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*is paper develops a robust extended-target multisensor multitarget multi-Bernoulli (ET-MS-MeMBer) filter for enhancing the
unsatisfactory quality of measurement partitions arising in the classical ET-MS-MeMBer filter due to increased clutter intensities.
Specifically, the proposed method considers the influence of the clutter measurement set by introducing the ratio of the target
likelihood to the clutter likelihood.With the constraint of the clutter measurement set, it can obtain better multisensor measurement
partitioning results under the original two-step greedy partitioning mechanism. Subsequently, the single-target multisensor like-
lihood function for the clutter case is derived. Simulation results reveal a favorable comparison to the ET-MS-MeMBer filter in terms
of accuracy in estimating the target cardinality and target state under conditions with increased clutter intensities.

1. Introduction

Multiple-target tracking (MTT) [1] estimates the number
and states of moving targets based on the sensor observa-
tions. Traditional MTT algorithms adopt a point target
observation model [2], which assumes that one target
generates at most one measurement per time step. However,
in the high-resolution sensor system, one target may occupy
multiple-resolution cells and, thus, can produce multiple
measurements. Such targets are known as extended targets
[3]. *e measurements generated by the extended target
provide information not only about the target’s motion state
but also the target’s shape. *is shape information, e.g., the
size and structure of the extended target, can further fa-
cilitate the target classification and recognition task [4].

*e conventional multiple-target tracking algorithm
involving a data association step [5] has been widely used in
the fields of medical image processing [6], network defense
[7], and battlefield environment monitoring [8]. However,
for extended-target tracking, the association between
measurements and targets becomes more complicated and
suffers from a “combinatorial explosion” problem.

*erefore, the random finite set (RFS) [9, 10] has received
much attention in theMTTdomain for the merit of avoiding
explicit data association steps. *is theory leads to the de-
velopment of various MTT algorithms, including the
probability hypothesis density (PHD) [11], cardinalized
PHD (CPHD) [12], arithmetic average multi-Bernoulli (AA-
MB) [13], and multisensor multitarget multi-Bernoulli (MS-
MeMBer) [14] filters.

*e abovementioned filters based on the RFS have
further been applied to the field of extended-target tracking
[15–23]. Based on the PHD filter, an extended-target PHD
(ET-PHD) filter was proposed in [15], and a Gaussian
implementation of it was given in [16]. As the ET-PHD filter
can only estimate the centroid state of the extended target,
the PHD filters with shape estimation were proposed in
[17, 18]. In [17], a Gaussian inverse Wishart PHD (GIW-
PHD) filter was proposed, where the target kinematical state
is modeled as a Gaussian distribution and the target ex-
tension is assumed to follow an inverseWishart distribution.
As an improvement to the GIW-PHD filter, the GGIW-PHD
filter proposed in [18] can additionally obtain the estimation
of target measurement rates. Besides the PHD filter, other
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filters based on the RFS [19–23] have also been modified to
track the extended target. In [19], an extended-target CPHD
filter that can estimate the centroid state of extended targets
was proposed. Compared with the ET-PHD filter, this filter
achieves better filtering results at the cost of higher com-
putational complexity. Based on the labeled RFS, the
Gamma Gaussian inverse Wishart (GGIW) implementation
of the labeled multi-Bernoulli (LMB) filter was introduced in
[20]. In [21–23], the Poisson multi-Bernoulli Mixture
(PMBM) filter was generalized to the extended-target
tracking case.

For the multisensor case, the extended-target MS-
MeMBer (ET-MS-MeMBer) filter and its Gaussian inverse
Wishart (GIW) mixture implementation was proposed in
[24]. *e ET-MS-MeMBer filter assumes that the observation
of extended targets obeys the approximate Poisson-Body
(APB)model [25], and the update process of theMS-MeMBer
filter is modified accordingly. However, this method ignores
the constraint of the clutter measurement set in the multi-
sensor measurement partitioning process, which may de-
generate the quality of the multisensor measurement
partition and, consequently, the filtering performance of
the MS-MeMBer filter in high-clutter-density scenarios. To
solve this problem, a robust ET-MS-MeMBer filter is
proposed in this paper. By introducing the ratio of the
target likelihood to the clutter likelihood, the influence of
the clutter measurement set is considered. *erefore, better
measurement partitions can be obtained under the original
two-step partitioning mechanism [14]. *e single-target
multisensor likelihood function for the clutter case is also
derived. Simulation results show that compared to the ET-
MS-MeMBer filter, the proposed filter has higher accuracy
in estimating the target cardinality and target state under
high-clutter-density conditions.

*e rest of this paper is organized as follows. Section 2 gives
a review of the ET-MS-MeMBer filter. *e proposed filter is
derived in Section 3. *e simulation results are presented in
Section 4, and the conclusions are given in Section 5.

2. The ET-MS-MeMBer Filter

2.1. ,e Prediction Step. Let x and X � x1, . . . , xMk−1|k−1
 

denote a single-target state and a multitarget state, where
Mk−1|k−1 is the cardinality of targets at time k − 1. Assume
that, at time k − 1, the multitarget posterior density is a
multi-Bernoulli

πk−1|k−1(X) � r
(i)
k−1|k−1, p

(i)
k−1|k−1(x)  

Mk−1|k−1

i�1 , (1)

where each (r
(i)
k−1|k−1, p

(i)
k−1|k−1(x)) represents an independent

Bernoulli density with probability r
(i)
k−1|k−1 and distribution

p
(i)
k−1|k−1(x).
*en, the predicted multitarget density is also a multi-

Bernoulli

πk|k−1(X) � r
(i)
s,k|k−1, p

(i)
s,k|k−1(x)  

Mk−1|k−1

i�1

∪ r
(j)

b,k , p
(j)

b,k (x)  
Mb,k

j�1 ,
(2)

where (r
(j)

b,k , p
(j)

b,k(x)) and Mb,k are the Bernoulli density and
the cardinality of newborn targets at time k. *e survival
Bernoulli density (r

(i)
s,k|k−1, p

(i)
s,k|k−1(x)) follows

r
(i)
s,k|k−1 � r

(i)
k−1|k−1〈p

(i)
k−1|k−1, ρsv〉,

p
(i)
s,k|k−1(x) �

〈fk|k−1(x|·), ρsvp
(i)
k−1|k−1(x)〉

〈p(i)
k−1|k−1(x), ρsv〉

,

(3)

where ρsv is the probability that a target can survive to the
next time, 〈·, ·〉 is the inner product function, and fk|k−1(x|·)

is the state transition function.

2.2. ,e Distance Partition and Multisensor Measurement
Partition. *e update step of the ET-MS-MeMBer filter
requires the multisensor measurement partitions. Since each
extended target may generate multiple measurements at
each scan, our first task is to divide each sensor’s mea-
surements into groups that contain measurements from the
same target. Here, we utilize a distance partitionmethod [17]
which is based on the general belief that measurements from
the same extended target are spatially close to each other.

Let Zi � z1
i , . . . , zn

i  be the collection of all measure-
ments generated on sensor i at time k, where zl

i (1≤ l≤ n) is
the l-th element in Zi and n is the number of the mea-
surements. *e distance partition of Zi can be denoted as
Di � w0

i , w1
i , . . . , w

|Di|−1
i , where

w
l
i ∩w

m
i � ∅ 0≤ l≠m≤ Di


 − 1 ,

w
0
i ∪w

1
i ∪ · · · ∪w

Di| |−1
i � Zi.

(4)

| · | is the cardinality function. Each disjoint subset w
j
i

(j � 0 for the clutter measurement subset and 0< j≤ |Di| − 1
for the target measurement subset) in partition Di contains
several measurements in Zi and satisfies |w

j
i |≥ 0. Di is the

collection of all possible distance partitions Di.
Multisensor measurement partition aims to group all

sensors’ measurements from the same target into the same
subset. We consider a multisensor measurement set
Z1:S � Z1, . . . , ZS , where S is the number of sensors.
Suppose that, at time k, the predicted multitarget density
contains Mk|k−1 Bernoulli components. For a given set of
distance partitions D1, . . . ,DS, the multisensor measure-
ment partition can be defined as

P � W0
1:S, W1

1: S, . . . , W
Mk|k−1
1: S , where

W
l
1: S � w

l1
1 , . . . , w

lS
S 

· 1≤ l≤Mk|k−1, andw
l1
1 ∈ D1, . . . , w

lS
1 ∈ DS ,

W
l
1: S ∩W

j

1: S 0≤ l≠ j≤Mk|k−1 ,

W
0
1: S ∪W

1
1: S ∪ · · · ∪W

Mk|k−1
1: S � Z1: S.

(5)

Here, W0
1: S is the clutter measurement set generated by

all S sensors, and Wl
1: S (l> 0) is the target measurement set

corresponding to the l-th Bernoulli component.P is defined
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as the collection of all possible multisensor measurement
partitions P. Finally, we define the mapping function
TWl

1: S
� (i, li)|w

li
i ∈Wl

1: S , where (i, li) specifies the sensor

label i and the index li of w
li
i in Di.

2.3. ,e Update Step. Suppose that, at time k, the predict
multitarget density is a multi-Bernoulli consisting of Mk|k−1
independent Bernoulli component:

πk|k−1(X) � r
(j)

k|k−1, p
(j)

k|k−1(x)  
Mk|k−1

j�1 . (6)

*en, the posterior density can be approximated by a
multi-Bernoulli as follows:

πk|k(X) � ∪
P∈P
∪

Mk|k−1

j�1
r

(P,j)

k|k , p
(P,j)

k|k (x)  . (7)

*e updated probability r
(P,j)

k|k and the distribution
p

(P,j)

k|k (x) follow

r
(P,j)

k|k �

αP

r
(j)

k|k−1〈p
(j)
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1 − r
(j)

k|k−1 + r
(j)

k|k−1〈p
(j)

k|k−1, η〉
, W

j

1:S � ∅,

αP, W
j

1:S ≠∅,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p
(P,j)

k|k (x) �

p
(j)

k|k−1(x)η(x)

〈p(j)

k|k−1, η〉
, W

j

1:S � ∅,

p
(j)

k|k−1(x)f W
j

1:S|x 

 p
(j)

k|k−1(x)f W
j

1:S|x dx
, W

j

1:S ≠∅,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where η(x) is the probability that a target is not detected by
any sensor and f(W

j

1: S|x) is the single-target multisensor
likelihood function. αP is the weight of P inP, which can be
calculated as the score of P divided by the sum of all par-
titioning scores in P:

αP � KP


Mk|k−1
j�1 φj

W
j

1:S

[1]

M∈PKM
Mk|k−1
j�1 φj

W
j

1:S

[1],
(9)

where

φj

W
j

1: S

[u] �

1 − r
(j)

k|k−1 + r
(j)

k|k−1〈p
(j)

k|k−1, uη〉, W
j

1: S � ∅,

r
(j)

k|k−1  u(x)p
(j)

k|k−1(x)f W
j

1: S|x dx, W
j

1: S ≠∅,
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⎪⎪⎩

KP � 
S

i�1
C

w0
i| |( )

i (0)⎡⎣ ⎤⎦ × 

Mk|k−1

j�1


i,li( )∈T
W

j

1: S

w
li
i



! 
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(10)

KP and φj

W
j

1: S

[1] quantify how likely the set W0
1: S is a

clutter set, and the set W
j

1: S (j> 0) is associated with the j-th
Bernoulli component, respectively. C

(n)
i (x) is the n-th de-

rivative of the clutter probability generating function
Ci(x) � eλix− λi , and λi is the clutter intensity of sensor i.

3. The Robust ET-MS-MeMBer Filter

3.1.,e Constraint of the Clutter Measurement Set. In [14], a
two-step greedy partitioning mechanism is proposed, which
can obtain several high-scoringmeasurement partitions. In this
mechanism, the target measurement set corresponding to each
Bernoulli component is first obtained separately, and then, the
target measurement sets corresponding to different Bernoulli
components are combined to obtain all possible measurement

partitions. However, it can be seen from (9) that the two-step
greedy partitioning mechanism ignores the influence of the
clutter measurement set W0

1: S. Considering the constraint of
the clutter measurement set, αP can be rewritten as

αP �

KP/
S
i�1λ

Zi| |
i e

− λi  
Mk|k−1
j�1 φj

W
j

1: S

[1]

M∈P KM/
S
i�1 λ

Zi| |
i e

−λi  
Mk|k−1
j�1 φj

W
j

1: S

[1]
,

�


Mk|k−1
j�1 φj

W
j

1: S

[1] ·  i,li( )∈T
W

j

1: S

w
li
i



!/λ
w

li
i




i  

M∈P 
Mk|k−1
j�1 φj

W
j

1: S

[1] ·  i,li( )∈T
W

j

1: S

w
li
i



!/λ
w
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i




i  

.

(11)
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We introduce the function

φj

W
j

1: S

[1] � φj

W
j

1: S

[1] · 

i,li( )∈T
W

j

1: S

w
li
i



!

λ
w
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i




i

, �

1 − r
(j)

k|k−1 + r
(j)

k|k−1〈p
(j)

k|k−1, uη〉, W
j

1: S � ∅,

r
(j)

k|k−1  u(x)p
(j)

k|k−1(x)f W
j

1: S|x  

i,li( )∈T
W

j

1: S

w
li
i



!

λ
w

li
i




i

dx, W
j

1: S ≠∅,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

which denotes the ratio of the likelihood that W
j

1: S is
generated by a target to the likelihood that W

j

1: S is from the
clutter.

According to [24], the single-target multisensor likeli-
hood function follows

f W
j

1: S|x  � 

i,li( )∈T
W

j

1: S

pi,dc
w

li
i




i e
− ci

w
li
i



!


z∈wli
i

hi(z|x)

ci(z)
× 

(i,∗ ) ∉ T
W

j

1: S

1 − pi,d + pi,de
− ci , (13)

where ci is the mean of the extended measurements, pi,d is
the target detection probability by sensor i, hi(z|x) is the

measurement likelihood of sensor i, and ci(z) is the clutter
intensity.

Hence, (12) becomes

φj

W
j

1: S

[1] �

1 − r
(j)

k|k−1 + r
(j)

k|k−1〈p
(j)

k|k−1, uη〉, W
j

1: S � ∅,

r
(j)

k|k−1  u(x)p
(j)

k|k−1(x)f W
j

1: S|x dx, W
j

1: S ≠∅.

⎧⎪⎪⎨

⎪⎪⎩
(14)

In (14), f(W
j

1: S|x) denotes the single-target multisensor
likelihood function for the clutter case and follows

f W
j

1: S|x  � 

i,li( )∈T
W

j

1: S

pi,dc
w

li
i




i e
− ci 

z∈wli
i

hi(z|x)

λici(z)
× 

i,∗( ) ∉ T
W

j

1: S

1 − pi,d + pi,de
− ci .

(15)

Finally, (11) becomes

αP �


Mk|k−1
j�1 φj

W
j

1: S

[1]

M∈P 
Mk|k−1
j�1 φj

W
j

1: S

[1]
. (16)

It can be seen from (16) that the influence of the clutter
measurement set has been introduced into the two-step
greedy partitioning mechanism.

3.2. ,e Numerical Implementation. We define the target
state as x � [x, X], where x � [px, py, vx, vy, ax, ay]T

contains the target position, target velocity, and target ac-
celeration and X represents the target shape. Utilizing the
GIW mixture from [17, 24], we can derive a numerical
implementation of the proposed filter.

Suppose that the distributions of the Bernoulli com-
ponent at time k − 1 and the newborn target at time kk are
both GIW mixtures as follows:
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p
(i)
k−1|k−1(x) � 

J
(i)

k−1|k−1

n�1
w

(i)
n,k−1|k−1N x; m

(i)
n,k−1|k−1, P

(i)
n,k−1|k−1 ⊗X I X; v

(i)
n,k−1|k−1, V

(i)
n,k−1|k−1 ,

p
(j)

b,k(x) � 

J
(j)

b,k

n�1
w

(j)

b,n,kN x; m
(j)

b,n,k, P
(j)

b,n,k ⊗X I X; v
(j)

b,n,k, V
(j)

b,n,k .

(17)

J
(i)
k−1|k−1 and J

(j)

b,k are the number of the GIW component.
⊗ denotes the Kronecker product. w

(i)
n,k−1|k−1 and w

(j)

b,n,k are
the weight of the corresponding GIW component.
N(x; m, P) is a Gaussian function with mean m and

variance P. I(X; v, V) is an inverse Wishart distribution
with degrees of freedom v and inverse scale matrix V.

*en, the distribution of the predicted Bernoulli com-
ponent is also a GIW mixture, and the legacy Bernoulli
component at time k follows

r
(i)
s,k|k−1 � r

(i)
k|k−1ρsv, (18)

p
(i)
s,k|k−1(x) � 

J
(i)

k−1|k−1

n�1
w

(i)
n,k−1|k−1N x; m

(i)
n,k|k−1, P

(i)
n,k|k−1 ⊗X I X; v

(i)
n,k|k−1, V

(i)
n,k|k−1 . (19)

In (19), the Gaussian and the inverseWishart parameters
satisfy

m
(i)
n,k|k−1 � Fk|k−1 ⊗ Id m

(i)
n,k−1|k−1, (20)

P
(i)
n,k|k−1 � Fk|k−1P

(i)
n,k−1|k−1F

T
k|k−1 + Qk|k−1, (21)

v
(i)
n,k|k−1 � v

(i)
n,k−1|k−1e

− Ts/τ( ), (22)

V
(i)
n,k|k−1 � V

(i)
n,k−1|k−1

V
(i)
n,k|k−1 − d − 1

V
(i)
n,k−1|k−1 − d − 1

. (23)

Fk|k−1 �

1 Ts (1/2)Ts

0 0 Ts

0 0 e
(− Ts/θ)

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ is the state transition matrix.

Qk|k−1 is the process noise covariance matrix. τ is a temporal
decay constant. Ts is the sampling period. θ is the maneuver
correlation time. Id is the unit matrix of size d.

If the distribution of the predicted Bernoulli component
satisfies

p
(i)
k|k−1(x) � 

J
(i)

k|k−1

n�1
w

(i)
n,k|k−1N x; m

(i)
n,k|k−1, P

(i)
n,k|k−1 ⊗X I X; v

(i)
n,k|k−1, V

(i)
n,k|k−1 , (24)

then the updated Bernoulli density follows

r
(P,j)

k|k �

αP
r

(j)

k|k−1 
S
i�1 1 − pi,d + pi,de

− ci 

1 − r
(j)

k|k−1 + r
(j)

k|k−1 
S
i�1 1 − pi,d + pi,de

−ci 
, W

j

1: S � ∅,

αP, W
j

1: S ≠∅,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(25)

p
(P,j)

k|k (x) �



J
(j)

k|k−1

n�1
w

(j)

n,k|k−1N x; m
(j)

n,k|k−1, P
(j)

n,k|k−1 ⊗X I X; v
(j)

n,k|k−1, V
(j)

n,k|k−1 , W
j

1: S � ∅,



J
(j)

k|k−1

n�1
w

(P,j)

n,k|kN x; m
(P,j)

n,k|k , P
(P,j)

n,k|k ⊗X I X; v
(P,j)

n,k|k , V
(P,j)

n,k|k , W
j

1: S ≠∅.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)
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In (26), the weight of the GIW component follows

w
(P,j)

n,k|k �

w
(j)

n,k|k−1 i,li( )∈T
W

j

1: S

pi,dc
w

li
i




i e
− ci qz w

li
i 

z∈wli
i

1/λici(z)(  × (i,∗)∉T
W

j

1: S

1 − pi,d + pi,de
− ci 


J

(j)

k|k−1
m�1 w

(j)

n,k|k−1 i,li( )∈T
W

j

1: S

pi,dc
w

li
i




i e
−ci qz w

li
i 

z∈wli
i

1/λici(z)(  × (i,∗)∉T
W

j

1: S

1 − pi,d + pi,de
−ci 

, (27)

where qz(w
li
i ) is the likelihood ratio. *e update of the GIW component is a recursive pro-

cedure with

N x; m
(P,j)

n,k|k , P
(P,j)

n,k|k ⊗X  · I X; v
(P,j)

n,k|k , V
(P,j)

n,k|k 

∝N x; m
(j)

n,k|k−1, P
(j)

n,k|k−1 ⊗X  · I X; v
(j)

n,k|k−1, V
(j)
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where

N(x; m, P) · I(X; v, V) · 

z∈wli
i
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li
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In (28), the updated GIW parameters follow

m′ � m + K⊗ Id(  · Z
W

k − Hk ⊗ Id( m ,

v′ � v + w
li
i



,
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W
k ,

(30)
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T

.

(31)
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Here, Hk is the observation matrix at time k.

4. Experimental Results

In this section, we consider tracking 4 extended targetsmoving
within an observation area of size [−1000m, 1000m] ×

[−1000m, 1000m]. *e target shape is modeled as an ellipse
[17] with a major axis A � 20 and a minor axis a � 5. *e
duration time is 80 s. In the simulation, the constant accel-
eration (CA) model is considered. *e target trajectories are
shown in Figure 1.*e initial position and the survival time of
all the targets are shown in Table 1.

In (22), the sampling period Ts � 1 s and the temporal
decay constant τ � 5 s . *e maneuver correlation time
θ � 0.5. In the two-step measurement partitioning method
[14], the number of subsets in P is no more than Wmax � 6,
and the number of partitions inP is no more than Pmax � 6.
*e pruning threshold is set as Tmax � 10− 5, and the number
of the GIW components of each Bernoulli density is up to
Jmax � 100. *e merge threshold of Gaussian components is
UG � 50, and the merge threshold of inverse Wishart
components is UIW � 50. We use the optimal subpattern
assignment (OSPA) distance [26] as the metric to evaluate
the filtering performance. *e OSPA distance accounts for
estimation errors in both position and cardinality, and in
this section, we set the order p � 1 and the penalty factor
c � 100.

Now, we consider observations from 4 sensors. *e
sensors are located at [−900m, 0m], [0m, −900m], [900m,
0m], and [0m, 900m], respectively. For every sensor, the
detection probability pi,d � 0.7 and the clutter density pa-
rameter λi � 80.*emeasurement noise standard deviations
along x-y coordinates of each sensor are εx1

� εy1
� 5m,

εx2
� εy2

� 5m, εx3
� εy3

� 10m, and εx4
� εy4

� 10m. *e
mean of the extended measurements is set as ci � 20. Fig-
ure 2 shows the measurements collected from sensor 1. *e
estimated states by using the proposed method and the ET-
MS-MeMBer filter are shown in Figures 3 and 4, respec-
tively. We can observe that compared with the ET-MS-
MeMBer filter, the proposed method can obtain more
accurate state estimation results. We also compare the
filtering performance of the ET-MS-MeMBer filter with
that of the proposed method via 50 Monte Carlo runs.
Figure 5 shows the cardinality estimations of the two
methods.*e black line is the true cardinality of the targets,
and the magenta dotted line and the blue dotted line
represent estimated standard deviations of the ET-MS-
MeMBer filter and the proposed filter, respectively. We can
observe that compared with the ET-MS-MeMBer filter, the
proposed method obtains a smaller standard deviation of
the estimated cardinality. Figure 6 shows the OSPA errors
of the two methods. Note that, for both two methods, the
delay in response to target birth and target death leads to
the high peaks at the corresponding times. Nevertheless,
the OSPA error of the proposed method is still smaller than
that of the ET-MS-MeMBer filter.

We also consider the case of a varying number of sensors
with pi,d � 0.7 and λi � 80 for each sensor i. As before, 50
Monte Carlo runs are performed. Figure 7 shows the time-

averaged OSPA error of the two methods, and Figure 8
shows the running time. We observe that as the number of
the sensors increases, the time-average OSPA error of both
two methods decreases, however, at the cost of the growing
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Figure 1: Target trajectories.

Table 1: *e true movement of targets.

*e initial position of targets Survival time
[200m, −800m, 0m/s, 35m/s, 1m/s2, −1m/s2] (5 s∼40 s)
[−200m, −800m, 0m/s, 35m/s, −1m/s2, −1m/s2] (45 s∼80 s)
[−800m, 200m, 40m/s, 20m/s, 0m/s2, 0m/s2] (5 s∼40 s)
[800m, 800m, −25m/s, −25m/s, 0m/s2, 0m/s2] (45 s∼80 s)
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Figure 2: *e measurements of sensor 1. *e black dot represents
the target measurement, and the gray dot represents the clutter.
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computational time. Comparatively, the proposed method
performs better.

Figure 9 shows the time-averaged OSPA error of the two
methods in scenarios with different clutter intensities. *e
corresponding running time of the two methods is shown in
Figure 10. *e clutter density λi is varied in a range of {5, 20,
40, 60, 80, 100}. Besides, the number of sensors is 3, and the

detection probability is pi,d � 0.7. It is observed that the
OSPA error and running time of the twomethods are similar
in the low clutter density case, i.e., λi � 5. With the increase
of the clutter intensity, the filtering performance of the two
methods decreases. However, the proposed method requires
less time and has smaller OSPA errors when the clutter
intensity is high.
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Figure 3: *e estimated states of the proposed method.
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5. Conclusions

In this paper, we propose a robust MS-MeMBer filter for
extended-target tracking in clutters. We modify the multi-
sensor measurement partitioning process by considering the
constraint of the clutter measurement set to make it robust
under conditions with different clutter intensities. Ac-
cordingly, we propose the single-target multisensor likeli-
hood function for the clutter case. Simulation results show
that compared with the ET-MS-MeMBer filter, the proposed
method has smaller OSPA errors with less time consump-
tion under high-clutter-density conditions.
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