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Abstract 

This paper gives an overview of the advantages and associated caveats of the most common sample 

handling methods in surface-sensitive chemical and biological sensing. We summarize the basic 

theoretical and practical considerations one faces when designing and assembling the fluidic part of 

the sensor devices. The influence of analyte size, the use of closed and flow-through cuvettes, the 

importance of flow rate, tubing length and diameter, bubble traps, pressure-driven pumping, cuvette 

dead volumes, and sample injection systems are all discussed. Typical application areas of particular 

arrangements are also highlighted, such as the monitoring of cellular adhesion, biomolecule 

adsorption-desorption and ligand-receptor affinity binding. Our work is a practical review in the 

sense that for every sample handling arrangement considered we present our own experimental data 

and critically review our experience with the given arrangement. In the experimental part we focus 

on sample handling in optical waveguide lightmode spectroscopy (OWLS) measurements, but the 

present study is equally applicable for other biosensing technologies in which an analyte in solution 

is captured at a surface and its presence is monitored. Explicit attention is given to features that are 

expected to play an increasingly decisive role in determining the reliability of (bio)chemical sensing 

measurements,  such as analyte transport to the sensor surface; the distorting influence of dead 

volumes in the fluidic system; and the appropriate sample handling of cell suspensions (e.g. their 

quasi-simultaneous deposition). At the appropriate places, biological aspects closely related to 

fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also 

discussed and compared to their models used in biosensing. 

 

Keywords:  

fluidic systems analyte transport 

dead volumes label-free detection 

optical biosensors fluid handling of live cells 
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1. Introduction 

Nowadays, the field of chemical and biological sensing goes well beyond the application of 

novel technologies to detect the presence of a given analyte. The range of table-top biosensor 

instrumentation is wide and their use helps many laboratories worldwide to answer important 

scientific and technological questions in biomaterials and surface sciences, drug development, 

biophysics, (bio)nanotechnology and cell biology [1], as well as supramolecular chemistry [2]. 

 Biosensing technologies enabling label-free detection at a solid-liquid interface include 

surface plasmon resonance (SPR) (and SPR imaging, SPRi) [3,4,5], quartz crystal microbalance 

(QCM) [6], dual polarization interferometry (DPI) [7,8], grating-coupled interferometry (GCI) [9, 

10,11,12], the high-throughput compatible resonant waveguide grating biosensing [13,14,15], and 

optical waveguide lightmode spectroscopy (OWLS) [8,16,17,18]. OWLS instruments are currently 

among the most sensitive commercial label-free biosensors which enable the monitoring of various 

processes accompanied by refractive index changes 100-200 nm above a sensor surface . OWLS 

permits real-time, high-sensitivity (adsorbed mass coverages as low as 10 pg/mm
2
 can be detected) 

label-free detection with a typical temporal resolution of 10-20 s, which makes it an ideal research 

tool in several fields, including the online monitoring of protein adsorption [19,20,21,22], bacterial 

[23,24] and mammalian cell adhesion [25,26,27,28,29,30], supported lipid-bilayer deposition [31,32], 

polyelectrolyte multilayer build-up [33,34,35], nanoparticle surface adhesion and assembly [36,37], 

and receptor-ligand interactions [38,39]. 

 An outstanding advantage of surface-sensitive label-free biosensing technologies is that they 

allow so-called “real-time monitoring”, thus generating kinetic data. Kinetic modeling based on such 

valuable data enables the molecular or cellular process under investigation to be quantitatively 

characterized in detail. For example, adsorption and desorption rates at model surfaces, or kinetic 

rates in affinity binding can be determined [40,41], which contribute to a better understanding of the 

mechanism underlying the investigated surface process. Kinetic analysis of experimental data is 
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furthermore the key to a detailed characterization of cell adhesion [14], including the separation of 

the governing cellular processes from less relevant ones, and the quantification of the differences 

arising from different cell types, substrata, media and other environmental factors 

[14,42,43,44,45,46]. However, kinetic data is often misinterpreted. A common reason is that the 

temporal evolution of the concentration distribution of the investigated objects over the sensing area 

is not known, or is uncontrolled, which is closely related to the applied fluidic system.  

 In the majority of applications, biomolecules or cells are investigated in aqueous solutions 

mimicking their native environment. OWLS measurements are usually carried out by sealing a 

cuvette containing the medium over the sensing area. Generating flow to ensure a continuous supply 

of fresh analyte, changing solutions, executing washing steps, etc. all require some kind of fluid 

handling system. 

A variety of fluidic systems can be built from the wide range of commercially available 

accessories in order to optimize sample handling for a particular application. The simplest systems 

use a plain well without flow (henceforth “closed cuvette”). However, this simplest configuration 

may yield less informative data as compared to measurements when the liquid sample is continuously 

flowed over the sensing area [17]. More sophisticated fluidic systems, therefore, consist of pumps, 

sections of tubes of different lengths and diameters, the junctions between them, and a flow-through 

cuvette (Fig. 1). Other components such as bubble traps can be integrated as well [47]. 

However, in several applications, especially when working with costly analytes, the 

continuous flow of fresh material is not feasible. In these applications, some kind of sample injection 

system has to be used, preferably in combination with a flow-through system. This facilitates sample 

handling automation: the sample is introduced by aspiration or injection and subsequently guided to 

the cuvette. This technique is called flow injection analysis (FIA), which has many valuable features 

for on-line biosensor measurements [48]. Although FIA can be used to modify the sample matrix or 

for preconcentration or derivatization, biosensing has predominantly exploited the precise and 

reproducible fluid handling capability of the injection valves used with FIA [49,50]. 
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Importantly, the fluidic system is a critical part of any biosensor setup, as it is the most 

common source of experimental errors, which endanger the reliability of the recorded data and may 

lead to serious misinterpretations. This is especially true when elaborate manipulations with the 

samples have to be made or when the kinetics of the processes are deeply interpreted. The present 

work overviews the most important theoretical and practical considerations involved in the design of 

a fluidic system, with the aim of facilitating finding the best arrangement for a given application; and 

emphasizing how to obtain reliable data, which can be then subjected to detailed analysis. In the 

experimental part we focus on sample handling in OWLS measurements, but this study is equally 

applicable for other biosensing technologies in which an analyte in solution is captured at a surface 

and its presence is monitored. At the appropriate places, key biological phenomena closely related to 

fluidics (e.g. cellular mechanotransduction, competitive adsorption, blood flow in veins) are also 

highlighted to indicate how in vivo conditions can be better approximated and understood. After a 

brief description, the reader is referred to papers specifically involved in these problems.  

 

 

2. Short overview of the basic theory of fluidics and analyte transport  

2.1 Fluid handling in cuvettes and cylindrical connecting tubes – flow rates 

The supply of analyte solution is usually pumped through tubes to reach a tube-like cuvette 

placed over the sensing area. The nature of the flow is determined by the value of the dimensionless 

Reynolds number ( ), defined as the ratio of inertial forces (due to the flow) and viscous forces (due 

to the internal friction of the fluid): 

  

(1) 

where , , and  are the density, dynamic viscosity and mean velocity of the fluid, respectively.  is 

the diameter of the tube,  is the volumetric flow rate and  is the cross-section of the tube [51]. 
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Below a critical value of , viscous forces dominate and the flow is laminar, i.e. the velocity 

depends only on the perpendicular distance from the fore-axis of the tube. In this case the evolving 

streamlines are parallel to the axis, and the stream volume can be split into coaxial layers in which 

the flow rates are the same (Fig. 1). The flow is surely laminar in a tube when , and 

turbulent when . In typical biosensing experiments the flow rates guarantee that  is 

well below the former threshold, therefore only laminar flow occurs [52]. With the present focus on 

instrumental miniaturization (e.g., the creation of labs-on-chips) internal tubing diameter can be as 

small as 100 µm or even less;  is then of order unity [53]. An important exception to the 

preponderance of laminar flow is when an atypically high flow rate is used in order to effectively 

flush the dead volumes of the cuvette by generating turbulence (see §2.5.3 and §4.3.2). 

 A number of practical aspects set upper and lower limits to the actual flow rate with which an 

analyte solution can be pumped during a biosensing experiment. The chosen rate determines how 

much sample is needed for one measurement and whether the investigated process will be kinetically 

or transport-limited (see §2.3); in the latter case the resulting kinetic data will not be representative of 

the true surface process (as may happen in Biacore experiments using the popular dextran-coated 

surfaces [54]).  

Expense or limited availability of a sample pushes one to use the least possible amount of 

sample in a measurement and, as an initial strategy, the amount can easily be decreased using lower 

flow rates. Additionally, it has been claimed that a lower detection limit can be achieved by using 

low flow rates [55]. However, diminishing the flow rate will ultimately result in transport-limited 

adsorption of analyte, during which the surface adsorption step in the sensing area is fast compared 

to the rate the analyte is supplied by the flow system and, therefore, the true surface process will not 

dominate the kinetics of the obtained signal (see §2.3), which is presumably what one wishes to 

quantify. Moreover, during data evaluation it is a common assumption that by the time the presence 

of the sample first appears in the recorded data, the cuvette has already been perfectly flushed 
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through by the sample solution (e.g., the liquids have been perfectly exchanged). The lower the flow 

rate, the more carefully this assumption needs scrutiny (§2.3).  

In this review we consider only pressure-generated flow. If it is laminar, the Hagen-Poiseuille 

law states that 

  

(2) 

where  and  are the pressures at the two ends of the tube, and R and L are the inner radius and 

length of the tube, respectively. Based on the formal similarity of Eq. 2 to Ohm‟s law, the 

multiparameter factor multiplying  on the right side of Eq. 2 is usually referred to as the 

“resistance” of the tube. Note how this factor depends on  and . If this resistance is changed 

following the modification of the setup, it is strongly recommended to check whether the pump is 

powerful enough to generate the same flow rate as earlier. 

Fluid dynamics and flow in a tube have important biological aspects, especially when 

considering flow in blood vessels. Note, however, that pulsatile flow of (the non-Newtonian) blood in 

the compliant vessels is far too complex to be characterized by the classical Poiseuille fluid dynamics 

(describing steady flow in a rigid tube of circular cross-section) [56] briefly introduced above. 

 

2.2 Diffusion of analytes: the diffusion boundary layer 

Surface sensitive, high-performance label-free techniques require the sample of interest to be 

brought into close contact with the surface of the sensor (the planar waveguide in OWLS, RWG or 

GCI or the gold surface in SPR). During analyte transport two fundamental processes have to be 

distinguished: convection (sometimes called advection) and diffusion. The liquids in which the 

biological or chemical objects under investigation are dissolved or suspended are usually introduced 

above the sensor surface by pumps, engendering convection [51]. At the solid-liquid interface, 

however, the tangential flux is always zero and, therefore, another transport process, diffusion, 
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dominates close to the surface. The importance of diffusion relative to other transport phenomena 

(convection, sedimentation) is strongly dependent on the nature of the suspended analyte objects: 

their size, buoyancy, 3D shape and structure are all important factors.  

 An object having a diffusion coefficient D will diffuse to an expected distance of 

  
(3) 

from its starting point during elapsed time .  is a numerical constant which depends on 

dimensionality; it is 2,4 or 6 for 1,2, or 3 dimensional diffusion, respectively. Assuming spherical 

symmetry for the analyte object, the Stokes-Einstein equation can be used to calculate :  

  
(4) 

where  denotes the Boltzmann constant, T the absolute temperature, and  the radius of the object; 

if it is small the effect of gravity is negligible. 

Diffusion plays an important role in other parts of the fluidic system as well as above the sensor 

surface. For example, due to diffusion, the flow front in a tube is smeared out in the direction of its 

fore-axis, although to a minor extent compared to that caused by diffusion perpendicular to the axis. 

To understand the importance of the latter, one has to be familiar with the concept of the diffusion 

boundary layer. 

As the net result of friction between the fluid and the wall of the tubing, the laminar flow rate 

profile is parabolic inside the tubing and the cuvette (cf. Eq. 2) (Fig. 1). In the vicinity of the walls 

convection is negligible relative to diffusion (i.e. the dimensionless Péclet number, defined as the 

ratio of advective transport rate to the diffusive transport rate [57], is ), but the 

former dominates further away from the surface (i.e. ). The zone in which diffusion is the 

dominant process is called the diffusion boundary layer; it has a thickness of [17,41,51]: 
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(5) 

where  is the velocity of the leading point.  is dependent on the geometry of the fluidic system 

mainly through the constant C. For example, in the case of a cylindrical cuvette with radius R, 

, where  is the distance between the inlet of the cuvette and the point of sensing. It can be 

calculated from Eq. 4 that under typical experimental conditions  is 1-100 µm. 

 

2.3 Transport to, adsorption on, and desorption from the sensor surface 

Surface-sensitive optical biosensors detect refractive index changes close to a solid-liquid 

interface (§3.1). Since the adsorption of the investigated objects (molecules, viruses, bacteria, 

vesicles, etc.) onto the sensor and their desorption from it can strongly affect the refractive index in 

the sensing zone, an adsorption model has to be considered for a complete description of detectable 

refractive index changes.  

 

2.3.1 Adsorption model for single-component solutions   

The simplest kinetic adsorption model of practical use distinguishes reversible (subscript r) and 

irreversible (subscript i) adsorption from a solution  containing only a single type of analyte. To a 

first approximation the evolution of the surface excess of the reversibly and irreversibly adsorbing 

particles can be given by the following set of differential equations 

  

(6) 

where  is the available area function characterizing the free surface area available for the adsorbing 

objects. Here, and  are the rate coefficients for reversible and irreversible adsorption, 

respectively, while  is the first order rate coefficient for desorption; their actual values are 
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characteristic of both the adsorbing object and the surface. The concentration of adsorbing particles 

in the diffusion boundary layer is denoted as  (note, that the layer probed by the sensor is generally 

much more thinner than the diffusion boundary layer). The above model assumes that the reversibly 

and irreversibly adsorbing particles have the same size, shape, and surface affinity and that they 

randomly compete with each other. For example, a spherical, but chemically inhomogeneous protein 

could adsorb reversibly in certain orientations, otherwise irreversibly; the probabilities of the 

different orientations are subsumed in the rate  coefficients. The total mass at the surface is the sum 

of reversibly and irreversibly adsorbed molecules, . Note that  if , and 

 if the whole surface is covered to an extent that there is not enough free space for further 

adsorbing objects. The available area function depends on the shape of the adsorbing object [58], and 

usually has a complicated polynomial dependence on the occupied surface area. Note, that in the 

special case, when relatively large receptors are deposited on the sensor surface and used to capture a 

smaller analyte, the available area function has a simple linear form (Langmuir adsorption, [59]). 

A major aim of kinetic data analysis is the determination of the rate coefficients, which can be 

used to elucidate the molecular mechanism of the adsorption process. A key issue here is the 

appropriate characterization of the temporal evolution of , which is not always the same as that of 

the bulk concentration .  

 The adsorption model described by Eq. 6 predicts that  obtains its maximum value at 

the beginning of the adsorption process ( ) and monotonically decreases as the adsorption 

proceeds (Fig. 2 dashed line). In contrast, experimental data typically reveals a different behavior: at 

the initial stage of the adsorption, a transient regime can be observed. The process is said to be 

transport-limited if the adsorption of the particle of interest is faster than the replenishment of 

material in the vicinity of the surface [60]. As adsorption proceeds, more of the surface is occupied 

by adsorbed molecules leaving less space available for newly arriving ones, resulting in a slower rate 



16 

 

of surface mass increase. In this so-called kinetically limited regime the rate of adsorption,  

decreases monotonically with time, reflecting the diminishing available area.  

 During transport-limited adsorption,  is not equal to ; differences are the net result of 

diffusion from the bulk to the probed layer, and adsorption to and desorption from the surface. These 

can be taken into account by the following equation [41]: 

  

(7) 

where  and  are unit volume and area, respectively. In a flow-through cuvette  is kept constant 

above the diffusion boundary layer by supplying a continuous flow of analyte. If, however, flushing 

the volume above the diffusion boundary layer is not effectively instantaneous (compared to the 

sampling rate of the instrument and the duration of the whole adsorption process), a transient regime 

might appear in the kinetics of adsorption. As a result of this so-called flushing effect,  and, 

therefore,   are ill-defined in the early stages of solution exchange. The flushing effect can be 

aggravated by diffusion to and from the dead volumes – those volumes that are not part of the user-

generated laminar flow and which, therefore, cannot be completely and effectively instantaneously 

flushed. Dead volumes act like reservoirs when a sample is exchanged in the cuvette and, therefore, 

initialize diffusion-driven changes in the local sample concentration; this essentially effects the 

OWLS signal, which will be considered later (§4.2.2).  

 

2.3.2 Desorption from the sensor surface – readsorption and rebinding 

If adsorption is not irreversible, or to test whether it is, the adsorption stage with analyte in the 

fluidic system is followed by a washing/flushing stage when analyte-free medium (e.g. pure buffer) is 

introduced into the cuvette.  During this stage  (Eqn. 7) becomes zero and, typically desorption 

dominates (i.e. the term with  becomes the most significant). It is important to note that  is not 
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zero except near the end of the stage. Readsorption of freshly desorbed material occurs and is fully 

taken into account by using the same equations (Eqn. 6 and 7) for fitting the desorption part of the 

kinetics as for the adsorption part; the only difference is that  is set to zero (exactly how this is done 

depends on consideration of the dead volumes, see §4.2.2.1). 

It has to be noted that the above effect is also important in bioaffinity measurements, when 

receptors are immobilized on the sensor surface and ligands in solution are captured; if diffusion is 

slow compared to the on-rate (i.e. the dissociation phase is transport limited), a considerable amount 

of ligand will rebind rather than diffusing into the bulk solution [60, 61]. If this rebinding effect  is 

not taken into account during data analysis, an off-rate that is much lower than the actual one will be 

obtained [59]. The transport-limited dissociation phase under flow conditions can be described, to a 

good approximation, with the special analytical formula developed by Schuck and Minton [62]. 

Another alternative possibility is to prevent rebinding by adding competing ligand during the 

dissociation phase [59]. 

 

 

2.3.3 Adsorption from complex, multicomponent analyte solutions 

Importantly, the description of surface adsorption given in §2.3.1-2 can be applied for single-

component solutions only, and cannot be straightforwardly generalized for adsorption from a 

complex, multicomponent analyte solution. Adsorption from a complex sample takes place in a 

sequential and competitive manner, so the composition of the adsorbed layer is constantly evolving 

(Vroman effect) [63,64,65,66]. Those proteins which are bigger and have more affinity to the surface 

eventually displace the ones that occupy the surface areas more rapidly. As a result, for example the 

maximal ratio of the surface occupied by fibrinogen is generally obtained at intermediate blood 

serum concentrations [64]. 
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2.4 Fluid handling in cell-based assays 

Surface-sensitive biosensors enable various activities of adherent cells to be monitored with 

high sensitivity and high temporal resolution [14,30,67,68]. Cell-based studies performed on label-

free biosensors can basically be classified as adhesion, signaling, or mechanotransduction assays, 

each  of which requires different sample handling strategies. In general, sample handling in cell-

based assays remains always challenging. Additional difficulties of sample handling as compared to 

biochemical assays comes from that fact, that living cells are highly dynamic entities very sensitively 

responding to changes in their surroundings, and are also able to actively modify their environment 

(e.g through metabolism or secretion). Therefore, several criteria regarding sample handling have to 

be satisfied if one wishes to reliably monitor the behavior of living cells using OWLS or other 

surface-sensitive biosensors. 

  

2.4.1 Adhesion assays: general considerations, and cell deposition in an environment without 

continuous flow 

In vivo, cell adhesion and spreading are induced by amino acid sequences presented by proteins 

of the extracellular matrix (ECM), which are specifically recognized by the adhesion receptors of the 

cell [69,70]. Once the connection between some adhesion receptors and ligands are established, the 

cell will begin to spread by actively reorganizing its cytoskeleton; this attachment is essential for 

most cells to survive and properly function. In most cases, therefore, the sensor should be pre-coated 

with either a synthetic (e.g. PLL-g-PEG-RGD [14,71]) or a purified (e.g. collagen, fibrinogen) 

polymer mimicking the ECM in order to specifically promote the spreading of the subsequently 

seeded cells.  
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In cell spreading assays, the molecular coating should ideally be able to specifically activate the 

adhesion receptors and retract soluble biomolecules at the same time; so any change in the signal will 

originate from the spreading of cells, and the adsorption of biomolecules secreted by the cells will not 

significantly contribute to it [14,71]. (Noted, that kinetic readout of multiple parameters (the position 

and width of the resonance peaks) in OWLS enables to distinguish the refractive index variations 

caused by secreted molecules from refractive index changes provoked by cellular spreading 

[29,30,72]. However, this is a unique feature, and not common to all surface-sensitive biosensors.) 

The biosensor baseline is established with assay buffer (physiological buffer, in which the cells will 

be eventually bathed) above the pre-coated sensors. When seeding cells, a number of practical 

considerations should be taken into account. First, the introduction and deposition of the cells should 

ideally result in their uniform distribution on the sensor surface. Second, a sensing area coverage of 

somewhat more than 50% (typically meaning 2000-6000 deposited eukaryotic cells/mm
2
) is 

necessary to allow the relative adhesion strength to be determined; in OWLS-based cytometry, the 

refractive index change in the evanescent field at 50% coverage is a quantitative measure of cell-

substratum adhesivity [46,67,73]. However, there is an upper limit to the desirable cell density; in 

order to allow uniformly distributed cells to have enough space for all of them to spread the 

formation of multilayers or that of cell aggregates should be avoided. Third, the duration of the 

deposition should be as short as possible; if there is significant cell-to-cell variation in the deposition 

time it is difficult to distinguish between signals corresponding to deposition and to the active process 

of spreading, since while some cells are still in suspension, others already on the surface will have 

begun to spread. One can try to separate the signals corresponding to the two processes via data 

processing     a number of numerical and theoretical models aim at describing the deposition kinetics 

of spherical particles sedimenting under the combined influence of Brownian collisions with the 

molecules of the bathing medium and the gravitational force [74,75].  However, it is more 

straightforward to achieve a quasi-instantaneous (compared to the time required for initiation of 

active spreading) deposition of cells. Cells in solution can be considered as spherical objects to an 
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excellent approximation. Let us first assume them to have zero initial velocity. If they fall in a 

viscous fluid by their own weight, then terminal velocity is reached when the frictional force 

combined with the buoyant force exactly balances the gravitational force. The resulting terminal or 

settling velocity is given by [76,77] 

  
(8) 

The dynamic viscosity and the density of the aqueous medium can usually be assumed to be the same 

as that of the water, i.e.  and  at  

respectively; the radius of a typical mammalian cell is  [78], its density is  

[77]; and the gravitational constant is . This yields a terminal velocity of 

, which is so slow that concerns about the achievability of quasi-

instantaneous deposition of all cells can be rightfully raised. However, cells can be made to move 

with velocity  during their introduction into the cuvette if the pipette with which they are 

introduced is oriented perpendicular to the sensor surface (forced deposition). Supposing that a 

volume of 0.1 ml suspension is run through the end of a cylindrical pipette tip having a diameter of 

0.5 mm in a time interval of 5 s:  then ; which is sufficiently high to result in the 

desired quasi-instantaneous deposition of all cells. This was confirmed experimentally  (§4.1), when 

we used the forced deposition technique to seed cells on the sensor surface, and then successfully 

monitored their subsequent spreading. Forced deposition can be also achieved by centrifugation [79]. 

 

2.4.2 Mechanotransduction assays: cells in a flow environment  

Cells are responsive to mechanical stimuli; external forces influence the formation of adhesion 

sites, cell orientation, gene expression, and more [56,80]. To study the effects of external forces on 

cell behavior, cells are often investigated in a flow environment which approach may have more 

http://en.wikipedia.org/wiki/Terminal_velocity
http://en.wikipedia.org/wiki/Buoyant_force
http://en.wikipedia.org/wiki/Gravitational_force
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biological relevance as compared to experiments performed in the total absence of flow. The 

workflow of a standard mechanotransduction assay starts with a surface functionalization step to 

obtain a cell-adhesive surface; then cells are seeded (preferably in high densities), and allowed to 

establish the first contacts with the surface for a given time; and finally, a laminar flow with a well-

defined rate is applied, which may be increased in a stepwise manner. However, increased scrutiny 

has to be given to the experimental design to avoid cell damage in such a study [81]. Cells in a flow 

environment may experience various forces; the most likely sources of cell injury are relatively large 

shear forces, interaction with small eddies occurring in turbulent flow, or interaction with bubbles 

during their breakup [81]; the latter two can be easily avoided in a biosensor experiment, but the first 

one needs further considerations. In vivo exposure of various cell types (including red blood cells, 

immune cells, tumor cells, endothelial cells) to flow predominantly occurs in the circulation system. 

Highest flow shear stresses are experienced  in the arterial circulation, where time-averaged values 

are approximately in the range of  [82]. In comparison, the wall shear stress 

(which is the maximum shear stress) of a Newtonian fluid during laminar flow in a straight 

cylindrical tube is  [82]: 

  
(9) 

In a typical biosensor experiment , and  (and  is the same as 

suggested in §2.5.2), which yields a wall shear stress of ; therefore no cell 

damage is expected for cells that tolerate the shear stresses in the circulatory system. 

Molecular interactions can also be regulated by external forces. Flow-induced shear stress may 

provoke conformational changes in solved (or adsorbed) polymers [83], potentially leading to the 

exposure of otherwise buried molecular sequences (cryptic sites) [84], and/or to reduced or enhanced 

molecular interaction lifetimes (the latter interactions are called catch bonds) [85]. Consequently, a 
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molecular surface coating that has been exposed to flow may promote cell spreading to a different 

extent than a coating that has not [84]. 

 

2.4.3 Signaling assays: the challenge of compound addition to pre-attached cells  

Among all types of cell-based experiments carried out by the means of label-free biosensors, 

probably signaling assays demand the most deliberate sample handling strategy. One reason is that 

signaling assays inherently require high-throughput measurements and, therefore, a sample handling 

strategy which is compatible with high-throughput. Generally, the sensors are rendered cell-adhesive 

by creating a molecular coating on their surface via adsorption. Then cells are seeded in high density 

on the surface, and incubated for 24 hours at 37 °C, 5% C02 to obtain a confluent cellular monolayer. 

These steps can be carried out manually with a channel pipettor. Subsequently, a baseline is 

established with assay buffer above the cells and some compound is added to them to activate a 

signal transduction pathway. Importantly, receptor activation and subsequent signaling are detected 

through both horizontal and vertical dynamic mass redistribution (DMR) in the bottom region of the 

cells [13]. (Therefore, it is not required to provoke changes in the size of the cell-substrate contact 

area for detection, if vertical DMR is significant.) The challenge lies in how the compound is 

introduced above the cells, especially because DMR signals are rather small and may follow rapid 

kinetics [79,86]. Ideally, introduction should be highly reproducible, and the flow generated during 

introduction should not perturb the cells (compare with §2.4.2). Obviously, these criteria are hardly 

met if compounds are added manually with a pipettor; the introduction rate and the distance from 

cells are not well-defined and cannot be performed parallel in 96 or 384 channels. In closed cuvette 

systems (§4.1), therefore, primarily an integrated sample dispenser robot has been used for sample 

manipulation, which enables highly controlled and reproducible liquid exchange above cells (for a 

detailed protocol, see [79]). Cell signaling assays are considerably more straightforward on flow-

through fluidic systems [87]; here, cells should be plated on the pre-coated sensor surface, allowed to 

spread for a defined time interval, then a constant flow of buffer should be initialized and sustained 
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throughout the assay. After baseline reading, any compound can be conveniently introduced into the 

flow. In addition, this system also enables to control the duration of the stimulation. However, high-

throughput biosensors with a flow-through system have not hitherto been commercialized. 

 

 

3.  Experimental: materials and methods 

3.1 Optical waveguide lightmode spectroscopy 

Surface-sensitive optical biosensors take advantage of surface-bound electromagnetic waves to 

detect refractive index changes (evoked by either bulk refractive index changes, molecular 

adsorption, cell spreading, or dynamic mass redistributions in spread cells) close to a solid-liquid 

interface. Exactly how this is done is greatly dependent on the technique itself and the actual 

instrumental configuration. OWLS detection is based on a nano-grating planar optical waveguide (i.e. 

sensor chip, Fig. 3b), which is illuminated by a laser beam. The nano-grating embedded into the 

waveguide structure enables light to be incoupled into the waveguide layer, which then propagates 

several millimeters, permitting light intensity measurements at the ends of the sensor chip. Such 

waveguiding, however, can be achieved only at discrete illuminating angles, which are dependent on 

the refractive index of the sample layer being closest (100-200 nm) to the surface of the sensor chip. 

The illuminating angle is varied by rotating the waveguide with a high-precision goniometer relative 

to the illuminating light beam (Fig. 1). Plotting the photointensity measured at the ends of the 

waveguide against the illuminating angle yield the OWLS spectrum; sharp resonant peaks with a 

typical width of 0.05-0.07   indicate what angles waveguiding is achieved at (resonant angles). 

Whenever the refractive index over the sensor surface is altered, the position of the peaks in the 

spectra will be shifted.  
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Throughout this study, experimental data are presented as the alteration of the effective 

refractive index of the zeroth order transverse magnetic lightmode (simply denoted as ). The 

effective refractive indices of the waveguide modes can be derived from the resonant angles [16,88]. 

 

3.2 Sensor chip preparation 

OW2400 OWLS sensor chips (Microvacuum Ltd., Hungary) were used in all experiments 

presented in this study. Sensor chips were cleaned according to the following protocol. Cellular 

contamination was first removed by sonicating the chips in an aqueous medium. The waveguides 

were then soaked in chromic acid for 3 min, then rinsed with Milli-Q water (MQ), 0.5 M potassium 

hydroxide, and washed with copious amount of MQ water. The chips were placed into MQ water in 

sonicator for 30 min and the MQ was changed over them every 3 min. Prior to experiments the 

waveguides were equilibrated in buffer overnight. 

 

3.3 Experiments on flow-through systems   

The prepared waveguides were mounted onto the measuring head of an OWLS instrument. 

Custom made polyether ether ketone (PEEK) cuvettes were then sealed to the waveguide with a 

Kalrez O-ring [89]. Flow was guided by tubes made of either silicone (Ismatec, Tygon R3607) or 

polytetrafluoroethylene (PTFE), with inner diameters of 0.51 mm or 0.8 mm. The ends of Teflon 

tubes were flattened with an Omnifit kit (Biochem Fluidics) and connected via linear junctions. A 

porous hydrophobic membrane-based bubble trap (Omnifit) was integrated into the flow-through 

fluidic system. 

When a large amount of sample was available (>2 ml), either a peristaltic pump (Reglo Digital, 

Ismatec) or a laboratory-built, computer-controlled syringe pump was used to generate continuous 

flow above the sensing area. In contrast, when the sample volume was limited, small amounts were 

injected into the fluidic setup either using an injection valve (i.e. SIS-06, see §4.3.1) or a septum 

injector (see §4.3.2). 
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For practical reasons, glycerol (Spektrum 3D) solutions were used as sample in most OWLS 

experiments. Most importantly, the interaction of glycerol with the waveguide is completely and 

instantly reversible, i.e. the solution can be removed by flushing the fluidic system with MQ or PBS 

(phosphate-buffered saline, Sigma-Aldrich), resulting in restoration of the baseline. Hence, multiple 

experiments can be carried out consecutively with the same sensor chip. This is because glycerol 

only changes the bulk (cover) refractive index, i.e. it does not form an adlayer nor does it diffuse into 

the chip. For surface adsorption experiments poly-L-lysine (PLL, Sigma-Aldrich) and avidin (Sigma-

Aldrich) solutions were used.  

 

3.4 Cell culture, cell adhesion studies 

3T3 fibroblast cells were routinely cultured in Dulbecco's modified Eagle‟s medium (DMEM, 

Invitrogen) supplemented with 10% fetal bovine serum (FBS, Invitrogen), 4 mM L-glutamine, 0.25 

µg/m amphotericin, and 40 µg/ml gentamycin (culture medium). Cells were harvested using 1% 

trypsin and EDTA (Invitrogen). Trypsin activity was arrested with culture medium containing 10% 

FBS, which was eventually replaced (centrifugation twice, 300 g, 5 min) with serum-free medium 

buffered with 25 mM 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid (HEPES, Invitrogen), pH 

7.0. Cells were then seeded into a closed cuvette and their adhesion monitored for 4 h. After the 

experiment, the cuvette was taken out from the OWLS measuring head, the medium above the spread 

cells was removed, the cuvette was disassembled, and the waveguide was positioned on a specially 

designed microscope insert. A cuvette having a bigger diameter than the OWLS cuvette can be 

mounted and fixed on this microscope insert, allowing replenishment of the medium above the cells. 

The whole area occupied by the cells was then scanned with the 10x objective of an Observer Zeiss 

microscope.  
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3.5 Fluidic simulations 

Computational fluid dynamics (CFD) computations were performed to obtain a detailed view 

of the flow field inside the cuvette. The ANSYS CFX commercial CFD package was used as a flow 

solver and ICEM CFD was employed for meshing. The mesh consisted of approximately 6x10
5
 

elements, which were mostly tetrahedral apart from the near-wall boundary layer cells, which were 

hexahedral. The momentum equations and the continuity equations were solved in a steady, 

incompressible formulation. The shear stress transport (SST) model was applied to cope with the 

turbulence, which blends between the k-epsilon and k-omega formulations. The volumetric flow rate 

was prescribed at the inlet (with a uniform inlet velocity profile) while an average static pressure was 

prescribed at the outlet, the rest of the surfaces in contact with the fluid being no-slip walls. High 

resolution (mostly second-order) spatial discretization was applied. The results were accepted once 

both the scaled average RMS error fell below 10
-5

 and the global imbalance of the conserved 

quantities reached 0.1%. 

 

4. Modes of fluid introduction 

Fluid introduction is the action of filling the sample volume over the sensor with the solution of 

interest (e.g. flushing a flow-through cuvette, or pipetting medium into a closed cuvette). As it will be 

shown later, several types of errors in OWLS data and interpretation are associated with 

inappropriate introduction of the sample into the cuvette. How fluid introduction can best be carried 

out is mainly determined by the cuvette type and the amount of the available sample. 

 

4.1 Closed cuvette without flow and manual fluid introduction using a pipette: 

monitoring cell adhesion and spreading 

The simplest possible fluidic tool enabling the exposure of the sensing area to the solution of 

interest is the closed cuvette (Fig. 3). Samples have to be introduced manually using pipettes, and 
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continuous flow cannot be generated in such an arrangement. However, all of the commercialized 

high-throughput optical biosensors employ open wells, and are not currently available with flow-

through systems [14,68]. 

 Typically, closed cuvettes are used when some activity (adhesion and spreading, proliferation, 

response to effector molecules, etc.) of cells are monitored [14,25,26,28,30]. Depending on the aim 

of the investigation, cellular assays on a biosensor may take up to hours or days, and the fewer 

disturbances to the system during the measurement the better. Contamination can easily be avoided 

by covering the cuvette with a piece of Parafilm, but several undesirable phenomena can still 

potentially perturb the system. Diffusion of gases into the cell suspension can cause pH changes and 

solvent evaporation may cause the osmolality of the medium to increase. The biosensor might 

directly respond to such changes, which furthermore stress the cells, changing their normal behavior 

(i.e. that observable in an optimal, well-defined and unchanging environment). Recently, an OWLS 

closed cuvette has been developed into a mini-incubator that enables the temperature and pH of the 

cell suspension to be automatically controlled [30]. This mini-incubator equipped OWLS system has 

been then used to monitor the spreading and adhesion of sensitive primary immune cells isolated 

from human blood [30]. 

 The obvious caveat associated with the use of a closed cuvette system is the difficulty of 

performing manipulations on the sample. Nowadays one generally wishes to continue the work after 

the cells spread on the sensor surface, and monitor either their proliferation, survival or response to 

various effector molecules (drugs, ligands, toxins). It is known that not only the presence of the 

effector but also the duration of the stimulation is crucial in cell biology [90]. In contrast to the 

desirable fast, yet gentle and controllable sample exchange, cumbersome pipetting from a closed 

cuvette implies the relatively uncontrolled removal of only a portion of the bathing medium. In 

addition, when the cuvette is mounted on the rotating goniometer of an integrated optical scanner 

(incoupling configuration [16]) the scanning has to be stopped to perform any manipulation in the 

sample volume of the closed cuvette and, therefore, typically for tens of seconds following sample 
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addition the response cannot be monitored. In an OWLS device without moving parts, such as the 

outcoupling configuration [17] or one of the various kinds of interferometry [7,17], the measurement 

would not have to be stopped, although there might be some optical perturbation due to fluid 

movements. Furthermore, washing steps cannot be conveniently carried out in the closed cuvette. To 

overcome the drawbacks of closed cuvettes, flow-through systems for living cell applications have 

been specifically designed [77,90,87].  

In summary, closed cuvettes are ideal for applications where sample manipulations during the 

measurement are barely needed  – these applications include cell spreading assays, or drug screening 

assays that aim at demonstrating a drug effect on a cell population and the duration of stimulation is 

less important (Table 1). A typical experimental arrangement with a closed cuvette and a spreading 

curve obtained with OWLS are shown in Fig. 3. Here, fibroblast cells were seeded onto the sensor 

surface pre-coated with PLL, and their spreading was monitored for 4 h. 

 

4.2 Fluidic systems with flow-through cuvettes 

Sophisticated fluidic setups can be built by connecting supplementary fluidic elements (bubble 

trap, junctions, pumps, etc.) to a flow-through cuvette (Fig. 1). Typically, the inlet tube connects the 

sample reservoir with the sample volume of the cuvette, and the outlet tube leads to a waste container 

(Fig. 1, Fig. 4). Peristaltic or syringe pumps are used to generate flow ensuring a constant supply of 

material. Exchanging the samples is very simple and the flow rate can be easily set to the desired 

value – altogether the flow-through technique is particularly advantageous because of the 

experimental controllability and simplicity it offers [17,41]. Moreover, since the flow is continuous, 

OWLS data is easily recorded during both the adsorption and desorption phases of a 

molecular/cellular process under well-controlled conditions. Therefore, the kinetic rate coefficients of 

the processes can be easily determined by fitting kinetic models of more or less sophistication to the 

data. The role of flow from a biological point of view was considered in §2.5.3; some investigations 
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may have more biological significance if performed under flow, but this may substantially 

complicate data interpretation and/or experimental design.  

Flow-through fluidics can, however, only be used when a sample amount sufficient for an 

entire experiment is available. With a typical flow rate in the range of microliters per second this 

usually means milliliters of solutions. Furthermore, given that OWLS (and DPI several orders of 

magnitude more so) is sensitive to changes in temperature and pH [47,89], it is critical to ensure that 

these parameters are the same for a subsequently introduced sample as those for the sample to be 

replaced. Moreover, some flow-through cuvettes might be inappropriate for working with 

mammalian cell suspensions due to geometrical issues; according to our experience, cells can adhere 

and aggregate in the immediate vicinity of the inlet aperture (before the sensing area), rather than 

being uniformly distributed on the entire bottom of the cuvette. Thus, careful scrutiny has to be given 

when designing a flow-through cuvette for cellular assays. 

 

 A flow-through system unavoidably hides risks in its relatively complicated arrangement and 

whole measurements can be endangered if the diverse constituent elements of the system are not 

carefully tested one by one and their incidental effects on the measurement revealed. Gas bubbles, for 

example, can grossly distort the data, but the integration of a bubble trap into the fluidic system offers 

an easy way to efficiently suppress this threat (§4.2.2.3). Also, the inner diameter of tubes has to be 

chosen carefully: it is advantageous to use larger diameters closer to the cuvette, followed by smaller 

diameters at the pumps to effectively dampen possible abrupt pulsations/variations in flow. 

The advantages, associated caveats and typical application areas of OWLS with flow-through 

fluidics are summarized in Table 1. 

 



30 

 

4.2.1 Basic building blocks of a flow-through setup 

4.2.1.1 Cuvette and tubing materials 

As previously found [89], and now confirmed, silicone cuvettes leave contamination on the 

surface of the chip. We therefore used polyether ether ketone (PEEK) for the cuvettes and Kalrez (a 

perfluorinated elastomer) O-rings for sealings (Fig. 4), which are sufficiently inert to be 

recommended for all measurements. 

Many materials, especially silicone, are unsuitable for the tubing. Those that are permeable 

may let gases diffuse into the sample, which may result in undesired bubble formation, especially 

when a peristaltic pump is used to generate flow (see §4.2.1.2). Tygon LF is soft enough to be 

suitable for peristalsis. PTFE (Teflon) is probably the best tubing material for connecting tubes, since 

it is resistant to most organic solvents and even to strongly acidic or basic solutions. However, PTFE 

is too rigid to be used with peristaltic pumping. 

 

4.2.1.2 Pumps 

Peristaltic and syringe pumps are commonly used for pressure pumping in biosensor 

experiments [91]. More sophisticated, more advanced experiments should be carried out with syringe 

pumps because they offer more controllability and more uniform flow. Our custom-built syringe 

pumps are driven by a program enabling fully automatic control over flow rate (including temporally 

varying ones), and the initiation, duration and termination of flow sequences. In addition, the entire 

flow system including the connecting tubes can be built from chemically resistant PTFE tubes 

(possibly in combination with syringes made of glass). However, the potential of syringe pumps can 

only be fully exploited if one has at least two of them (one for pumping the buffer and one for the 

analyte), because if the syringe in one pump has to be changed, the measurement would have to be 

stopped and the risk of introducing bubbles would arise.  
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In contrast, a single peristaltic pump offers an easy method for generating quasi-uniform flow, 

but some commercially available peristaltic pumps (the ones with circular rather than elliptical roller 

races, or with fewer than 8-10 rollers) tend to introduce pulsations in the flow that can influence both 

the sensor itself [92] and the adsorption or other process under investigation. 

  

4.2.2 Exchange of samples using flow-through fluidics 

Regardless of how carefully the samples are manipulated and exchanged, certain undesired 

effects cannot be eliminated and may significantly affect the recorded biosensor data, making their 

interpretation more difficult. Dead volumes are especially problematic (§2.2). Here, we demonstrate 

how the diffusion processes taking place at various points of the fluidic system affect the 

measurement.  

 

4.2.2.1 Diffusion due to the dead volumes of the cuvette 

Most flow-through cuvettes have unflushable volumes between the sealing O-ring and the inlet 

apertures. With properly planned experiments it can be shown that these „dead volumes” have an 

important effect on the actual biosensor measurements (see Fig. 5) – especially when small amounts 

of sample are used – and consequently these volumes should be minimized.  As a result of diffusion 

to and from the dead volumes, data collection just after changing the inflow from pure solvent to 

analyte solution may not represent the sample of interest.  

Our test measurements were executed as follows. The baseline was established with either PBS 

or MQ, then pressure-driven flow of aqueous glycerol solution was initiated. The flow was suddenly 

stopped well before saturation of the OWLS signal, and a drastically decrease of the signal was 

observed (Fig. 5a). In the inverse experiment (Fig. 5b) the cuvette was initially fully filled with 

glycerol solution, which was then partially removed by pumping pure buffer for typically 0.5-1 min. 
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In this case stopping the buffer flow resulted in a rising biosensor signal, clearly indicating that 

glycerol was diffusing into the measuring zone from the unflushed volumes.  

Here, we introduce a method to estimate the size of the dead volumes relative to the total 

cuvette volume.  The effective refractive index  is approximately linearly proportional to the 

change in refractive index of the cover layer ( ) [88], i.e.  

  

(10) 

Denoting the volume that is flushed with laminar flow (convective zone) at time t by , and the 

corresponding unflushed dead volume (diffusive zone) by  , the total volume of the cuvette is 

  
(11) 

Let  and  be defined as in Fig 5a, and  be the constant of proportionality between the 

effective refractive index and the concentration of the sample. Using this notation, the amount of 

glycerol in the cuvette at the instant of stopping the flow is  and the total amount of 

glycerol following the equilibration of local concentration differences is . Building on the 

fact that the amount of glycerol present in  does not change after the flow is stopped, the two 

qauntities can be equated, yielding 

  

(12) 

Our experimental findings were qualitatively confirmed by computational simulations of the 

flow in one of our flow-through cuvettes (Fig. 4a). When the flow rate is low (1 µl/s), the flow is 

laminar and  is rather big (Fig. 6a). In contrast, if flow rates around 100 µl/s are used, the flow 

becomes turbulent and most of the dead volumes are successfully eliminated (Fig. 6b, and see 

§4.3.2). 
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4.2.2.2 Length of tubing 

The Hagen-Poiseuille-equation (Eq. 2) states that the flow resistance grows with tube 

elongation; one should, therefore, always check whether the original flow rate can be maintained if 

extra tubing is added. We used three tubes with lengths of 47, 147 and 447 cm and an inner diameter 

of 0.51 mm. The actual flow rate was determined from the amount of sample collected at the end of 

the tubing and the collection time. Our pump was robust enough for flow rate not to diminish.  

An earlier investigation found no effect of tube elongation on the sensor signal saturation time 

[93]; however, tubes with only slightly different lengths were used in that study (17.3, 22.3 and 25.3 

cm). In contrast, we found that significantly more sample is necessary for reaching saturation of the 

OWLS signal (i.e., to completely fill the cuvette with the sample) when the inlet tube is longer, and 

suspected that this was an effect of diffusion. It is clear that the diffusion in the direction 

perpendicular to the axis of the tube is much more significant than diffusion parallel to it [94]: sample 

in the boundary layer along the walls of the tube is exchanged by diffusion instead of convection.  

The time the fluid spends in the tubing (i.e., the average time available for diffusion) is 

proportional to the tubing length  ( ). The distance the sample diffuses perpendicular to the 

diffusion boundary layer is proportional to the square root of the time spent in the tubing (Eq. 3), 

hence saturation time of the signal ( ) is expected to increase proportionally to the diffusion time t. 

Saturation times measured at different tubing lengths and plotted against the square root of tubing 

lengths can be nicely fitted with a straight line ( ); thus the experimental data nicely supports the 

above prediction (Fig. 7).  

 

4.2.2.3 Eliminating bubbles – effect of a bubble trap 
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A bubble forming inside the fluidic channel has a grossly different refractive index compared to 

the liquid medium or analyte and its presence will, therefore, severely distort the biosensor 

experiment     therefore great care has to be taken to avoid bubbles. Sonication, filtration and vacuum 

treatment of the solutions degas them and, hence, reduce the probability of bubble formation. Wider 

tubing followed by a smaller one helps to prevent bubbles forming at the junctions between tubes. 

Another possibility is to incorporate a bubble trap into the fluidic setup [47]. Although the inner 

part of the bubble trap contains multiple arcs in which the sample is guided, we found that it has no 

undesirable mixing properties. Only a slight increase in  was observed when the bubble trap was 

integrated into each of the three tubes having different lengths (47, 147 and 447 cm) as compared to 

the cases when we did not use a bubble trap. The increase corresponded to an increased tubing 

length: a 15 cm long extra section of tubing was inserted to integrate the bubble trap, which itself 

contributes the equivalent of an additional 15 cm (the approximate length of its arcs). This is 

evidenced in Fig. 7, as these additional data points, marked with “bt”, are well fitted by the model 

described in §4.2.2.1. 

 

4.3 Injection systems for the introduction of limited amount of sample 

Some samples are scarce or highly expensive and, therefore, only very limited amounts may be 

available. The minimum amount of sample necessary for an experiment (which normally means 

enough to obtain the kinetics up to steady state) can be effectively decreased if the sample is not 

pumped through the whole fluidic setup but injected closer to the sensor. It should be stressed, 

however, that small sample amounts are more prone to attenuation caused by diffusion (§4.2.2.2). 

A combination of the reproducible and precise fluid handling characteristic of flow injection 

analysis (FIA) with the sensitive optical detection offered by OWLS resulted in the development of 

FIA-OWLS immunoassays. An injection valve (§4.3.2) and manual injections have been used to 

introduce samples into the cuvette [95]. For the development of OWLS immunosensors an FIA 
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system with a peristaltic pump, an injector valve and an injector loop have been employed [96,97]. 

Various lab-built flow-through cuvettes and injection ports have also been tested to reproducibly 

introduce low amount of samples. In polyelectrolyte studies normally 100 µL sample solution was 

manually introduced to flush a 37 µL cuvette [98,99,100]. Elsewhere, a sequence of adsorption steps 

has been used to maximize adsorption from a given sample quantity [101,102,103]. Very recently, 

the sophisticated FastStep
TM

 [104] and OneStep
TM

 [105] injection systems have been developed. In 

the former configuration the sample and buffer streams merge right before the flow cell, and a 

stepped analyte concentration profile is produced by varying the flow rate ratio of the two branches. 

In the latter configuration, the undiluted analyte disperses in a capillary tube before entering the 

cuvette, thereby producing a concentration gradient. In contrast to standard fixed concentration 

injections, where a set of dilutions is required to complete a dose response range, both of these 

systems generate a full dose response from a single analyte injection, thereby reducing the variability, 

hence systematic error, among experiments. Therefore, these systems enable a gradient in pH, salt, or 

co-factors for rapid optimization of buffer conditions to be conveniently titrated.  

In this paper the SIS-06 injection valve supplied to a BIO-210 OWLS instrument and a septum 

injector are tested and discussed in more detail.  

 

4.3.1 Injection valves  

The SIS-06 injection valve (Fig. 8) from MicroVacuum Ltd. can optionally be integrated between a 

pump and a regular flow-through cuvette to reduce the amount of sample necessary for a 

measurement. Both the buffer and the limited amount of sample are transferred into the cuvette by 

continuous pump-driven flow. The injector has 6 channels, and the exact route of flow depends on 

the operation mode set. The injection valve operates in two modes. In the “Load Position” the sample 

loop can be filled with the analyte, while the buffer is conveniently flowed towards the cuvette 

through two channels which bypass the sample loop.  In the “Injection Mode” the sample loop is 
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connected to the pressure-driven buffer flow and its content is transferred to the cuvette. Calibrated 

sample loops are commercially available with different volumes. Throughout this study we used one 

with a volume of 50 μl. 

First we injected 5.8% glycerol into the fluidic setup via the SIS-06 injector valve (Fig. 9a). 

The glycerol sample (n=1.33518) and MQ water (n=1.33085) was pumped over the sensor with a 

programmable syringe pump at different flow rates (1.44, 0.7 and 0.14 μl/s). Despite the fact that the 

volume of the cuvette was only approximately 20 μl, the injected 50 μl of sample seemed to be 

insufficient to flush the cuvette through, we could not saturate the signal using any of these flow rates 

(Fig. 9a). We suspected that this was a consequence of the presence of unflushable volumes in the 

tubes and the cuvette (§4.2.2.1).  

The minimal sample amounts necessary to saturate the signal at each flow rate were determined 

in separate experiments, in which an unlimited amount of sample was pumped until a signal plateau 

was obtained (Fig. 9b). Surprisingly, more than 200 µl sample was required when a flow rate of 1.4 

µl/s was used, and only slightly less was needed if the flow rate was 0.14 µl/s. This underlines the 

importance of optimizing of the fluidic arrangements before injecting small amount of samples, in 

order to obtain relevant results without wasting material. 

In order to minimize diffusional effects and waste, the fluidic setup has been rearranged 

according to the conditions discussed in §4: we have i) changed tubes to ones having smaller inner 

diameters (from 0.8 mm to 0.51 mm); ii) designed a cuvette having a smaller sample volume 

(approximately 15 µl); iii) minimized the tubing length between the valve and cuvette to 4.5 cm; iv) 

chosen low flow rates, and v) integrated a bubble trap in the system. We then performed a new 

experiment with the biosensor and used the injection valve for sample introduction. Using this 

optimized fluidic system we were finally able to successfully measure the presence of 50 μl of 6% 

glycerol (Fig. 10), but only when the flow rate was at most 0.14 l/s (as discussed earlier, a smaller 

amount of sample is enough to saturate the signal when a lower flow rate is used).  



37 

 

It should be realized, however, that the SIS-06 injector used with continuous flow is less 

suitable for adsorption or affinity-binding studies, because these processes generally take more time 

than for which the sample could be possibly present in the cuvette. Keeping the sample longer in the 

cuvette by lowering the flow rate is strongly discouraged, because the binding process would be 

transport limited. Stopping the flow when the cuvette is completely filled with the analyte solution 

may be a better option, but careful calibration is needed to determine the exact time the flow has to 

be stopped (because protein solutions often do not alter the signal immediately).  

 

4.3.2 Septum injector 

A special cuvette called septum injector (Fig. 4/d,e) enable limited amounts of sample to be 

directly injected over the sensor. To introduce the sample, a membrane on one of the stalks of the 

cuvette has to be pierced with a special septum needle; the withdrawal of the needle allows the 

membrane to self-seal. 

With measurements using 50 μl of 6% glycerol (Fig. 11a) we demonstrated how the problem of 

dead volumes could be eliminated by a fast injection rate, which was sufficient to effectively flush 

the dead volumes (Fig. 6). The adsorption of 50 µl of 50 µg/ml avidin rapidly introduced via the 

septum injector also gave satisfactory results (Fig. 11b). Desorption required multiple injections of 

pure buffer, which, however, generates complicated kinetics. Hence, it is desirable to flow buffer 

continuously (which is usually available in unlimited quantity) to obtain a monotonic desorption 

signal, which then can be analyzed to determine the kinetic parameters [106]. To achieve this, we 

removed the needle of a septum syringe and introduced it into a piece of tubing (Fig. 4/e), which 

could be readily used to connect the pump and the septum cuvette, thus enabling continuous washing 

(Fig. 12). This modification eliminates transport-limited retardation of the initial adsorption rate. 
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5. Conclusions 

One of the most important advantages of label-free biosensors is that they generate kinetic data, 

thus allow for kinetic data analysis. This, in turn, can contribute to a better understanding of the 

mechanisms underlying the investigated surface process (may it be cell spreading, molecular 

adsorption, receptor-ligand interactions, etc.)     which is ideally the final aim of every study in the 

field. It should be realized, however, that the way the liquid samples are handled (introduced, 

exchanged) may deeply influence both the kinetics of the surface process, and the detection limit of 

the biosensor. The fluidic system is the most critical part of any biosensor setup, since the majority of 

experimental artefacts and misinterpretations of the data generally originate in an inappropriate fluid 

handling strategy or in the negliance of fluidic effects that severely interfere with the kinetics of the 

true surface process.  

In an adsorption or receptor-ligand binding assay, for instance, the obtained biosensor signal 

will not be dominated by the kinetics of the true surface process, unless transport limitation of the 

analyte (§2.1, §2.3.1) and the flushing effect (§2.3.1) are both successfully eliminated. Diffusion to 

the diffusion boundary layers (§4.2.2.2), or to the dead volumes (§4.2.2.1, §4.3.1) of the cuvette may 

cause the analyte solution to significantly attenuate, therefore the sample concentration in the sensing 

zone will be ill-defined, precluding the correct interpretation of the obtained kinetic data. (When 

adsorbing macromolecule solutions are measured, the effect of attenuation may be masked by 

adsorption; data analysis ignoring this distortion is likely to lead to serious error.) These phenomena, 

illustrated with experimental data and discussed in §4.2, have an increasingly decisive role when 

working with strongly limited amount of samples (§4.3.1). These effects can be most successfully 

reduced by generating turbulent flow in a septum injector-based fluidic system (§4.3.2, Fig. 6); this 

efficiently eliminates those volumes which cannot be flushed with laminar flow. If necessary, the 

dead volumes can be further decreased if a bigger amount of solution is injected into the cuvette. 

However, the efforts to minimize the necessary amount of sample for the actual measurement and to 

flush the cuvette perfectly are, to some degree, inconsistent with each other; consequently, one 
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always has to make a compromise. If the sample of interest is very expensive and/or scarce, 

calibration with a model solution (e.g. glycerol), and subsequent correction of the signal of the actual 

sample can be the key for more accurate measurements. In the future, further miniaturization of the 

instrumentation may take place and, when molecular samples are being investigated, the tube 

dimensions may be further reduced down to the nanoscale. This introduces certain peculiarities that 

should then be explicitly considered [107,108].  

Sample handling of cell suspensions may be even more challenging than that of analyte 

solutions (§2.4), especially because cells are capable to sensitively respond to the changes of their 

surroundings and actively modify their environment. Ideally, both the temperature and pH of the 

bathing medium should be kept at constant levels, preferably close to that experienced by cells in 

vivo; this requires further developments on a basic fluidic system. Interpretation of kinetic cellular 

data may be complicated because optical biosensors detect refractive index changes in a non-specific 

manner (§3.1). Considering a cell spreading assay, the biosensor signal provoked by cell spreading 

may be superposed by an adsorption signal if cellular secretion adsorb or bind to the sensor surface or 

the molecular coating (§2.4.1). Monitoring other cellular activities may demand even more 

considerations (§2.4.2, §2.4.3). Appropriate flow-through fluidic systems enable cellular 

mechanotransduction to be monitored with a biosensor (Fig. 1), but different cell types may require 

different experimental design. Those cells which are constantly exposed to the shear stresses in the 

circulatory system are not expected to suffer cell damage in a typical biosensor experiment, but this 

needs careful scrutiny for other cell types (§2.5.2).   

In summary, when measurements are carried out by means of biosensors, it is critical to 

establish a reliable strategy and a well-tested fluidic (§4) system for controllable and reproducible 

fluid handling. There seems to be no ideal fluidic design, which is optimal for every application; each 

should be fitted to one another. In §4 we reviewed the most common fluidic systems and components 

used in biochemical surface sensing, illustrated their performance with experimental data, and 

discussed their advantages and disadvantages; our final conclusions are summarized in Table 1. 
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cuvette types 

closed cuvette  

(Fig.3) 

flow-through cuvettes (Fig 1, Fig. 4/a,b,c,e,f) 

pump systems injector systems 

peristaltic pump syringe pump SIS-06 (Fig. 8) septum (Fig.4/d,e ) 

advantages 

 

- temperature 

control 

- very simple, 

easy-to-use tool 

- ideal for 

adhesion and 

spreading studies 

- continuous washing 

- additional fluidic elements can be integrated 

- may have more biological significance  

- measurements can be carried out with small amount of 

sample  (i.e. with highly expensive, scarce samples) 

- easy-to-use, user friendly 

tool 

- fully automated 

measurements 

- whole tubing can be made 

of PTFE 

- sample loops with different 

calibrated volumes  

- two operation modes (direct 

injection/continuous flow) 

- easy sample manipulation 

- the necessary amount of 

sample is minimized 

- unites all advantages of 

every discussed tool 

- relatively cheap 

dis- 

advantages 

- risk of 

contamination 

- sample 

evaporation 

- gas dissolvation 

- manipulations in 

sample volume 

are cumbersome 

- allows only 

static stimulation 

- dead volumes act like reservoirs when samples are changed 

- complexity: all elements have to be tested carefully one by one 

- air bubbles can remain/appear between junctions in the system 

- temperatures and pH have to be the same for all subsequently introduced samples 

- significant amount of sample is necessary 

- cell suspension cannot be reproducibly introduced 

- long tube lengths: diffusion has a significant effect when 

samples are changed 

- efforts to minimalize the necessary amount of sample and to 

flush the cuvette perfectly are inconsistent with each other 

- pulsation in the flow if the 

number of pump rollers is 

less than 10 

- PTFE tubing cannot be 

used for peristalsis 

- at least two syringe pumps 

are needed to fully exploit 

their potential  

- original arrangement is 

unsuitable for protein 

adsorption studies 

- limited lifetime 

typical  

 applications 

monitoring cell 

adhesion and 

spreading  

All kinds of biosensor experiments can be performed and monitored: protein adsorption, ligand-receptor 

binding, protein – lipid bilayer interactions, protein-DNA interactions, bio-compatibility study, cell response studies 
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Figure captions 

 

Figure 1. Schematics (not to scale) showing an OWLS device with a basic flow-through fluidic 

system (bottom); and the bottom half of the parabolic flow profile inside the cuvette (top). Any kind 

of surface process is investigated, the reliability of the kinetic data is severely dependent on the 

appropriate fluidic design and on a considerate and reproducible fluid handling strategy.  

At the bottom: the inlet tube connects the OWLS flow-through cuvette (mounted on the goniometer) 

with a sample reservoir. In between, a bubble trap is seen. The constant flow of analyte is engendered 

with a peristaltic pump, and the outlet tube leads the overflow to a waste container.  Although this is 

considered to be a basic fluidic system, its constituting elements, or the way the liquid samples are 

handled may severely influence the kinetics of the surface process which has to be quantified. 

At the top: analyte transport and shear stresses in the cuvette. In biosensorics, the engendered flow is 

typically laminar and, thus, the flow profile is parabolic. Close to the walls of the tubing or that of the 

cuvette, convection is negligible and solutions are exchanged via diffusion; this layer is called 

diffusion boundary layer (arrow to the left). An analyte  (e.g. a protein) may adsorb reversibly or 

irreversibly to the sensor surface, or may desorb from there (with corresponding rate coefficients of 

 and  ); causing changes in the local refractive index, which is eventually detected. The 

biosensor also enables the presence and activity of living cells seeded on the sensor surface to be 

monitored, although generally only the bottom portion of the cell can be probed (i.e. the sensing 

depth – shown as a reddish layer, and marked with a red arrow to the right – is only 100-200 nm). 

OWLS in combination with appropriately designed flow-through fluidic systems can be used to apply 

well-defined shear forces ( ) onto cells attached to the sensor surface, and monitor their response 

(cellular mechanotransduction).  
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Figure 2. Illustration of the discrepancy between the adsorption kinetics predicted by a simple model 

(E q.5) (broken curve) and the kinetics most often observed in experiments (solid curve). The initial 

stage of the process is transport limited if the flow cannot effectively replenish the adsorbing 

particles, or the diffusion is slow compared to the width of the diffusion boundary layer. 

 

Figure 3. Closed cuvettes in biosensorics. a) Image of a closed cuvette (shown both in assembled 

and disassembled form): i) cuvette- and metal chip holder, ii) waveguide (highlighted in red), iii) side 

wall of the cuvette, iv) retaining screw.  

b) Closed cuvette used in OWLS experiments. i-iii) Schematic representation of the functional parts 

of an OWLS waveguiding sensor chip: supporting substrate, waveguiding film, grating incoupler, 

respectively. iv) Closed cuvette sealed by an O-ring to the surface of the waveguide forms the sample 

volume. v) Culture medium with which the OWLS baseline is established before monitoring of cell 

spreading. The cell suspension is introduced into the closed cuvette manually using a pipette. vi) 

OWLS signal obtained by monitoring cell spreading. The waveguide was coated with PLL (150 µL 

0.1% solution incubated on the surface for 15 minutes at room temperature, then washed) and 

subsequently placed into DMEM buffered with 25 mM HEPES (pH 7.0). A suspension containing 

20 000 3T3 cells was introduced into the closed cuvette with a pipette used forced deposition and 

subsequent spreading was monitored. The inset is a microscope image depicting the spread state 

characteristic of the cell line.  

 

Figure 4. OWLS cuvette types. a) Image of the underside  of a flow-through cuvette with the flow 

cell and the sealing O-ring. b) Image of a flow-through cuvette with a smaller, ellipsoidal sample 

volume. c) Image of a flow-through cuvette having an intermediate sized, circular sample volume. d) 

Image of a septum injector. e) Image of a modified septum injector system. A septum needle has 

been taken out from its syringe and introduced into a fluid guiding tube to enable continuous washing 
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in fluidic systems utilizing a septum cuvette. f) Schematic representation of the arrangement of flow-

through cuvettes. 

 

Figure 5. Estimating the unflushed (dead) volume of a flow-through cuvette. a) Before  PBS 

was pumped at 1.4 µL/s. At  (marked with an upward pointing arrowhead), the flow was 

changed to a 6% solution of glycerol in PBS. At  min (marked with ┴) the flow was stopped. At 

 min (marked with an arrowhead) flow of glycerol was resumed until  min, then 

changed back to PBS. For further explanation see the text.  

b) The inverse experiment. Before  the cuvette was completely filled with glycerol. At  

PBS was pumped until the point marked with ┬. PBS flow was resumed at the next arrowhead. At 

the end of the circle the cuvette was completely refilled with glycerol again and the same sequence 

was repeated. 

 

Figure 6. Results of computational fluid dynamic simulations modeling flow in our cuvette (Fig. 4a) 

at a) low (1 µL/s) and b) at higher (100 µl/s) flow rates. Explanation of colors: the red volume is 

moving with at least 1 mm/s, while the blue volume is considered as stationary. The color bar 

represents the lifetime of streamlines (represented as individual thin lines). Streamlines in the figures 

suggest that the flow in the cuvette is laminar (there are no currents perpendicular to the direction of 

flow, nor eddies or swirls of fluid) at a flow rate of 1 µl/s, and turbulent at 100 µl/s. In the former 

case, huge volumes remain unflushed in the cuvette (cuvette volumes in blue color, figure a)); acting 

as dead volumes during sample exchange. Turbulent flow, on the other hand, enables effective 

sample exchange in the whole cuvette (nearly all blue volumes are eliminated, figure b)). 

 



56 

 

Figure 7. The relationship between the tubing length and the time required to saturate the biosensor 

signal. First, the sample (6% glycerol solution) was introduced with the SIS-06 injection system 

through a 20 cm long tube. Then the effect of tube elongation was investigated using 47, 147, 447 cm 

long tubings. In points marked with „bt”, a bubble trap was integrated in the system, which is 

equivalent with a tube elongation of 30 cm. Buffer was PBS, and a flow rate of 1.1 µL/s was used in 

all experiments. 

 

Figure 8. Image of the head of a SIS-06 injector valve: a) inlet for sample introduction, b) screw for 

setting mode „Inject‟ either „Load‟, c) tube to downstream fluidics (cuvette), d) calibrated sample 

loop of the injector, e) tube for waste, f) upstream fluidics (bubble trap, pumps). Both the buffer and 

the limited amount of sample are transferred into the cuvette by continuous pump-driven flow. First 

the calibrated sample loop has to be filled with the sample while the valve is in the “load” position. 

The sample loop is disconnected from the flow until the valve is set to the “inject” mode. 

 

Figure 9. a) Operation of an injection valve system. Upward pointing arrowheads indicate the three 

time points where glycerol solution (50 µl, 5.8%) was introduced by setting the SIS-06 injection 

system to „inject‟ mode using three flow rates (1.4, 0.7, 0.1 µL/s).  PBS was used as buffer.  

b) The ellipsoidal flow-through cuvette could be completely flushed with continously flowing 

glycerin (5.8% v/v) . Upward and downward pointing arrowheads indicate the time points where 

5.8% glycerol solution and MQ were introduced, respectively, with pump-driven flow using flow 

rates of 1.44 and 0.7 and 0.14 μl/s. The volume of the flow cell was approximately 20 µl. 

Significantly less amount of solution was needed to saturate the signal if the flow rate was set lower.  
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Figure 10. Rearrangement of the fluidic setup (see text) enabled the effects of diffusion on the 

measurements to be minimized.  However, the signal was only saturated if the flow rate was set slow 

enough (0.1 µl/s).  Upward and downward pointing arrowheads indicate the time points where 50 µl 

of glycerol solution (5.8%) and MQ was introduced, respectively, by setting the SIS-06 injection 

system to „inject‟ mode.  

 

Figure 11 a) Operation of the septum injector. Septum injector was used to introduce either PBS or 

6% glycerol into the OWLS cuvette. Both were introduced manually at the maximum possible rate to 

eliminate the dead volumes, which seemed to be effective, as second and third injections (marked 

with additive upward pointing arrowheads) did not further change the signal. b) A septum injector 

was used to introduce 50 µl of 50 µg/ml avidin and its subsequent adsorption was monitored with 

OWLS. In this original arrangement no continuous flow could be generated, thus succesive injections 

were needed to characterize the desorption phase. 

 

Figure 12. Experimental usage of the modified septum cuvette-based fluidic system. A septum 

needle was introduced into the end of a tube; this tube then could be readily introduced into the 

septum to connect the septum cuvette with a flow reservoir.  This system enables a flexible change 

between two sample introduction strategies: continuous flow and injection of highly restricted sample 

amounts (Fig. 4e). Figure is adopted from ref. 39.  Preceding the online experiment, the OWLS chip 

underwent an ex situ preparation procedure: its surface was functionalized with polyethylene imine 

(PEI) and biotinylated with NHS-biotin.  The OWLS experiment was initialized by establishing a 

baseline, then the prepared sensor surface was exposed to avidin by introducing a continuous flow of 

50 µg/ml solution through the modified septum cuvette. After a washing step with PBS, the pump 

generating the analyte flow was stopped and 50 µl anti-CRP (C-reactive protein) antibody was 
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introduced into the cuvette by manual injection. A ~40 min incubation period was terminated by 

flushing the cuvette with a continuous flow of PBS. Next, 50 µl of 10 µg/ml CRP solution was 

injected into the cuvette and allowed to bind to the surface for ~20 min. Finally, the cuvette was 

flushed with a continuous flow of PBS, PBS containing 0.05% Tween 20, and pure PBS again. For 

further experimental details, see [39].  
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