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Abstract 

The occurrence and importance of photoautotrophic picoplankton (PPP, cells with a diameter <2 

μm) was studied along a trophic and salinity gradient in hypersaline lakes of the Transylvanian 

Basin (Romania). The studied lakes were found to be rich in PPP, with abundances (maximum: 

7.6 x 10
6
 cells mL

-1
) higher than in freshwater and marine environments of similar trophic 

conditions. The contribution of PPP to the total phytoplankton biovolume did not decrease with 

increasing trophic state as it was generally found in other aquatic environments. Regardless of 

the trophic conditions, the contribution of PPP could reach 90-100% in these hypersaline lakes. 

We hypothesized that the PPP predominance might be the result of the low grazing pressure, 

since heterotrophic nanoflagellates (the main grazers of PPP) were absent in the studied samples. 

There were significant differences in community composition among the lakes along the salinity 

gradient. CyPPP predominated in less saline waters (mainly below 5%), while EuPPP were 

present along the entire salinity range (up to 18.7%), dominating the phytoplankton between 3 

and 13% salinity. Above 13% salinity, the phytoplankton was composed mainly of Dunaliella 

species.  

 

Key words: picoplankton importance, phytoplankton composition, salinity gradient, trophic 

gradient, inland saline lakes, Transylvania 
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Introduction 

The total volume of continental salt water is approximately equal (~ 45%) to that of freshwater 

lakes and rivers (Hammer 1986; Last 2002). Although lakes are considered to be salt lakes above 

0.3 % salt content, this determination covers various habitats with a wide range of salinity (e.g. 

in extreme saline lakes the salt content can be as high as 30 or 40 %; Williams 1998; Boehrer 

and Schultze 2008), different ion composition (soda lakes with Na
+
 and HCO3

-
 ion dominance, 

salt lakes with Na
+
 and Cl

-
 ion dominance, etc.) and lake morphometry (from shallow ponds to 

deep, meromictic lakes). According to Hammer (1986), hypersaline lakes, which are common in 

the arid and semi-arid regions of the world, have a salt content above 5% (50 g L
-1

) and, are 

formed in endorheic basins. They also occur, however, outside these regions e.g. as a result of 

human activities such as solar salt production or mining (Boehrer and Schultze 2008). 

Hypersaline lakes of the Transylvanian Basin (Romania) are artificial water bodies with 

Na
+
 and Cl

-
 ion dominance and surface areas between 380 and 12.100 m

2
, which formed in the 

last century on a middle Miocene salt stratum (Alexe 2010). This phenomenon was a result of 

the collapse and inundation of abandoned salt mines (Bulgareanu 1996; Alexe 2010) established 

at the edges of the Basin, where the salt stratum (with an average thickness of 250-300 m) 

reaches the surface (Irimuş 1998; Alexe 2010). Most of these lakes experience significant 

anthropogenic impact, as they are popular bathing resorts. Among them, Lake Ursu (Sovata) is 

the best studied, where the rare phenomenon of heliothermy  can lead to a summer water 

temperature of as much as 60 ºC at 2 m depth (Kalecsinszky 1901; Alexe and Serban 2008; 

Máthé et al. 2014). Publications on these lakes focused mainly on the physical and chemical 

properties of the water, the characteristics of the mud, and on the bacterioplankton and 

nanophytoplankton communities (Muntean et al. 1996; Irimuş 1998; Ionescu et al. 1998; Alexe 

2010; Alinei et al. 2006; Nagy and Péterfi 2008; Borsodi et al. 2013). Based on the results of 

Ionescu et al. (1998), the nanophytoplankton of these hypersaline lakes was mainly composed of 

cyanobacteria and green algae. 

Photoautotrophic picoplankton (PPP, < 2 µm) is ubiquitous in both marine and freshwater 

environments (Stockner 1991; Callieri 2008). The contribution of PPP to the total phytoplankton 

biomass and primary production could be very significant: in open oceans up to 90 % (Li et al. 

1983; Agawin et al. 2000; Vaulot et al. 2008 and references therein), in continental waters up to 

75-80 % (Craig 1984; Weisse 1993; Callieri 2008 and references therein). The occurrence and 
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dynamics of PPP are influenced by several environmental factors, such as light intensity, water 

temperature, salinity, nutrient supply, grazing and viral infection (Stockner 1991; Callieri 2008). 

Although it is very hard to find an appropriate explanation for picophytoplankton success in 

aquatic systems (Callieri 2008), a widely accepted trend is the increase of picophytoplankton 

abundance and the decrease of their contribution (to the total phytoplankton) with increasing 

trophic state (Stockner 1991; Bell and Kalff 2001; Callieri 2008). 

PPP research in salt waters is mainly focused on marine environments in spite of the fact 

that saline lakes are common throughout the world (Hammer 1986; Last 2002). As a result, there 

are only a few publications about PPP occurrence in hypersaline lakes (Roesler et al. 2002; 

Estrada et al. 2004; Elloumi et al. 2009; Fanjing et al. 2009; Schapira et al. 2010; Krienitz et al. 

2012), which nonetheless clearly indicate the importance of these minute algae in these water 

bodies. For example, the phytoplankton of a soda lake with 18.8 % salt content in Inner 

Mongolia, China (Dagenoer Soda Lake) was exclusively dominated by a picoeukaryote alga 

(Picocystis salinarum)  despite the hypertrophic conditions in winter 2003 (Fanjing et al. 2009). 

In a hypersaline soda lake of the East African Rift Valley (Lake Nukuru) the same species 

composed 53-68 % of the total phytoplankton biomass in winter 2010 (Krienitz et al. 2012). 

According to our best knowledge, there are no published results about PPP abundance in 

European hypersaline lakes. On the other hand, the diversity of PPP communities in hypersaline 

lakes of the Transylvanian Basin has already been studied by molecular methods (Keresztes et al. 

2012). As a result, PPP were represented by a simple community consisting of two major 

genotypes: one from the picoeukaryote Picochlorum oklahomense and the other related to marine 

picocyanobacteria (Synechococcus sp.). Our aim was therefore to study the occurrence and 

importance of PPP in these water bodies along a trophic and salinity gradient. 

 

Materials and methods 

Sampling and laboratory measurements 

Water samples were collected with Meyer bottles and an electrical layer sampler in July 2010 

and in February and August 2011 from eight meromictic, hypersaline lakes in the Transylvanian 

Basin (Fig 1). The surface area of the lakes was relatively small, ranging between 600 and 3600 

m
2
, but their maximum depth was between 12 and 69 m (Table 1). In summer, only surface 

sampling was possible as a result of intensive bathing (700-1160 people/ha), excluding Lake 5 in 
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2010 and 2011 as well as Lake 2 and Lake 8 in 2011.  In winter the investigation was 

supplemented with depth profile sampling. Temperature, specific conductance (SC), pH and 

dissolved oxygen (DO) were measured in the field using a HI9033 multimeter (Hanna 

Instruments, Woonsocket, RI, USA). DO was not measured at one sampling station (Lake 8) in 

winter 2011 due to technical difficulties. Salt concentration was estimated from SC using the 

empirical equation presented in Keresztes et al. (2012).  Freshly collected water samples were 

transferred to the laboratory within two hours in dark conditions (thermo boxes) for further 

analyses. Chlorophyll a concentration was determined spectrophotometrically (Shimadzu 160A 

UV-VIS spectrophotometer) after hot methanol extraction using the absorption coefficients 

determined by Wellburn (1994). 

 

Epifluorescence microscopy 

PPP was studied by epifluorescence microscopy according to MacIsaac and Stockner (1993) in 

frozen samples within one week after sampling. Briefly, the samples were concentrated on 0.4 

µm pore-size black cellulose-acetate filters (Macherey-Nagel), which were embedded into 50 % 

glycerol. The slides were examined with a Nikon Optiphot 2 epifluorescence microscope at 1000 

x magnification. At least 20 fields (400 cells) were photographed with a Spot RT colour camera 

and picoalgae were counted on these pictures to avoid fluorescence fading. First the cells were 

located under blue-violet excitation (BV-2A), where picoeukaryotes (EuPPP) show deep red 

fluorescence due to chlorophyll a. Phycoerythrin-rich picocyanobacteria fluoresce bright yellow-

orange under this excitation, while phycocyanin-rich picocyanobacteria show only weak red 

autofluorescence. Switching to green excitation (G-2A) for the same field, picoeukaryotic cells 

do not show (or just a very weak) autofluorescence. The main property that makes 

picocyanobacteria (CyPPP) distinct from picoeukaryotes under an epifluorescence microscope is 

the presence of phycobiliproteins, which show greatly enhanced (red) autofluorescence when 

using the green waveband (MacIsaac and Stockner 1993). 

Heterotrophic nanoflagellates (HNF) were studied according to Sherr et al. (1993). 

Formalin-fixed samples (2% final concentration) were stained with proflavine (6.47 mg l-1 final 

concentration) for 5 minutes, filtered onto black, 0.8 µm pore size polycarbonate filters 

(Millipore) at low vacuum pressure and examined at 1000 x magnification using blue excitation 

(B-2A) with a Nikon Optiphot 2 epifluorescence microscope. 
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Phytoplankton biovolume calculation 

The abundance and composition of nano- and microplankton were determined in Lugol-fixed 

samples with an inverted microscope using routine enumeration protocol (Utermöhl 1958). The 

total biovolume of the phytoplankton was calculated on the basis of cell volume and abundance 

values assuming a specific gravity of 1.0. Cell size measurements of nano- and microplankton 

were performed on each species at least on 10 individuals. Picoplankton cell volumes were 

calculated by measuring the dimensions of 50 cells using an Olympus BX51 differential 

interference contrast microscope.  

 

Statistical analysis 

Relationships between environmental parameters and biological variables were studied using 

Spearman’s rank correlation with OriginPro 8.6 software. Relationship was considered to be 

significant at p < 0.05. 

 

Results 

Physical and chemical characteristics of the lakes 

 

The upper layer of the studied lakes had a salt content above 5% (50 g L
-1

), with the exception of 

Lake 5, where lower salinity values (2.3-3.4%) were found (Table 1). Strong stratification was 

observed in the case of deep profile sampling: beneath the mixolimnion, salinity sharply 

increased, resulting in the halocline between 1.5 and 4 m, with further increases in a number of 

less distinct steps deeper in the water column. The salinity of the monimolimnion varied between 

15.6 and 31% (Table 1). In Lake 5, anthropogenic deep water extraction leads to a decrease in 

salinity (7.2-21% in the monimolimnion) and a deeper halocline (7-8 m). In winter, Lake 5 had 

an ice cover of approximately 25 cm, while on the other lakes there was only very thin ice (1-2 

cm) and/or a lens of fresher water at the surface due to precipitation. As a result, the salinity of 

this surface layer was between 2.1 and 7.6% (Table 1). 

The temperature profiles of the lakes also show strong stratification. In summer, 

temperature was found to be nearly constant in the mixolimnion (27-31 °C in 2010, 25-29 °C in 

2011), while beneath the halocline it decreased to 15-17 °C. Thermal stratification above the 
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halocline occurred only in Lake 5, decreasing to 18°C at 6 m depth and showing only a slight 

decrease below the halocline.  Heliothermy was observed in the most saline lake (Lake 8)in 

summer 2011: temperature increased from 25 °C to 29 °C down to a depth of 2.4 m, then started 

to decrease with increasing depth. Thermal stratification in winter was evident, with water 

temperature ranging from -1.7 to 2 °C in the surface water layer (within the lens of fresher 

water), while the mixolimnion had a constant temperature (3-7 °C) excluding Lake 5, where a 

continuous increase (from 3 to 13 °C) was observable. A pronounced increase was found in the 

halocline, and the temperature of the monimolimnion was between 14 and 17 °C in all of the 

studied lakes. 

The halocline exhibited also sharp changes in oxygen and pH: the mixolimnion was 

saturated with oxygen and had a pH between 7.5 and 9.1, while the monimolimnion was mostly 

anoxic with a pH from 5.9 to 7.7 (Table 1). A deep DO maximum along with a pH increase was 

found in the monimolimnion of Lake 2 at 2.5 m (DO: 14 mg L
-1

, 120%; pH 8.2) and Lake 6 at 4 

m (DO: 17.8 mg L
-1

, 195%; pH 7.2) in winter 2011. In Lake 8, the heliothermy of summer 2011 

was coupled with oxygen supersaturation: the concentration of DO increased to more than 20 mg 

L
-1

 (>200%) with a pH value of 7.7 at 2.4 m depth. 

 

Distribution of chlorophyll a 

 

In summer 2010, chlorophyll a concentration ranged between 4 and 247 µg L
-1 

at the surface 

layers. In the case of deep profile sampling in Lake 5, chlorophyll a distributed homogenously 

(3.5-4.4 µg L
-1

) through the mixolimnion. In winter 2011, chlorophyll a concentrations were 

lower (3-44 µg L
-1

) at the surface layers than in summer 2010, except in Lake 8 (10 µg L
-1 

in 

summer 2010 and 48 µg L
-1

 in winter 2011). Together with the DO peak, a deep chlorophyll a 

maximum (DCM) was found in Lake 2 at 2.5 m and in Lake 6 at 4 m with values of 127 and 9.5 

µg L
-1

, respectively. However, a DCM was also observable in Lake 4 and Lake 5 (9 µg L
-1

 at 3 

m depth on both sites) without a significant increase in dissolved oxygen concentration and in 

the case of Lake 8 (117 µg L
-1

 at 1.5 m water depth, DO was not measured). In summer 2011, 

chlorophyll a ranged between 0 and 430 µg L
-1 

at the surface layers. In Lake 2, Lake 5 and Lake 

8, chlorophyll a concentration increased with increasing water depth up to 21 µg L
-1 

at 3 m, 12 
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µg L
-1 

at 5 m and 4.5 µg L
-1 

at 2.5 m, respectively. In the heliothermal layer of Lake 8, where DO 

reached its maximum (2.4 m), chlorophyll a concentration was only 1.7 µg L
-1

. 

 

Photoautotrophic picoplankton and heterotrophic nanoflagellates 

 

The PPP community was composed of phycocyanin-rich picocyanobacteria and picoeukaryotic 

algae with highly variable abundance values between 0 and 7.6 x 10
6
 cells mL

-1
 (Fig.2). In 

summer 2010 the PPP community was dominated by picocyanobacteria (4.3 x 10
4
 - 7.3 x 10

6
 

cells mL
-1

) in the majority of the surface samples, however in Lake 3 and Lake 8 only 

picoeukaryotes (1.3 x 10
6
 and 7 x 10

3
 cells mL

-1
, respectively) were found. In the case of deep 

profile sampling in Lake 5, picocyanobacteria distributed homogenously through the 

mixolimnion. 

In winter 2011, picoeukaryotic algae dominated in the surface layers with abundances 

between 2.6 x 10
3
 and 4.8 x 10

5
 cells mL

-1 
except in Lake 5, where picocyanobacteria were 

found with lower abundances (1.6 x 10
3
 and 1.8 x 10

4
 cells mL

-1
).  In the deeper layers, an 

abundance peak of picoeukaryotes was observed in Lake 2 at DCM depth (2.5 m) with an 

abundance value of 1.3 x 10
6
 cells mL

-1 
and within the anoxic monimolimnion of Lake 1 (4.4 x 

10
5 

cells mL
-1

) at 5 m and in Lake 8 (1.1 x 10
5 

cells mL
-1

) at 3 m. Similarly to the latter, 

picocyanobacteria were observed in the anoxic monimolimnion of Lake 5 and Lake 7 (4.4 x 10
5
 

and 2.1 x 10
4
 cells mL

-1
) at 3 m depth. 

In summer 2011, the PPP community was dominated by picoeukaryotes with abundances 

between 2.6 x 10
4
 cells mL

-1 
and 7.1 x 10

6
 cells mL

-1
 in most of the surface samples. 

Picocyanobacteria dominated only in Lake 5 and Lake 6 (6.1 x 10
4
 and 1.5 x 10

6
 cells mL

-1
, 

respectively).  In the case of deep profile sampling, the abundance of picoalgae was homogenous 

through the mixolimnion in Lake 2 (EuPPP) and Lake 5 (CyPPP). Picoalgae were absent from 

the mixolimnion of Lake 8, but in the anoxic monimolimnion the abundance of 

picocyanobacteria reached 3.2 x 10
5
 cells mL

-1
 at 4 m depth. 

Heterotrophic nanoflagellates were not observed in any of the samples. 

 

Phytoplankton community structure and importance of PPP along the salinity gradient 
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Significant differences were found within the PPP community along the salinity gradient: CyPPP 

were mainly found in less saline waters (up to a salinity of 11%, but mainly below the lower 

limit of the hypersaline category), while EuPPP does not seem to be affected by salinity, as they 

were present in consistently high numbers along the entire salinity range (up to 18.7% salinity). 

The highest abundance values of EuPPP, however, were observed between 5.2% and 11.5% (Fig. 

3.). 

Regarding the composition of the total phytoplankton, the PPP community (CyPPP 

and/or EuPPP) was dominant (more than 50% of the total phytoplankton biovolume) in the 

majority of the studied samples (Fig. 4). Dinophytes were found in small numbers only below 

5% salinity. CyPPP, cryptophytes, small chrysophytes or EuPPP were the dominant group 

between 2 and 6% salinity, while diatoms were observed only with low contribution (Fig. 4). 

Above 6% salt content, mainly EuPPP predominated the phytoplankton up to 13% salinity, while 

Dunaliella sp. up to 31% (Fig. 4.). In winter 2011, the phytoplankton community was 

exclusively composed of the latter group at the DCM in Lake 6 (at 4 m depth) and in Lake 8 (at 

1.5 m depth). 

 

Importance of PPP along the trophic gradient  

 

PPP abundance increased with increasing trophic state and the obtained data were mostly in good 

agreement with PPP abundance values found in freshwater lakes and oceans (expressed here as 

empirical regression models described by Bell and Kalff (2001); Fig. 5.). In some cases, 

however, these values were found to be one order of magnitude higher than in lakes or oceans 

with similar trophic state (Fig. 5.). 

In the studied hypersaline lakes, the share of PPP from the total phytoplankton biovolume 

did not decrease with increasing trophic state as it was described for freshwater and marine 

environments (Fig. 6.). Regardless of the phytoplankton biovolume, the contribution of PPP 

could reach 90-100% in these aquatic environments (Fig. 6.). 

 

Phytoplankton and environmental variables 
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A positive correlation was found between temperature and the relative biovolume of CyPPP, 

while negative correlation between temperature and the biovolume of Dunaliella sp. (Table 2). 

The biovolume and contribution of CyPPP and cryptophytes (correlated negatively with salinity, 

while.  Dunaliella sp. showed a positive correlation (Table 2). Significant correlations were not 

found between salinity and other algal groups. With regard to trophic state, there was a clear 

positive correlation between chlorophyll a concentration and PPP/EuPPP biovolume (Table 2). 

  

Discussion  

The rich PPP community (maximum abundance of 7.6 x 10
6
 cells mL

-1
), which was found in the 

studied lakes, showed no clear depth distribution pattern. Deep-water CyPPP or EuPPP 

populations were found, however, in many lakes within the anoxic monimolimnion, which might 

be the result of sinking as was described in Mono Lake (Budinoff and Hollibaugh 2005). 

Seasonal succession of the PPP community - the dominance of CyPPP in summer and EuPPP in 

winter -, which has often been described in temperate freshwater and soda lakes as well as in 

Mediterranean lagoons (Callieri 2008; Vörös et al. 2009; Somogyi et al. 2009; Bec et al. 2011), 

was not observed in the studied hypersaline lakes. In spite of the fact that CyPPP is mainly found 

in summer and there was a positive relationship between temperature and CyPPP contribution to 

total phytoplankton biovolume, EuPPP can dominate the PPP community either in winter or in 

summer. Similarly to that, Fanjing et al. (2009) described the exclusive dominance of Picocystis 

salinarum in the hypersaline Dagenoer Soda Lake through the whole year.  

Salinity seems to influence the PPP communities better than temperature: CyPPP was 

found mainly below 5% salt content and their biovolume/contribution decreased with increasing 

salinity. EuPPP, however, was observed with high abundance and contribution values between 5 

and 11.5 % salinity. Above that, EuPPP was found only with lower abundances up to 18.7% salt 

content. In the most saline lake (Lake 8.), where the salinity of the mixolimnion ranged between 

19 and 21%, PPP was barely found. Similar results were obtained in a coastal lagoon system, 

where the environmental variable that best explained the picophytoplankton abundance pattern 

along the lagoon was salinity (Schapira et al. 2010). According to Schapira et al. (2010), CyPPP 

was mainly abundant below 3% salinity, while at salinities ranging from 4.5% to 14.0% the PPP 

was dominated by EuPPP. However, at salinity values greater than 14.0%, the community 

shifted into a Prochlorococcus-like population (Schapira et al. 2010). In a solar saltern system 
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(Tunesia), the PPP was exclusively composed of EuPPP with maximum abundances between 7.9 

and 19% salinity (Elloumi et al. 2009). In the crystallizer pond (43 % salinity), however, 

picoeukaryotes were not found (Elloumi et al. 2009). These results are in good correlation with 

our findings. However, available nutrients (N and P forms and ratios) may have significant 

influence on PPP community composition and dynamics as described by Crosbie et al. (2003). 

Within the picosize range, mainly eukaryotic algae were isolated from hypersaline 

environments. Among them, Picochlorum and Picocystis are the most thoroughly studied 

(Henley et al. 2002; Roesler et al. 2002; Fanjing et al. 2009). In the studied hypersaline lakes, a 

previous DGGE analysis detected Picochlorum sequences (Keresztes et al. 2012). Henley et al. 

(2002) studied the salinity tolerance of Picochlorum oklahomense, which originated from the 

Salt Plains National Wildlife Refuge (Oklahoma, USA). As a result, Picochlorum was able to 

grow from 0 to 10% salinity, however it exhibited decreasing growth rate with increasing salinity 

(Henley et al. 2002). A Picocystis isolate from an Inner Mongolian soda lake exhibited a broader 

salinity tolerance, as it could grow over a salinity range of 2.9-17.5% (Fanjing et al. 2009). 

Another Picocystis strain, which was isolated from Mono Lake, was able to grow from 0 to 26% 

salinity, with a peak at 4% (Roesler et al. 2002). In comparison, a picocyanobacterium strain 

isolated from the same lake had lower salinity tolerance (growing from 0% to 10% salinity with 

a maximum specific growth rate at 3% and a minimum at 8%) than Picocystis (Budinoff and 

Hollibaugh 2007). The higher salinity tolerance of EuPPP could explain their success in waters 

of higher salinity, as was observed in lagoon and solar saltern systems (Elloumi et al. 2009; 

Schapira et al. 2010), in agreement with the present study. 

Microscopic observations on the composition of nano- and microplankton corresponded 

well with the results of the DGGE analysis, which showed the presence of mainly flagellated 

chlorophytes (Dunaliella spp., Chlamydomonas spp.), besides cryptophytes, haptophytes and 

diatoms (Keresztes et al. 2012). A significant change appeared in the community structure as the 

salinity increased. Below 5% salinity, CyPPP predominated in the majority of the samples. 

EuPPP was dominant between 3 and 13% salinity, but above that, the communities were 

exclusively dominated by Dunaliella. In the most saline lake (Lake 8.) the phytoplankton was 

dominated by Dunaliella sp. at all sampling dates. The broad halotolerance of Dunaliella sp. was 

described in many studies. In a solar saltern system (Tunesia), chlorophytes (Dunaliella sp.) and 

cyanobacteria (Aphanothece sp.) dominated the community above 19% salinity (Elloumi et al. 
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2009), similarly to other systems in Spain, where Dunaliella salina was found at salinities of 

25% and above (Pedrós-Alió et al. 2000; Estrada et al. 2004). Henley et al. (2002) compared the 

salinity tolerance of the picoeukaryote P. oklahomense and Dunaliella sp. isolated from the same 

hypersaline environment. Picochlorum preferred lower salt content than Dunaliella, which 

exhibits broad halotolerance, growing faster at 5-10% salinity than at 2% (Henley et al. 2002). 

According to Jahnke and White (2003), Dunaliella tertiolecta was able to grow at up to 17.6% 

salinity, while other Dunaliella species (D. parva, D. salina and D. bardawil) at up to 29 %. The 

exclusive Dunaliella sp. predominance in the studied hypersaline lakes above 13% salinity is in 

good agreement with previous findings. 

The generally observed trend about the increase of PPP abundance with increasing 

trophic state (Stockner 1991; Bell & Kalff 2001; Callieri 2008) was clearly observable in the 

studied hypersaline lakes. However, the maximum PPP abundance values (7.1-7.6 x 10
6
 cells 

mL
-1

) were higher than in the majority of freshwater and marine environments of similar trophic 

state (Fig. 5). It is hard to find PPP abundance values from other hypersaline lakes for 

comparison. On the other hand, Schapira et al. (2010) found PPP abundances in the same order 

of magnitude (1.3-1.4 x 10
6
 cells mL

-1
) in a coastal lagoon system with a salinity of 8-11% 

(South Australia), despite the lower biomass of the phytoplankton (chlorophyll a: 6 - 14 µl L
-1

). 

In some hypersaline soda lakes of the East African Rift Valley, PPP (Picocystis sp.) was also 

found in high abundance (3.1 – 3.5 x 10
6
 cells mL

-1
) but the trophic state was not determined 

(Krienitz et al., 2012). In the case of the hypertrophic Dagenoer Soda Lake (Inner Mongolia, 

China), Fanjing et al. (2009) also hinted at high PPP abundances (Picocystis salinarum), but 

chlorophyll a and picoplankton abundance were not determined. On the basis of these findings, 

high PPP abundance could be common in hypersaline lakes, but the number of studies describing 

PPP occurrence in these environments, particularly along with trophic state, is limited.  

Predominating in the majority of the samples, the PPP community in the studied 

hypersaline lakes did not follow the widely observed trend on the decreasing contribution of PPP 

with increasing trophic state in freshwater and marine ecosystems (Stockner 1991; Bell and Kalff 

2001; Callieri 2008). In spite of the fact that the abundance of PPP was studied in lagoon and 

solar saltern systems along a salinity and/or trophic gradient, the relative importance of PPP 

within the phytoplankton was not characterized (Elloumi et al. 2009; Schapira et al. 2010; 

Estrada et al. 2004). The present study is therefore the first observation on the behaviour of PPP 
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as a function of trophic state in hypersaline lakes. The PPP predominance in hypersaline lakes 

might be the result of decreased grazing pressure, as heterotrophic nanoflagellates (the main 

grazers of PPP (Callieri 2008)) were absent in the studied lakes. Similarly to our findings, Wu et 

al. (2009) described the absence of HNF in hypersaline lakes of the East Tibetan Plateau. 

According to Pedrós-Alió et al. (2000), who studied the microbial food web along the salinity 

gradient in solar saltern systems in Spain, the abundance of HNF and ciliates decreased with 

increasing salinity, disappearing around 25% salt content. However, in other solar salterns, HNF 

were found to be actively grazing on bacteria even in the most saline (32-37%) ponds (Park et al. 

2003; 2006). The study of other potential grazers (such as ciliates and larger zooplankton, such 

as Artemia sp., which grazed heavily on PPP in Lake Mono according to Roesler et al. 2002) 

along with grazing experiments would be necessary to quantify top-down processes in 

hypersaline lakes, which might serve as an explanation to the unusual behaviour of PPP in these 

ecosystems. 
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TABLES 

Table 1 List of investigated lakes and selected physical, chemical and biological variables. Morphometric data (water surface, average 

and maximum depth) were adopted from Alexe (2010). Abbreviations: ML – mixolimnion, MM – monimolimnion, ND – no data. 

Lake 

 
Coordinates 

Surface 

(m
2
) 

Depth 

(m)
 a
 

 

pH 

Estimated NaCl 

concentration (g L
-1

)
 b
 

Max. 

chlorophyll a 

(µg L
-1

) 

Max. PPP 

abundance 

(cells mL
-1

) 

Max. PPP 

contribution 

(%) ML MM ML MM 

Lake 1 

(L. Cabdic) 

N47°07.712' 

E23°51.900' 
1524 8.9 (38) 7.5-8.9 7.3 (36) 55-60 219- >311 104 7.3 x 10

6
 95 

Lake 2 

(L. Băilor) 

N46º55.913' 

E23º54.073' 
600 2.5 (69) 8.5-8.8 6.9-8.2 (31) 44-52 156- >311 128 7.6 x 10

6 90 

Lake 3 

(L. Băilor 

Cojocna) 

N46°44.907' 

E23°50.441' 
2425 3.5 (12) 8.3-8.5 ND (64) 114-116 ND 431 7.1 x 10

6 99.9 

Lake 4 

(L Durgău 

Cojocna) 

N46°44.836' 

E23°50.442' 
2406 9.2 (43) 8.2-8.6 7.0-7.4 110-128 >311 12 1 x 10

5 82 

Lake 5 

(L. Tarzan) 

N46º34.472' 

E23º48.549' 
3589 4.9 (12) 8.2-9.1 6.7-7.7 23-34 72-211 12 5 x 10

5 89 

Lake 6 

(L. Ocnei) 

N46°35.158' 

E23°47.282' 
2134 12 (33) 7.6-8.7 6.0-7.2 44-78 >311 11 1.5 x 10

6 100 

Lake 7 

(L. Rotund) 

N46°35.099' 

E23°47.210' 
624 3.3 (13) 8.1-8.6 5.9-6.9 (21) 44-83 >311 89 9.9 x 10

5 96 

Lake 8 

(L. Fără Fund) 

N45º52.578' 

E24º04.064' 
1672 6 (32) 7.5-9.1 6.1-7.7 (76) 187-209 >311 117 7.1 x 10

3 3.8 

a 
Maximum values are given in parenthesis. 

b 
Salinity of freshwater lens on the surface in winter 2011 is given in parenthesis.
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Table 2 Spearman’s rank correlation coefficients between biological, physical and chemical 

variables (*** p < 0.001, ** p < 0.01, * p < 0.05). Coefficients were computed with data from 

the studied hypersaline lakes at all sampling dates and depths, excluding data from the anoxic 

monimolimnion (n=47). Abbreviations: CyPPP – picocyanobacteria, EuPPP – picoeukaryotes, 

PPP – autotrophic picoplankton. 

 

Variable 1 Variable 2 
Correlation 

coefficient 

Temperature (°C) CyPPP contribution to PPP biovolume (%) 0.386* 

Temperature (°C) Dunaliella biovolume (mm
3
 L

-1
) -0.420* 

Specific conductance (mS cm
-1

) CyPPP biovolume (mm
3
 L

-1
) -0.578*** 

Specific conductance (mS cm
-1

) CyPPP contribution to PPP biovolume (%) -0.556*** 

Specific conductance (mS cm
-1

) CyPPP contribution to phytoplankton biovolume (%) -0.518*** 

Specific conductance (mS cm
-1

) Dunaliella biovolume (mm
3
 L

-1
) 0.357* 

Specific conductance (mS cm
-1

) Dunaliella contribution to phytoplankton biovolume (%) 0.459** 

Specific conductance (mS cm
-1

) cryptophyte biovolume (mm
3
 L

-1
) -0.527** 

Specific conductance (mS cm
-1

) cryptophyte contribution to phytoplankton biovolume 

(%) 

-0.588*** 

Chlorophyll a concentration (µg L
-1

) EuPPP biovolume (mm
3
 L

-1
) 0.449** 

Chlorophyll a concentration (µg L
-1

) PPP biovolume (mm
3
 L

-1
) 0.605*** 
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FIGURE LEGENDS 

 

Fig. 1 Geographical location of the sampling sites. Squares represent some major cities and full 

circles mark sampling sites with the the names of nearby villages and the numerical code of lakes 

in parentheses 

Fig. 2 Relationship between picoplankton abundance (PPP abundance) and temperature in the 

studied hypersaline lakes. Data from anoxic monimolimnion are not included 

Fig. 3 Picoplankton abundance (PPP abundance) along the salinity gradient in the studied 

hypersaline lakes. Data from anoxic monimolimnion are not included 

Fig. 4 Occurrence of different phytoplankton taxa along the salinity gradient in all samples 

obtained from the hypersaline lakes. Abbreviations: CyPPP – picocyanobacteria, EuPPP – 

picoeukaryotes. Data from anoxic monimolimnion are not included 

Fig. 5 Relationship between picoplankton abundance (PPP abundance) and total chlorophyll a 

concentration in the studied hypersaline lakes. Empirical regression models describing the 

relationship in freshwater lakes and marine systems are also shown (Bell & Kalff, 2001). Data 

from anoxic monimolimnion are not included 

Fig. 6 Relationship between picoplankton contribution (Percent PPP biovolume) and total 

chlorophyll a concentration in the studied hypersaline lakes. Empirical regression models 

describing the relationship in freshwater lakes and marine systems are also shown (Bell & Kalff, 

2001). Data from anoxic monimolimnion are not included 
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Fig.6. 


