
CONDITION MONITORING AND FAULT DETECTION OF BLADE DAMAGE IN

SMALL WIND TURBINES USING TIME-SERIES

AND FREQUENCY ANALYSES

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mechanical Engineering

by

Luke Hayden Costello

March 2021

ii

© 2021

Luke Hayden Costello

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Condition Monitoring and Fault Detection of

Rotating Unbalance in Small Wind Turbines Using

Timeseries and Frequency Analysis Methods

AUTHOR: Luke Hayden Costello

DATE SUBMITTED: March 2021

COMMITTEE CHAIR: Dr. Patrick Lemieux, Ph.D.

Professor of Mechanical Engineering

COMMITTEE MEMBER: Dr. John Ridgely, Ph.D.

Professor of Mechanical Engineering

COMMITTEE MEMBER: Dr. Xi Wu, Ph.D.

Professor of Mechanical Engineering

iv

ABSTRACT

Condition Monitoring and Fault Detection of Rotating Unbalance in Small Wind Turbines Using

Timeseries and Frequency Analysis Methods

Luke Hayden Costello

Condition monitoring systems are critical for autonomous detection of damage when operating

remote wind turbines. These systems continually monitor the turbine’s operating parameters and

detect damage before the turbine fails. Although common in utility-scale turbines, these systems

are mostly undeveloped in distributed, small-scale turbines due to their high cost and need for

specialized equipment. The Cal Poly Wind Power Research Center is developing a low-cost,

modular solution known as the LifeLine system. The previous version contained monitoring

equipment, but lacked decision-making capabilities.

The present work builds on the LifeLine by developing software-based detection of blade

damage. Detection is done by monitoring of tower vibrations, rotor speed, and generator power

output. First, testing is completed to inform algorithm design: the tower vibrational response is

recorded, and blade damage is simulated by adding a mass imbalance to one blade. From these

results, several algorithms are developed, and their performance is analyzed in a cross-validation

study. The time-series method known as the Nonlinear State Estimation Technique and Sequential

Probability Ratio Test (NSET+SPRT) is implemented first. This algorithm is highly successful,

with a 93.3% rate of correct damage detection; however, it occasionally raises false alarms during

normal operation. A custom-built algorithm known as the Adaptive Fast Fourier Transform (AFFT)

is also built; its strength lies in its elimination of false alarms. The final system utilizes a joint

monitoring approach, combining the benefits of the NSET+SPRT and AFFT. The final algorithm

is successful, correctly categorizing 95.5% of data when operating above 120RPM, and raising no

false alarms in normal operation. This version is then implemented for live monitoring on the Cal

Poly Wind Turbine, allowing for robust and autonomous detection of blade damage.

v

ACKNOWLEDGEMENTS

First, I would like to thank Dr. Lemieux, Dr. Ridgely, and all other students and faculty that

have developed the Cal Poly Wind Turbine. This project would not exist without their work, and

for that, I am incredibly grateful. Second, thank you to my family, who supported – mentally and

financially – my entire education, up to and including my graduate degree. Finally, thank you to

Ryan Zhan and John Cunningham, who accompanied me to the turbine countless times; without

them, the heavy amount of field testing necessary for completing this thesis would not have been

possible.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

NOMENCLATURE ... xi

CHAPTER

1 Introduction ... 1

1.1 Project Motivation ... 1

1.2 Causes and Effects of Blade Damage ... 2

1.3 Previous Research ... 8

1.4 Project Objective ... 12

1.5 Thesis Layout .. 13

2 The Cal Poly Wind Turbine .. 14

2.1 Turbine Overview and Tower Vibration Response ... 14

2.2 Control Method ... 17

2.3 Data-collection System ... 21

3 Physical Testing .. 24

3.1 Experimental Design and Data Collection .. 24

3.2 Response Characteristics ... 29

3.3 Results ... 30

4 Condition Monitoring and Fault-Detection Algorithms ... 37

4.1 NSET+SPRT ... 38

4.1.1 NSET Background .. 39

4.1.2 NSET Theory .. 39

4.1.3 Memory Matrix Formation .. 42

4.1.4 SPRT Theory ... 46

4.1.5 Application of NSET+SPRT ... 50

4.2 FFT: Adaptive Threshold (AFFT) ... 53

4.3 FFT: Order Analysis (OFFT) .. 56

4.3.1 Order Analysis Theory .. 56

4.3.2 Order Analysis Application ... 58

4.4 Other Methods ... 61

4.4.1 LSCh .. 61

vii

5 Cross-validation Study .. 63

5.1 Study Setup ... 63

5.2 Parameter Selection ... 65

5.3 Study Limitations .. 69

6 Cal Poly Wind Turbine Implementation ... 70

6.1 CMS Structure ... 70

6.2 CMS Training .. 72

6.3 CMS Implementation .. 73

7 Conclusions and Future Work ... 76

REFERENCES .. 79

APPENDICES

A Approximating the Matrix Condition Number .. 83

B Testing the SPRT Normal Distribution Assumption ... 84

C Selection of Previous Student Works .. 86

D NSET Code ... 87

E SPRT Code .. 95

F Adaptive FFT Code ... 101

G Order Analysis FFT Code ... 106

H Cross-Validation Study Code .. 111

I Python Implementation Code .. 122

NSET Code .. 122

SPRT Code .. 126

AFFT Code .. 128

Example Usage .. 132

viii

LIST OF TABLES

Table Page

2.1 Theoretical bending modes of the CPWT tower.. 15

2.2 Parameters recorded by each DAQ system .. 21

3.1 List of masses used in testing, along with the exact weight added including duct tape 26

3.2 Average values for each parameter for ramp tests ... 33

3.3 Tower weak axis bending modes as described by resonance over rotor ramp tests 36

4.1 Vector organization by sensor and associated normalization factor 44

4.2 List of hypotheses used in the SPRT ... 47

4.3 Statistical characteristics for various numbers of datasets used to train NSET+SPRT 51

4.4 Regression parameters for Figure 4.15 .. 62

5.1 Summary and description of each algorithm sensitivity parameter 65

5.2 Selected algorithm parameters and relevant performance data. .. 68

6.1 List of the three Python-based classes of functions used for the Lifeline CMS 73

6.2 Final parameters for each algorithm, and associated CMS performance 75

B.1 Testing results for a set of residuals from the NSET ... 85

ix

LIST OF FIGURES

Figure Page

1.1 Photo of tip detachment due to lightning strike [9] ... 4

1.2 Force resulting from a mass imbalance ... 5

1.3 Diagram of axial and transverse forces experienced by a section of the turbine blade 6

1.4 Rotationally sampled turbulence ... 7

1.5 List of all accelerometers used to monitor NREL’s 750kW GRC test turbine 8

1.6 A waterfall plot of vibrational data .. 10

1.7 Frequency response of the synchronously sampled rotor speed signal 11

1.8 The three phases of CMS design and implementation... 12

2.1 Photo of the CPWT .. 15

2.2 Campbell Diagram for the Tower Weak Axis ... 17

2.3 Campbell Diagram for the Tower Strong Axis .. 17

2.4 Overview of the CPWT electrical wiring, DAQ systems, and sensors.................................. 18

2.5 Rotor Speed Control Block Diagram ... 18

2.6 TSR Control Block Diagram ... 20

2.7 Old electronics mounting unit for the RPi and CPWT controller .. 23

2.8 Electronics mounting unit for the RPi and CPWT controller .. 23

3.1 Test setup of 100g mass imbalance ... 26

3.2 Processing flowchart to prepare data for analysis and fault detection 27

3.3 Alignment process using vibration markers from quickly stopping the turbine. 28

3.4 Aligned data with the rotor speed sensor installed on the LifeLine....................................... 28

3.5 Accelerometer axes .. 31

3.6 Plot of RMS Acceleration vs Rotor Speed .. 32

3.7 Plot of RMS Acceleration vs Wind Speed across all rotor speeds .. 32

3.8 Waterfall plot of frequency spectra as rotor speed changes with a balanced rotor 34

3.9 Waterfall plot of frequency spectra as rotor speed changes with a 100g imbalance 34

3.10 Waterfall plot of frequency spectra as rotor speed changes with a 200g imbalance 35

4.1 Flowchart describing the process flow of a typical fault-detection algorithm 37

4.2 Block diagram for residual-based testing .. 38

4.3 Overview of Memory Matrix Computation ... 44

4.4 Visual flowchart describing the sorting algorithm for forming D ... 45

4.5 Example of SPRT concluding (a) the null hypothesis (b) the alternative hypothesis j.......... 49

x

4.6 2D Visual of training set and testing set of data .. 50

4.7 Percent difference versus number of datasets learned ... 51

4.8 NSET+SPRT testing of balanced and unbalanced data. .. 52

4.9 Adaptive threshold for data with average rotor speed Ωavg = 130 RPM. 54

4.10 Example of an erroneous fault prediction at 10Hz .. 55

4.11 Plot of Order Analysis threshold, with a healthy vector and faulty vector shown. 57

4.12 Interpolation from constant time-step domain to constant angle-step domain 58

4.13 Raw acceleration and interpolated acceleration plotted in the time domain 59

4.14 Training and testing flowchart for the Order Analysis algorithm .. 60

4.15 Regression results for healthy and imbalanced data .. 62

5.1 Visual overview of 10-fold and Leave-One-Out cross-validation studies. 64

5.2 Confusion matrix of possible model outputs ... 66

5.3 ROC chart showing performance for each algorithm .. 67

6.1 Flowchart of NSET+SPRT and AFFT integration on the CPWT ... 71

6.2 File Generation Tool GUI .. 73

6.3 Plots of AFFT (top) and NSET+SPRT (bottom) ... 74

A.1 Plot of the ratio between estimated and exact processing time vs matrix size. 83

xi

NOMENCLATURE

ACRONYMS

CMS

COE

CPWT

FFT

NSET

O&M

RPi

SCADA

SPRT

Condition Monitoring System

Cost of Energy

Cal Poly Wind Turbine

Fast Fourier Transform

Nonlinear State Estimation Technique

Operating and Maintenance

Raspberry Pi Computer

Supervisory Control and Data Acquisition System

Sequential Probability Ratio Test

VIBRATIONS

RMS

LL

CF

SF

Root Mean Squared

Line Length

Crest Factor

Shape Factor

1P Vibrations occurring at 1 times the rotor operating speed

3P Vibrations occurring at 3 times the rotor operating speed

AERODYNAMICS

𝜆

A

 Tip Speed Ratio [#]

Rotor swept area [m2]

𝑢∞

𝑉𝑅

𝜙

𝜌𝑎𝑖𝑟

 Wind Speed [m/s]

Wind speed relative to airfoil chord [m/s]

Angle of relative wind vector

Air density [kg/m3]

Ω

𝜔

Θ

 Rotor Speed [RPM]

Rotor Speed [rad/s]

Angle of a blade from horizontal [rad]

R

r

dr

c

𝐶𝑙

𝐶𝑑

Pmech

 Rotor Radius [m]

Mass imbalance radius [m]

Differential length of blade section [m]

Airfoil Chord Length [m]

Airfoil Lift Coefficient [#]

Airfoil Drag Coefficient [#]

Mechanical power output from wind turbine [kW]

1

Chapter 1

 INTRODUCTION

1.1 Project Motivation

Compared to conventional power generation, wind turbines may operate in extremely remote

areas. Wind resources are typically at their highest far from city regions, especially offshore

turbines. High wind resources also cause environmental stresses, wearing turbines over time. The

combination of remote conditions, continual environmental degradation, and servicing difficulty

causes operating and maintenance (O&M) costs to be very high compared to conventional power

generation. A 2006 report by Sandia National Laboratory found that O&M costs can account for

10 – 20% of a wind turbine’s Cost of Energy (COE) [1]. As Kusiak notes in ref. [2], the replacement

of a $5000 bearing may quickly turn into a $250,000 project, due to the work crews and heavy

machinery necessary to service the machine. Furthermore, the damage is often only noticed once it

significantly impacts operation, at which point once-localized damage may have expanded and

impacted other components. Reducing O&M costs and detecting damage early is therefore a major

topic of study in improving the cost of wind power. This may be done, in part, by implementing a

condition-based monitoring and fault detection system (CMS). Monitoring is usually done via

Supervisory Control and Data Acquisition (SCADA) systems, which continuously monitor and

record various system parameters.

Fault detection systems are often-used in utility-scale wind turbines; however, they are much

less common in small-scale, distributed wind systems. Utility-scale wind typically involves large

turbines capable of producing > 1MW per turbine, with power being actively fed into the electric

grid [3]. As a result, these systems can and must implement highly reliable (and thus expensive)

condition monitoring solutions. On the other hand, small or medium-scale distributed wind

typically involves turbines producing < 500 kW [4], with power only being used for local

2

communities, without a grid connection [5]. As a result, distributed wind systems often cannot

justify the implementation of expensive monitoring systems. As these small-scale turbines become

more common, there will be an expanding need for a low-cost monitoring solution. To solve these

issues, the Cal Poly Wind Power Research Center is developing the LifeLine monitoring system.

The goal of the LifeLine project is to create a low-cost, modular condition monitoring system that

may be adapted to a wide variety of wind turbines. As such, it requires hardware and software that

may be applied to any turbine, rather than any one specifically. This project is currently in its

infancy; currently, it consists of a MicroPython-based microcontroller and accelerometer, and

simply collects acceleration data. The purpose of the present work is to continue development of

the LifeLine system by designing a condition monitoring algorithm using the currently installed

sensors. Experience has shown that simple methods for fault detection, such as fixed vibration

thresholds, result in a high rate of false positives. This results in unnecessary travel to the turbine

site and causes the turbine to be shut down when it could be generating power. Thus, real-time

monitoring must strike a balance between sensitivity to damage, and resistance to false alarms.

In addition to the accelerometer, available sensors in the Cal Poly Wind Turbine (CPWT)

nacelle include a current and voltage sensor from the generator, a rotor speed sensor, a wind speed

sensor, and a wind vane sensor. In consideration of these available sensors, the present work will

focus on detecting damage to the turbine blades. In addition to this work, LifeLine development is

ongoing via other student projects: see Ryan Zhan’s [6] and Ryan Takatsuka’s [7] theses for more

information.

1.2 Causes and Effects of Blade Damage

In general, blade damage has two potential sources: manufacturing defects, and environmental

damages. The most common manufacturing defects, according to ref. [8], are waviness (resulting

from improper composite construction) and porosity or voids in the blade structure. Although

3

significant, these damages may be identified before turbine assembly. Environmental damages, on

the other hand, pose a much greater risk to a turbine over its life.

First, blade surface degradation, or roughing, gradually occurs over time for all blades. It is

caused by rain, hail, and other debris – but is especially pronounced in corrosive environments,

such as offshore and desert locations. As small particulates contact the blade surface, pitting – or

small gouges in the blade surface – occur. This is primarily concentrated near the leading edge.

Blade surface degradation may be monitored by measuring the power performance of the turbine

over its life. Power performance is typically measured using the power coefficient of the turbine,

Cp – the ratio of mechanical power produced to the power available in the wind:

𝐶𝑝 =

𝑃𝑚𝑒𝑐ℎ

1
2

𝜌𝑢∞
3 𝐴

 (1.2.a)

This damage has not occurred for the duration of the CPWT’s life. As a result, the present work

does not further consider this type of blade damage. Long-term monitoring of the CPWT’s power

coefficient will also be complicated by new research showing significant deviations in 𝐶𝑝 based on

wind speed (see John Cunningham’s thesis [10]),

Environmental patterns may also cause more significant damage to blades. Lightning strikes

have been known to cause significant damage to blades – according to ref. [9], any wind turbine

from the states of Texas, Kansas, and Illinois may expect blade damage from lightning strikes every

8.4 years. The most serious form of damage resulting from a lightning strike is tip detachment – or

the removal of up to several meters of a large-scale turbine’s blade. A photo of this is shown in

Figure 1.1. Other damage sources include object impacts, such as hail, and ice accretion, where ice

builds up on the blades of turbines in colder climates.

4

Figure 1.1: Photo of tip detachment due to lightning strike [9]

Environmental stresses may also cause finer damage to the composite structure of a blade. This

may cause small delamination regions and cracks in the blade. Although these damages may not

initially impact performance, the cyclic loading applied during operation will gradually cause

damage growth. Eventually, this may lead to structural cracks, layer debonding, and large-scale

buckling, deforming the blade structure overall. A more detailed account of structural damages may

be found in ref. [8] and [9]. It is not enough to know why damage occurs, however. To adequately

detect damage – especially without visual observation – requires knowledge of how the damage

may functionally affect turbine operation.

Large-scale damage will cause significant changes to the nature of the forces acting on the

blades. A significant loss of mass on a single blade, such as tip detachment, will cause the center

of mass of the rotor to become offset from the shaft centerline. This results in a mass imbalance

and causes an additional force to act transverse to the rotor. The magnitude of this additional force

is given by the equation:

 | 𝑭 | = 𝑚𝑟𝜔2 (1.2.b)

where F is a vector defined by the following diagram:

5

Figure 1.2: Force resulting from a mass imbalance. The shown coordinate system is based on the

CPWT’s accelerometer axes

The force F thus assumes a cyclic nature and can be given as a function of blade rotation 𝜃

according to:

 𝑭 = [
0

𝑚𝑟𝜔2 cos 𝜃
−𝑚𝑟𝜔2 sin 𝜃

] (1.2.c)

As shown by this equation, the imbalance force completes one cycle with every rotation of the

turbine rotor – thus, it will affect the turbine at the frequency of the turbine rotational speed. This

is known as the 1P frequency, as it occurs once per rotor rotation.

Damage that results in blade deformation will also cause significant changes to the

aerodynamic properties of one or more blades. These aerodynamic changes result in variations of

both axial and transverse forces. For a three-bladed turbine like the CPWT, this will cause

vibrations in the rotor speed at the 1P and 2P frequency [11]. This can be visualized by considering

the forces acting on blades only within a specific region; for example, consider only the forces

6

acting on a vertical upward blade. As blades pass through this region, a differential section of the

blade develops an axial and transverse force component, as shown by Figure 1.3.

Figure 1.3: Diagram of axial and transverse forces experienced by a section of the turbine blade

The resultant force generated by a section of the turbine blade within this region is then given

by:

𝐹𝑎𝑥𝑖𝑎𝑙 =

1

2
𝜌𝑉𝑅

2𝑐𝑑𝑟(𝐶𝑙 cos 𝜙 + Cd sin 𝜙) (1.2.d)

𝐹𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 =

1

2
𝜌𝑉𝑅

2𝑐𝑑𝑟(𝐶𝑙 sin 𝜙 − Cd cos 𝜙) (1.2.e)

Where Cl and Cd are the lift and drag coefficients, respectively, and VR and 𝜙 refer to the air

velocity and direction relative to the airfoil. See ref. [12] for more detail on these equations. Cl and

Cd are informed by the blade’s airfoil profile. Blade damage causing an airfoil profile deformation

will thus change these coefficients (likely decreasing Cl and increasing Cd). If only one blade is

deformed, a 1P force will result from the decreased transverse force and increased axial force on

the damaged blade occurring once per rotation, and a 2P force will result from the higher transverse

force and lower axial force relative to the damaged blade occurring twice per rotation (owing to the

two undamaged blades). This effect is demonstrated in ref. [11], which created a computer model

of an aerodynamic imbalance.

7

Aerodynamic turbulence is also known to cause vibrations at the nP frequency, where n is

multiples of the number of blades [12]. This effect is known as rotationally sampled turbulence

and may be visualized by the diagram shown in Figure 1.4. As the blades “chop” through a turbulent

vortex, each blade experiences forces at its rotation frequency. The combination of this effect on

each blade of the turbine gives rise to nP vibrations; for the CPWT, this effect would occur at the

3P frequency.

Figure 1.4: Rotationally sampled turbulence [12]

This effect is not likely to occur for the CPWT in a balanced state, as the rotor diameter (4m)

is likely too small to experience large-scale turbulent vortices. Despite this, large damage may

induce turbulent effects, and thus it is important to monitor for such an effect. Thus, for the CPWT,

aerodynamic imbalances must be considered by monitoring the 1P, 2P, and 3P frequency

components of tower vibrations.

Smaller damage may also occur, which are undetectable based on the theory described above.

These require specialized methods for detection, which will be discussed at the end of the next

section.

8

1.3 Previous Research

This section serves to review previous research and methods to detect damage to the blades of

wind turbines. The turbines operate across several energy domains: they convert wind energy to

mechanical energy and transmit this through the rotor to the generator, which outputs electrical

energy. As a result, research on condition monitoring systems includes aerodynamic, rotor

dynamic, and electrical analyses.

For a typical rotor dynamics approach, vibrational data is collected at critical locations of the

turbine rotor. Vibrational measurement is also accompanied by other process sensors, including

rotor speed and power output. This has been successfully applied by the National Renewable

Energy Laboratory (NREL) for large-scale wind turbine gearboxes [13]. In these gearboxes, the

multitude of bearings and gears necessitates the monitoring of multiple regions. An overview of

the measurement locations can be found in Figure 1.5.

Figure 1.5: List of all accelerometers used to monitor NREL’s 750kW GRC test turbine

drivetrain [13]

Detecting faults using these accelerometers requires several data processing steps. The Fast

Fourier Transform (FFT) is used to convert input data to the frequency domain; this allows for

detecting faults appearing at specific frequencies. Before this is done, however, vibrational data is

9

processed using a technique known as synchronous sampling. Normally, acceleration data is

collected in equal time increments. For variable speed devices such as wind turbines, however,

significant changes in rotor speed over the duration of the signal to be transformed results in spectral

power “smearing” across frequency bins. To fix this, acceleration data is resampled to increments

in shaft rotation. The result of this may be seen in the waterfall plots of Figure 1.6, where

synchronous sampling is applied to the vibration of a vehicle engine. Note that this is an extreme

example, with rotor speeds 100-1000x that of a typical wind turbine. Another advantage of this

method is that the Fast Fourier Transform frequency outputs in multiples of shaft rotating frequency

rather than absolute frequency. This allows for better detection of faults occurring at multiples of

shaft rotating frequency, like those 1P, 2P, and 3P effects described in section 1.2.

10

(a)

(b)

Figure 1.6: A waterfall plot of vibrational data processed in: (a) A constant timestep format (b) a

synchronously sampled format [14]

11

The study in ref. [15] found that both mass imbalances and aerodynamic imbalances were

detectable by measuring the rotor speed at 100 Hz. In this study, mass imbalances resulted in a

clear excitation of the 1P frequency, which agrees with the theory presented in section 1.2. In

detecting aerodynamic imbalances, their results agree with ref. [11], and showed that vibration

peaks occurred at sidebands to the 3P frequency of 1P, 2P, 4P, and 5P. Their results are shown in

Figure 1.7.

Figure 1.7: Frequency response of the synchronously sampled rotor speed signal. The top plot

shows healthy operation, the middle plot shows operation with an aerodynamic

imbalance, and the bottom plot shows operation with a mass imbalance. [15]

Another major approach to diagnosing blade damage is generator monitoring. The University

of Nebraska has successfully identified mass damage in simulations by monitoring the electric

current output from a small-scale direct-drive wind turbine [11]. They observed changes at the 1P

frequency for mass imbalances, and changes at 1P and 2P for aerodynamic imbalances, again

confirming the theory presented in section 1.2.

The previously discussed methods only detect blade damage after its magnitude significantly

impacts turbine operation. Several specialized techniques exist to characterize damage by

12

monitoring the structure of the blades themselves. These techniques allow for the detection of blade

damage much earlier than vibration sensors. Several types of solutions exist: strain measurements,

acoustic emissions, and ultrasound sensors have all been used to characterize blade damage [17].

These structure-based monitoring systems are typically much more expensive than vibration

monitoring equipment. As a result, they are less viable for small-scale distributed wind systems.

Therefore, these methods will not be pursued further for the current version of LifeLine CMS.

After a review of the previously researched damage detection methods, and consideration of

the availability of sensors already installed on the Cal Poly Wind Turbine, a rotor dynamics analysis

focusing on accelerometer vibrational data was selected for continued study.

1.4 Project Objective

The mission of the present work is to design and implement a condition monitoring system

(CMS) to detect blade damage. CMS design will be informed by real data collected from the

CPWT; using this data, the CMS will be tuned so that it identifies faults and their related cause and

minimizes the number of false positive detections. Once properly designed and tuned, the CMS

will be implemented on the CPWT’s control computer. Finally, the implemented system’s

performance will be validated through more testing. CMS development will follow the flowchart

shown in Figure 1.8.

Figure 1.8: The three phases of CMS design and implementation

13

1.5 Thesis Layout

The rest of the present work is organized as follows. Chapter 2 details changes made to the Cal

Poly Wind Turbine to improve the control system and data collection methods and allow for the

installation of a fault detection software. Chapter 3 discusses the testing completed, intending to

characterize the turbine’s response to various operating parameters and to simulated blade damage.

The rest of the paper is dedicated to the design and implementation of the CMS algorithms. Several

fault detection developments are made in chapter 4, and their effectiveness is investigated in the

cross-validation study of chapter 5. Finally, the on-site implementation is detailed in chapter 6. The

present work concludes with suggestions for future steps in chapter 7.

14

Chapter 2

 THE CAL POLY WIND TURBINE

This section serves as a short documentation of the Cal Poly Wind Turbine (CPWT) mechanical

system, electrical system, and monitoring devices. This discussion informs algorithms to be

deployed on the CPWT. Also discussed are changes made to the CPWT system throughout the

present work. Two primary changes were implemented. First, integral control and preprogrammed

test routines were added to the control system, which reduced steady-state control error and allowed

for improved testing. Second, the electronic control and monitoring system was upgraded to aid

live integration of fault detection algorithms; this change required a full rework of the electronic

mounting hardware.

2.1 Turbine Overview and Tower Vibration Response

This section overviews the CPWT mechanical system, and details previous research to create

theoretical models of this system. These theoretical models inform vibration-based fault detection

algorithms and are validated in chapter 3. The CPWT is a small-scale, direct-drive horizontal-axis

wind turbine developed by many student projects at California Polytechnic State University, San

Luis Obispo, since 2008. Previous student works are summarized in Appendix C. Selection of

Previous Student Works. The CPWT consists of a 70 3/8 ft steel tower supported by a gin pole, and

a 12ft diameter turbine rated for a 3kW power output. This is shown in Figure 2.1. Power is

dissipated via a resistive load into two water tanks at the turbine base.

15

Figure 2.1: Photo of the CPWT

The gin pole supporting the tower results in the tower having a strong and weak axis,

complicating the tower dynamic response. Several works have studied the theoretical response of

the rotor/tower system. The rotor and tower vibration response are of particular importance, as the

present work uses vibrational analysis as the main monitoring parameter for fault detection. Tom

Gwon [18] and George Katsanis [19] both created theoretical tower models and calculated the

resulting bending mode frequencies or resonant frequencies. Tower bending modes resulting from

their analyses within the range of normal rotor speeds are shown in Table 2.1.

Table 2.1: Theoretical bending modes of the CPWT tower

Bending Mode Resonant Frequency

 [Hz]

 Katsanis Gwon

1st Weak Axis 0.59 0.58

1st Strong Axis 0.81 0.83

2nd Weak Axis 2.97 2.81

2nd Strong Axis 4.70 4.96

3rd Weak Axis 8.05 8.13

3rd Strong Axis 12.99 13.90

4th Weak Axis 15.08 15.61

16

Furthermore, the natural frequency of the rotor blade theoretically influences nacelle

vibrations. Katsanis used a simplified blade model and found that the natural frequency of the blade

is 16.25Hz at rest. The blade experiences a centrifugal stiffening effect as the blade speed increases,

according to the relationship:

 𝜔𝑅
2 = 𝜔𝑁𝑅

2 + 𝛼Ω2 (2.1.a)

where 𝜔𝑁𝑅 is the resting natural frequency, 𝜔𝑅 describes the rotating natural frequency at rotor

speed Ω, and 𝛼 is a parameter determined through additional analysis. Katsanis determined that

𝛼 = 2.45E-3.

Possible resonance occurring from a mass or aerodynamic imbalance is described by the

Campbell diagram shown in Figure 2.2 and Figure 2.3. As discussed in section 1.2, a mass

imbalance will result in vibration peaks occurring at the 1P frequency; thus, when the rotor speed

is equal to a tower bending mode, tower vibrations will significantly increase. Likewise, an

aerodynamic imbalance may result in 1P or 2P vibrations, causing a similar effect on tower

vibrations if present. This increase may cause damage to the tower if vibrations are large enough.

Also, a mass or aerodynamic imbalance inducing tower resonance may be an important metric for

determining the presence of such an imbalance. These Campbell diagrams thus show where

vibrational resonance may occur should damage be present, and also inform a wind turbine’s

control system – many wind turbine control systems seek to spend as little time in resonant regions

as possible, to minimize the possibility of resonance-induced vibrations causing system damage.

17

Figure 2.2: Campbell diagram for the tower weak axis

Figure 2.3: Campbell diagram for the tower strong axis

2.2 Control Method

The Cal Poly Wind Turbine (CPWT) is a small-scale wind turbine designed and manufactured

at Cal Poly. Due to its small size and high rotor speed, a direct-drive transmission is used to generate

18

power using a GL-PMG-3500 permanent magnet generator. A diagram of the CPWT is shown in

Figure 2.4 and includes a mechanical and electrical wiring diagram.

Figure 2.4: Overview of the CPWT electrical wiring, DAQ systems, and sensors.

The CPWT dissipates generator power into two large water tanks. The amount of power

dissipated is controlled by a solid-state relay, which rapidly switches between closing and opening

the loop. Controlling the duty cycle of the relay thus allows for controlling the rotor speed. The

current control implementation is described by the block diagram shown in Figure 2.5. Note that

the “Wind Turbine” transfer function is unknown; for efforts in creating a linear model, see Richard

Sandret’s thesis [39].

Figure 2.5: Rotor Speed Control Block Diagram. Note that the controller includes a feed-forward

path, which estimates the desired duty cycle for any given rotor setpoint, and a typical

proportional-integral controller.

19

At the beginning of the current project, the control method contained substantial steady-state

error, as only proportional control was used. In typical operation, an error of up to 10RPM was

typical. This limited the ability to control the rotor speed and impacted the precision of testing.

Thus, integral control was added and tuned to minimize steady-state error. After testing and tuning,

a proportional gain of 4, an integral gain of 0.015, and a feed-forward gain of 0.25 were selected.

Gains were first selected based on Richard Sandret’s work in creating a linear tower model [39];

however, these resulted in significant problems with overshoot and settling time. As such, the gains

were empirically tuned to their final value. This reduced steady-state error to 0-2RPM in normal

operation. It is likely that a refined linear model of the tower, once theoretically produced and

empirically validated, could reduce this error even further.

However, the integral control created a new problem: integral windup. Integral windup occurs

when the physical system cannot reach a desired setpoint, causing an accumulation of the integral

term when calculating the setpoint. Should the emergency brake be pressed or the windspeed drop

such that the rotor setpoint was unable to be reached, the integral error quickly accumulated to

significant levels. In practice, such a windup led to a steady-state error of up to 20RPM. Thus, a

simple anti-windup method was implemented that continually zeroed the integral error when the

rotor speed error was larger than 10 RPM. This simple fix had the desired effect; outside the 10

RPM error region, the control system quickly adjusted towards the desired setpoint. Within this

region, the control system was able to compensate for shifts in inputs, such as wind speed or yaw

angle, reaching the desired value within several seconds.

Constant tip-speed ratio control, or TSR control, was also implemented. TSR control consists

of holding the ratio between wind speed and the turbine blade tip-speed constant. TSR is defined

by the following ratio:

 𝜆 =
𝐵𝑙𝑎𝑑𝑒 𝑇𝑖𝑝 𝑆𝑝𝑒𝑒𝑑

𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑
=

Ω𝑅

𝑢𝑤
 (2.2.a)

20

The implemented TSR control is a modified version of the rotor speed control method, using

the desired setpoint 𝜆𝑠𝑒𝑡 to calculate the desired rotor speed. The block diagram for this control

system is shown in Figure 2.6.

Figure 2.6: TSR Control Block Diagram

Variations in wind speed resulted in large instantaneous changes of 𝜆, causing the first version

of TSR control to rapidly change the duty cycle – faster than the system could respond. To remedy

this, a low-pass filter was applied to windspeed readings used to calculate 𝜆. For timesteps 𝑛 and

𝑛 + 1, the low-pass filter was used:

 𝑢𝑤,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
𝑛+1 = 𝐴 ∗ 𝑢𝑤,𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝑛 + 𝐵 ∗ 𝑢𝑤,𝑟𝑎𝑤
𝑛+1 (2.2.b)

This filter had the effect of smoothing out large changes in wind turbine readings, giving the

CPWT control system more time to adjust to changes in wind speed – and the ability to ignore

short-term spikes in wind speed. The values A = 0.95 and B = 0.05 were chosen via trial and error,

balancing between unfiltered data (resulting in the duty cycle changing faster than the turbine can

accommodate) and over-filtered data (causing a large 𝜆 error). This filter was only applied to wind

speed used to calculate 𝜆 - not the recorded wind speed.

The implemented control method is unable to perfectly react to changes in the operating state,

especially large yaw angle and wind speed changes. These may likely be reduced through the

implementation of a more complex control method; however, these errors did not impact testing

results and as such were not pursued.

21

The final change made to the control system was the introduction of automated tests. The

Raspberry Pi runs a GUI that allows the user to manually change the control setpoint and choose

between constant rotor speed and constant TSR control. The added code allows the user to start

premade tests. These tests are created via a .csv file. This allows for finely executed tests like those

described in chapter 3.

2.3 Data-collection System

This section details the equipment used for data acquisition on the wind turbine and describes

several improvements made to the equipment throughout the present work. The CPWT possesses

three independent data-collection systems. The CPWT control system uses two sensors – rotor

speed and wind speed – and reports control parameters such as setpoints and the control duty cycle.

The LifeLine independently records three-dimensional nacelle vibrations. Additional data is also

collected by the Grant SQ2020 (Squirrel) system. Table 2.2 lists all parameters recorded by the

system. LifeLine parameters marked with an asterisk (*) correspond to sensors added as a part of

Ryan Zhan’s thesis [6].

Table 2.2: Parameters recorded by each DAQ system

System Parameters Measured Collection Rate [Hz]

Controller

Rotor Speed [RPM]

Wind Speed [m/s]

Duty Cycle [%]

5

Squirrel

Rotor Speed [RPM]

Wind Speed [m/s]

Generator Current [ADC]

Generator Voltage [VDC]

Wind Direction [deg]

Nacelle Yaw [deg]

1

LifeLine

Nacelle Acceleration [g*16384]

Rotor Speed [RPM]*

Generator Current [ADC]*

Generator Voltage [VDC]*

50

1

50

50

Various factors offset the time of data recording. The Raspberry Pi (RPi) suffered several

delays in collecting data from the controller and LifeLine. Serial communication delays occurred

when the RPi did not immediately record data sent by the controller or LifeLine. Radio

22

communication also delayed the LifeLine data even further. Finally, the internal clock of the RPi

stopped when powered off. This required the manual synchronization of the Squirrel and RPi

clocks, which was very difficult to do perfectly. As a result, analyzing data required careful

alignment of the datasets by time. See chapter 2 for further discussion of the alignment process.

Misalignments of up to 20 seconds between the LifeLine and Squirrel were common. To remedy

the alignment issues described above, sensors recorded by the Squirrel were also added to the

controller. By doing this, the Raspberry Pi became the central device recording all data necessary

for a fault detection algorithm to function. This setup minimized possible alignment errors and

reduced the number of devices necessary for proper data-collection to two. Unfortunately, these

improvements were not completed in time for the testing described in chapter 3; however, future

testing can make use of these. Future work might also add an external clock to synchronize each

device’s internal clock – although communication with the Squirrel SQ2020 (a closed-environment

system) may prove difficult.

To facilitate adding the sensors from the Squirrel to the controller, the expansion board for the

controller was redesigned by Dr. John Ridgely. In redesigning this board, external wiring was

condensed onto the board and additional analog pins were added. This redesign required that the

electronics mounting unit in the electrical box be updated with a new version. The new version

mounted the RPi monitor, terminal block, and buck converter to an aluminum plate. The RPi and

controller were mounted on an acrylic sheet fixed to the aluminum plate via metal standoffs. This

allowed for the RPi and controller to be removed and serviced without requiring the removal of the

entire plate from the DIN rails it was mounted on. The old and newly updated electronics mounting

unit are shown in Figure 2.7 and Figure 2.8, respectively.

23

Figure 2.7: Old electronics mounting unit for the RPi and CPWT controller. The RPi is not

pictured.

Figure 2.8: Electronics mounting unit for the RPi and CPWT controller

 To conclude, several changes were made to the CPWT to prepare the system for installation of

a condition monitoring system. The control system was improved by adding integral control and

Tip-Speed Ratio control. This, along with several smaller fixes, reduced steady-state error from

~10RPM to ~2RPM. An automated testing routing was also introduced, allowing for the

preprogramming and automatic execution of tests. Finally, a new electronic mounting unit was

built, allowing for the addition of new sensors, and simplifying the installation of a condition

monitoring system. This paved the way for field testing to characterize the vibrational response of

the turbine to rotor speed changes, wind speed changes, and simulated damage – a topic that will

be discussed in chapter 3.

24

Chapter 3

 PHYSICAL TESTING

This thesis takes a data-driven approach to fault detection. Any algorithm developed must be

both trained by and tested on operational data. Fault detection focuses specifically on large-scale

damage to turbine blades that would cause a significant portion of the blade to be lost. Testing must

be completed in a repeatable way, to control for any factor that might affect the tower vibrational

response. In other words, each test must be conducted in a near-identical fashion. Also, the

environmental conditions acting on the turbine must be as similar as possible. Blade damage is

simulated by attaching a premeasured imbalance mass to the blade. As nacelle vibrations are the

major fault detection parameter, the testing goal is to minimize any potential factor that might

impact nacelle vibrations besides an added mass.

The other major focus of this chapter is to identify features, or methods of post-processing

operating data, that best identify imbalance faults. In general, post-processing of any data takes two

forms: time-series and frequency-based methods. For time-series methods, any feature must

account for the fact that wind (and thus the vibration response) is an inherently stochastic process.

To account for this, many sources including ref. [20] recommend using statistical processing

methods. The Fast Fourier transform (FFT) will be used for frequency analysis.

3.1 Experimental Design and Data Collection

The main goal of testing was to collect a variety of system operating data in a healthy and faulty

operating state in a repeatable fashion. To accomplish this, two major types of tests were completed:

steady-state tests and ramp tests.

For steady-state tests, the rotor speed was held constant in increments of 20RPM, from 80 to

180RPM. At each increment, five minutes of data were collected. These tests were undertaken to

25

better understand the behavior of the rotor while holding the rotor speed constant. In particular, the

effect of varying wind-speed on tower vibrations was investigated. Thus, six sets of data were

collected for each rotor configuration.

For ramp tests, the rotor speed was incremented by 1 RPM every 10 seconds, from 30 to 210

RPM. Each test therefore collected 30 minutes of data. These tests were completed for two

purposes. First, the ramp test allowed for analyzing the frequency spectra of the vibration signal as

a function of the rotor speed. Specifically, this test allowed for verifying the theory presented in

section 1.2, which states that mass imbalances appear at the 1P frequency and aerodynamic

imbalances appear at the 1P and 2P frequencies. It also allowed for verifying the tower bending

modes as described by the Campbell diagram in Figure 2.2. Second, the cross-validation study of

chapter 5 requires the division of all healthy data into ten sets, with each run including the full

operating range of the system; therefore, each ramp test will correspond to one set of data for this

study.

For the cross-validation study, data was only collected when the wind adhered to two

characteristics:

1. The wind speed must be relatively similar and uniform for each test.

2. Wind direction must be predominantly westerly, to reduce tower strong-weak axis

interactions

The first criterion allows for the most accurate comparison between tests. The second criterion

reduces tower strong-weak axis interactions; see chapter 2 for more information. The west-to-east

wind direction was ideal, as it is the most common direction at the turbine site in absence of large-

scale weather patterns.

Both the steady-state and ramp tests were completed with the rotor in a balanced “healthy”

state, and an intentionally imbalanced “faulty” state. For the faulty state, a sheet metal mass was

duct-taped to the end of the wind turbine blade. Three unbalance masses were tested: 50g, 100g,

and 200g. The exact mass of the sheet metal and duct tape combinations are listed in Table 3.1.

26

Table 3.1: List of masses used in testing, along with the exact weight added including duct tape

Nominal Mass

[g]

Total Mass

[g]

50g 64

100g 119.2

200g 223.5

Figure 3.1 shows the 100g mass attached to the turbine blade. The 100g and 50g imbalance

were attached to the “suction” side of the blade, or the downwind side. The 200g imbalance was

attached to the “pressure” side of the blade, or the side facing the wind. It is important to note that

this simulated faulty state is not dynamically identical to true blade damage; with a large section of

blade missing, the lift produced by that blade will significantly decrease. This reduction in lift will

produce a cyclic load on the nacelle at 1X and 2X the turbine rotating frequency. The attached mass

may reduce the produced lift, but not to the same extent as the damage described above.

Furthermore, the added mass produces a dynamic effect opposite to that of a damaged blade: rather

than offsetting the rotor center of mass away from the damage location, the added mass shifts the

center of mass toward the location of simulated damage. Although the dynamics might vary from

the true damaged state, the simulated damage is assumed similar enough to still provide meaningful

insight towards how to best detect damage.

Figure 3.1: Test setup of 100g mass imbalance. The mass is attached to the downwind, “suction”

side of the blade.

27

As discussed in chapter 2, the CPWT has three independent data collection systems: the

LifeLine, which collects tower vibrations, the Nucleo controller, which collects useful control

information, and the Squirrel SQ2020, which monitors all other system parameters. See Table 2.2

for more information. Each of these systems must be started separately. Additionally, at the

beginning of data collection, only the LifeLine and the Squirrel SQ2020 recorded all data necessary

for the fault detection algorithms used in this thesis; as a result, these systems were the only ones

used for post-processing and analysis. Processing of data followed two major pathways: for

analysis of the turbine vibration response, and integration into each fault-detection algorithm. This

processing flowchart is detailed in Figure 3.2. During preprocessing, data is saved to the system

memory as an intermediate step so that time spent processing for plotting and fault detection is

reduced.

Figure 3.2: Processing flowchart to prepare data for analysis and fault detection

As the LifeLine initially only recorded vibrational data, testing necessitated additional steps to

generate “markers” that could be used to align vibrational data and Squirrel data. Ultimately, the

chosen marker was to bring the turbine to 210RPM, then set the duty cycle to 100%. This quickly

brought the turbine to a stop and generated a sharp peak in vibrations. Creating two of these markers

28

generated enough information to properly align the two sets of data; this process is shown in Figure

3.3.

Figure 3.3: Alignment process using vibration markers from quickly stopping the turbine.

The addition of a rotor speed sensor to the LifeLine, as discussed in chapter 2.3, allowed for

verifying the accuracy of this method. As shown in Figure 3.4, the peak in vibration closely

followed the drop in rotor speed. Therefore, alignment error can be kept under three seconds.

Figure 3.4: Aligned data with the rotor speed sensor installed on the LifeLine. The spike in rotor

speed from the LifeLine at 1824 seconds is an incorrect data point related to noise.

The wireless transmission of data between the LifeLine and Raspberry Pi also sometimes ended

in a significant amount of data being lost. This was typically caused by the positioning of the

29

antenna receiving data. Thus, it was necessary to promptly post-process the data to ensure minimal

data was lost. Roughly 25% of tests did not produce meaningful results due to this issue.

3.2 Response Characteristics

Several features are theoretically useful for defining the vibrational response of the nacelle.

This section defines these features. For the time-series analysis of vibrations, statistical analysis is

commonly used. This is due to the stochastic nature of wind, which makes describing a vibration

signal with a direct formula very difficult [20]. Therefore, several statistical features are defined

here. All measures are computed for each axis of tower vibrations as recorded by the MMA8452Q

accelerometer.

The simplest of these measures is the root-mean-square value, which is used to describe the

average magnitude of vibrations. It is defined by the equation:

 𝑥𝑅𝑀𝑆 = √
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

 (3.2.a)

The RMS value is used for two reasons. First, it is a better measure of average vibration

amplitude than the true average, which is very often zero (and thus unable to be used by the

algorithm). Second, it is resistant to random peaks in a steady-state operating condition [20].

Another major parameter used is the Line Length of the signal, a health prognostics tool used

to detect damage to helicopter blades [16]. Computationally, it is the sum of the distance between

all data points, where each data point is considered a two-dimensional point 𝒙 = (𝑡, 𝑥). Here, t is

the timestamp of the measured data point, and x is the sensor value.

 𝑥𝐿𝐿 = ∑|𝒙𝑖+1 − 𝒙𝑖|0.5

𝑛−1

𝑖

 (3.2.b)

Next, the Crest Factor is the ratio between the peak amplitude of the signal and the RMS value:

30

 𝑥𝐶𝐹 =
𝑥𝑝

𝑥𝑅𝑀𝑆
 (3.2.c)

Ref. [21] showed that the crest factor indicates unbalance in an electric motor, hence its inclusion

here.

The Shape Factor is another indicator useful in characterizing unbalance faults, according to ref.

[20]. It is the ratio between the RMS value and the average absolute value of the signal, squared:

𝑥𝑆𝐹 =

𝑥𝑅𝑀𝑆

(
1
𝑛

 ∑ |𝑥𝑖|𝑛
𝑖)

2
(3.2.d)

The final common statistical feature used is Kurtosis, which has also been shown to signify mass

unbalance in electric motors by ref. [21].

𝑥𝐾𝑈𝑅𝑇 =

∑ (𝑥𝑖 − 𝑥̅)4𝑛
𝑖=1

𝑛𝜎𝑥
4 (3.2.e)

Frequency-based analyses also often show fault conditions. Mass unbalance, for example,

appears as a peak at 1X the operating speed of rotor-based machinery, and aerodynamic imbalances

often occur at 1X and 2X the operating speed. The discrete Fourier transform, or DFT, decomposes

a signal into the frequencies that compose it and allows for identifying these frequency peaks. The

Fast Fourier Transform, or FFT, computes almost the same result as the DFT - but requires

significantly less processing time. This thesis uses the FFT due to the large datasets studied. The

FFT takes a signal of length n and returns a matrix of complex vectors, also of length n. Each vector

corresponds to a specific frequency of vibrations. The absolute value of each vector then describes

the amplitude of vibrations at the associated frequency.

3.3 Results

The LifeLine accelerometer reports acceleration in three axes. These axes are shown in Figure

3.5. As a potential mass imbalance theoretically adds a forcing frequency to the transverse (Y) axis,

signal analysis will be done using data from this axis unless otherwise noted. The rotor faced

31

approximately west for all tests, aligning the Y-axis with the weak axis. As a result, the expected

bending modes for the Y-axis vibrations are described by the weak-axis Campbell diagram shown

in Figure 2.2.

Figure 3.5: Accelerometer axes. The X-axis is in-line with the rotor, the Y-axis is in the

transverse horizontal direction, and the Z-axis points down the tower.

For the balanced rotor, the RMS vibrations steadily increase up to 65 RPM, then stay relatively

constant. The unbalanced rotor is similar, except that the RMS vibrations are higher and peak at

160 RPM. These vibrations could be visually seen during testing, as the tower began noticeably

shaking. This 160RPM peak approximately corresponds to the 2nd bending mode of the weak axis,

which has a natural frequency of 2.8 Hz (Gwon, [18]) or 2.97Hz (Katsanis, [19]) – corresponding

to a rotor speed of 168 – 180RPM. This confirms the theoretical models described by the Campbell

diagram in Figure 2.2, as this peak corresponds to the intersection of the 1P frequency and the 2nd

bending mode. This result slightly disagrees with Derek Simon’s work in ref. [22], which showed

a constant RMS acceleration for a balanced rotor, and a positive correlation between these variables

for an unbalanced rotor – without the associated peak at 160RPM. Since his work, the CPWT has

been upgraded from a passive yaw system to an electromechanical auto-yaw system. As a result,

there is always a slight error between the yaw angle and the incoming wind direction. This causes

additional dynamic effects in the interaction between the incoming wind vector, the blades, and the

32

nacelle [12]. This is a likely explanation for variations in RMS accelerations with changes in rotor

speed. The acceleration intensity also increases with wind speed, as shown in Figure 3.7; the effect

is more pronounced for the imbalanced rotor.

Figure 3.6: Plot of RMS Acceleration vs Rotor Speed

Figure 3.7: Plot of RMS Acceleration vs Wind Speed across all rotor speeds

The main use of the other statistical parameters detailed in section 3.2 is in differentiating

between a healthy rotor and an imbalanced rotor. Table 3.2 shows the average percent difference

between the healthy state and all masses tested. As shown, the Line Length measure most clearly

33

differentiates between a balanced and unbalanced rotor: with a 200g imbalance, the Y-axis Line

Length measure has a 111% change from the healthy value. The RMS measure is the second-best

predictor of faults, with an 82.6% change from the healthy value to the 200g imbalanced value.

Table 3.2: Average values for parameters for ramp tests and percent change from a balanced rotor

Parameter Axis
Average Value

Percent Change from

Healthy

Healthy 50g 100g 200g 50g 100g 200g

RMS

X 0.0467 0.0706 0.0592 0.0739 51.3 26.7 58.4

Y 0.0586 0.093 0.0851 0.1070 59.2 45.2 82.6

Z 1.0054 1.0073 1.0070 1.0072 0.2 0.2 0.2

Line Length

X 34729 52008 47001 57967 49.8 35.3 66.9

Y 31529 53531 50549 66560 69.5 60.3 111.1

Z 37865 59142 56477 65120 56.2 49.2 72

Crest Factor

X 2.4507 2.5216 2.5619 2.5750 2.9 4.5 5.1

Y 2.4408 2.5456 2.4732 2.4505 4.3 1.3 0.4

Z 1.1096 1.1746 1.1546 1.1920 5.9 4.1 7.4

Shape Factor

X 0.0024 0.0017 0.0020 0.0016 -29.7 -14.0 -32.5

Y 0.0017 0.0012 0.0013 0.0010 -28.0 -24.1 -37.3

Z 0.0001 0.0001 0.0001 0.0001 0.2 0.1 0.4

Kurtosis

X 3.0441 3.0295 3.0469 3.1258 -0.5 0.1 2.7

Y 3.4084 3.1495 3.0390 2.9018 -7.6 -10.8 -14.9

Z 3.1772 2.9962 3.0143 2.9562 -5.7 -5.1 -7.0

For frequency-based analysis, a single FFT reveals some information about the rotor operating

state. However, a single FFT is unable to describe the effect of varying rotor speed. This is better

characterized by creating a waterfall plot, which shows how the frequency spectra change with

rotor speed. To create these plots, every 1024 data points of the vibration signal are processed via

an FFT. The average rotor speed for each FFT is computed. The FFT outputs are then organized

into bins of 5RPM increments, from 30 to 210RPM. Finally, all FFTs within a single bin are

averaged to form a single frequency spectrum. Once the FFT outputs from each bin are computed,

they are assembled into a 3D mesh plot. The results of this process are shown in Figure 3.8, Figure

3.9, and Figure 3.10 (corresponding to a balance rotor, a 100g imbalance, and a 200g imbalance,

respectively).

34

Figure 3.8: Waterfall plot of frequency spectra as rotor speed changes with a balanced rotor

Figure 3.9: Waterfall plot of frequency spectra as rotor speed changes with a 100g imbalance

35

Figure 3.10: Waterfall plot of frequency spectra as rotor speed changes with a 200g imbalance

Analyses of the waterfall plots yield several interesting results. First, several vibrational peaks

appear in all waterfall plots which do not correspond to any expected vibrational theory. One

appears as a constant 1.1 Hz peak, while several others change with rotor frequency, appearing at

(1.1 Hz + 1P), (-1.1 Hz + 1P), and (1.1 Hz – 1P). Several effects might cause this, ranging from

dynamic effects such as tower nonlinearities to measurement issues including sensor aliasing.

Regardless, the knowledge that these peaks are present allows for ignoring them in frequency

analyses, thus minimizing their impact on a fault detection algorithm.

As shown in Figure 3.9 and Figure 3.10, the addition of a mass imbalance causes a clear peak

at the 1P frequency once the operating speed reaches 140 RPM. This effect occurs as the forcing

frequency aligns with the resonant frequencies of the tower bending modes, consistent with the

theory presented in section 1.3. With the larger 200g imbalance, the shaking force becomes large

enough to show a clear 1P frequency peak with the rotor speed outside the resonance region. The

200g imbalance also caused the blade to bend out of plane from the other two blades. This bending

36

motion resulted in a significant excitation at the 3P frequency in addition to the 1P excitations seen

in Figure 3.9. This effect disagrees with the first theory of aerodynamic imbalances presented in

section 1.2. It is thus theorized that the bending motion generated turbulent eddies within the rotor

plane, giving rise to the rotational sampling of turbulence. This would cause a significant 3P

component of tower vibrations, as shown in Figure 3.10. Further testing to investigate this effect is

suggested; however, for the present work, it will not be investigated further. The bending modes of

the tower’s weak axis also clearly appear in these waterfall plots, as the 1P and 3P vibrations excite

the 2nd and 3rd bending modes of the tower. The location of the peak on the waterfall plot may be

used to estimate the bending mode frequencies: Table 3.3 lists the estimated mode frequencies and

compares them to the previously created models.

Table 3.3: Tower weak axis bending modes as described by resonance over rotor ramp tests

Bending

Mode

[#]

Testing

[Hz]

Katsanis

Model

[Hz]

Percent

Diff.

[%]

Gwon

Model

[Hz]

Percent

Diff.

[%]

1st 0.51 0.59 14.6 0.58 12.8

2nd 2.61 2.97 12.9 2.81 7.4

3rd 7.84 8.05 2.6 8.13 3.63

As shown, testing shows slight differences from the theoretical modes. This is expected, as

both Katsanis’ and Gwon’s model assume a linear tower model; some error is therefore expected

in real turbine operation. Furthermore, bending modes are estimated based on the relevant peak in

tower vibrations; measurement error may thus also cause error in bending mode estimation.

To conclude, the best time-series-based measures for differentiating between a healthy rotor

and an imbalanced rotor – using only accelerometer data – are RMS and Line Length values. A

mass imbalance offsets these measures in a predictable direction towards a larger magnitude. For

frequency-based analysis, the Fast Fourier Transform reliably shows both mass and aerodynamic

imbalances with the rotor speed above 160 RPM. The fault detection algorithms developed for the

present work will therefore apply time-series analysis using the RMS and Line Length values, and

frequency-based analysis based on the FFT.

37

Chapter 4

 CONDITION MONITORING AND FAULT DETECTION ALGORITHMS

In general, fault detection algorithms will contain two major components: a mathematical

model of the turbine, and a decision-making algorithm analyzing the results of this model. A simple

version of this is shown in Figure 4.1.

Figure 4.1: Flowchart describing the process flow of a typical fault-detection algorithm

Fault detection algorithms take place a step removed from traditional control systems. That is,

the algorithm only affects the control system when a serious fault is detected. In a typical algorithm,

parameters of the system are continuously monitored, and significant deviations from normal

operation raise an alarm. The alarm either alerts a technician or automatically stops the system,

depending on algorithm implementation and seriousness of the detected fault.

Application of a fault detection algorithm to a wind turbine must specifically consider the

unique challenges present to the system – especially the fact that wind is an inherently stochastic

phenomenon. Many models have been used to describe the random variations in wind speed, both

in space and in time. The best-known model is the Von Karman wind turbulence model, which is

the preferred model of the U.S. Department of Defense [23].

For stochastic systems, a common prediction model is the computation of a residual [24]. The

residual is the difference between the expected and actual state of a given system, as illustrated by

Figure 4.2. The expected state is created through any type of model; the most common form is a

linear state-space model. For strongly nonlinear systems, such as those in rotor dynamics, a

38

linearized model must be created at the operating point. Variable-speed systems like the CPWT

thus require the creation of numerous linearized models at each operating point. To avoid this, the

residual-based prediction model used in the present work uses a nonlinear state estimating

technique described in section 3.

Figure 4.2: Block diagram for residual-based testing

This thesis applies three algorithms to the CPWT testing data collected in chapter 3. Both time-

series and frequency-based methods are used. In all cases, algorithm application begins with a

training phase, in which the algorithm “learns” the healthy operating state of the rotor. Then, new

data is tested sequentially. The developed algorithms are tuned, and their performance is described,

via the cross-validation study in chapter 5.

4.1 NSET+SPRT

The NSET+SPRT is a time-series algorithm. It uses the Nonlinear State Estimation Technique

(NSET) as the prediction model to memorize and predict the state of the rotor, and the Sequential

Probability Ratio Test (SPRT) for decision-making to decide on the presence of a fault. NSET is a

condition monitoring algorithm used to detect deviations from the normal operating state of a

system. It is part of a more general class of algorithms known as Similarity-Based Modeling (SBM).

After a period of training, the algorithm can be trained to estimate the state of a process given new

sensor measurements. A major advantage of this algorithm is its ability to detect both process faults

and sensor faults (and differentiate between them). Without a secondary decision-making

39

algorithm, however, NSET would hold no ability to detect faults. This is solved with the SPRT.

The SPRT is a powerful statistical testing tool that has been used for many applications, including

quality control processes and statistical fault detection. This chapter outlines the theoretical

backbone for both techniques and establishes methods for training the algorithm and using it for

fault detection and condition monitoring.

4.1.1 NSET Background

Argonne National Laboratory and Florida Power Corporation developed their Multivariate

State Estimation Technique (MSET) in the 1990s to model the Crystal River-3 nuclear power plant,

located in Crystal River, Florida [25]. MSET modeled feedwater flow meters and successfully

predicted degradation in measurements due to sensor surface fouling. A major benefit of adopting

this system was its ability to detect incipient faults; that is, a slowly degrading sensor or component

within a system. Since then, MSET has been used in many US Nuclear Reactors, and various other

industries.

In 2012, Peng Guo and David Infield adapted this algorithm for monitoring wind turbine

performance (which they called the Nonlinear State Estimation Technique, or NSET) [26], [27].

They applied the technique for monitoring the generator (via temperature measurements) and the

nacelle (via tower vibration measurements). They created faults in the generator, which NSET was

able to detect. They also showed that NSET was able to predict nacelle vibrations to a high degree

of accuracy, but did not use it to detect faults.

4.1.2 NSET Theory

The Nonlinear State Estimation technique is a memory-based condition monitoring algorithm

based on the formation of system state vectors, wherein each vector element is an expected sensor

measurement. The technique is broken up into three major steps. First, a memory matrix is learned

using historical sensor data. After the learning phase, the system may proceed into the detection

phase. When new data is collected, a weighting vector is calculated. The estimated system state is

40

then the linear combination of all vectors multiplied by their weighted value. In a healthy system,

the difference between the measured state and the estimated state will be small. However, should

new data significantly deviate from historical observations (such as in the case of a process fault or

sensor failure), NSET will produce an estimated state that is different from the measured state. This

difference is quantified by computing the difference between the measured and estimated system

state.

The data used to form system states must follow several criteria:

1. All sensors must be sampled at, or averaged to, the same data collection rate

2. For stochastic processes, the data collection rate should be averaged to a sufficiently large

period such that random variations are filtered out

3. Measured parameters must have some level of interconnectedness

Following this, successive steps in time form a measurement vector composed of data from

each sensor. For a system with n sensors, the following column vector is created:

 𝑿(𝑖) = [𝑥1(𝑖), 𝑥2(𝑖), ⋯ , 𝑥𝑛(𝑖)]𝑇 (4.1.a)

For a set of historical operating data, a separate algorithm selects m measurement vectors to be

included in a memory matrix. Then, the memory matrix D is the combination of all m measurement

vectors:

 𝑫 = [𝑿(1), 𝑿(2), ⋯ , 𝑿(𝑚)] = [

𝑥1(1) 𝑥1(2) ⋯ 𝑥1(𝑚)

𝑥2(1) 𝑥2(2) ⋯ 𝑥2(𝑚)
⋮ ⋮ ⋱ ⋮

𝑥𝑛(1) 𝑥𝑛(2) ⋯ 𝑥𝑛(𝑚)

] (4.1.b)

After forming this matrix, an estimation of the system state can be found by multiplying D by

an m-dimension weighting vector W.

𝑿𝑒𝑠𝑡 = 𝑫 𝑾 (4.1.c)

41

As new measurement vectors (Xobs) are taken, the residual ε = Xest – Xobs is computed. The

weighting vector W is produced by minimizing the residual, produced via the equation:

 𝑾 = (𝑫T 𝑫)
−1

 (𝑫T 𝑿𝑜𝑏𝑠) (4.1.d)

This derivation may be found in ref. [28]. As discussed there, a major issue with this equation

arose: as the memory matrix grew, the quantity DT D quickly became ill-conditioned, preventing a

proper inverse from being taken. Also, this quantity was not able to account for random fluctuations

in sensor data. Thus, further development of NSET replaced the matrix multiplication with a

nonlinear operator, signified by the ⊗ symbol. In ref. [25] and [28], the nonlinear operator was

selected via a secondary algorithm; however, the operators used were not disclosed due to

proprietary issues. For wind turbine analysis, ref. [26] and [27] used the Euclidean distance between

the two vectors as the nonlinear operator:

 𝑿 ⊗ 𝒀 = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (4.1.e)

When used, equation (4.1.d) becomes:

 𝑾 = (𝑫T ⊗ 𝑫)
−1

 (𝑫T ⊗ 𝑿𝑜𝑏𝑠) (4.1.f)

Thus, the system state may be estimated by the full equation:

 𝑿𝑒𝑠𝑡 = 𝑫 (𝑫T ⊗ 𝑫)
−1

 (𝑫T ⊗ 𝑿𝑜𝑏𝑠) (4.1.g)

Furthermore, for multiplying one or more matrices, the nonlinear operator functions as a linear

matrix multiplication operation:

𝑫T ⊗ 𝑫 = [

𝑿(1)

𝑿(2)
⋮

𝑿(𝑚)

] ⊗ [𝑿(1) 𝑿(2) ⋯ 𝑿(𝑚)] =

= [

𝑿(1) ⊗ 𝑿(1) 𝑿(1) ⊗ 𝑿(2) ⋯ 𝑿(1) ⊗ 𝑿(𝑚)

𝑿(2) ⊗ 𝑿(1) 𝑿(2) ⊗ 𝑿(2) ⋯ 𝑿(2) ⊗ 𝑿(𝑚)
⋮ ⋮ ⋱ ⋮

𝑿(𝑚) ⊗ 𝑿(1) 𝑿(𝑚) ⊗ 𝑿(2) ⋯ 𝑿(𝑚) ⊗ 𝑿(𝑚)

]

(4.1.h)

42

The major difference, then, is that the Euclidean distance is calculated rather than directly

multiplying the vectors. This operator has been successful in monitoring several wind turbine

subsystems, including the generator and the nacelle. As such, this first version of the NSET

application uses it – however, additional exploration of other operators may be valuable. As

discussed in ref. [29], the nonlinear operator may also be described as a similarity operation. In

this, the level of similarity between a new observed input vector Xobs and the memory vectors is

computed into a “similarity score vector,” and transformed into a set of weighting factors

corresponding to each vector present in D.

4.1.3 Memory Matrix Formation

Formation of the memory matrix D is a critical prerequisite to live integration of NSET in

a condition monitoring algorithm. As such, NSET includes a subset of algorithms dedicated to

forming D. The goal of these algorithms is to form D such that it encompasses the breadth of

operational data for the system studied.

As discussed earlier, D must be formed such that 𝑫T ⊗ 𝑫 is well-conditioned. If this

criterion is not fulfilled, then the inverse of 𝑫T ⊗ 𝑫, as described by equation (4.1.f), will not be

properly computed. In this case, the estimated system state computed in (4.1.g) will be identical to

the observed state vector, eliminating the NSET model’s predictive power. Therefore, before

developing any algorithm to form D, a mathematical description of a well-conditioned matrix must

be defined. A well-conditioned matrix may be numerically described by the matrix condition

number. For an m-by-m matrix C, the condition number may be approximated by computing the

reciprocal of the 1-norm condition number, 𝛬̃−1:

𝛬̃−1 = [max(𝐶𝑖𝑗𝑛𝑖) ∗ max(𝐶−1

𝑖𝑗𝑛𝑖)]
−1

 (4.1.i)

Equation (4.1.i) is written in summation notation with n as a 1-by-m vector of ones to simplify

notation. Calculation of 𝛬̃−1 is much more computationally efficient than finding the exact matrix

43

condition number, which requires singular-value decomposition of the matrix. Approximating the

condition number via equation (4.1.i) is significantly faster than an exact calculation; for a 5-by-50

matrix, this approximation takes 25% of the time that the exact version requires. See Attachment

A for details of this derivation and additional discussion. A well-conditioned matrix has 𝛬̃−1 close

to one; in practice, though, 𝛬̃−1 quickly drops as the size of D increases. MATLAB begins to warn

of an ill-conditioned matrix for 𝛬̃−1 ≤ 10−16. Therefore, for formation of a well-conditioned

memory matrix, the following algorithms set a conservative threshold of 𝛬̃−1 ≥ 10−8. This is an

important requirement; although (𝑫T ⊗ 𝑫)
−1

 may be computed when ill-conditioned, the

algorithm will lack the ability to properly estimate the system’s state. An added benefit of this

requirement is that the NSET model estimates the system state significantly faster with a smaller

memory matrix. With 𝛬̃−1 = 1.02E-08 (corresponding to a 9-by-196 matrix), estimating two ramp

tests from chapter 3 takes 16 seconds in MATLAB. On the other hand, with 𝛬̃−1 = 4.89E-11

(corresponding to a 9-by-904 matrix), the estimation process takes 351 seconds and raises eleven

false positives when conducting the statistical testing described in section 4.1.4 (compared to the

zero false alarms raised during the first test). Thus, ensuring a well-conditioned memory matrix has

benefits in saving processing time and increasing algorithm robustness.

After gathering training data, it must be preprocessed into a useful format. As stated earlier,

data must be sampled or averaged to the same data collection rate. SCADA systems typically make

decisions based on 5 or 10-minute averages [27]; however, due to the small quantity of data able

to be collected, ten-second averages were taken instead. Then data is normalized so that the

maximum value is 1, with normalization factors given by the final column of Table 4.1. This

normalization tends to increase 𝛬̃−1, allowing for the inclusion of more vectors in the memory

matrix. Data is then organized into measurement vectors according to the first column of Table 4.1.

44

Table 4.1: Vector organization by sensor and associated normalization factor

Vector

Position
Sensor

Raw

SR
Description Units

Normalization

Factor

n [Hz]

1 Anemometer 1 Wind Speed [MPH] 24

2 Gear Tooth Hall Effect 1 Rotor Speed [RPM] 300

3
Generator

Voltage/Current
1 Power Output [W] 1500

4

LifeLine

(Accelerometer)
50

RMS, X-Dir [16384*g] 4096

5 RMS, Y-Dir [16384*g] 4096

6 RMS, Z-Dir [16384*g] 18432

7 Line Length, X-Dir [16384*g] 50,000

8 Line Length, Y-Dir [16384*g] 50,000

9 Line Length, Z-Dir [16384*g] 50,000

Data from sensors 1, 2, and 3 are processed into ten-second averages. Vibrational data is

processed into two major forms: the RMS value and the Line Length signal. See chapter 3.2 for

more details on these calculations.

Next, two algorithms select the most significant data for inclusion in the memory matrix.

Figure 4.3 depicts the general process for forming the memory matrix.

Figure 4.3: Overview of Memory Matrix Computation

The first algorithm selects vectors containing extreme measurement values. Vectors

containing the minimum and maximum values from the wind speed and rotor speed sensors are

selected, as described by ref. [25]. The second algorithm, a modified version of that found in ref.

[26], divides the range of values from each sensor into 1/𝑘𝑛 steps (starting from k = 0.01). This

results in 100 steps per sensor for the first iteration. The vector closest to each step increment is

saved into a sensor-specific matrix Dn. Once a vector is selected, it is removed from the available

training data. After sorting, the matrices are combined such that D = [D1, D2, … , Dn], and 𝛬̃−1(𝑫)

is calculated. If it is not above the threshold, the sensor n whose formed memory matrix has the

45

smallest 𝛬̃−1(𝑫𝑛) value has its number of bins reduced by adding 𝑘𝑛 = 𝑘𝑛 + 0.01, thus halving

the number of steps per sensor each iteration. Figure 3 shows a graphical depiction of this algorithm.

In practice, the 𝛬̃−1(𝑫) exceeds the threshold when the matrix reaches around 200 vectors in

length.

After a suitable memory matrix has been formed, the algorithm exits and saves D to system

memory. Once this has been formed, the NSET model is ready to estimate the system state in a live

implementation. However, the NSET model cannot recognize faults on its own. A decision-making

algorithm must be imposed upon the result of this model. This thesis applies the Sequential

Probability Ratio Test, or SPRT, to make these decisions – in line with the development in ref. [25]

and [28].

Figure 4.4: Visual flowchart describing the sorting algorithm for forming D

46

4.1.4 SPRT Theory

The Sequential Probability Ratio Test, or SPRT, was developed by Abraham Wald in 1945

[30]. Although originally used for control of manufacturing processes, it has been since been to

other cases, including testing human examinees and fault detection algorithms. The SPRT operates

on the CPWT NSET model and allows for determining deviation from normal operation using

statistical methods. As a sequential test, the SPRT does not operate on a fixed sample size; rather,

it progressively adds additional data points to the test until a decision is reached. For each datapoint

𝑥𝑖 and possible fault 𝑗, the SPRT chooses between one of three possibilities:

1. Accept the null hypothesis 𝐻0 (No fault detected)

2. Reject the null hypothesis 𝐻0, and assume 𝐻𝑗 to be true (Fault j detected)

3. Collect another datapoint i+1

The SPRT operates on the residual 𝜀𝑖 between the observed and expected accelerations:

 𝜀𝑖 = 𝑥𝑒𝑠𝑡,𝑖 − 𝑥𝑜𝑏𝑠,𝑖 (4.1.j)

where the acceleration 𝑥 is the set of Y-axis Line Length accelerations as described in chapter 3.2,

and the estimated state is generated using the NSET algorithm. SPRT hypotheses are formulated

similar to ref. [31], which developed a health monitoring system for radio-frequency-based wireless

sensor systems. The SPRT tests the probability that the datapoint 𝜀𝑖 lies in the distribution specified

by each hypothesis. Each of these hypotheses is outlined in Table 4.2. All hypotheses assume that

𝜀 is from a normal distribution – an assumption discussed in Appendix B. These assumptions

proved true in some cases, but false in others; despite that, the algorithm is ultimately successful in

operation. Thus, the final algorithm will proceed with this assumption.

47

Table 4.2: List of hypotheses used in the SPRT

Hypothesis
Mathematical

Description

Physical

Description
Causes

𝐻0
𝜀𝑡̅𝑒𝑠𝑡 = 0

𝜎(𝜀𝑡𝑒𝑠𝑡) = 𝜎(𝜀𝑚𝑒𝑚)

System is operating

normally
–

𝐻1
𝜀𝑡̅𝑒𝑠𝑡 = +𝑀

𝜎(𝜀𝑡𝑒𝑠𝑡) = 𝜎(𝜀𝑚𝑒𝑚)

Average vibrations

are smaller than

normal

Rotor is parked

Large drops in wind speed

𝐻2
𝜀𝑡̅𝑒𝑠𝑡 = −𝑀

𝜎(𝜀𝑡𝑒𝑠𝑡) = 𝜎(𝜀𝑚𝑒𝑚)

Average vibrations

are larger than

normal

Rotor fault is present

Higher winds than

memorized

𝐻3
𝜀𝑡̅𝑒𝑠𝑡 = 0

𝜎(𝜀𝑡𝑒𝑠𝑡) = 𝑉𝜎(𝜀𝑚𝑒𝑚)

Average vibrations

fluctuate more than

normal

Sensor Error

𝐻4
𝜀𝑡̅𝑒𝑠𝑡 = 0

𝜎(𝜀𝑡𝑒𝑠𝑡) =
1

𝑉
𝜎(𝜀𝑚𝑒𝑚)

Average vibrations

fluctuate less than

normal

Sensor Error

M and V are parameters that allow the algorithm’s sensitivity to faults to be tuned. M is the

system disturbance parameter and is defined by 𝑀 = 𝑚 ∗ 𝜎(𝜀𝑚𝑒𝑚), where m is set by the operator.

V is the variation factor. As hypotheses 𝐻3 and 𝐻4 do not indicate that tower vibrations are larger

or smaller than normal, they are not used in raising alarms for detecting rotor unbalance. However,

as discussed in ref. [32], they are commonly indicative of wiring or sensor issues and are thus

included in the algorithm.

The SPRT makes decisions based on the likelihood ratio between two possibilities: that the

null hypothesis is true, or that the jth alternative hypothesis is true. The probability that a residual

𝜀𝑖 is a part of the hypothesis 𝐻𝑗 defined by mean 𝜇 and standard deviation 𝜎 is given by the normal

distribution probability density function:

 Pr(𝜀𝑖 | 𝐻𝑗) =
1

𝜎√2𝜋
exp [−

1

2
(

 𝜀𝑖 − 𝜇

𝜎
)

2

] (4.1.k)

The likelihood ratio, or the ratio between Pr(𝜀𝑖 | 𝐻𝑗) and Pr(𝜀𝑖 | 𝐻0), is then calculated for

each data point. New data points are included by multiplying their ratios:

48

𝐿𝑅𝑗 =

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝜀𝑛} 𝑔𝑖𝑣𝑒𝑛 𝐻𝑗 𝑡𝑟𝑢𝑒

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝜀𝑛} 𝑔𝑖𝑣𝑒𝑛 𝐻0 𝑡𝑟𝑢𝑒

(4.1.l)

 = ∏
Pr(𝜀𝑖 | 𝐻𝑗)

Pr(𝜀𝑖 | 𝐻0)

𝑛

𝑖=1

Finally, the SPRT index is calculated as the natural logarithm of the likelihood ratio:

 SPRTj = ln(𝐿𝑅𝑗) (4.1.m)

In simplifying (4.1.m), the computational power necessary is reduced. For the first two

alternative hypotheses, the SPRT index is reduced to equation (4.1.n) and (4.1.o) [31].

SPRT1 =

𝑀

𝜎2
 ∑ (𝜀𝑖 −

𝑀

2
)

𝑛

𝑖=1

 (4.1.n)

SPRT2 =

𝑀

𝜎2
 ∑ (−𝜀𝑖 −

𝑀

2
)

𝑛

𝑖=1

 (4.1.o)

For each new datapoint added to 𝜀𝑛, the SPRT index is compared against two thresholds. These

thresholds are defined by two statistical parameters: the false alarm probability 𝛼 and the missed

alarm probability 𝛽.

 𝐴 = ln (
𝛽

1 − 𝛼
) , 𝐵 = ln (

1 − 𝛽

𝛼
) (4.1.p)

The decisions discussed earlier are made based on the value of the SPRT index relative to

thresholds A and B. They are summarized in Table 4.3.

Table 4.3: Decisions made by the SPRT given the index and thresholds A & B.

Value of 𝐒𝐏𝐑𝐓𝐣 Decision

SPRTj < A Accept 𝐻0 (no fault detected)

SPRTj > B Reject 𝐻0 and accept 𝐻𝑗 (possible fault detected)

A < SPRTj < B No decision (collect more data)

49

When the SPRT decides on hypothesis j, the occurrence is logged, the SPRTj is reset to 0, and

sequential testing continues. A visualization of the SPRT detecting a fault is shown in Figure 4.5.

Figure 4.5: Example of SPRT concluding (a) the null hypothesis (b) the alternative hypothesis j

The SPRT described here is adjusted using four parameters- m, V, 𝛼, and 𝛽. These parameters

are best adjusted through a cross-validation study. Such a study is completed in chapter 5.

50

4.1.5 Application of NSET+SPRT

The data used to train the algorithm must adhere to two characteristics:

1. The data must encompass the full operating range of the turbine

2. There must be enough data that the residual standard deviation must be equal for healthy

training data and healthy testing data

For 1 to be true, the set of training data for all operating parameters must include the set of data

to be tested. A 2-dimensional visualization of this is shown in Figure 4.6.

Figure 4.6: 2D Visual of training set and testing set of data. The shaded region is data outside the

range memorized by the algorithm; it represents possible modeling errors

To meet this requirement, all datasets used to train and test NSET+SPRT were collected by

completing a ramp test from 30-210RPM over 30 minutes. All tests were completed with 10-15

mph winds.

Testing shows that for 2 to be true, a significant amount of data must be memorized, which is

a major drawback of the NSET. In general, studies applying these two algorithms have months of

data to work with. However, this study is particularly limited because an operator must be present

to run the turbine, and there is often only wind ideal for data-collection for a short period during

the day. To determine the optimal amount of data necessary for training, a number of ramp tests

51

(as described by chapter 3) are used to train, and then test, the NSET model. Table 4.4 shows the

number of datasets used to train the algorithm, along with the training and testing data’s residual

standard deviation.

Table 4.4: Statistical characteristics for various numbers of datasets used to train NSET+SPRT

Number Datasets

Learned

Avg Std Dev of Residual

for Training Data

Avg Std Dev of Residual

for Testing Data

Percent

Difference

𝑛𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝜎(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) 𝜎(𝑡𝑒𝑠𝑡𝑖𝑛𝑔) %

1 3.759 E-03 5.388 E-02 1333.2

4 8.968 E-03 2.682 E-02 199.0

7 9.294 E-03 1.602 E-02 72.4

9 1.154 E-02 1.190 E-02 3.05

The percent difference as a function of 𝑛𝑙𝑒𝑎𝑟𝑛𝑒𝑑 is also shown in Figure 4.7.

Figure 4.7: Percent difference versus number of datasets learned

As shown, including more datasets in the training set substantially reduces the percent

difference. This occurs for two reasons: an increase in 𝜎(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔) as the algorithm memorizes

less of the entire set of data, and a reduction in 𝜎(𝑡𝑒𝑠𝑡𝑖𝑛𝑔) as the algorithm more accurately

estimates the system state under other operating conditions. Memorizing nine sets of data presents

the lowest percent difference (3.89%), which corresponding to 4.5 hours of data.

52

With nine sets of data memorized, the combined NSET+SPRT algorithm can differentiate

between balanced and unbalanced operating data to a high degree of accuracy, allowing for robust

estimation of the system operating state. An example of the test operating on balanced and

unbalanced data may be seen in Figure 4.8. The Y-axis Line Length is the best parameter for

monitoring, as it results in the highest rate of correct fault decisions and the lowest rate of incorrect

fault decisions; therefore, it is the residual value used for SPRT testing.

Figure 4.8: NSET+SPRT testing of balanced and unbalanced data. Unbalanced data begins at x =

204. The Y-axis Line Length parameter is used for monitoring.

53

4.2 FFT: Adaptive Threshold (AFFT)

The second algorithm designed for the present work uses the Fast Fourier Transform (FFT) to

memorize the frequency response of the rotor. As described by the waterfall plots in chapter 3.3

above, the peaks in the frequency spectra of nacelle vibrations significantly shift as rotor speed

changes. As the CPWT is a variable-speed machine, any frequency-based method must account for

this change in frequency spectra. This algorithm solves this with an adaptive threshold [33] – that

is, a frequency-based threshold is set for each predefined increment in rotor speed. First, the rotor

speed bins are set; for this algorithm, bins are set in 5RPM increments from 30 to 210RPM. Then,

the healthy data is organized into each bin, and divided into sets of 1024 data points. The FFT is

computed for each set, and the maximum amplitude for each frequency within a set frequency width

w is learned:

 𝐴𝑖𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐾𝑡ℎ𝑟 max ([𝐴𝑗 − 𝑤 , 𝐴𝑗 + 𝑤]) (4.2.a)

where 𝐴𝑗 corresponds to the amplitude of the FFT output at frequency j, and 𝐴𝑖𝑗,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

corresponds to the threshold in rotor speed bin i and at frequency j. 𝐾𝑡ℎ𝑟 is an algorithm tuning

parameter that dictates the magnitude of vibrations greater than learned necessary for the threshold

to be crossed. For data within a given rotor speed bin, this process forms an alarm threshold as

shown in Figure 4.9.

54

Figure 4.9: Adaptive threshold for data with average rotor speed Ωavg = 130 RPM.

Then, the frequency spectra for a set of data with rotor speed Ωavg may be compared to the

adaptive threshold according to the following logical inequality [33].

 𝐼𝐹 [Ω𝑚𝑖𝑛,𝑖 < Ω𝑎𝑣𝑔 < Ω𝑚𝑎𝑥,𝑖] 𝑇𝐻𝐸𝑁 [𝐴𝑗 < 𝐴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,𝑖𝑗] (4.2.b)

If the above logic is not true, then a possible fault is logged. The frequency at which the FFT

output surpasses the threshold is logged, and saved in terms of the multiple of rotor speed

frequency:

𝑓𝑙𝑜𝑔 =

60 𝑓𝑎𝑙𝑎𝑟𝑚

Ωavg
 (4.2.c)

This allows for determining the potential source of a fault. If 𝑓𝑙𝑜𝑔 = 1, then a mass imbalance

is likely, while if 𝑓𝑙𝑜𝑔 = 3, then an aerodynamic imbalance is likely. This algorithm is also prone

to noise-related false positives; an example of one is shown in Figure 4.10.

55

Figure 4.10: Example of an erroneous fault prediction at 10Hz. Note that an identical false

positive is logged at -10 Hz.

These false positives may be avoided by only logging a fault when the adaptive threshold is

exceeded within expected frequency ranges. For the present work, the desired faults to be detected

are mass and aerodynamic imbalances resulting from blade damage. As discussed, these appear at

the 1P and 3P frequency, respectively. Therefore, a fault is only logged when equation (4.2.b) is

not true and when:

 [0.75 < 𝑓𝑙𝑜𝑔 < 1.25] 𝑂𝑅 [2.75 < 𝑓𝑙𝑜𝑔 < 3.25] (4.2.d)

With this secondary filter, applying the AFFT to data collected in chapter 3 results in zero false

positives detected, while a 1P or 3P vibration frequency is quickly detected. This algorithm works

well in the case of slow rotor speed changes. However, as discussed in section 1.2, if the rotor speed

significantly changes throughout a single set of data used to take the FFT, then frequency peaks

will shift along the frequency domain. This may cause the adaptive filter to log a fault when none

is present; however, for all cases of functional operation, this shift was not significant enough to

impact algorithm performance.

56

4.3 FFT: Order Analysis (OFFT)

The final algorithm introduced by this thesis also utilizes the Fast-Fourier Transform (FFT)

and corrects the problems detailed in section 1.3. The Cal Poly Wind Turbine is a variable-speed

turbine; as such, the rotor speed may change significantly by the time enough data is collected for

a single FFT computation. This causes blurring of spectral lines in a single frequency spectrum

analysis. A common approach to fix this is known as order analysis, wherein the vibration sample

is resampled from constant time-steps to a constant number of samples per shaft revolution. Ref.

[13] and [34] separately used order analysis to detect faults in wind turbines. Ref. [34] used order

analysis to detect mass unbalance faults; their algorithm uses the complex vector resulting from the

FFT as a condition indicator for detecting faults. Healthy data is used to define a circular threshold

on the complex plane; new complex vectors whose endpoints lie within this threshold indicate

healthy data, and vectors whose endpoints lie outside the threshold indicate a possible fault. Section

4.3.1 briefly discusses the mathematical basis for the algorithm and 4.3.2 describes the specific

challenge of applying it to the Cal Poly Wind Turbine.

4.3.1 Order Analysis Theory

The algorithm requires that the acceleration signal be sampled at equal steps of rotor angle. As

discussed in chapter 3, the data-collection system currently logs acceleration in constant timesteps.

Therefore, the algorithm begins by interpolating the acceleration signal to the constant angle-step

domain:

 𝑎(𝑘𝑡 ∗ 𝑡) → 𝑎(𝑘𝜃 ∗ 𝜃𝑟) (4.3.a)

After interpolation, the FFT of the resulting dataset is taken and the 1P component of

vibration is extracted. Unlike the method discussed in Section 4.2, the FFT is left as a complex

vector. As noise often causes a shift in frequency peaks resulting from the FFT, a range of

frequencies close to the 1P frequency are extracted. A particular benefit of taking the FFT post-

interpolation is the 1P frequency is trivial to identify and extract.

57

Healthy data is then used to train the algorithm. The algorithm uses a circular threshold:

any new vector whose endpoint lies outside this circle is flagged as a fault. Figure 4.11 shows an

example of this learned threshold.

Figure 4.11: Plot of Order Analysis threshold, with a healthy vector and faulty vector shown.

To calculate the threshold, healthy 1P frequencies are assembled into the vector 𝑿𝒎𝒆𝒎.

Then, the average real and imaginary value of each complex vector is taken and assembled into the

center point 𝑿𝟎:

 𝑅𝑒𝑎𝑙(𝑿0) =
∑ 𝑅𝑒𝑎𝑙(𝑿𝑚𝑒𝑚)𝑁

𝑖=1

𝑁
 , 𝐼𝑚𝑎𝑔(𝑿0) =

∑ 𝐼𝑚𝑎𝑔(𝑿𝑚𝑒𝑚)𝑁
𝑖=1

𝑁
 (4.3.b)

The radius of the threshold circle 𝑅𝑡ℎ𝑟 is also determined by calculating the standard deviation

of the real and imaginary components of 𝑿𝒎𝒆𝒎. Then, 𝑅𝑡ℎ𝑟 is the maximum of these two values:

 𝑅𝑡ℎ𝑟 = 𝐾𝑡ℎ𝑟 ∗ max {𝜎[𝑅𝑒(𝑿𝑚𝑒𝑚)], 𝜎[𝐼𝑚(𝑿𝑚𝑒𝑚)]} (4.3.c)

The factor 𝐾𝑡ℎ𝑟 is a sensitivity parameter that may be tuned by the operator; ref. [34]

recommends values between 3.5 and 4.5. After defining the threshold circle, new data may be

tested. For each new 1P frequency vector 𝑿𝒊, the scalar 𝑑𝑋 = | 𝑿𝒊 − 𝑿𝟎 | is computed. Then, a

58

possible fault flag is raised if 𝑑𝑋 > 𝑅𝑡ℎ𝑟. The monitoring system throws an alarm if this flag occurs

more than three times in a row.

4.3.2 Order Analysis Application

The mathematical backbone for this algorithm seems simple; however, several factors

complicate application. First, the interpolation described by equation (4.3.a) is made challenging

by the fact that rotor speed is taken once per second. As the acceleration is sampled at 50Hz, the

rotor speed must be assumed constant for each of the 50 data points taken for each rotor speed

recorded. Thus, this method’s accuracy decreases during large rotor speed changes. A general

process flow of this interpolation can be found in Figure 4.12.

Figure 4.12: Interpolation from constant time-step domain to constant angle-step domain

This interpolation must be completed such that the resulting signal sufficiently captures local

maxima and minima of the vibration signal. Trial and error shows that a sample rate of 16 data

59

points per shaft rotation is sufficient for this capture. Figure 4.13 shows a section of data resulting

from this interpolation.

Figure 4.13: Raw acceleration and interpolated acceleration plotted in the time domain

After interpolation, the FFT is taken. Ref. [34] recommends at least 100 seconds of data be

used for a single FFT. This corresponds to 8000 data points at an operating speed of 300 RPM, or

the maximum speed of the rotor. The FFT is most efficient when using N data points such that N

is a power of 2; therefore, analysis will use 8192 datapoints per FFT. If the 1P frequency component

is outside the threshold greater than three times in a row, an alarm is declared. The final flowchart

for the algorithm is described by Figure 4.14.

60

Figure 4.14: Training and testing flowchart for the Order Analysis algorithm

In practice, the need to interpolate the acceleration dataset before fault detection greatly

increases the total computation time. In the future, the computation time may be significantly

reduced by implementing the order analysis in hardware. This may be done by using the hall-effect

sensors currently monitoring rotor speed. Then, the sensor could record accelerations each time the

magnet passes the hall-effect sensor. This is the approach taken in ref. [13].

61

4.4 Other Methods

In pursuit of a robust fault detection algorithm, one other method was developed that was not

used further, as it was not suitable for implementation within the scope of the current project.

Although this algorithm was deemed unsuitable for the current study, it is potentially useful if the

problems discussed herein are addressed.

4.4.1 LSCh

The Load Susceptibility Characteristic, or LSCh, was developed for turbine monitoring by ref.

[37] and found by the present work in ref. [36]. For this method, data is averaged to predefined

intervals, and a best-fit linear regression is performed between power output and RMS vibrations:

 𝑃𝑜𝑤𝑒𝑟 = 𝑎 ∗ 𝑅𝑀𝑆 + 𝑏 (4.4.a)

In ref. [37], averages are taken every 10 minutes, and 1000 samples are used for each linear

regression. As such, this algorithm requires a significant amount of data, which is the major limiting

factor for implementation on the LifeLine. This method was used to diagnose generator bearing

faults in ref. [37]; there, they had access to roughly 480 hours of operating data. In this case, each

regression analysis used 17 hours of operating data. As a result, 28 sets of parameters (A, B) were

collected. In contrast, data considered for the present work was just 20 hours in length. Thus, this

algorithm is better suited for long-term monitoring of a wind turbine without operators present.

This method does show some promise; however. Figure 4.15 shows the result of regression analysis

for all balanced and unbalanced data, and Table 4.5 shows the exact parameters calculated.

62

Figure 4.15: Regression results for healthy and imbalanced data

Table 4.5: Regression parameters for Figure 4.15

Component Healthy Data Faulty Data Percent Diff.

Slope 8579.8 3423.1 85.9

Intercept -387.12 -99.953 117.9

As a result of the significant amount of data necessary, this method will not be used further in

the present work. However, if the CPWT is later allowed to run autonomously, this method should

be considered for implementation.

63

Chapter 5

 CROSS-VALIDATION STUDY

In many model validation and machine learning techniques, a cross-validation study is useful

for both selecting between models and for tuning the technique used. For example, ref. [31] used a

cross-validation study to tune the parameters of the SPRT used for detecting faults in wireless

sensors. The present work, therefore, uses the study to tune each of the algorithms discussed in

chapter 4. Furthermore, several parameters are defined that allow for comparing between each

algorithm. Given the significant differences between each algorithm, these comparisons are not

perfect – a limitation which is discussed at the end of the chapter.

5.1 Study Setup

A cross-validation study divides data into sets. Some of the sets are used to train the algorithms,

and some are used to test the algorithm. A typical cross-validation study considers all data collected

to be part of a single set, and arbitrarily divides this into training and testing sets. Special care must

be taken when training each algorithm in the present work, however: to properly train them, the

training data must represent the full operating range of the wind turbine. If this is not true,

significant errors may develop when rotor speed and wind speed data are outside the range of

training data. Section 4.1.5 further details this within the context of training the NSET+SPRT.

Therefore, datasets are taken by completing a ramp test as described in chapter 2: a 30-minute ramp

from 30 to 210 RPM, done by incrementing 1 RPM every 15 seconds. For this study, ten healthy

runs and four faulty runs were collected. The four faulty runs were created by duct-taping a 200g

sheet of aluminum to the turbine blade. All data is also trained with a wind speed between 10-

15MPH and approximately westerly wind, to minimize the possibility of vibrational changes due

to high winds or strong-weak axis interactions.

64

One powerful cross-validation method is known as a k-fold cross-validation method. In this,

data is divided into k sets. A single set is used to train the algorithms, and the other k-1 sets are

used to test each algorithm. As data is already divided into ten runs, the version used would thus

be a 10-fold study. Although a valid method, this is problematic for the CPWT system as too small

a training dataset leads to significant error. As discussed in section 4.1.5, model prediction becomes

feasible with around six healthy sets trained. Another powerful method is known as Leave One Out

(LOO). With the data already divided into sets, this method thus involves training each algorithm

using nine sets of healthy data and testing the other healthy set. As shown by Figure 5.1, the 10-

fold and LOO cross-validation studies are modified by testing the faulty dataset in all runs – the

faulty dataset is never used to train the algorithm. This is necessary as, in practice, using faulty data

to train the algorithms results in significant errors, and prevents accurately assessing algorithm

performance.

Figure 5.1: Visual overview of 10-fold and Leave-One-Out cross-validation studies. The green

solid squares represent training datasets, the orange dashed squares represent testing

datasets, and the red squares represent faulty datasets.

65

5.2 Parameter Selection

As discussed in chapter 4, each algorithm uses unique parameters that determine its

sensitivity to faults. These parameters are summarized in Table 5.1.

Table 5.1: Summary and description of each algorithm sensitivity parameter

Algorithm Parameter Range Name

NSET+SPRT

𝛼 0.005 – 0.2 False Alarm Probability

𝛽 0.005 – 0.2 Missed Alarm Probability

𝑚 1 – 6 System Disturbance Magnitude

𝑉 1 – 6 Variation Factor

Adaptive Threshold

(AFFT)
𝐾𝑡ℎ𝑟 2 – 5 Threshold Multiplier

Order Analysis

(OFFT)
𝐾𝑡ℎ𝑟 3.5 – 5.5 Threshold Multiplier

For this study, the OFFT’s requirement of more than three data points outside of the threshold

to log a fault is removed, to allow for the most accurate comparison between algorithms. To select

the ideal value of each parameter, every possible combination of parameters is processed as an

individual model. For each model, several measures to characterize the performance are defined.

These measures are defined by ref. [20]. This approach treats each algorithm as a classification

algorithm; that is, each algorithm can classify data into two classes: normal condition (NO), or a

negative detection, and fault condition (FA), or a positive detection. The classification may have

four outcomes:

1. Data is operating under NO and is classified as NO. (TN)

2. Data is operating under FA and is classified as FA. (TP)

3. Data is operating under NO and is classified as FA. (FP)

4. Data is operating under FA and is classified as NO. (FN)

These outcomes are also represented by the confusion matrix shown in Figure 5.2.

66

Figure 5.2: Confusion matrix of possible model outputs

The true positive rate, also known as recall, is the ratio of the number of positive detections

TP to the total number of detections made while operating under the fault condition.

𝑇𝑃 𝑟𝑎𝑡𝑒 = 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.2.a)

The precision, or confidence, is the ratio of the number of positive detections TP to the total

number of positive detections.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.2.b)

These measures are combined into a single score, known as the F-measure.

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.2.c)

The closer the F-measure is to one, the better a model’s performance.

The final measure used is the false positive rate, or the ratio between false positives FP and

the total number of true positives TP.

𝐹𝑃 𝑟𝑎𝑡𝑒 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (5.2.d)

The false positive rate and total positive rate of each model may be visually described by a

ROC chart. This chart is a 2D plot with each model’s false positive rate on the X-axis, and its true

positive rate on the Y-axis. Three major points describe a model’s performance on the chart [20]:

a. (0,0): The model never classifies data into the positive/faulty state

b. (1,1): The model always classifies data into the positive/faulty state

c. (0,1): The model perfectly classifies data as faulty or healthy

67

Point c thus represents the “ideal” algorithm – it always classifies faulty data correctly, and

never incorrectly raises an alarm with faulty data. However, for the application of algorithms in

this thesis, reaching point c is not truly attainable. Practically, the vibration signal often drops for

short periods, causing a faulty operating state to output vibrational data that appears healthy. This

is pronounced when the rotor speed falls below 120 RPM; in this range, the vibrations induced by

faulty operation are not enough to ever trigger any algorithm’s alarm. To minimize this effect and

allow for a more accurate representation of algorithm performance at operational speed, only

operating data with a rotor speed > 120RPM is considered when calculating the measures described

above. A ROC chart for all three algorithms is shown in Figure 5.3.

Figure 5.3: ROC chart showing performance for all combinations of parameters for each

algorithm

Algorithm tuning parameters are chosen such that 𝐹𝑃 𝑟𝑎𝑡𝑒 is minimized and 𝑇𝑃 𝑟𝑎𝑡𝑒 is

maximized, with the minimization of 𝐹𝑃 𝑟𝑎𝑡𝑒 being a much more important goal. The

NSET+SPRT is much more tunable than the two FFT-based algorithms; because of this, many

more possible models are shown. The parameters selected for each algorithm are shown in Table

5.2. Each algorithm’s performance parameters are logged as well. One final measure is noted: the

computation time necessary for a single run of the cross-validation study, wherein only the selected

68

parameters are studied. This is an important measure, as the end goal of these algorithms is live

integration on a microcontroller-based monitoring system.

Table 5.2: Selected algorithm parameters and relevant performance data.

Algorithm Parameter
Selected

Value
FPrate TPrate F-measure

Computation

Time

 [#] [#] [%] [%] [#] [s]

NSET+SPRT

𝑚 2

0.25 93.3 0.964 25.82
𝑉 1

𝛼 0.005

𝛽 0.010

AFFT 𝐾𝑡ℎ𝑟 2 0 69.44 0.820 11.04

OFFT 𝐾𝑡ℎ𝑟 5.5 7.14 72.73 0.800 78.08

All algorithms had a significant true positive rate and a very small false positive rate. The false

positive rate for the NSET+SPRT was unable to be reduced to zero for any combination of

parameters. Indeed, the 0.25% false positive result shown results from a single false positive within

several of the 10 runs of the cross-validation study. Therefore, live implementation of this algorithm

should not be allowed to shut down turbine operation without several positive detections within a

predefined period. The OFFT was by far the most expensive algorithm computationally and the

worst performing in terms of its false positive rate. The algorithm’s speed may likely be optimized;

however, owing to its poor performance, it is not recommended for implementation over the AFFT.

However, the time required for the OFFT’s synchronous sampling may be significantly improved

by adopting an analog-based sampling method rather than the digital method discussed in section

4.3.

As discussed in section 1.4, the ideal condition monitoring algorithm must adhere to several

characteristics. It must have a high correct alarm rate in detecting blade damage. Even more

important, though, is to not raise false alarms during normal operation. It is clear, then, that the

optimal solution is a joint monitoring approach that utilizes the high correct alarm rate of the

69

NSET+SPRT algorithm and eliminates false alarms as the AFFT does. This joint system will be

designed for and implemented on the CPWT in chapter 6.

5.3 Study Limitations

The cross-validation study discussed contains some limitations which must be considered for

applying these results to any data. First, the data was both trained by and tested on data with

minimal rotor speed changes. For all previous applications of the turbine, including performance

testing (see Cunningham’s work, [10]) this is true. However, future operation may require running

the turbine under large changes in speed, such as using tip-speed ratio control in conditions where

the wind speed is changing quickly. These conditions, where both the wind speed and rotor speed

quickly change, will likely lead to a higher chance of a false alarm.

Also, the effect of high winds on the algorithms was not thoroughly investigated, because a

high windspeed control method does not yet exist – the current control methods result in the rotor

speed becoming uncontrollable with wind speeds higher than ~20MPH. High winds will likely lead

to the CMS raising alarms during healthy operation, especially for the NSET+SPRT algorithm. For

this reason, implementation of the algorithms should include logic-based filtering that does not

allow the algorithm to make fault determinations with wind speeds outside the learned range.

70

Chapter 6

 CAL POLY WIND TURBINE IMPLEMENTATION

Transitioning the developed algorithms from a post-processing MATLAB environment to live

integration on the wind turbine requires significant development. As discussed in chapter 2, the

LifeLine collects data via a MicroPython microcontroller and transmits this information to a

Raspberry Pi. The first iteration of the LifeLine CMS will be developed for the Raspberry Pi to

simplify integration. Each algorithm to be implemented must be completely rebuilt in Python. The

completion of this task requires three steps:

1. Deciding on the final CMS structure

2. Training the CMS with a healthy rotor vibrational response

3. Integrating the CMS in the Raspberry Pi’s monitoring software

This chapter outlines each of these steps.

6.1 CMS Structure

Before any development may be completed, one must decide on which algorithm to implement.

As discussed in chapter 5, both the NSET+SPRT and AFFT algorithms are very powerful. These

algorithms both correctly raise true alarms when monitoring faulty data and nearly zero false alarms

when monitoring healthy data. In addition, each one allows for a slightly different understanding

of the turbine’s health. The NSET+SPRT is useful as a monitoring algorithm that notes potential

deviations from the normal operating state. Mass imbalances are only one of the potential issues

caught; this algorithm may also identify broken sensors, failures in the automatic yaw control

system, and even long-term reductions in power output due to blade surface damage. Additionally,

it may identify unknown faults not appearing at a specific frequency, which the AFFT cannot

detect. The AFFT, on the other hand, serves the purpose of diagnosing specific faults. Peaks in

vibrations at 1X the rotor speed strongly indicate a mass unbalance is present, while peaks at 3X

the rotor speed theoretically indicate an aerodynamic imbalance. Barszcz makes the distinction

71

between these two types of algorithms in ref. [36]. Monitoring serves as a low-level task meant to

protect the machine from damage; in severe enough cases, threshold violations may even shut the

machine down. Diagnostics, on the other hand, focus on early detection of faults and often simply

alert operators to the fault presence.

Therefore, in the case of attempting to choose between them, the best scenario may be to not

choose at all. In a combined implementation, the AFFT will note that a specific type of damage

may occur, and the NSET+SPRT will determine if this damage is significant enough to raise an

alarm. This integration is shown in Figure 6.1. As shown, the current implementation requires a

fault determination from both the NSET+SPRT and the AFFT to raise an alarm. The reasoning

here is to make the monitoring system more resistant to false positives, such as from large gusts of

wind (which might trigger an NSET+SPRT alarm) or large changes in rotor speed (which might

trigger an AFFT alarm). Five consecutive alarms from fault detections from either algorithm also

send an alarm, which serves to significantly increase the CMS accuracy without resulting in a

higher false alarm rate.

Figure 6.1: Flowchart of NSET+SPRT and AFFT integration on the CPWT

72

Another consequence of this joint method is that each algorithm may also be made more

sensitive than if they were implemented alone. The additional logic of a second algorithm prevents

false positives yet yields a significantly higher rate of correct fault detections.

6.2 CMS Training

Before either the NSET+SPRT or AFFT may be used to monitor turbine operation, they must

learn the tower vibration response to normal operating conditions. In particular, the NSET+SPRT

requires the formed memory matrix 𝑫, and the AFFT requires unique frequency-based thresholds

for each bin of rotor speed. Both quantities are formed, saved in text files, and loaded into the

LifeLine logging software before monitoring begins. It is in this training phase that several

opportunities to reduce the computation requirements of the algorithms appear. This is important,

as it will minimize the possibility of the algorithms interfering with data acquisition or turbine

control. For the NSET+SPRT, the quantity (𝑫T ⊗ 𝑫)
−1

, used in equation (4.1.f), is also calculated

and saved to a text file. Also, for the SPRT test, the simplified SPRT index calculation in (4.1.n) is

used. With these performance-saving methods, the NSET+SPRT takes roughly 18ms to compute

for every 10 seconds of data collected. As the AFFT is much faster computationally, it requires few

changes for implementation. With this implementation, generating the NSET memory matrix and

the AFFT thresholds outside the fault detection code is necessary. To assist in this, a MATLAB

application was developed to generate fault detection text files. This tool is shown in Figure 6.2.

73

Figure 6.2: File Generation Tool GUI

This tool allows for setting many of the parameters used to form the text files for algorithm

training.

6.3 CMS Implementation

The combined approach to monitoring was developed for the CPWT’s Raspberry Pi through

the development of three classes of functions. An overview of each class is shown in Table 6.1.

Table 6.1: List of the three Python-based classes of functions used for the Lifeline CMS

Algorithm / Class Name Input Output

NSET Processed Data Residual

SPRT Residual Fault Decision

AFFT Processed Data Fault Decision

The full code of these three classes may be found in I. Python Implementation Code. The

primary goal of these three files is to simplify the implementation of each algorithm in a full

74

monitoring software. Each class requires three major steps: initializing an object of the class for

use, sending data through this object, and interpreting the object’s outputs. These three algorithms

were included in the GUI currently being developed by Ryan Zhan [6]. See Figure 6.3 for the

plotted outputs of these algorithms as they appear in the GUI, and Ryan Zhan’s thesis for more

information regarding the GUI design.

Figure 6.3: Plots of AFFT (top) and NSET+SPRT (bottom) as they appear in the LifeLine GUI

while operating on faulty data

Once implemented on the LifeLine GUI, the complete CMS was tested on the turbine with a

healthy rotor state to ensure that no false positives were present. In addition, the performance of

the implemented CMS was again studied in a cross-validation study like that executed in chapter

5; the implemented version was fed collected data with the same logic as a live integration. Again,

the detection parameters were tuned to maximize the correct detection rate and eliminate false

positives. The final parameters are shown in Table 6.2.

75

Table 6.2: Final parameters for each algorithm, and associated CMS performance

Algorithm Parameter Value

True

Positive

Rate

False

Positive

Rate

F-score Accuracy

[#] [#] [#] [%] [%] [%] [%]

NSET+SPRT

m 2

90.2 0 0.945 95.4
𝛼 0.005

𝛽 0.01

AFFT 𝐾𝑡ℎ𝑟 1

Ultimately, the final version of the CMS for the CPWT had both the high accuracy rate of the

NSET+SPRT and zero false positives from the AFFT. Therefore, the finished version is robust

enough for deployment on the CPWT in real-time – making the LifeLine capable of detecting large-

scale blade damage and bringing the CPWT one step closer to autonomous operation.

76

Chapter 7

 CONCLUSIONS AND FUTURE WORK

In review, the major goal of the present work – to build, validate and implement a condition

monitoring algorithm on the Cal Poly Wind Turbine – was successful. A working version of the

joint monitoring solution, utilizing both the NSET+SPRT and AFFT algorithms, was implemented

on the Raspberry Pi computer. A cross-validation study showed the final implementation had a

95.4% accuracy rate when classifying healthy and intentionally imbalanced data. Furthermore,

post-implementation field testing showed the monitoring system raised no false positives during

normal operation – a critical requirement for the final algorithm.

Field testing also yielded several major results but raised unanswered questions concerning the

tower’s vibrational response to loading. In time-series analyses, tower vibrations peak at the tower

bending modes, with the bending modes mostly consistent with theoretical models of the tower. Of

the time-series measures considered, these results also established the Line Length and RMS

parameters as the best indicators of blade damage when monitoring tower vibrations. Frequency

analyses, however, give results that both agree and disagree with established theory. Chief among

these is the presence of peaks in the frequency spectrum that do not correspond to tower bending

modes or multiples of rotating frequency (specifically, peaks in Figure 3.8 – Figure 3.10 at 1.1Hz

and 1P + 1.1Hz). These peaks likely appear from unconsidered dynamic effects or sensor sampling

issues; however, the cause is yet unknown. In addition, imbalance testing with a 200g mass caused

the imbalanced blade to bend out of the rotor plane, and gave rise to a significant 3P frequency of

vibrations. This was inconsistent with the theory of aerodynamic imbalances presented in section

1.2. It is theorized that the blade bending out of plane generated turbulent eddies, causing rotational

sampling of turbulence – which does appear at the 3P frequency. However, this theory is

unconfirmed. For the present work, it was simply enough to know that these effects occurred; they

77

could be ignored by the fault detection algorithms, leading to a robust condition monitoring system.

However, there is ample opportunity for future testing to further investigate these effects.

For the continued growth of the LifeLine fault monitoring system, there are several areas in

which future research might focus. There are several possible improvement paths, including:

1. Detecting damage to additional components

2. Improving detection of blade damage

3. Sensor validation

4. Better LifeLine integration

There are several other components on any wind turbine that fail often enough to justify

monitoring them via a CMS like the one developed here. They include other rotor components,

such as bearings and a gearbox (if present), the generator, any active yaw or blade pitch control

system, and the tower structure. Monitoring each of these will require a unique combination of

sensors and processing algorithms.

The blade damage detection methods discussed may also be improved. First, a method to

directly monitor the blade structure, such as those discussed in ref. [17], will allow for earlier

detection of damage than the methods described here. Improvements may also be made to the signal

processing algorithms. The methods used in the present work all use statistical or absolute

thresholds to distinguish between healthy and faulty operation. Although decently successful, these

methods sometimes contain false positives in the event of extreme turbine operation. Therefore, a

future thesis might investigate logic-based classification algorithms to decide on the presence of a

fault. These range from simpler implementations, such as K-nearest-neighbors, to more complex

topics such as fuzzy-logic classification. Another growing topic of consideration is the use of

artificial intelligence (AI) based methods for classifying data.

Another recommended area of continued study is the addition of sensor validation. The end

goal for the LifeLine is a modular system able to be applied to other wind turbines. Therefore, the

LifeLine sensors must be resistant to harsh operating conditions, including electrical issues, sudden

78

load changes, and other mechanical problems. This may be ensured via a signal validation process.

According to Barszcz [36], “the goal of signal validation is making a decision whether the acquired

signal can be used for subsequent data analysis.” Such a sensor validation involves continuously

checking the sensor readings and ensuring no sensor faults have occurred. At this point, the

LifeLine is a continuously changing system, so implementation of these sensor validation checks

does not yet make sense. Once the LifeLine system is less prone to change, however, signal

validation will be an important component of the LifeLine system before it is ready to be

implemented on additional turbines. For additional discussion on this topic, see chapter 4 in ref.

[36]. Incidentally, the NSET+SPRT was originally developed to detect sensor issues (specifically,

fouling in feedwater flow sensors) – therefore, the extension of this algorithm to all sensors is a

simple first step for a sensor validation process.

The final important change to the CPWT’s current implementation is developing the ability for

the LifeLine to notify the operator, or even shut down the turbine, in the event of a fault. This

change will allow for the CPWT condition monitoring system to remotely monitor the turbine and

open the door for research opportunities that require the long-term operation of the CPWT without

any operator present. Research that requires long-term autonomous operation includes efforts to

certify the CPWT under IEC standards, which is an area of ongoing study.

79

REFERENCES

[1] C. A. Walford, “Wind Turbine Reliability: Understanding and Minimizing Wind Turbine

Operation and Maintenance Costs,” Sandia National Laboratories, Mar. 2006.

[2] A. Kusiak, W. Li, “The Prediction and Diagnosis of Wind Turbine Faults”, in Elsevier

Renewable Energy, 36(1), 16-23, 2011.

[3] C. B. Martínez-Anido, B.M. Hodge, “Impact of Utility-Scale Distributed Wind on

Transmission-Level System Operations,” National Renewable Energy Laboratory, Golden,

CO, TP-5D00-61824, 2014.

[4] “Small and Medium Wind Strategy: The current and future potential of the sub-500kW wind

industry in the UK,” renewableUK, London, UK. [Online]. Available:

https://cdn.ymaws.com/www.renewableuk.com/resource/resmgr/Docs/small_medium_wind

_strategy_r.pdf

[5] “What is Distributed Wind?” Distributed Wind Energy Association.

https://distributedwind.org/home/learn-about-distributed-wind/what-is-distributed-wind/

[6] R. Zhan, “Novel Software and Hardware for Wind Turbine Health Monitoring,” M.S. thesis,

Dept. Mech. Eng., Cal Poly, San Luis Obispo, CA, 2021.

[7] R. Takatsuka, “Development of a Model and Imbalance Detection System for the Cal Poly

Wind Turbine,” M.S. thesis, Dept. Mech. Eng., Cal Poly, San Luis Obispo, CA, 2019.

[8] Md A. S. Shohag, E. C. Hammel, D. O. Olawale, O. I. Okoli, “Damage mitigation techniques

in wind turbine blades: A review,” Wind Engineering, vol. 41, no. 3, pp. 185-210, June 2017.

[9] A. C. Garolera, S. F. Madsen, M. Nissim, J. D. Myers, J Holboell, “Lightning Damage to

Wind Turbine Blades From Wind Farms in the U.S,” IEE Trans. on Power Delivery, vol. 31,

no. 3, pp. 1043-1049, June 2016.

[10] J. Cunningham, “Field Testing the Effects of Low Reynolds Number on the Power

Performance of the Cal Poly Wind Power Research Center Small Wind Turbine,” M.S. thesis,

Dept. Mech. Eng., Cal Poly, San Luis Obispo, CA, 2020.

https://cdn.ymaws.com/www.renewableuk.com/resource/resmgr/Docs/small_medium_wind_strategy_r.pdf
https://cdn.ymaws.com/www.renewableuk.com/resource/resmgr/Docs/small_medium_wind_strategy_r.pdf
https://distributedwind.org/home/learn-about-distributed-wind/what-is-distributed-wind/

80

[11] W. Qiao, “Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for

Wind Turbines,” University of Nebraska – Lincoln, NE, USA, Award no. DE-EE0001366,

2012.

[12] C. G. Anderson, Wind Turbines: Theory and Practice, Cambridge, UK: Cambridge University

Press, 2020.

[13] S. Sheng, “Wind turbine Gearbox Condition Monitoring Round Robin Study – Vibration

Analysis,” National Renewable Energy Laboratory, Jul. 2012.

[14] A. Lincoln, “What is Synchronous (Angular) Sampling?” Prosig,

https://blog.prosig.com/2011/11/09/what-is-synchronous-angular-sampling/

[15] M. R. Shahriar, “Speed-based Diagnostics of Aerodynamic and Mass Imbalance in Large

Wind Turbines,” presented at the IEEE Int. Conf. AIM, Busan, Korea, July 7-11, 2015, pp.

796-801.

[16] M. Roemer, Private Conversation with P. Lemieux, Sikorsky Helicopter, 2018.

[17] Y. Du, S. Zhou, X. Jing, Y. Peng, H. Wu, N. Kwok, “Damage detection techniques for wind

turbine blades: A review,” in Elsevier Mech. Systems & Sig. Processing, China, 2019.

[18] T. Gwon, “Structural Analyses of Wind Turbine Tower for 3 kW Horizontal-Axis Wind

Turbine,” M.S. thesis, Dept. Mech. Eng., Cal Poly, San Luis Obispo, CA, 2011.

[19] G. R. Katsanis, “Transient Small Wind Turbine Tower Structural Analysis with Coupled

Rotor Dynamic Interaction,”, M.S. thesis, Dept. Mech. Eng., Cal Poly, San Luis Obispo, CA,

2013.

[20] H. Ahmed, A. K. Nandi, “Time Domain Analysis” in Condition Monitoring with Vibration

Signals, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2020, ch. 3, sec. 3.2, pp. 35-41.

[21] M. M. Rahman, “Online Unbalanced Rotor Fault Detection of an IM Drive Based on Both

Time and Frequency Domain Analyses,” IEEE Trans. Industry Applications, vol. 53, no. 4,

pp. 4087 – 4096, Jul. 2017.

https://blog.prosig.com/2011/11/09/what-is-synchronous-angular-sampling/

81

[22] D. Simon, “Static Balancing of the Cal Poly Wind Turbine Rotor,” M.S. thesis, Dept. Mech.

Eng., Cal Poly, San Luis Obispo, CA, 2012.

[23] “von Kármán wind turbulence model,” Wikipedia.

https://en.wikipedia.org/wiki/Von_K%C3%A1rm%C3%A1n_wind_turbulence_model

[24] J. Chen, R. J. Patton, “Basic Principles of Model-Based Fault Diagnosis,” in Robust Model-

Based Fault Diagnosis for Dynamic Systems, New York, NY, USA: Springer

Science+Business Media, 1999, ch. 2, pp. 19-64.

[25] F. K. Bockhorst, K. C. Gross, K. P. Herzog, and S. W. Wegerich, “MSET modeling of crystal

river-3 venturi flow meters,” in Proc. Int. Conf. Nuclear Engineering, San Diego, CA, 1998.

[26] P. Guo, D. Infield, X. Yang, “Wind Turbine Generator Condition-Monitoring Using

Temperature Trend Analysis,” in IEEE Trans. Sustain. Energy, 2012.

[27] P. Guo, D. Infield, “Wind Turbine Tower Vibration Modeling and Monitoring by the

Nonlinear State Estimation Technique (NSET),” in Energies, 2012.

[28] R. M. Singer, K. C. Gross, K. P. Herzog, R. W. King, and S. Wegerich, “Model-based Nuclear

Power Plant Monitoring and Fault Detection: Theoretical Foundations,” in Proc. 9th Int. Conf.

Intelligent Systems Applications to Power System, Seoul, Korea, Jul. 1997.

[29] S. W. Wegerich, “Similarity Based Modeling of Time Synchronous Averaged Vibration

Signals for Machinery Health Monitoring,” in IEEE Aerospace Conference Proceedings,

Lisle, IL, 2004.

[30] “Sequential probability ratio test,” Wikipedia.

https://en.wikipedia.org/wiki/Sequential_probability_ratio_test

[31] S. Cheng, K. Tom, L. Thomas, M. Pecht, “A Wireless Sensor System for Prognostics and

Health Management,” in IEEE Sensors Journal, vol. 10, no. 4, pp. 856-862, Apr. 2010.

[32] T. J. Harrison, “The Sequential Probability Ratio Test (SPRT) in Feature Extraction and

Expert Systems in Nuclear Material Management,” M.S. thesis, Dept. Nuclear Eng.,

University of Tennessee, Knoxville, TN, 2004.

https://en.wikipedia.org/wiki/Von_K%C3%A1rm%C3%A1n_wind_turbulence_model
https://en.wikipedia.org/wiki/Sequential_probability_ratio_test

82

[33] R. Isermann, “Supervision, fault-detection and diagnosis methods – a short introduction,” in

Fault-Diagnosis Applications, New York, NY, USA: Springer Heidelberg Dordrecht, 2011,

ch. 2, pp. 11-45.

[34] P. Caselitz, J. Giebhardt, “Rotor Condition Monitoring for Improved Operational Safety of

Offshore Wind Energy Converters,” in J. Solar Eng, vol. 127, pp. 253-261, May 2005.

[35] W. Bartelmus, R. Zimroz, “A new feature for monitoring the condition of gearboxes in non-

stationary operation conditions,” in Mech. Systems, Sig. Processing, vol. 23, no. 5, pp. 1528-

1534, Jul. 2009.

[36] T. Barszcz, “Load-Susceptibility Characteristics,” in Vibration-Based Condition Monitoring

of Wind Turbines, in Cham, Swizterland: Springer Nature, 2019, ch. 5, sec. 1, pp. 149-156,

2019.

[37] R. Zimroz, W. Bartelmus, T. Barszcz, J. Urbanek, “Diagnostics of bearings in presence of

strong operation conditions non-stationarity-A procedure of load-dependent features

processing with application to wind turbine bearings,” Mech. Syst. Sig. Process, vol. 46, no.

1, May 2014.

[38] A. Ghasemi, S. Zahediasl, “Normality Tests for Statistical Analysis: A Guide for Non-

Statisticians,” in Int J Endocrinol Metab, 2012, 10(2),:486-489.

[39] R. Sandret, “Design, implementation, and testing of a control system for a small, off-grid wind

turbine,” M.S. thesis, Dept. Mech. Eng., Cal Poly, San Luis Obispo, CA, 2012.

83

APPENDICES

A. Approximating the Matrix Condition Number

The algorithms developed to build a memory matrix for the Nonlinear State Estimation

Technique rely on approximating the condition number of a matrix. This attachment compares the

time saved by this approximation. Calculating the precise condition number of a matrix requires

computing the singular values of a matrix, S. For an m-by-m matrix C, S will be an m-by-1 vector.

Then, the condition number Λ is the ratio between the maximum and minimum singular values:

 𝛬 =
max(𝑺)

min(𝑺)
 (A.1)

In comparison, Λ may be approximated by computing the 1-norm condition number:

 𝛬̃ = max(𝐶𝑖𝑗𝑛𝑖) ∗ max(𝐶−1
𝑖𝑗𝑛𝑖) (A.2)

The algorithm developed does not use the condition number beyond a simple threshold;

therefore, exact computation of the exact condition number is not necessary. To quantify the

difference in time between the exact and approximate methods, a MATLAB script finds the elapsed

time for the calculation of 𝛬 and 𝛬̃ given progressive steps in a n-by-9 matrix. This is taken 10,000

times, and the results averaged; this is shown in Figure A.. The shown value is given by % =

 (𝑇𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝛬̃) / (𝑇𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝛬). As shown, the time required for the

approximation asymptotes at roughly 20% of the full calculation time. Variations largely occur due

to changes in computer processing time; repeating these calculations does not yield the same peaks.

However, the general trend is identical.

Figure A.1: Plot of the ratio between estimated and exact processing time vs matrix size.

84

B. Testing the SPRT Normal Distribution Assumption

As discussed in section 4.1.4, the SPRT completed for the present work assumes that the

residual computed by the NSET algorithm follows a normal distribution. A dataset may be said to

be normally distributed if its probability density function may be described by the equation:

 Pr(𝑥) =
1

𝜎√2𝜋
𝑒

−
1
2

(
𝑥−𝜇

𝜎
)

2

 (B.1)

The normality of a dataset, or how well it adheres to a normal distribution, may be

mathematically assessed via a Shapiro-Wilkes test. This test may be executed in the statistical

software program JMP. To test this assumption, the entire set of residuals corresponding to healthy

data from one iteration of the cross-validation study of chapter 5 is extracted from MATLAB and

loaded into JMP. Once loaded, the Shapiro-Wilkes test is completed. This test is recommended for

use with sample sizes no larger than 50; for this reason, the sample of 203 datapoints is divided

into four sets and the test completed once for each set. The results of these tests are shown in Table

B.. With a p-value of less than 0.05, the normality assumption is rejected. As shown, for the first

two tests, the assumption is not rejected; however, it is rejected for the second two tests. This shows

that as the rotor speed increases, the dataset moves farther from a normal distribution. This is likely

caused by increased dynamic effects at higher speeds. Based on this test, the assumption that the

dataset follows a normal distribution cannot always assumed to be true. Even with this incorrect

assumption, however, the NSET+SPRT is shown to have a significant correct detection rate.

Therefore, the SPRT will proceed with this assumption.

85

Table B.1: Testing results for a set of residuals from the NSET

Test

[#]

Rotor Speed

Range

[RPM]

Histogram

[#]

Test Statistic

[#]

p-value

[#]

1 30 – 75

0.991 0.9605

2 75 – 120

0.961 0.0934

3 120 – 165

0.9523 0.0426

4 165 – 210

0.640 <0.0001

86

C. Selection of Previous Student Works

Student(s) Date Purpose Title

Jason Smith 9/2011 Site Assessment
California Polytechnic State University Wind

Resource Assessment

Tom Gwon 8/2011 Tower Design
Structural Analyses of Wind Turbine Tower for 3

kW Horizontal Axis Wind Turbine

Bryan Edwards 9/2009
Blade

Manufacturing

Composite Manufacturing of Small Wind

Turbine Blades

Christopher Nosti 4/2009

Blade

Performance

Analysis

Performance Analysis and Life Prediction for

Small Wind Turbine Blades: A Wood Laminate

Case Study

Ka-Wah Li,

Travis Robinson-

Carter,

Michael Julgebich

6/2009
Load Bank

Design

Cal Poly Wind Turbine Off-Grid Load Bank and

Emergency Speed Controller

Richard Sandret 6/2012
Control System

Design

Design, implementation, and testing of a control

system for a small, off-grid wind turbine

Derek Simon 8/2012 Blade Balancing
Static Balancing of the Cal Poly Wind Turbine

Rotor

Kent Burnett 6/2012
Controller

Design

A Proposed Control Solution for the Cal Poly

Wind Energy Capture System

David Nevarez,

Francisco

Martinez, Alvaro

Martinez

6/2008

Nacelle /

Drivetrain

Design

Nacelle Final Design Report

George Katsanis 5/2013
Rotor/Tower

Modeling

Transient Small Wind Turbine Tower Structural

Analysis With Coupled Rotor Dynamic

Interaction

Dylan Perry 6/2015 Blade Modeling

Aerodynamic Design and Structural Analysis

Procedure for Small Horizontal-Axis Wind

Turbine Rotor Blade

John Cunningham 12/2020
Blade

Characterization

Field Testing the Effects of Low Reynolds

Number on the Power Performance of the Cal

Poly Wind Power Research Center Small Wind

Turbine

87

D. NSET Code

NOTE: All code is subject to change. See https://github.com/elceenor/LifeLine_FaultDetection for

the latest version of all code presented herein. Code is included to allows readers to understand the

developed algorithm’s logical flow; copying into a code editor or IDE will likely introduce errors.

As such, see the GitHub repository for a functional version of all programs.

1. prop.m

%Defines properties of the memory/measurement vectors to be memorized.

%s: List of columns to save

%n: Quantities to normalize each column

%d: Other data, including searching bins and thresholds

function [s,n,d] = prop()

 %Define array of column # to save

 % 1 = Time Column [s]

 % 2 = Wind Speed [MPH]

 % 3 = Rotor Speed [RPM]

 % 4 = Gen Voltage [VDC]

 % 5 = Gen Current [ADC]

 % 6 = Battery Voltage [VDC]

 % 7 = Nacelle angle [°]

 % 8 = Wind angle [°]

 % 9 = RMS Accel in rotor direction

 % 10= RMS Accel in transverse horz direction

 % 11= RMS Accel in transverse vert direction

 % 12= Line Length in rotor direction

 % 13= Line Length in transverse horz direction

 % 14= Line Length in transverse vert direction

 s = [2,3,4,5,9,10,11,12,13,14];

 pow = [4 5];

 %Define quantity to normalize each column # by

 n = [24,240,300,5,4*1024,4*1024,18*1024,5E5,5E5,5E5];

 %Define other properties for searching

 %findRPM = divisions for RPM

 %deltR = 0.5*distance between divisons for RPM

 %findWind = divisions for windspeed

 %deltW = 0.5*distance between divisons for windspeed

 findRPM = (30:10:180)/n(3);

 deltR = 0.5*(findRPM(2)-findRPM(1));

 findWind = (8:23)/n(2);

 deltW = 0.5*(findWind(2)-findWind(1));

 rcondThresh = 10E-9;

 d = {findRPM,deltR,findWind,deltW,rcondThresh,pow};

end

https://github.com/elceenor/LifeLine_FaultDetection

88

2. load_file.m

%/==\

%| PURPOSE: Loads MATLAB .mat files and processes them into a format |

%| useful by the NSET+SPRT algorithms. Data files must be a |

%| .mat file with the desired dataset variable "data" |

%|--|

%| INPUTS: fileName - The name of the file to be loaded, as a string|

%|--|

%| OUTPUTS: array - The output array, ready for processing by NSET|

%|--|

%| Luke Costello, 9/26/2020 |

%\==/

function [array] = load_file(fileName)

 global loud

 if loud

 fprintf('Loading file: %s\n',fileName)

 end

 clear data

 load(fileName)

 [sv,nrml,~] = prop();

 %Save only the sensors specified in prop()

 array = data(:,sv);

 array = array';

 %Normalize each sensor by values specified in prop()

 for i = 1:length(nrml)

 array(i,:)=array(i,:)/nrml(i);

 end

 %Compute power

 array(3,:) = array(3,:).*array(4,:);

 array(4,:) = [];

end

89

3. memorize.m

%/==\

%| PURPOSE: Memorizes the input dataset 'data'. It is expected this |

%| data adheres to NSET matrix convention, that is, each |

%| column is a vector of sensor values and each row is |

%| additional vectors in time. |

%|--|

%| INPUTS: data - Input dataset to be memorized |

%|--|

%| OUTPUTS: mem - Memorized matrix |

%|--|

%| Luke Costello, 10/12/20 |

%\==/

function [mem] = memorize(data)

 global loud

 %Find extreme sensor data

 [mem1,data] = find_extremes(data);

 %Sort sensor data & form the largest memory matrix possible

 [mem2] = sort_step(data);

 %Combine sets and report

 mem = [mem1 mem2];

 val = rcond_e(mem);

 if loud

 fprintf('RCond # of formed memory matrix is: %2.2s\n',val);

 end

end

4. find_extremes.m

%/==\

%| PURPOSE: Finds extreme sensor values for the sensors in position 2|

%| and position 3. |

%|--|

%| INPUTS: array - Input dataset to be memorized |

%|--|

%| OUTPUTS: out - Memorized matrix |

%| array - Returns the input array without the memorized |

%| values so that later memorization algorithms do |

%| not use them as well. |

%|--|

%| Luke Costello, 10/12/20 |

%\==/

function [out,array] = find_extremes(array)

 [~,i] = min(array(2,:));

90

 out = [array(:,i)];

 array(:,i) = [];

 [~,k] = min(array(3,:));

 out = [out array(:,k)];

 array(:,k) = [];

 [~,j] = max(array(2,:));

 out = [out array(:,j)];

 array(:,j) = [];

 [~,l] = max(array(3,:));

 out = [out array(:,l)];

 array(:,l) = [];

end

5. sort_step.m

%/==\

%| PURPOSE: Sorts sensor vectors into a memory matrix. This is done |

%| by determining the range of operating data for each |

%| sensor and dividing into 1/k steps. The vector with |

%| sensor measurement closest to each step is saved into |

%| the memory matrix. k is progressively increased (for |

%| each sensor) until a memory matrix is create where each |

%| vector is sufficiently unique that the Rcond # is |

%| greater than the threshold set by prop(). |

%|--|

%| INPUTS: data - Input Sensor Data |

%|--|

%| OUTPUTS: mem - Formed memory matrix |

%|--|

%| Luke Costello, 10/12/20 |

%\==/

function [mem] = sort_step(data)

 n = size(data,1);

 min_max = zeros(n,2);

 k_n = 0.01*ones(n,1);

 [~,~,d] = prop();

 rcondThresh = d{5};

 %Find minimum and maximum values for each sensor

 for i = 1:n

 min_max(i,1) = min(data(i,:));

 min_max(i,2) = max(data(i,:));

 end

 %Calc difference between min & max values

 diff = min_max(:,2) - min_max(:,1);

 %Start sorting data

91

 done = false;

 while ~done

 num_steps = 1./k_n;

 test_mem = [];

 test_data = data;

 rcond_mat = zeros(n,1);

 restart = false;

 %Loop over each sensor

 for i = 1:n

 test_mem_i = [];

 %Calculate step size for sensor i

 step_val = (diff(i)/num_steps(i));

 %Loop over each step

 for j = 1:num_steps(i)

 %Calculate value to search for

 search_val = min_max(i,1) + j*step_val;

 %Search for value

 [~,ind] = min(abs(test_data(i,:) - search_val));

 %fprintf('Sensor: %d || Search value: %4.2f || Index

chosen: %4.2f\n',i,search_val,ind)

 test_mem_i = [test_mem_i test_data(:,ind)];

 test_data(:,ind) = [];

 %pause

 if isempty(ind)

 break

 end

 end

 if isempty(ind)

 k_n = k_n + 0.01;

 restart = true;

 break

 end

 rcond_mat(i) = rcond_e(test_mem_i);

 test_mem = [test_mem test_mem_i];

 end

 if restart

 continue

 end

 rcond_curr = rcond_e(test_mem);

 if rcond_curr > rcondThresh

 done = true;

 else

 [~,ind] = min(rcond_mat);

 k_n(ind) = k_n(ind) + 0.01;

 %fprintf('Rcond too small (%2.2s)! Increasing step size for

sensor %d and continuing...\n',rcond_curr,ind)

 end

 end

92

 mem = test_mem;

end

6. rcond_e.m

%/==\

%| PURPOSE: Calculates the RCond number (see L. Costello's Thesis |

%| report or MATLAB's rcond function documentation) |

%|-- -------|

%| INPUTS: mem - Matrix to compute RCond # for |

%|-- ---------------|

%| OUTPUTS: out - RCond Number |

%|--|

%| Luke Costello, 8/28/2020 |

%\==/

function [out] = rcond_e(mem)

 m = size(mem,2);

 Dt_D = zeros(m);

 for i = 1:m

 for j = 1:m

 Dt_D(i,j) = euclid(mem(:,i),mem(:,j));

 end

 end

 out = rcond(Dt_D'*Dt_D);

end

7. euclid.m

%/==\

%| PURPOSE: Calculates the Euclidean distance between 2 vectors |

%|--|

%| INPUTS: vec1 - Vector 1 |

%| vec2 - Vector 2 |

%|--|

%| OUTPUTS: out - Euclidean Distance |

%|--|

%| Luke Costello, 9/12/20 |

%\==/

function [out] = euclid(vec1,vec2)

 len_vec1 = length(vec1);

 len_vec2 = length(vec2);

 s = 0;

 for i = 1:len_vec1

 s = s + (vec1(i) - vec2(i))^2;

 end

93

 out = sqrt(s);

end

8. estimate_sensors.m

%/==\

%| PURPOSE: Estimates the expected sensor data given a memory matrix|

%|--|

%| INPUTS: data - Dataset to be estimated |

%| mem - Memory Matrix |

%|--|

%| OUTPUTS: est - Estimated sensor values |

%|--|

%| Luke Costello, 10/15/20 |

%\==/

function [est] = estimate_sensors(data,mem)

 [sv,nrml,~] = prop();

 array = data;

 for n = 1:size(data,2)

 obs = array(:,n);

 [out] = weight(mem,obs);

 est(:,n) = mem*out;

 end

 index = 1:n;

end

9. weight.m

%/==\

%| PURPOSE: Computes the weighting vector for NSET given a memory |

%| matrix and a new observed sensor vector. |

%|--|

%| INPUTS: mem - Memory Matrix |

%| obs - Observed sensor vector |

%|--|

%| OUTPUTS: out - Weighting Vector |

%|--|

%| Luke Costello, 8/25/20 |

%\==/

function [out,invers] = weight(mem,obs)

 %Calculate size of input matrices

 n = size(mem,1);

 m = size(mem,2);

 if size(obs,1) ~= n

94

 error('Observed vector is not the same length as memorized

vectors.')

 end

 %Preallocate memory for matrices

 Dt_D = zeros(m,m);

 Dt_X = zeros(m,1);

 %Compute Euclidian distance between each memory vector, as well as

each

 %memory vector and observation vector

 for i = 1:m

 for j = 1:m

 Dt_D(i,j) = euclid(mem(:,i),mem(:,j));

 end

 Dt_X(i) = euclid(mem(:,i),obs);

 end

 %Compute inv(Dt_D)*Dt_X

 invers = inv(Dt_D);

 out = Dt_D\Dt_X;

end

95

E. SPRT Code

1. hypothesis.m

%/==\

%| PURPOSE: Determines the parameters of the hypothesis test |

%|--|

%| INPUTS: H_j - Hypothesis to test. |

%| 1 == mu = +M sig = sig(trained_data) |

%| 2 == mu = -M, sig = sig(trained_data) |

%| 3 == mu = 0, sig = V*sig(trained_data) |

%| 4 == mu = 0, sig = (1/V)*sig(trained_data) |

%| S - SPRT Parameters |

%|--|

%| OUTPUTS: mu_test - The mean value of the alternative hypothesis |

%| sig_test - The standard deviation of the alternative |

%| hypothesis |

%|--|

%| Luke Costello, 10/6/2020 |

%\==/

function [mu_test, sig_test] = hypothesis(H_j,S)

 %Extract SPRT parameters

 sig_tr = S(1);

 M = S(2);

 V = S(3);

 %Determine hypothesis to test

 if H_j == 1

 mu_test = M;

 sig_test = sig_tr;

 elseif H_j == 2

 mu_test = -M;

 sig_test = sig_tr;

 elseif H_j == 3

 mu_test = 0;

 sig_test = V*sig_tr;

 elseif H_j == 4

 mu_test = 0;

 sig_test = (1/V)*sig_tr;

 end

end

96

2. LR.m

%/==\

%| PURPOSE: Calculates the new likelihood ratio of a sequence for a |
%| new datapoint added to the sequence. |

%|--|

%| INPUTS: x - New datapoint to test |

%| lk_0 - Likelihood ratio, without taking new datapoint |

%| into account. |

%| j - Hypothesis to test. |

%| 1 == mu = +M sig = sig(trained_data) |

%| 2 == mu = -M, sig = sig(trained_data) |

%| 3 == mu = 0, sig = V*sig(trained_data) |

%| 4 == mu = 0, sig = (1/V)*sig(trained_data) |

%| S - Vector containing SPRT parameters |

%| S[1] = sig(trained_data) || S[2] = M || S[3] == V|

%|--|

%| OUTPUTS: lk_1 - Likelihood ratio after taking new datapoint into |

%| account. |

%|--|

%| Luke Costello, 10/6/2020 |

%\==/

function [lk_1] = LR(x,lk_0,j,S)

%Extract SPRT parameters

sig_tr = S(1);

M = S(2);

V = S(3);

%Determine hypothesis to test

[mu_test, sig_test] = hypothesis(j,S);

H_0 = normal_prob(x,0,sig_tr);

H_j = normal_prob(x,mu_test,sig_test);

if 1 == 2

 fprintf('Datapoint: %2.2f || Mu_test: %2.2e || Sig_test:

%2.2e\n',x,mu_test,sig_test)

 fprintf('Null hypothesis probability: %2.4e || Alternative

hypothesis probability: %2.4e\n',H_0,H_j)

end

lk_i = H_j/H_0;

lk_1 = lk_0 * lk_i;

97

%/==\

%| PURPOSE: Checks the probability that a datapoint is from a normal|

%| distribution. |

%|--|

%| INPUTS: x - datapoint to be checked |

%| mu - mean value of distribution |

%| sig - standard devation of distribution |

%|--|

%| OUTPUTS: prob - probability of x residing in distribution |

%|--|

%| Luke Costello, 10/6/2020 |

%\==/

function [prob] = normal_prob(x,mu,sig)

 prob = (sig*sqrt(2*pi))^-1 * exp(-0.5 * ((x-mu)/sig)^2);

end

98

%/==\

%| PURPOSE: Computes a SPRT for new data, using learned memory |

%| matrix and new data. |

%|--|

%| INPUTS: H_j - Hypothesis to test. |

%| 1 == mu = +M sig = sig(trained_data) |

%| 2 == mu = -M, sig = sig(trained_data) |

%| 3 == mu = 0, sig = V*sig(trained_data) |

%| 4 == mu = 0, sig = (1/V)*sig(trained_data) |

%|--|

%| OUTPUTS: mu_test - The mean value of the alternative hypothesis |

%| sig_test - The standard deviation of the alternative |

%| hypothesis |

%|--|

%| Luke Costello, 10/6/2020 |

%\==/

function [alarms,SPRT_sv,range] = test_data(X_n,S,rots)

 global loud

 %Extract SPRT data

 sig = S(1);

 M = S(2);

 V = S(3);

 alph = S(4);

 beta = S(5);

 num_hyp = 4; %Number of hypotheses to test

 %Define testing parameters

 A = log(beta/(1-alph));

 B = log((1-beta)/alph);

 range = [A B];

 decision = zeros(num_hyp,1);

 lk_0 = ones(num_hyp,1);

 lk_i = ones(num_hyp,1);

 alarms = zeros(num_hyp,2);

 %Test new data against training data

 %Loop over each datapoint

 for i = 1:size(X_n,2)

 %Extract datapoint to test

 %X_i = X_n(test_row,i);

 X_i = X_n(i);

 %if rem(i,50) == 0

 % fprintf('On datapoint %d\n',i)

 %end

 %Loop over each hypothesis to test

 for j = 1:num_hyp

99

 %Compute likelihood ratio for new datapoint

 lk_i(j) = LR(X_i,lk_0(j),j,S);

 if isnan(lk_i(j))

 lk_i(j) = lk_0(j);

 end

 lk_0(j) = lk_i(j);

 %Compute SPRT index

 SPRT_i = log(lk_i(j));

 %Compare SPRT index to boundaries

 if SPRT_i >= A && SPRT_i <= B

 decision(j) = 1;

 elseif SPRT_i < A

 decision(j) = 2;

 SPRT_i = A;

 elseif SPRT_i > B

 decision(j) = 3;

 SPRT_i = B;

 end

 SPRT_sv(j,i) = SPRT_i;

 if rots(i) > 120

 if decision(j) ~= 1

 if decision(j) == 2

 alarms(j,1) = alarms(j,1) + 1;

 elseif decision(j) == 3

 alarms(j,2) = alarms(j,2) + 1;

 end

 decision(j) = 1;

 lk_0(j) = 1;

 end

 end

 if 1 == 2

 figure(3);

 hold on

 subplot(1,num_hyp,j)

 xlim([A,B])

 ylim([0,size(X_n,2)])

 plot(SPRT_i,i,'k.')

 pause

 end

 end

 end

 if 1 == 2

 ind = 1:size(SPRT_sv,2);

 figure(3);

 ylabel('Number Datapoints [N]')

 xlabel('Detection Range [A,B]')

 subplot(1,4,1)

 hold on

100

 plot(SPRT_sv(1,:),ind,'k.')

 plot([A A],[0 ind(end)],'-r')

 plot([B B],[0 ind(end)],'-r')

 xlim([A-0.5,B+0.5])

 ylim([0,size(X_n,2)])

 subplot(1,4,2)

 hold on

 plot(SPRT_sv(2,:),ind,'k.')

 plot([A A],[0 ind(end)],'-r')

 plot([B B],[0 ind(end)],'-r')

 xlim([A-0.5,B+0.5])

 ylim([0,size(X_n,2)])

 subplot(1,4,3)

 hold on

 plot(SPRT_sv(3,:),ind,'k.')

 plot([A A],[0 ind(end)],'-r')

 plot([B B],[0 ind(end)],'-r')

 xlim([A-0.5,B+0.5])

 ylim([0,size(X_n,2)])

 subplot(1,4,4)

 hold on

 plot(SPRT_sv(4,:),ind,'k.')

 plot([A A],[0 ind(end)],'-r')

 plot([B B],[0 ind(end)],'-r')

 xlim([A-0.5,B+0.5])

 ylim([0,size(X_n,2)])

 end

 %{

 if loud

 fprintf(' # Alarms:\n')

 fprintf('H_0: 1 2 3 4\n ')

 disp(alarms')

 end

 %}

end

101

F. Adaptive FFT Code

1. AFFT_prop.m

%Saves properties for the AFFT

function [K,R_SPD_bins,d] = AFFT_prop(K)

if ~exist('K','var')

 K = 1.5;

end

R_SPD_bins = [32.5:5:207.5];

%Sample frequency

Fs = 50;

%Number datapoints per FFT

N = 1024;

%Width of Frequency Bins

bin_width = 1;

d = [Fs,N,bin_width];

2. learn_thresh2.m

%/==\

%| PURPOSE: Learns an adaptive threshold using training data FFTs |

%|--|

%| INPUTS: amps - Amplitude of most recent FFT |

%| freqs - Frequencies corresponding to amplitudes of |

%| FFT |

%| K_thr - Threshold multiplier |

%| rots_ar - Array of rotor speeds, to sort newly formed |

%| thresholds into bins |

%| threshold - The currently formed threshold, so it can be|

%| compared against the next FFT |

%|--|

%| OUTPUTS: threshold - The latest formed threshold |

%|--|

%| Luke Costello, 10/6/2020 |

%\==/

function [threshold] =learn_thresh2(amps,freqs,K_thr,rots_ar,threshold)

global debug

%%Sort each FFT into bins based on rotorspeed

[~,r_bins,d] = AFFT_prop(K_thr);

bin_width = d(3); %Frequency width per threshold

frq_step = (freqs(2)-freqs(1)); %Step size per FFT datapoint [Hz]

num_steps = ceil(bin_width/frq_step); %Steps per frequency width

bin [#]

num_1side = ceil(num_steps/2); %Steps on one side per peak

102

amps_cell = cell(1,length(r_bins));

for i = 1:size(amps,2)

 [~,x] = min(abs(rots_ar(i) - r_bins));

 amps_cell{x} = [amps_cell{x} amps(:,i)];

end

%%Loop over each bin of rotorspeed

for i = 1:length(amps_cell)

 amps_lrn = amps_cell{i};

 amps_lrn = max(amps_lrn,[],2);

 if any(size(amps_lrn) == [0 0])

 continue

 end

 for j = 1:length(amps_lrn)

 low = j-num_1side;

 high = j+num_1side;

 if low < 1

 low = 1;

 elseif high > length(amps_lrn)

 high = length(amps_lrn);

 end

 lrns = amps_lrn(low:high);

 max_lrns = K_thr * max(lrns,[],1);

 max_all = max([max_lrns,threshold(j,i)]);

 threshold(j,i) = max_all;

 end

 if debug

 figure(1);

 clf

 hold on

 size(amps_lrn)

 plot(freqs,amps_lrn,'-k')

 plot(freqs,threshold(:,i),'-r')

 fill([freqs;25;-

25],[threshold(:,i);max(threshold(:,i))+0.04;max(threshold(:,i))+0.04],

'r','FaceAlpha','0.1','LineStyle','None')

 pause

 end

end

103

3. test_thresh2.m

%/==\

%| PURPOSE: Tests the FFT of vibration data against an adaptive |

%| threshold set earlier in the program. |

%|--|

%| INPUTS: thresh - Array of currently formed thresholds |

%| freqs - Array of frequencies corresponding to |

%| threshold and FFT |

%| amps - Amplitude of FFT to compare to threshold |

%| rots_ar - Array of rotor speeds of data being tested |

%| r_bins - Array of rotor speed bins to sort data into |

%| nums - A vector of the number of detections: |

%| [Number of Tests, Number of Positives] |

%| frq_pos - A vector of positive frequencies at which a |

%| fault has been detected. |

%|--|

%| OUTPUTS: nums - A vector of the number of detections: |

%| [Number of Tests, Number of Positives] |

%| frq_pos - Vector of the frequencies at which a positive |

%| detection occurs. |

%|--|

%| Luke Costello, 10/6/2020 |

%\==/

function [nums,frq_pos] =

test_thresh2(thresh,freqs,amps,rots_ar,r_bins,nums,frq_pos)

 global debug

 global show_faults

 num_tests = nums(1);

 num_pos = nums(2);

 %Sort FFT output into cells based on rotor speed

 amps_cell = cell(1,length(r_bins));

 for i = 1:size(amps,2)

 [~,x] = min(abs(rots_ar(i) - r_bins));

 amps_cell{x} = [amps_cell{x} amps(:,i)];

 end

 %Loop over each rotor speed

 for i = 1:length(amps_cell)

 amps_test = amps_cell{i};

 %Loop over each FFT at the current rotorspeed

 for k = 1:size(amps_test,2)

 amp_test = amps_test(:,k);

 thresh_test = thresh(:,i);

 test = find(amp_test>thresh_test);

 if debug

 figure(1);

 clf

 hold on

 plot(freqs,amp_test,'-k')

 plot(freqs,thresh(:,i),'-r')

104

 fill([freqs;25;-

25],[thresh(:,i);max(thresh(:,i))+0.04;max(thresh(:,i))+0.04],'r','Face

Alpha','0.1','LineStyle','None')

 pause

 end

 %If test isn't empty, than a fault has been detected

 if ~isempty(test)

 pos_detect = false;

 for j = 1:length(test)

 frq_fault = 60*freqs(test(j))/r_bins(i);

 frq_pos = [frq_pos;frq_fault];

 if (((frq_fault > 0.75) && (frq_fault < 1.25)) ||

((frq_fault > 2.75) && (frq_fault < 3.25))) && ~pos_detect

 pos_detect = true;

 if r_bins(i) > 140

 num_pos = num_pos + 1;

 end

 end

 end

 if show_faults

 figure(1);

 clf

 hold on

 plot(freqs,amp_test,'-k')

 plot(freqs,thresh(:,i),'-r')

 fill([freqs;25;-

25],[thresh(:,i);max(thresh(:,i))+0.04;max(thresh(:,i))+0.04],'r','Face

Alpha','0.1','LineStyle','None')

 pause

 end

 end

 if r_bins(i) > 120

 num_tests = num_tests+1;

 end

 end

 end

 nums = [num_tests num_pos];

end

105

4. FFT_array.m

%Creates an FFT of the given data every N datapoints

%Fs = Sample frequency

%Data = Input data vector

%N = Number Datapoints per FFT

function [freqs,amps] = FFT_array(data,Fs,N)

if ~any(size(data)==1)

 error('ERROR: Input data must be a 1-by-N or N-by-1 vector')

end

data = data - mean(data);

num_fft = floor(length(data)/N);

a = 2;

b = 1;

for i = 1:num_fft

 data_i = data(i*N-(N-1):i*N);

 ffts(:,i) = fft(data_i,N);

 amp_zero = abs((ffts(1,i)).^b/N);

 amp_pos = a.*abs((ffts(2:N/2,i)).^b/N);

 amp_neg = a.*abs((ffts(N/2+1:end,i)).^b/N);

 amps(:,i) = [amp_neg;amp_zero;amp_pos;];

end

freqs_re = Fs/N*linspace(0,N/2,N/2+1);

freqs_ng = Fs/N*linspace(-N/2,0,N/2+1);

freqs = [freqs_ng(1:end-1) freqs_re(1:end-1)]';

106

G. Order Analysis FFT Code

1. Interp_Angle_2.m

%/==\

%| PURPOSE: Interpolates accceleration data from constant time-step |

%| format to a constant angle-step format |

%|--|

%| INPUTS: life - Acceleration data from the LifeLine |

%| data - Data output from the squirrel DAQ |

%|--|

%| OUTPUTS: t - Vector of times interpolated to |

%| accel_interp - Interpolated acceleration |

%| rot_interp - Interpolated rotor speed |

%|--|

%| Luke Costello, 9/12/20 |

%\==/

function [t,accel_interp,rot_interp] = Interp_Angle_2(life,data)

%Load Properties

d = ReVIm_prop();

 k = d(2);

accel_col = d(3);

 t_incr = d(5);

accel = life(:,accel_col);

[data_exp,~] = expandData(data,life);

rot_exp = data_exp(:,3);

if length(accel) > length(rot_exp)

 diff = length(accel) - length(rot_exp);

 extras = rot_exp(end-diff+1 : end);

 rot_exp = [rot_exp;extras];

 accel = accel(1:length(rot_exp));

elseif length(rot_exp) > length(accel)

 rot_exp = rot_exp(1:length(accel));

end

%Create list of time vectors to interpolate to

t = [data(1,1)];

i = 1;

while t(end)<life(end,1)

 if i > length(data)

 break

 end

 data_vec = data(i,:);

 time = data_vec(1);

 RPM = data_vec(3);

 omeg = RPM*2*pi/60;

 if omeg < 0

 omeg = -omeg;

107

 end

 tht_diff = 2*pi/k;

 t_diff = tht_diff/omeg;

 while t(end) < time + t_incr

 t = [t;t(end) + t_diff];

 end

 i=i+1;

end

%Preallocate Memory

accel_interp = zeros(1,length(t));

rot_interp = zeros(1,length(t));

time_uninterp = life(:,1);

%Loop over times to interpolate to

for i = 1:length(t)-1

 time_interp = t(i);

 %Find the index such that t(index) < t(ik) < t(index+1)

 [~,ind] = min(abs(time_uninterp - time_interp));

 if ind == length(time_uninterp)

 ind = ind-1;

 elseif time_interp < time_uninterp(ind)

 ind = ind-1;

 end

 %Interpolate Accels

 accel_interp(i) = accel(ind) + (t(i) - life(ind,1))/(life(ind+1,1)

- life(ind))*(accel(ind+1) - accel(ind));

 rot_interp(i) = rot_exp(ind) + (t(i) - life(ind,1))/(life(ind+1,1)

- life(ind))*(rot_exp(ind+1) - rot_exp(ind));

 %Panic?

 panic_plot = false;

 if panic_plot

 accel_plt = [accel(ind) accel(ind+1)];

 time_plt = [life(ind,1) life(ind+1,1)];

 figure(10)

 clf

 hold on

 plot(time_plt,accel_plt,'k')

 plot(t(i),accel_interp(i),'ro')

 legend('Uninterpolated data','Interpolated Datapoint')

 pause

 end

end

108

2. FFT_vecs.m

%/==\

%| PURPOSE: Calculates the complex vector outputs of an FFT |

%|--|

%| INPUTS: accel - Acceleration vector |

%| n - Size of FFT to take |

%| rot - Rotor speed vector |

%|--|

%| OUTPUTS: freqs - Frequencies of vectors |

%| vectors - Complex FFT vectors |

%| rots - Average rotor speed of each FFT |

%|--|

%| Luke Costello, 9/12/20 |

%\==/

function [freqs,vectors,rots] = FFT_vecs(accel,n,rot)

n = 2^nextpow2(n);

%Find the number of FFTs to take

num_vec = ceil(length(accel)/n);

vectors = zeros(n,num_vec);

rots = zeros(1,num_vec);

%Loop over number of FFTs to take

for i = 1:num_vec

 %Extract n datapoints, or however many are left

 if i*n > length(accel)

 accel_i = accel(i*n-(n-1):end);

 rot_i = rot(i*n-(n-1):end);

 else

 accel_i = accel(i*n-(n-1):i*n);

 rot_i = rot(i*n-(n-1):i*n);

 end

 vecs = fft(accel_i,n)';

 vecs_0 = vecs(1);

 vecs_pos = vecs(2:(n/2+1));

 vecs_neg = vecs((n/2+2):end);

 vector_combine = [vecs_neg;vecs_0;vecs_pos];

 vectors(:,i) = [vecs_neg;vecs_0;vecs_pos];

 rots(i) = mean(rot_i);

end

d = ReVIm_prop();

Fs = d(2);

freqs = Fs/n*linspace(-n/2,n/2,n)';

3. extract_1P.m

%Extracts the 1P component from the FFT

function [freqs,vectors] = extract_1P(freqs,vecs)

[~,rng] = ReVIm_prop();

109

%Find indices closest to range

[~,ind1] = min(abs(freqs - rng(1)));

[~,ind2] = min(abs(freqs - rng(2)));

%Extract components

freqs = freqs(ind1:ind2,1);

vectors = vecs(ind1:ind2,1);

4. Learn_Components.m

%/==\

%| PURPOSE: Learn the complex vectors of acceleration data in the |

%| frequency domain. The end result is an complex vector |

%| representing the average complex vector, and a circle |

%| surrounding this vector. |

%| |

%| It is expected that the FFT of acceleration data has |

%| already been taken constant angle steps. |

%|--|

%| INPUTS: accel_fft - FFT of acceleration data |

%|--|

%| OUTPUTS: center - Complex datapoint representing avg value of |

%| vectors |

%| radius - Radius of alarm circle; new vectors outside |

%| this circle will raise an alarm. |

%|--|

%| Code by Luke Costello, 8/28/2020 |

%\==/

function [center, radius] = Learn_Components(accel_fft,K)

d = ReVIm_prop(K);

K = d(6);

Re = real(accel_fft);

Im = imag(accel_fft);

Re_X0 = mean(Re);

Im_X0 = mean(Im);

Re_std = std(Re);

Im_std = std(Im);

max_std = max([Re_std,Im_std]);

center = Re_X0 + Im_X0*1i;

radius = K*max_std;

110

5. compare_component.m

%/==\

%| PURPOSE: Compares the FFT vectors to the complex threshold |

%|--|

%| INPUTS: vectors - Vectors to compare to threshold |

%| center - Center of complex threshold |

%| radius - Radius of complex threshold |

%| alarms - Number of alarms before test |

%| tests - Number of tests before this test |

%|--|

%| OUTPUTS: alarms - Number of alarms after this test |

%| tests - Number of tests after this test |

%|--|

%| Luke Costello, 10/12/20 |

%\==/

function [alarms,tests] =

compare_component(vectors,center,radius,alarms,tests)

center_re = real(center);

center_im = imag(center);

alarm = false;

%subsequent = 0;

for i = 1:(size(vectors,1)*size(vectors,2))

 vec_re = real(vectors(i));

 vec_im = imag(vectors(i));

 dist = sqrt((vec_re - center_re)^2 + (vec_im - center_im)^2);

 %alarm_now = false;

 if dist > radius

 %alarms = alarms + 1;

 alarm = true;

 %alarm_now = true;

 end

 %tests = tests+1;

end

if alarm

 alarms = alarms+1;

end

tests = tests + 1;

111

H. Cross-Validation Study Code

1. CROSSVALIDATION_DRIVER.m

%% The central driver script used for executing the cross-validation

%% study of Luke Costello's M.S. thesis.

clear all

%Prints additional debugging info if debug is set to true

global debug %Print extra info for debugging each loop

global loud %Be loud!

global show_faults %Plot stuff if a fault occurs

debug = true;

loud = true;

fprintf('GATHERING DATA\n')

[list] =

find_files('C:\Users\lukec\OneDrive\Documents\2School\MastersThesis\Cod

e\MATLAB\Modeling\Crossvalidation_Study\Datasets\Healthy');

[fault] =

find_files('C:\Users\lukec\OneDrive\Documents\2School\MastersThesis\Cod

e\MATLAB\Modeling\Crossvalidation_Study\Datasets\Faulty');

fault = fault(1);

%Overcomplicated code, creating a matrix of tests to run

num_memorize = 9; %Number of datasets to save to memory

in = ones(1,length(list))*2;

list_mem = fullfact(in)-1; %List all possible binary numbers up to

2^(length(list))

list_mem_i = [];

%Remove any number where (Number of 1's =/= num_memorize)

for i = 1:length(list_mem)

 if sum(list_mem(i,:)) == num_memorize

 list_mem_i=[list_mem_i;list_mem(i,:)];

 end

end

list_mem = list_mem_i;

%Column of acceleration to test

accel_col = 8;

%List of tests to run

tests = [3];

%Loop over each test to run

OFFT_mat_out = cell(1,length(list));

AFFT_mat_out = cell(1,length(list));

NSET_SPRT_mat_out = cell(1,length(list));

for x = 1:length(list)

112

 close all

 %% Pick Data

 pick_list = find(list_mem(x,:));

 not_pick = find(~list_mem(x,:));

 [data_mem,data_test,data_fault] = pick_data(list,pick_list,fault);

 NSET_SPRT_mat = [];

 AFFT_mat = [];

 OFFT_mat = [];

 if any(tests==1)

 %% NSET + SPRT

 fprintf('\nBEGIN NSET+SPRT\n')

 fprintf('Memorizing data...\n')

 tic

 [mem] = memorize(data_mem);

 fprintf('Done memorizing. (%2.2f seconds elapsed)\n',toc)

 %Estimate the sensor values using MSET

 fprintf('\nEstimating data...\n')

 tic

 est_mem = estimate_sensors(data_mem,mem);

 est_test = estimate_sensors(data_test,mem);

 est_fault = estimate_sensors(data_fault,mem);

 %Calculate residuals

 resid_mem = est_mem(accel_col,:)-data_mem(accel_col,:);

 resid_test = est_test(accel_col,:)-data_test(accel_col,:);

 resid_fault = est_fault(accel_col,:)-data_fault(accel_col,:);

 [~,norml,~] = prop();

 rot_test = data_test(2,:).*norml(2);

 rot_fault = data_fault(2,:).*norml(2);

 std_mem = std(resid_mem);

 std_test = std(resid_test);

 fprintf('Standard deviation of mem: %2.6f || Standard deviation

of test: %2.6f\n',std_mem,std_test)

 if loud

 fprintf('(Sum of residual/Residual Length): [MEMORY] -

%2.2e\n',sum(resid_mem)/length(resid_mem))

 fprintf(' [TEST] -

%2.2e\n',sum(resid_test)/length(resid_test))

 fprintf(' [FAULT] -

%2.2e\n',sum(resid_fault)/length(resid_fault))

 end

 fprintf('Done estimating. (%2.2f seconds elapsed)\n',toc)

 fprintf('\nComputing SPRT...\n')

 tic

 sig_tr = std(resid_mem);

 S = [sig_tr,m*sig_tr,V,alph,beta];

113

 ms = 1:1:6;

 Vs = 1:1:6;

 betas = 0.005:0.005:0.2;

 alphs = 0.005:0.005:0.2;

 S = [sig_tr,m*sig_tr,V,alph,beta];

 %Loop over all possible values of m and V

 for i = 1:length(ms)

 m = ms(i);

 for j = 1:length(Vs)

 %Loop over all possible values of alpha and beta

 V = Vs(j);

 for k = 1:length(alphs)

 alph = alphs(k);

 for l = 1:length(betas)

 beta = betas(l);

 S = [sig_tr,m*sig_tr,V,alph,beta];

 [alarms_t,~,~] =

test_data(resid_test,S,rot_test);

 [alarms_f,~,~] =

test_data(resid_fault,S,rot_fault);

 TN = alarms_t(2,1); %True Negatives

 TP = alarms_f(2,2); %True Positives

 FP = alarms_t(2,2); %False Positives

 FN = alarms_f(2,1); %False Negatives

 TP_rate = TP/(TP + FN);

 FP_rate = FP/(FP + TN);

 Precision = TP/(TP+FP);

 Recall = TP_rate;

 F_score =

2*Precision*Recall/(Precision+Recall);

 NSET_SPRT_mat = [NSET_SPRT_mat; m V alph beta

TP_rate FP_rate F_score];

 end

 end

 end

 fprintf('%d ',i);

 end

 %plot(NSET_SPRT_mat(:,6),NSET_SPRT_mat(:,5),'o');

114

 NSET_SPRT_mat_out{x} = NSET_SPRT_mat;

 %Compute SPRT

 fprintf('\nDone with SPRT. (%2.2f seconds elapsed)\n',toc)

 end

 %% Real vs Imag FFT

 if any(tests==3)

 fprintf('\nBEGIN RE V. IMAG FFT\n')

 tic

 num_FFT = 4096;

 K = 4.5;

 fprintf('Learning Healthy Data...\n')

 vecs1P = [];

 for i = 1:length(list(pick_list))

 ind = pick_list(i);

 load(list(ind));

 %

 %Interpolate acceleration to constant rotor-step rather

than

 %constant timestep

 [t,accel_interp,rot_interp] =

Interp_Angle_2(life,data_raw);

 accel_len = length(accel_interp);

 debug = false;

 if debug

 hold on

 plot(t,accel_interp/16384,'ob')

 plot(life(:,1),life(:,4)/16834,'-*r')

 legend('Interpolated','Raw')

 box on

 xlabel('Time [s]')

 ylabel('Acceleration [g]')

 pause

 end

 %Take the FFT of the interpolated data every N datapoints

 [freqs,vectors,rots] =

FFT_vecs(accel_interp,num_FFT,rot_interp);

 %Extract the 1P component from each column of complex

vectors

 for j = 1:size(vectors,2)

 vectors_j = vectors(:,j);

 [freq1P,vec1P] = extract_1P(freqs,vectors_j);

 vecs1P = [vecs1P;vec1P];

 end

 %figure(21);

115

 %hold on

 %plot(vecs1P,'o')

 %pause

 end

 for K = 3.5:0.2:5.5

 alarm_num_h = 0;

 tests_h = 0;

 alarm_num_f = 0;

 tests_f = 0;

 %Loop over healthy data to memorize

 %Learn threshold for 1P component vectors

 fprintf('Learning more :D\n')

 [center,radius] = Learn_Components(vecs1P,K);

 fprintf('Done learning.\nTesting healthy data...\n')

 %Loop over healthy data to test

 for i = 1:length(not_pick)

 %Load dataset

 ind = not_pick(i);

 load(list(ind));

 %Interpolate each

 [t,accel_interp,rot_interp] =

Interp_Angle_2(life,data_raw);

 %Take FFT

 [freqs,vecs,rots] =

FFT_vecs(accel_interp,num_FFT,rot_interp);

 vecs1P_t = [];

 alarms = 0;

 subsequent = 0;

 comparisons = 0;

 %Extract 1P component and compare to threshold

 for j = 1:size(vecs,2)

 vectors_j = vecs(:,j);

 rots_j = rots(j);

 [freq1P,vec1P] = extract_1P(freqs,vectors_j);

 %vecs1P_t = [vecs1P_t;vec1P];

 if rots_j > 120

 [alarm_num_h,tests_h] =

compare_component(vec1P,center,radius,alarm_num_h,tests_h);

 end

 %if alarm_num ~= 0

 % subsequent = subsequent + 1;

 % alarms = alarms + 1;

 %else

 % subsequent = 0;

116

 %end

 %if subsequent > 3

 % fprintf('ALARM! Subsequent alarms:

%d\n',subsequent)

 %end

 %comparisons = comparisons + 1;

 end

 %SR = (comparisons - alarms)/comparisons;

 %fprintf('Done with set of data. Statistics: \n%d

Comparisons || %d Alarms || %2.2f

Rotorhealth\n\n',comparisons,alarms,SR)

 %Compare to threshold

 %plot_ReIm(vecs1P_t,center,radius,true,22);

 end

 fprintf('Done testing healthy data.\n')

 fprintf('Testing faulty data...\n')

 %Loop over unhealthy data

 for i = 1:length(fault)

 load(fault(i));

 [t,accel_interp,rot_interp] =

Interp_Angle_2(life,data_raw);

 [freqs,vecs,rots] =

FFT_vecs(accel_interp,num_FFT,rot_interp);

 vecs1P_f = [];

 alarms = 0;

 subsequent = 0;

 for j = 1:size(vecs,2)

 vectors_j = vecs(:,j);

 rots_j = rots(j);

 [freq1P,vec1P] = extract_1P(freqs,vectors_j);

 if rots_j > 120

 [alarm_num_f,tests_f] =

compare_component(vec1P,center,radius,alarm_num_f,tests_f);

 end

 end

 end

 FP = alarm_num_h;

 TN = tests_h - alarm_num_h;

 TP = alarm_num_f;

 FN = tests_f - alarm_num_f;

 TP_rate = TP/(TP+FN);

117

 Precision = TP/(TP+FP);

 FP_rate = FP/(FP+TN);

 F_score = 2*(Precision*TP_rate)/(Precision+TP_rate);

 OFFT_mat=[OFFT_mat; FP_rate TP_rate F_score K];

 fprintf('FP Rate: %2.2f | TP Rate: %2.2f | F_score: %2.2f

\n',FP_rate,TP_rate,F_score);

 end

 fprintf('Done with Re v. Imag FFT. (%2.2f seconds

elapsed)\n',toc)

 end

 OFFT_mat_out{x} = OFFT_mat;

 pause

 %AFFT Test

 if any(tests==4)

 fprintf('\nBEGIN AFFT\n')

 tic

 for K_thr = 1:0.1:4

 %%Learn healthy data

 num_fft = 1024;

 [~,r_bins] = AFFT_prop();

 threshold = zeros(num_fft,length(r_bins));

 debug = false;

 for i = 1:length(list(pick_list))

 ind=pick_list(i);

 load(list(ind))

 %Expand data to length of lifeline signal

 [data_exp,~] = expand(data_raw,life);

 %Delete extra data from lifeline, and save the lifeline

time column to

 %the data time column

 life = life(1:size(data_exp,1),:);

 data_exp(:,1) = life(:,1);

 [freqs,amps] = FFT_array(life(:,4)/16384,50,num_fft);

 rots_ar = zeros(1,floor(length(data_exp)/num_fft));

 for j = 1:floor(length(data_exp)/num_fft)

 low = j*num_fft - (num_fft-1);

 high = j*num_fft;

 rots = data_exp(low:high,3);

 rots_ar(j) = mean(rots);

 end

118

 [threshold] =

learn_thresh2(amps,freqs,K_thr,rots_ar,threshold);

 end

 debug = false;

 show_faults = false;

 nums_h = [0 0]; %[num_tested,num_positive]

 frq_pos_h = [];

 for i = 1:length(not_pick)

 ind = not_pick(i);

 load(list(ind))

 %Expand data to length of lifeline signal

 [data_exp,~] = expand(data_raw,life);

 %Delete extra data from lifeline, and save the lifeline

time

 column to

 %the data time column

 life = life(1:size(data_exp,1),:);

 data_exp(:,1) = life(:,1);

 [freqs,amps] = FFT_array(life(:,4)/16384,50,num_fft);

 rots_ar = zeros(1,floor(length(data_exp)/num_fft));

 for j = 1:floor(length(data_exp)/num_fft)

 low = j*num_fft - (num_fft-1);

 high = j*num_fft;

 rots = data_exp(low:high,3);

 rots_ar(j) = mean(rots);

 end

 [nums_h,frq_pos_h] =

test_thresh2(threshold,freqs,amps,rots_ar,r_bins,nums_h,frq_pos_h);

 end

 debug = false;

 show_faults = false;

 nums_f = [0 0]; %[num_tested,num_positive]

 frq_pos_f = [];

 for i = 1:length(fault)

 load(fault(i))

 %Expand data to length of lifeline signal

 [data_exp,~] = expand(data_raw,life);

 %Delete extra data from lifeline, and save the lifeline

time

 column to

 %the data time column

 life = life(1:size(data_exp,1),:);

 data_exp(:,1) = life(:,1);

 [freqs,amps] = FFT_array(life(:,4)/16384,50,num_fft);

 rots_ar = zeros(1,floor(length(data_exp)/num_fft));

 for j = 1:floor(length(data_exp)/num_fft)

 low = j*num_fft - (num_fft-1);

119

 high = j*num_fft;

 rots = data_exp(low:high,3);

 rots_ar(j) = mean(rots);

 end

 [nums_f,frq_pos_f] =

test_thresh2(threshold,freqs,amps,rots_ar,r_bins,nums_f,frq_pos_f);

 end

 TP = nums_f(2); %True positives

 FN = nums_f(1) - nums_f(2); %False negatives

 TN = nums_h(1) - nums_h(2); %True negatives

 FP = nums_h(2); %False positives

 TP_rate = TP/(TP+FN);

 Precision = TP/(TP+FP);

 FP_rate = FP/(FP+TN);

 F_score = 2*(Precision*TP_rate)/(Precision+TP_rate);

 AFFT_mat=[AFFT_mat; FP_rate TP_rate K_thr F_score];

 end

 plot(AFFT_mat(:,1),AFFT_mat(:,2),'o');

 fprintf('Done with AFFT. (%2.2f seconds elapsed)\n',toc)

 end

 AFFT_mat_out{x} = AFFT_mat;

 %LSCh Test

 if any(tests==5)

 slopes = [];

 intercepts = [];

 figure(2)

 hold on

 RMS = [];

 pow = [];

 fprintf('Calc-ing a healthy\n')

 for i = 1:length(list)

 load(list(i))

 data(end-10:end,:) = [];

 RMS = [RMS;data(:,10)];

 pow = [pow;data(:,4).*data(:,5)];

 end

 RMS = RMS./16384;

 RMS_av = [];

 pow_av = [];

 for i = 1:ceil(length(RMS)/60)

 low = i*60-59;

 high = i*60;

 if high>length(RMS)

 high = length(RMS);

 end

120

 RMSs = RMS(low:high,:);

 RMS_av = [RMS_av mean(RMSs)];

 pows = pow(low:high,:);

 pow_av = [pow_av mean(pows)];

 end

 [slope,intercept] = GetParams(RMS_av,pow_av);

 slopes = [slopes slope];

 intercepts = [intercepts intercept];

 Xs = 0:0.001:1;

 Ys = slope*Xs + intercept;

 plot(RMS_av,pow_av,'b.',Xs,Ys,'b-');

 pause

 RMS = [];

 pow = [];

 fprintf('Calc-ing a fault\n')

 for i = 1:length(fault)

 load(fault(i))

 data(end-10:end,:) = [];

 RMS = [RMS;data(:,10)];

 pow = [pow;data(:,4).*data(:,5)];

 end

 RMS = RMS./16384;

 RMS_av = [];

 pow_av = [];

 for i = 1:ceil(length(RMS)/60)

 low = i*60-59;

 high = i*60;

 if high>length(RMS)

 high = length(RMS);

 end

 RMSs = RMS(low:high,:);

 RMS_av = [RMS_av mean(RMSs)];

 pows = pow(low:high,:);

 pow_av = [pow_av mean(pows)];

 end

 [slope,intercept] = GetParams(RMS_av,pow_av);

 slopes = [slopes slope];

 intercepts = [intercepts intercept];

 Xs = 0:0.001:1;

 Ys = slope*Xs + intercept;

 plot(RMS_av,pow_av,'r.',Xs,Ys,'r-');

 box on

 xlim([0 0.2])

 ylim([0 1000])

 xlabel('RMS Acceleration [g]')

 ylabel('Power Output [W]')

121

 legend('Healthy Data','Healthy Regression','Imbalanced

Data','Imbalanced Regression','Location','EastOutside')

 pause

 figure(1);

 subplot(2,1,1)

 plot(slopes)

 subplot(2,1,2)

 plot(intercepts)

 end

end

%{

load('NSET_out.mat')

load('Output.mat')

figure(1)

clf

hold on

plot(NSET_SPRT_mat(:,6),NSET_SPRT_mat(:,5),'^g')

plot(AFFT_mat(:,1),AFFT_mat(:,2),'ob')

plot(OFFT_mat(:,1),OFFT_mat(:,2),'*r')

legend('NSET+SPRT','AFFT','OFFT')

box on

xlabel('False Positive Rate')

ylabel('True Positive Rate')

%}

out = zeros([size(NSET_SPRT_mat),10]);

for i = 1:10

 out(:,:,i) = cell2mat(NSET_SPRT_mat_out(i));

end

out_avg = mean(out,3);

plot(out_avg(:,6),out_avg(:,5),'.')

122

I. Python Implementation Code

NSET Code

import time

import math

def load(fileName):

 '''Load a text file into memory.'''

 out = []

 with open(fileName) as txt:

 for line in txt:

 line_str = line.split(',')

 line_num = [float(i) for i in line_str]

 out.append(line_num)

 return out

def RMS(vec):

 '''Computes the RMS value of signal'''

 if type(vec[0])!=float and type(vec[0])!=int:

 raise TypeError('Error: Input is not a list containing numbers')

 sums = 0

 for x in vec:

 sqr = x**2

 sums+=sqr

 RMS_out = math.sqrt(sums/len(vec))

 return RMS_out

def LL(vec,t_len=0.02):

 '''Computes the line length of a signal'''

 n = len(vec)

 if type(vec[0])!=float and type(vec[0])!=int:

 raise TypeError('Error: Input is not a list containing numbers')

 dX = t_len

 dX_2 = dX**2

 sums = 0

 for i in range(1,len(vec)):

 dY = vec[i] - vec[i-1]

 dist = math.sqrt(dX_2 + dY**2)

 sums+=dist

 return sums

123

def bun(A,B):

 '''Computes the nonlinear operator of two vectors, A and B.

 Currently, the nonlinear operator is simply the euclidean distance

 between the two vectors-- |A-B|'''

 if len(A) != len(B):

 raise IndexError('Error: Matrices are not identical in length!')

 sum_full = 0

 for i in range(0,len(A)):

 sum_i = (A[i] - B[i])**2

 sum_full += sum_i

 return (sum_full)**0.5

def bun_mat(A,B):

 '''Computes the nonlinear operator of two matrices, A and B.

 Note that if A or B is simply a vector/list, it must be made

 into a list of lists of length 1, ie [[1,2,3]]'''

 out_mat = []

 for i in range(0,len(A)):

 A_vec = A[i]

 row_i = []

 for j in range(0,len(B)):

 B_vec = B[j]

 bun_i_j = bun(A_vec,B_vec)

 row_i.append(bun_i_j)

 if len(row_i)==1:

 row_i=row_i[0]

 out_mat.append(row_i)

 return out_mat

def mult_mat_vec(mat,vec):

 '''Compute the operation OUT = Mat*Vec, where OUT is the output,

 Mat is an m-by-n matrix, and vec is an n-by-1 vector.'''

 if len(mat[0]) != len(vec):

 raise IndexError('Error: Matrix and vector cannot be multiplied - Dime

nsions do not match')

 out = []

 for i in range(0,len(mat)):

124

 mat_row = mat[i]

 sum = 0

 for j in range(0,len(vec)):

 sum+=mat_row[j]*vec[j]

 out.append(sum)

 return out

def transp(mat):

 '''Compute the transpose of an m-by-n matrix.'''

 i_len = len(mat)

 j_len = len(mat[0])

 #Form output matrix

 out = []

 for j in range(0,j_len):

 out.append([])

 for i in range(0,i_len):

 out[j].append(0)

 for i in range(0,i_len):

 for j in range(0,j_len):

 out[j][i]=mat[i][j]

 return out

def estimate(D,inv,X_obs):

 rhs = bun_mat(transp(D),[X_obs])

 wght = mult_mat_vec(inv,rhs)

 X_est = mult_mat_vec(D,wght)

 return X_est

class NSET:

 '''Creates an NSET object to simplify calculating the residual.

 The __init__ function requires 3 arguments: D, invDbunDm and est_num.

 D: The filename for the memory matrix. Must be a comma-

delimited file;

 designed for a .txt and will probably work with a .csv. A st

ring is expected.

 invDbunD: The filename for the operation inverse[D_transpose (bun) D].

 Same input requirements as D.

125

 est_num: The row of the memory matrix and observed state vector to es

timate.

 nrml: The array to normalize observed data vectors by (NOTE: This

MUST be identical to

 the training model.)'''

 def __init__(self,D,invDbunD,est_num,nrml):

 self.D = load(D)

 self.invDbunD = load(invDbunD)

 self.est_num = est_num

 self.nrml = nrml

 self.fault_flag = False

 self.has_tested = False

 self.last_five = [0,0,0,0,0]

 def calc_resid(self,X_obs_big):

 X_obs = [X/n for X,n in zip(X_obs_big,self.nrml)]

 X_est = estimate(self.D,self.invDbunD,X_obs)

 resid = X_est[self.est_num] - X_obs[self.est_num]

 return resid

126

SPRT Code

import math

##Set SPRT parameters

alf = 0.01 #False alarm rate

bet = 0.005 #Missed alarm rate

m = 3

V = 2

std_mem = 0.012760418 #Std Dev of Residual when testing mem

M = m*std_mem

class SPRT:

 def __init__(self,alf=0.01,bet=0.005,m=3,V=2,std_mem=0.012760418):

 '''Initialize the properties of the SPRT test'''

 self.alf = alf

 self.bet = bet

 self.std_mem = std_mem

 self.A = math.log(bet/(1-alf))

 self.B = math.log((1-bet)/alf)

 self.V = V

 self.M = m*std_mem

 self.num_healthy = 0

 self.num_faulty = 0

 self.SPRT_ind = [0,0]

 def calc_index(self,resid):

 this_Fault = False

 if (self.SPRT_ind[0] == self.A) or (self.SPRT_ind[0] == self.B):

 self.SPRT_ind[0] == 0

 if (self.SPRT_ind[1] == self.A) or (self.SPRT_ind[1] == self.B):

 self.SPRT_ind[1] == 0

 self.SPRT_ind[0] = self.SPRT_ind[0] + (self.M / (self.std_mem)**2)*(r

esid - self.M/2)

127

 self.SPRT_ind[1] = self.SPRT_ind[1] + (self.M / (self.std_mem)**2)*(-

resid - self.M/2)

 if self.SPRT_ind[0] >= self.B:

 self.SPRT_ind[0] = self.B

 self.num_healthy += 1

 elif self.SPRT_ind[0] <= self.A:

 self.SPRT_ind[0] = self.A

 if self.SPRT_ind[1] >= self.B:

 self.SPRT_ind[1] = self.B

 self.num_faulty += 1

 this_Fault = True

 elif self.SPRT_ind[1] <= self.A:

 self.SPRT_ind[1] = self.A

 return this_Fault

 def reset_index(self):

 self.SPRT_ind = [0,0]

128

AFFT Code

import numpy as np

import numpy.fft as fft

import math

class AFFT:

 '''This class compares the FFT of nacelle vibrations with an adaptive

 threshold based on rotorspeed. For each increment in rotorspeed, a

 unique adaptive threshold is selected and compared against the FFT

 output. The thresholds are saved in the file "AFFT_threshold.txt" and

 may be generated using the MATLAB program "GenerateTextFiles.mlapp"

 within the FDC_FileGenerationTools folder in Luke Costello's

 MS Thesis directory.

 For practical usage, one must first initiate an AFFT object using this

 class and relevant parameters, then load a text file using the

 command AFFT.load(filename). Finally, AFFT testing may be done using

 the command AFFT.examine(), which returns a list of frequencies

 (at multiples of the rotorspeed) that faults are detected.

 Care must be taken such that:

 1. The parameters in the __init__ function are identical to those

 used to create the thresholds

 2. The accelerations variable supplied to examine is identical to

 in FFT length as those used to train the model

 You can refer to a specific location in a threshold using

 AFFT.thr[i][j], where i is the threshold number, and j is the

 location in the threshold.'''

 def __init__(self,Fs=50,RPM_lo=32.5,RPM_hi=212.5,RPM_step=5,XP_monitor

 = [1,3],XP_bin=0.5):

 self.thr = []

 self.thr_short = []

 self.Fs=Fs

 self.RPMs = np.arange(RPM_lo,RPM_hi,RPM_step)

 self.threshs = []

 self.lastFreq = []

 self.lastSpect = []

 self.lastFreq_short = []

 self.lastSpect_short = []

 self.XP_monitor = XP_monitor

 self.XP_bin = XP_bin

129

 self.fault_flag = False

 self.has_tested = False

 self.last_five = [0,0,0,0,0]

 def load(self,fileName):

 '''Loads the fileName file into object memory.'''

 self.threshs = []

 self.RPMs = []

 with open(fileName) as file:

 for line in file:

 line = line[0:-1]

 if line[0]=='#':

 line_list = line.split(',')

 nums = [float(x) for x in line_list[1:]]

 self.RPMs.append(float(line_list[0][1:]))

 self.threshs.append(nums)

 def selectThreshold(self,av_RPM):

 '''Selects the adaptive threshold closest to the average

 rotorspeed input as av_RPM'''

 compared = np.abs([x-av_RPM for x in self.RPMs])

 ind = compared.argmin()

 self.thr = self.threshs[ind]

 def compareToThreshold(self,spect):

 '''Compares the FFT output to the adaptive threshold selected.'''

 if self.thr_short == []:

 raise ValueError('Threshold not yet defined!')

 log = [(spect[i] - self.thr_short[i])>=0 for i in range(0,len(spe

ct))]

 fault = [i for i, n in enumerate(log) if n==True]

 return fault

 def FFT(self,sig):

 N = len(sig)

130

 sig_mean = sum(sig)/len(sig)

 sig_corr = [x - sig_mean for x in sig]

 spect = np.abs((fft.fft(sig_corr,N)))/N

 freq = fft.fftfreq(len(sig_corr),d=1/self.Fs)

 return [freq,spect]

 def extractXP(self,RPM_av,freq,spect):

 '''Extracts the frequency components in terms of multiples of the

rotorspeed as specified by the XP_monitor variable.'''

 RPM_freq = RPM_av/60

 self.thr_short = []

 freq_short = []

 spect_short = []

 for XP in self.XP_monitor:

 freq_lo = RPM_freq*XP - self.XP_bin

 freq_hi = RPM_freq*XP + self.XP_bin

 compare_lo = np.abs([x-freq_lo for x in freq])

 ind_lo = np.argmin(compare_lo)

 compare_hi = np.abs([x-freq_hi for x in freq])

 ind_hi = np.argmin(compare_hi)

 [self.thr_short.append(x) for x in self.thr[ind_lo:ind_hi]]

 [freq_short.append(x) for x in freq[ind_lo:ind_hi]]

 [spect_short.append(x) for x in spect[ind_lo:ind_hi]]

 return [freq_short,spect_short]

 def examine(self,accels,RPMs):

 '''Use this command for using the AFFT algorithm in practical use.

 Selects the adaptive threshold for use, computes the FFT of the

 input data, extracts the desired frequency components, then

 compares the FFT output to the selected threshold.

 Returns any faults as multiples of the rotorspeed.'''

 #Compute average rotorspeed

 RPM_av = sum(RPMs)/len(RPMs)

 #Select threshold

 self.selectThreshold(RPM_av)

 #Compute FFT

 [freq,spect] = self.FFT(accels)

 self.lastFreq = freq

 self.lastSpect = spect

 #Extract desired frequencies, and compare to threshold

131

 [freq_short,spect_short] = self.extractXP(RPM_av,freq,spect)

 self.lastFreq_short = freq_short

 self.lastSpect_short = spect_short

 fault = self.compareToThreshold(spect_short)

 #Convert the faulty frequencies to multiples of rotorspeed

 fault_freqs = [freq_short[i]*60/RPM_av for i in fault]

 return [fault_freqs]

132

Example Usage

import NSET as N

import SPRT as S

import AFFT as A

import math

from matplotlib import pyplot as plt

import numpy as np

'''The decision-making in this file is nearly identical to that of

the lifeline_FDC.py file and exists to help the user test the

implementation of the Lifeline CMS algorithms: NSET+SPRT & AFFT.'''

log_freq = 50

nrml = [300,300*5,4*1024,4*1024,18*1024,5E5,5E5,5E5]

NSET_obj = N.NSET('NSET_memory.txt','NSET_inverse.txt',6,nrml)

SPRT_obj = S.SPRT()

AFFT_obj = A.AFFT()

AFFT_obj.load('AFFT_threshold.txt')

def run_crossvalidation(name,params):

 alf = params[0]

 bet = params[1]

 m = params[2]

 V = params[3]

 K_thr = params[4]

 SPRT_obj.alf = alf

 SPRT_obj.bet = bet

 SPRT_obj.M = m*SPRT_obj.std_mem

 SPRT_obj.V = V

 SPRT_obj.reset_index()

 tests = 0

 alarms = 0

 index_val = []

 xaccels = []

 yaccels = []

133

 zaccels = []

 rot_speeds = []

 volts = []

 amps = []

 SPRT_indices = []

 with open(name) as data:

 for line in data:

 if line[0] == '~':

 values = line.split(',')

 if len(values) == 7:

 try:

 index_val.append(values[0])

 xaccels.append((float)(values[1]))

 yaccels.append((float)(values[2]))

 zaccels.append((float)(values[3]))

 rot_speeds.append((float)(values[4]))

 volts.append((float)(values[5]))

 amps.append((float)(values[6]))

 except:

 print('FIRE!!!!')

 if (len(yaccels)%500 == 0):

 xaccels_short = xaccels[-500:]

 yaccels_short = yaccels[-500:]

 zaccels_short = zaccels[-500:]

 rot_speeds_short = rot_speeds[-500:]

 volts_short = volts[-500:]

 amps_short = amps[-500:]

 #Calculate the RMS value

 x_RMS = math.sqrt(sum([x**2 for x in xaccels_shor

t])/500)

 y_RMS = math.sqrt(sum([y**2 for y in yaccels_shor

t])/500)

 z_RMS = math.sqrt(sum([z**2 for z in zaccels_shor

t])/500)

 #Calculate Line Length values

134

 x_LL = sum([math.sqrt((x_i - x_j)**2 + (1/log_fr

eq)**2) for x_i,x_j in zip(xaccels_short[1:],xaccels_short[0:-1])])

 y_LL = sum([math.sqrt((y_i - y_j)**2 + (1/log_fr

eq)**2) for y_i,y_j in zip(yaccels_short[1:],yaccels_short[0:-1])])

 z_LL = sum([math.sqrt((z_i - z_j)**2 + (1/log_fr

eq)**2) for z_i,z_j in zip(zaccels_short[1:],zaccels_short[0:-1])])

 pows = [x*y for x,y in zip(volts_short,amps_short)

]

 rot_av = sum(rot_speeds_short)/len(rot_speeds_shor

t)

 pow_av = sum(pows)/len(pows)

 X_obs_lrg = [rot_av,pow_av,x_RMS,y_RMS,z_RMS,x_LL,

y_LL,z_LL]

 if rot_av >= 120:

 resid = NSET_obj.calc_resid(X_obs_lrg)

 fault = SPRT_obj.calc_index(resid)

 if fault:

 NSET_obj.fault_flag = True

 NSET_obj.last_five.append(1)

 else:

 NSET_obj.fault_flag = False

 NSET_obj.last_five.append(0)

 NSET_obj.last_five.pop(0)

 SPRT_indices.append(SPRT_obj.SPRT_ind[1])

 NSET_obj.has_tested = True

 if (len(yaccels)%1024 == 0):

 yaccels_long = yaccels[-1024:]

 rot_speeds_long = rot_speeds[-1024:]

 rot_av = sum(rot_speeds_long)/len(rot_speeds_long)

 if rot_av >= 120:

135

 [fault_freqs] = AFFT_obj.examine(yaccels_long,

rot_speeds_long)

 if fault_freqs:

 AFFT_obj.fault_flag = True

 AFFT_obj.last_five.append(1)

 else:

 AFFT_obj.fault_flag = False

 AFFT_obj.last_five.append(0)

 AFFT_obj.last_five.pop(0)

 AFFT_obj.has_tested = True

 #plt.plot(AFFT_obj.lastFreq,AFFT_obj.lastSpect

,AFFT_obj.lastFreq,AFFT_obj.thr)

 #plt.show()

 if NSET_obj.has_tested and AFFT_obj.has_tested:

 if NSET_obj.fault_flag and AFFT_obj.fault_flag:

 alarms += 1

 elif sum (NSET_obj.last_five) > 4:

 alarms += 1

 elif sum (AFFT_obj.last_five) > 4:

 alarms += 1

 NSET_obj.has_tested = False

 AFFT_obj.has_tested = False

 tests += 1

 #plt.plot(SPRT_indices)

 #plt.show()

 return [tests,alarms]

alfs = np.arange(0.0025,0.0225,0.0025)

bets = np.arange(0.0025,0.0225,0.0025)

ms = np.arange(0.25,2.25,0.25)

Vs = np.arange(2,3,1)

136

K_thrs = [1]

alfs = [0.005]

bets = [0.01]

ms = [2]

Vs = [1]

K_thrs = [1]

tuning_array = []#['TP_rate,FP_rate,Accuracy,F_score']

FP_rates = []

TP_rates = []

healthys = ['H1.txt','H2.txt','H3.txt','H4.txt','H5.txt','H6.txt','H7.txt'

,'H8.txt','H9.txt','H10.txt']

for alf in alfs:

 for bet in bets:

 for m in ms:

 for V in Vs:

 for K_thr in K_thrs:

 single_array = []

 for healthy in healthys:

 params = [alf,bet,m,V,K_thr]

 faulty = 'Unbalanced.txt'

 [tests_healthy,alarms_healthy] = run_crossvalidati

on(healthy,params)

 [tests_faulty,alarms_faulty] = run_crossvalidation

(faulty,params)

 TN = tests_healthy - alarms_healthy

 TP = alarms_faulty

 FN = tests_faulty - alarms_faulty

 FP = alarms_healthy

137

 TP_rate = TP/(TP+FN)

 FP_rate = FP/(FP+TN)

 accuracy = (TP+TN)/(TP+TN+FP+FN)

 #print(str(TP_rate)+' '+str(FP_rate))

 #print(accuracy)

 Precision = TP/(TP+FP)

 F_score = 2*Precision*TP_rate/(Precision+TP_rate)

 single_array.append([TP_rate,FP_rate,accuracy,F_sc

ore,alf,bet,m,V])

 sums = [0,0,0,0,0,0,0,0]

 for row in single_array:

 ind = 0

 for num in row:

 sums[ind] += num

 ind += 1

 avg = [x/len(single_array) for x in sums]

 tuning_array.append(avg)

 print('TP Rate: ' + str(tuning_array[-

1][0]) + ' | FP Rate:' + str(tuning_array[-1][1]))

 FP_rates.append(tuning_array[-1][1])

 TP_rates.append(tuning_array[-1][0])

#plt.plot(FP_rates,TP_rates)

#plt.show()

with open('output.txt','w') as file:

 file.write('TP_rate,FP_rate,Accuracy,F_score,Alpha,Beta,m,V\n')

 for row in tuning_array:

 row_rounded = [round(x,3) for x in row]

 file.write(','.join(map(str,row_rounded)) + '\n')

