Cn+2

J(lij), (48)

and, similarly, the coupling to Cn−1 will be Jn−1,ñ = Jn−1,n+
∑

i∈Cn−1,j∈Cn+1
J(lij). If the

transverse field hn is decimated, the effective coupling between cluster Cn−1 and Cn+1

will be

J̃n−1,n+1 =
Jn−1,nJn,n+1

hn
+

∑

i∈Cn−1,j∈Cn+1

J(lij). (49)

We have implemented the above decimation rules numerically, starting with a

uniform distribution of the transverse fields in the range [0, 1], and fixing the parameters

in Eq. (2) to a = 1/3 and l−a0 = 2, while used J0 as a control parameter. After

renormalizing rings of L = 24 − 218 spins down to 2 spin clusters, averages of different

quantities over 105 independent realizations of the disorder have been calculated.

First, we considered the ratio r(L) of the frequency of coupling and field decimations

in the last decimation step as a function of L for different J0. As can be seen in Fig. 1,

for small (large) values of J0, r(L) decreases (increases) for large L, while, at a critical

value Jc0 = 0.5145(5), it seems to tend to a constant 0.51(2), which is close to the limiting

value a/(1− a) = 1/2 predicted by the simplified SDRG scheme.

We have also calculated the average of the logarithm of the effective transverse fields

and couplings of the renormalized rings for different initial sizes L. According to the

analytical results, the averages of logarithmic parameters scale with Γ asymptotically

as −ln h ∼ −ln J ∼ Γ in the critical point. The dynamical relation Γ ∼ La then yields

the finite-size scaling law

−ln h(L) ∼ −ln J(L) ∼ La. (50)

As can bee seen in Fig. 2, the ratio ln h(L)/ln J(L) tends to a constant in the estimated

critical point, and the finite-size scaling behavior of ln h(L) for large L is compatible

with the form given in Eq. (50).

Finally, the average magnetic moment µ(L) of clusters in the renormalized rings

has been calculated for different L, as well. According to the analytical results for the

spontaneous magnetization in Eq. (35), the average magnetic moment in the critical

point is expected to scale as

µ(L) ∼ m0(L)L ∼ Ldf , (51)
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Figure 1. The ratio of the frequency of coupling and field decimations in the last

decimation step plotted against lnL for different values of the control parameter J0.

The horizontal line indicates the limiting value 1/2 obtained by the simplified SDRG

scheme for a = 1/3.
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Figure 2. The ratio lnh(L)/ln J(L) of average logarithmic parameters of the

renormalized system plotted against lnL for different values of J0. The inset shows

the average logarithmic transverse field |lnh(L)| as a function of La.

where df = 1 − x is the fractal dimension of clusters. Using the result in Eq. (36),

the fractal dimension for a = 1/3 is df = 2/3. The size-dependence of the average

magnetic moment is shown in Fig. 3 in a log-log plot. A linear fit to the data obtained

in the critical point gives an estimate for the fractal dimension df = 0.67(1), which is

compatible with the prediction provided by the simplified SDRG method.
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Figure 3. The logarithm of the average magnetic moment of clusters in the

renormalized rings plotted against lnL for different values of J0. The straight line

is a linear fit to the data obtained in the estimated critical point and has the slope

df = 0.67(1).

6. Discussion

We have studied in this work the low-energy properties of the random transverse-field

Ising chain with long-range interactions that decay as a stretched exponential function

the distance. Applying an SDRG procedure, analytical results have been obtained in

the frame of a simplified scheme based on the maximum rule, and these were found to

be compatible with numerical results obtained by an improved scheme that partially

works with the sum rule. From a technical point of view, the main difference between

the SDRG scheme of the long-range model and that of the short-range one is that

there is one less “free” parameter here, as the strength J and length l of bonds, which

are not perfectly correlated in the short-range model, are connected here through the

relation J = J0e
−(l/l0)a . According to the results, the critical behavior is controlled by

an IDFP with a generalized dynamical exponent ψ = a, and the other critical exponents

x and ν are found to vary with a in the range 0 < a < 1/2, as well. Taking the limit

a→ ψSR = 1/2, the above critical exponents agree with those of the short-range random

transverse-field Ising chain, and, above the threshold value, a > ψSR, the universality

class of the short-range model is recovered. The critical exponents are determined

solely by the decay exponent a of the interaction strength, and, for a given a, they

are universal for any distribution of the parameters. Concerning the asymptotic size-

dependence of the average entanglement entropy of a block in the critical point, it is

found to be logarithmic, similar to pure [18] and disordered [16] short-range quantum

spin chains, but, as opposed to the latter systems, the prefactor is non-universal, i.e.

disorder-dependent here.



Infinite-disorder critical points of models with stretched exponential interactions 15

The results obtained in this work for the RTIM are relevant for other ferromagnetic

quantum spin models, as well, such as the quantum Potts model [19]. In addition to

this, we mention here a paradigmatic model of epidemic spreading, the contact process

[10, 11], the absorbing phase transition of which, in the presence of disorder and for

short-range interactions, falls into the same universality class as the RTIM, at least for

strong enough initial disorder [12]. The model studied in this work corresponds to a

one-dimensional, disordered, long-range contact process, in which active sites become

inactive with quenched random rates and the activity spreads to any other (inactive)

site with rates decaying as a stretched exponential function of the distance. The SDRG

decimation rules of this model being essentially identical to those of the RTIM, its

absorbing phase transition is expected to be described by the IDFP found in this work,

and the critical exponents characterizing the disorder-averaged quantities can all be

expressed by ψ, x, and ν by the help of a scaling theory [12]. For instance, the average

survival probability, which is the probability that there is at least one active site at

time t if the process has been started from a single active site at t = 0, decreases in the

critical point asymptotically as P (t) ∼ (ln t)−δ with δ = x/ψ.

We have seen that, as opposed to pure systems, where long-range interactions

decaying faster than any power of the distance are usually irrelevant, for models with

an infinite-disorder critical point, a stretched exponentially decaying interaction is able

to alter the universality class of the transition. In higher dimensions d > 1, the critical

behavior of the short-range RTIM is still controlled by IDFPs with generalized critical

exponents ψd ≈ 1/2 varying weakly with d [20]. On the basis of the results obtained in

this work, we expect that a stretched exponentially decaying interaction with a < ψd
is relevant in any dimension and results in modified IDFPs with a-dependent critical

exponents.
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