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Abstract: Developing our understanding of how correlations evolve during inflation is
crucial if we are to extract information about the early Universe from our late-time ob-
servables. To that end, we revisit the time evolution of scalar field correlators on de Sitter
spacetime in the Schrödinger picture. By direct manipulation of the Schrödinger equa-
tion, we write down simple “equations of motion” for the coefficients which determine the
wavefunction. Rather than specify a particular interaction Hamiltonian, we assume only
very basic properties (unitarity, de Sitter invariance and locality) to derive general conse-
quences for the wavefunction’s evolution. In particular, we identify a number of “constants
of motion” — properties of the initial state which are conserved by any unitary dynamics
— and show how this can be used to partially fix the cubic and quartic wavefunction coef-
ficients at weak coupling. We further constrain the time evolution by deriving constraints
from the de Sitter isometries and show that these reduce to the familiar conformal Ward
identities at late times. Finally, we show how the evolution of a state from the conformal
boundary into the bulk can be described via a number of “transfer functions” which are
analytic outside the horizon for any local interaction. These objects exhibit divergences
for particular values of the scalar mass, and we show how such divergences can be removed
by a renormalisation of the boundary wavefunction — this is equivalent to performing a
“Boundary Operator Expansion” which expresses the bulk operators in terms of regulated
boundary operators. Altogether, this improved understanding of the wavefunction in the
bulk of de Sitter complements recent advances from a purely boundary perspective, and
reveals new structure in cosmological correlators.

Keywords: Space-Time Symmetries, Classical Theories of Gravity, Effective Field
Theories

ArXiv ePrint: 2009.07874

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP02(2021)012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/429260831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sebastian.cespedes@uam.es
mailto:a.c.davis@damtp.cam.ac.uk
mailto:scott.melville@damtp.cam.ac.uk
https://arxiv.org/abs/2009.07874
https://doi.org/10.1007/JHEP02(2021)012


J
H
E
P
0
2
(
2
0
2
1
)
0
1
2

Contents

1 Introduction 1

2 Time evolution and unitarity 7
2.1 Free evolution 8
2.2 Interacting evolution 10
2.3 Constants of motion from unitarity 15

3 de Sitter isometries 16
3.1 Symmetry generators 17
3.2 Equal-time correlators 18
3.3 Wavefunction coefficients 22

4 Locality and analyticity on superhorizon scales 24
4.1 The conformal boundary 25
4.2 Analyticity from locality 27
4.3 Renormalisation of the boundary wavefunction 35

5 Some examples 39
5.1 Conformally coupled scalar 39
5.2 Massless scalar 46
5.3 EFT of inflation 48

6 Discussion 51

A Comparison with wavefunctions on Minkowski spacetime 53

B Some properties of Bessel functions 58

1 Introduction

Extracting imprints of the early inflationary Universe from our late-time observables is a
central goal of modern cosmology — providing a new window into fundamental physics in
the high-energy regime. In order to extract as much information as possible from these
observables, a great deal of recent research has been devoted to better understanding how
correlations are produced and evolve during inflation.

In this work, we study the time evolution of cosmological correlators using the bulk
Schrödinger equation. Rather than specify a particular Hamiltonian, our aim is to use
only very basic assumptions — such that the interactions are unitary, de Sitter invariant
and local — to derive general consequences for the wavefunction of the Universe. This
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model-independent approach to studying cosmological correlators is very much inspired by
the successes enjoyed by the S-matrix programme on flat Minkowski space [1, 2], in which
similar foundational properties (unitarity, Lorentz invariance and locality) can be used
to efficiently bootstrap scattering amplitudes without specifying a particular Lagrangian
(see e.g. [3–5] for recent reviews). The advantage of such an approach is that our results
capture a large class of different models, and are not hindered by our ignorance of the
detailed inflationary dynamics.

The early Universe is well-described by a period of quasi-de Sitter expansion [6–9] in
which the spontaneous breaking of time translations inevitably gives rise to a scalar excita-
tion [10, 11]. Therefore, at the simplest level, inflationary correlators may be approximated
by the correlators of a scalar field on a fixed de Sitter spacetime — this is the focus of
our work.

Evolution of the wavefunction. One of the earliest approaches for computing cor-
relation functions on de Sitter spacetime is the wavefunction formalism [12, 13]. In this
formalism, the state of the system at time η is described by a linear functional Ψη[φ], from
which all equal-time correlation functions of the field φ can be efficiently computed (see for
instance [14–16]). Although modern computations of the wavefunction often favour path
integral techniques [17–19] (e.g. borrowing the bulk-to-boundary and bulk-to-bulk propa-
gators of holography to compute the on-shell action), in this work we adopt the Schrödinger
picture, representing observables in terms of φ̂ and its canonical momentum Π̂, and Ψη[φ]
is determined by solving the Schrödinger equation. This picture naturally focuses on the
interaction Hamiltonian rather than the Lagrangian, and so properties such as unitarity
(hermiticity of the Hamiltonian) are made manifest.1

Unitarity and constants of motion. Loosely speaking, the importance of a hermitian
Hamiltonian lies in the conservation of probability. Since U = eiH t is the operator which
implements time evolution, if a state |Ψ〉 is initially properly normalised then at later times
〈Ψ|U †U |Ψ〉 remains normalised only if U is unitary. Another way to phrase this is that∫
Dφ |Ψη[φ]|2 is a constant of motion. Since Ψη[φ] is a functional, unitarity leads to the

conservation of an infinite number of functions (one at each order in φn) — we will call
these constants of motion {βn}, and here we construct the first two explicitly at weak
coupling (neglecting loops).

Previously, unitarity constraints have been derived in models of inflation by focusing
on subhorizon scales, at which the background expansion can be ignored and scattering am-
plitudes can be constructed analogously to flat space [20–23]. One notable exception is the
very recent work of [24], which also uses properties of the wavefunction under unitary evolu-
tion to derive a “Cosmological Optical Theorem”. Our constants of motion provide a major
step beyond subhorizon scattering, giving a constraint which applies to the wavefunction on

1The price to be paid for choosing this approach is that the symmetries (which were manifest in the
Lagrangian) are now obscured. On Minkowski spacetime we are able to implement Lorentz invariance in
such a powerful way (via off-shell mode functions) that nowadays the Lagrangian approach is used almost
exclusively. However, for cosmology, since we are not yet able to implement de Sitter boosts in such a
powerful way, there is merit in using a Hamiltonian description to benefit from the manifest unitarity.
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horizon scales (relevant for observation), and also a complementary way to understand the
important result of [24], since for the particular case of the Bunch-Davies initial condition
the conservation of our βn directly implies the Cosmological Optical Theorem.

de Sitter isometries. Although the wavefunction (and our above constants of motion)
may be defined on any curved spacetime, we will focus primarily on an exact de Sitter
background. The isometries of de Sitter spacetime are well-understood, and by now it
is well-known that at late times the (d + 1)-dimensional de Sitter symmetries approach
those of the d-dimensional conformal group, and this places constraints on both the equal-
time correlators and the wavefunction as η → 0 [25–29]. This lies at the heart of the
recently proposed “Cosmological Bootstrap” program [30–33], which aims to determine
the boundary wavefunction by solving the conformal Ward identities.

However, less well-understood are the consequences of these symmetries (particularly
de Sitter boosts) in the bulk, at finite η. One reason for this is that, while all de Sitter
observers agree on the field eigenstate at η = 0 (since this timeslice is invariant under
all de Sitter isometries), a field eigenstate at finite η is generally observer-dependent, and
therefore Ψη[φ] = 〈φ|Ψ〉 transforms in a more complicated way. By defining the Noether
charges associated with dilations and de Sitter boosts, we will provide compact expressions
for how the wavefunction changes under de Sitter transformations. This allows us to
identify the states which are de Sitter invariant on any bulk timeslice (not just at the
conformal boundary).

Locality and analyticity. Supposing one has successfully solved the conformal Ward
identities and identified the boundary state at η = 0. How is this related to the bulk
dynamics? Well, if we evolve the boundary state into the bulk, going a small η from the
conformal boundary, it should be possible to express this new state as a small perturbation
from the boundary state. With this logic, we identify a set of “transfer functions”, whose
purpose is to map a boundary state (correlator) into a bulk state (correlator) at finite
η. Providing the bulk interactions are local, these functions have the schematic form
1+(−kη)2+(−kη)4+. . . when η is small and are smooth, analytic functions of the momenta
of the fields in the correlator. When |kη| approaches one (i.e. when a mode crosses the
horizon), this series must be resummed and it is this resummation which produces non-
analyticities in the transfer functions/bulk wavefunction (in spite of the Hamiltonian being
an analytic function of k).

One particular non-analyticity which the transfer functions always develop as a result
of this resummation is a 1/kT pole in the total energy, kT =

∑
j |kj |, together with various

so-called “folded” non-analyticities. In recent years there has been growing interest in
the analytic structure of cosmological correlators, and in particular in the pole at kT =
0 [30, 31, 34, 35], whose residue is related to the corresponding scattering amplitude on
Minkowski space. We show that, when propagating a boundary state into the bulk, this
pole only emerges on subhorizon scales |kη| � 1, and further show that the complementary
limit |kη| � 1 is free from non-analyticities providing both the interactions and the initial
state are analytic (local) functions of the momenta.
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Summary of main results

We will work throughout with the following ansatz for the wavefunction,

Ψη[φ] = exp
(
i gn−2 Γη[gφ]

)
where Γη[φ] =

∞∑
n=2

∫
k1...kn

ck1...kn(η)φk1 . . . φkn , (1.1)

which reduces the functional Ψη[φ] to a series of functions ck1...kn(η) (or cn for short), called
wavefunction coefficients. We focus on states that are approximately Gaussian, using g as
a weak coupling which controls our perturbative expansions (i.e. we will focus on only tree
level contributions to the cn). Our main results are:

(i) Firstly, by direct manipulation of the Schrödinger equation, we derive simple equa-
tions of motion for the time evolution of the wavefunction coefficients, ∂ηcn. Explicit
expressions for ∂ηc3 and ∂ηc4 are given in (2.27) and (2.35). Solving this system of
equations reproduces known results from the analogous path integral computation,
only now at each order in φn a constant of integration must be specified — this en-
codes the initial condition for Ψη[φ], which can now be freely varied. Explicitly, the
master equation from which any non-Gaussian ∂ηcn can be read off is,

−∂η

(
ΓIη + i

2

∫
k

fk(η)
f∗k(η)

δΓIη
δφIk

δΓIη
δφI−k

)
= HI − i

2

∫
k

fk(η)
f∗k(η)∂η

(
δΓIη
δφIk

δΓIη
δφI−k

)
, (1.2)

where H is the interaction Hamiltonian and the superscript I denotes that all fields
should be normalised using the mode function, φk = φIkf

∗
k(η).

(ii) We use unitarity of the interaction Hamiltonian to identify new constants of motion
at every order in φn. For example, defining the following combinations,

βk1k2k3

f∗k1
f∗k2

f∗k3

= ck1k2k3−c
∗
k̄1k̄2k̄3

(1.3)

βk1k2k3k4

f∗k1
f∗k2

f∗k3
f∗k4

= ck1k2k3k4−c
∗
k̄1k̄2k̄3k̄4

+i
3∑

perm.
|fks |2

(
ck1k2−ks−c∗k̄1k̄2−ks

)(
ck3k4ks−c∗k̄3k̄4ks

)

where the argument k̄ is defined such that fk̄(η) = f∗k(η), the equations of motion for
c3 and c4 become simply ∂ηβ3 ∝ H3−H†3 and ∂ηβ4 ∝ H4−H†4 (where H3 and H4 are
the cubic and quartic terms in the interaction Hamiltonian). β3 and β4 are therefore
constants of motion, preserved by any unitary dynamics (hermitian Hamiltonian).
When restricting to the Bunch-Davies initial condition,2 in which all βn = 0, this
reduces to the Cosmological Optical Theorem which has recently appeared in [24].

(iii) Invariance under the de Sitter isometries can be imposed directly on the correlation
functions by regarding 〈φk1 . . . φkn〉(η) as the equal-time limit of 〈φk1(η1) . . . φkn(ηn)〉

2In the Bunch-Davies vacuum state, k̄ is given simply by |k̄| = −|k|.
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in the Heisenberg picture. We show that this results in,(
(n− 1)d− η∂η +

∑
J

kJ · ∂kJ

)
〈φk1 . . . φkn〉′ = 0 (1.4)

∑
J

(
2 (d+ kJ · ∂kJ ) ∂kJ − kJ∂2

kJ

)
〈φk1 . . . φkn〉′ =

2η
Ωd−1

∑
J

∂kJ 〈φk1 . . .ΠkJ . . . φkn〉′ ,

where Π̂ is the momentum conjugate to φ̂, and the prime indicates that the over-
all momentum-conserving δ-function has been removed. Analogous constraints also
apply to correlators involving arbitrary insertions of both φ̂ and Π̂.

(iv) The de Sitter isometries can also be implemented directly on the wavefunction via the
conserved Noether charges D and K (associated to dilations and boosts respectively).
We show that this results in,

δDΓη = −η∂ηΓη +
∫

p
φ−p p · ∂p

δΓη
δφp

, (1.5)

δKΓη =
∫

p

[
η

Ωd−1
δΓη
δφ−p

∂

∂p
δΓη
δφp

+ φ−p

(
2p · ∂p

∂

∂p − p∂2
p

)
δΓη
δφp

]
+ 2η∂qHint

q |q=0 .

where Hq is the Fourier transform of the Hamiltonian density. Like (1.2), these
equations impose relations on every wavefunction coefficient, cn. Although the boost
constraint in the bulk depends on the details of the interaction Hamiltonian Hint, this
becomes a model-independent constraint at late times (η → 0), where the interactions
switch off, and one recovers the usual conformal Ward identities.3

(v) Once a boundary value for the wavefunction is provided at η = 0, say Ψη=0[φ] with
ck1...kn(η = 0) = αk1...kn , we can propagate this into the bulk using a set of transfer
functions. Schematically, these act as the coefficients in the following expansion,

cn(η) = αn +
∞∑
j=2

δcn(η)
δαj

αj + 1
2!

∞∑
i,j=2

δcn(η)
δαiδαj

αiαj + . . . . (1.6)

Locality of the bulk interactions corresponds to analyticity of these transfer functions
in every momenta kj until the corresponding mode enters the horizon (|kjη| ∼ 1), at
which point non-analyticities may develop (e.g. the 1/kT pole), see figure 1.

(vi) For particular values of the scalar mass, the interactions do not turn off sufficiently
quickly at late times and the wavefunction coefficients diverge. We show how such
boundary divergences can be renormalised by redefining the boundary condition at
η = 0 (i.e. αn → αren

n ), and also provide an equivalent prescription in terms of a
Boundary Operator Expansion. This is a mapping between the bulk operators φ̂ and

3Except for special values of the scalar mass, at which the interactions do not turn off sufficiently quickly
as η → 0 and the conformal Ward identities must be corrected by anomalous terms.
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𝑘
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Transfer 
functions

𝛼𝐤!…𝐤"

𝛼𝐤!…𝐤"
*+

specified by

𝛿𝑐𝐤!…𝐤" 𝜂
𝛿𝛼𝐤!…𝐤#

Conformal 
Boundary

Bulk

Far Past

Figure 1. A cartoon of the expanding de Sitter spacetime. We refer to late times, η → 0, as
the conformal boundary, and denote the wavefunction coefficients there by αn. This boundary
condition can be translated into a bulk wavefunction, with coefficients cn(η), by means of various
“transfer functions” Iν1...νn

k1...kn
(η) which we define in section 4 — these objects are analytic (for any

local Hamiltonian) until horizon crossing at |kη| ∼ 1 where they develop non-analyticities (such as
the 1/kT pole). In the far past, η → −∞, we denote the wavefunction coefficients as αin

n . Imposing
the Bunch-Davies vacuum state in the far past corresponds simply to αin

n = 0.

Π̂ (with dilation weight 0 and d respectively) to the boundary operators ϕ̂ and π̂

(with dilation weight ∆ and d−∆ respectively),

lim
η→0

(
φ̂

(−η)∆

)
= ϕ̂+

∑
j

ZφOj Ôj [ϕ̂, π̂] , (1.7)

lim
η→0

(
(−η)∆Π̂

)
= π̂ +

∑
j

ZΠOj Ôj [ϕ̂, π̂] ,

where Ôj is a basis of composite boundary operators, and ∆ is determined by the
scalar field mass (m2 = ∆(d −∆)). Typically, dilation invariance sets every mixing
coefficient ZφOj and ZΠOj to zero, but divergences can occur whenever there exists
an operator with ∆Oj = ∆ or ∆Oj = d−∆ and the corresponding mixing coefficient
is non-zero. For instance, Ô = ϕ̂n mixes into Π̂ when n∆ = d−∆ and into Φ̂ when
n∆ = ∆ (these correspond to ultra-local and semi-local divergences respectively).

Synopsis and conventions

In section 2, we briefly review time evolution in the Schrödinger picture, derive simple
equations of motion for the wavefunction coefficients, and identify new constants of motion
which are preserved by any unitary dynamics. In section 3, we derive constraints on both
the equal-time correlators and the wavefunction coefficients from the isometries of de Sitter
spacetime. In section 4, we show that the bulk wavefunction may be written in terms of
a boundary condition at η = 0 and a number of transfer functions — locality of the bulk
interactions is then manifest as analyticity of these functions outside the horizon — and
show how to renormalise the IR divergences which can appear in the η → 0 limit. In
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section 5, we discuss in detail three particular examples, namely a conformally coupled
scalar, a massless scalar, and the EFT of inflation, before finally concluding in section 6.

We work mostly in d + 1 spacetime dimensions with metric signature (−,+, . . . ,+).
Bold variables are d-dimensional spatial vectors, and x · y = xiδijy

j . We will avoid using
explicit indices on vectors, so that xj can always be read as the position of the jth field
(and should not be confused with the jth component of x). We also define ks = k1 + k2,
kt = k1 + k3 and ku = k1 + k4 when describing exchange contributions to quartic correla-
tors/wavefunction coefficients. The Fourier transform is defined as fk(η) =

∫
ddx eik·xfx(η)

and commutes with functions of η. We denote the conformal weight by ∆ = d
2 − ν, where

ν =
√

d2

4 −
m2

H2 is real for light fields, and will write the shadow weight explicitly as d−∆
(note that these are often referred to as ∆− and ∆+).

2 Time evolution and unitarity

In this section, we will derive simple equations of motion for the coefficients appearing in
the wavefunction, primarily for a scalar field on a conformally flat spacetime background.
We will work in the Schrödinger representation, in which states of the Hilbert space, |Ψ〉,
are replaced by linear functionals of fields, Ψ[φ], which notionally act as 〈φ|Ψ〉 and provide
the overlap between the state and a classical (smooth) field configuration (see e.g. [36–38]
for reviews). Observables built from the field operator φ̂k and its canonical momentum Π̂k
(which satisfy the commutation relation [φ̂k, Π̂k′ ] = iδ3(k + k′)) are represented as φk and
−iδ/δφ−k acting on Ψη[φ].

Throughout this work we will focus on isotropic states of the form,4

Ψη[φ] = eiΓη [φ] , (2.1)

where the functional Γη[φ] is approximately Gaussian, and can be expanded as,

Γη[φ] = 1
2

∫
k1k2

ck1k2(η)φk1φk2 +
∑
n=3

1
n!

∫
k1...kn

ck1...kn(η)φk1 . . . φkn , (2.2)

where
∫

k1...kn =
∫ ∏n

i=1 d
3ki δ(

∑n
i=1 ki) is an integral over n conserved momenta, and the

non-Gaussian coefficients ck1...kn(η) are assumed small (i.e. we assume throughout that
each cn ∼ gn−2 is suppressed by some weak coupling g). For brevity, we will often refer
to ck1...kn(η) as simply cn when its arguments are unimportant or otherwise clear from
the context. This characterisation of the state is convenient because it allows any equal-
time correlation function of φk and Πk to be read off straightforwardly, as we will show in
section 3.2. All of the dynamical information is effectively encoded in the ck1...kn(η).

The time evolution of the coefficients cn(η) is governed by the Schrödinger equation,

i∂ηΨη[φ] = H
[
φ,−i δ

δφ

]
Ψη[φ] , (2.3)

4While this ansatz is general enough to capture any instantaneous vacuum state, it cannot describe
n-particle states since these depend explicitly on the momenta of the particles (which spontaneously break
rotational invariance).
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where H[φ,Π] is the Hamiltonian for the scalar field φ. We will first describe how Ψη[φ]
evolves in a free theory, then we will include the effects of small interactions in H in sec-
tion 2.2, arriving at a set of simple equations of motion which determine the time evolution
of the cn(η). Finally, in section 2.3, we use these equations to identify new constants of
motion, which we call βn, that are conserved in any scalar theory with unitary interactions.

2.1 Free evolution

We begin by discussing a free scalar field on a conformally flat spacetime, ds2 = Ω2(η)(−dη2

+dx2), with Hamiltonian given by,

H[φ,Π] =
∫
ddx

(
1

2Ωd−1(η)Π2
x + Ωd−1(η)

2 E2
x(η)φ2

x

)
, (2.4)

where E2
k(η) = k2 + m2Ω2(η) in momentum space. It will also prove convenient to define

the Gaussian width,

ck−k(η) = iΩd−1(η)ωk(η) , (2.5)

so that ωk(η) has the same units as Ek(η).
The Schrödinger equation (2.3) for the state Ψη[φ] given in (2.1) becomes the Hamilton-

Jacobi equation5 for Γη[φ],

− ∂ηΓη[φ] = 1
2

∫
k1k2

{
1

Ωd−1
δΓη[φ]
δφk1

δΓη[φ]
δφk2

+ Ωd−1E2
k1φk1φk2 −

i

Ωd−1
δ2Γη[φ]
δφk1δφk2

}
. (2.6)

Expanding Γ as in (2.2), this gives a first order differential equation for every ∂ηck1...kn(η).
In the absence of interactions, setting cn = 0 for all n > 2 solves equation (2.6) — i.e.
exactly Gaussian states remain Gaussian under this free evolution.

Gaussian states. Consider an exactly Gaussian state, (2.2) with c2 6= 0 and cn>2 = 0.
Such a state is annihilated by the operator,

Âk(η) = f∗k(η)
(
−ick−k(η)φ̂−k + iΠ̂−k

)
, (2.7)

where f∗k(η) is an overall normalisation, chosen so that 2f∗k(η)f−k(η) = 1/Im ck−k to ensure
a commutation relation [Âk(η), Â†k′(η)] = δ3(k − k′) (note that a Hermitian operator in
momentum space obeys φ†k = φ−k). Equation (2.7) can also be inverted to express the
fields in terms of Â and Â†,

φ̂k = f−k(η)Â−k(η) + f∗k(η)Â†k(η) , (2.8)

iΠ̂k − iRe ck−k(η) φ̂k
Im ck−k(η) = f−k(η)Â−k(η)− f∗k(η)Â†k(η) ,

which will prove useful when we compute equal-time correlators in section 3.2.
5Note that the second functional derivative, δ2/δφkδφk is formally divergent and requires renormalisation

— this is the analogue of loop diagrams in the path integral approach. We will return to this point below
when we discuss evolution in an interacting theory.
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Any Gaussian state can be described in terms of these Â(η) and Â†(η) operators, whose
time evolution is governed by ck−k(η) (or equivalently by the ωk(η) given in (2.5)). In a
free theory, the Schrödinger equation (2.6) gives,

− ω2
k(η) + k2 +m2Ω2 =

−i∂η
(
Ωd−1ωk

)
Ωd−1 . (2.9)

For a Hermitian Hamiltonian (in this case a real m2), the imaginary part of this equation
uniquely fixes Imωk in terms of Reωk,

−Imωk =
∂η
(
Ωd−1Reωk

)
2Ωd−1Reωk

= ∂η|fk|
|fk|

. (2.10)

This is an example of a unitarity condition: unitary dynamics (hermiticity of the Hamilto-
nian) requires relations between real and imaginary parts of the wavefunction coefficients.
In this case, the damping of the mode functions (Imωk) is controlled by their frequency
(Reωk). We will return to unitarity conditions in section 2.3.

From the real part of the Schrödinger equation (2.9), we see that fk(η) solves the
classical equations of motion,

−
∂η
(
Ωd−1∂ηfk

)
Ωd−1 = E2

k fk , (2.11)

providing it is normalised so that,

2Im [fk(η)∂ηf∗k(η)] = Ω1−d . (2.12)

Consequently, the Gaussian width can be written as,

ck−k(η) = i

2|fk(η)|2 + Ωd−1∂η|fk(η)|
|fk(η)| ,

⇒ ∂ηf
∗
k(η) = iωk(η)f∗k(η) , (2.13)

and so (2.8) can be written as,

Π̂k = Ωd−1
(
∂ηfk(η)Âk(η) + ∂ηf

∗
k(η)Â†(η)

)
, (2.14)

which coincides with the classical equation of motion, Π(η) = Ωd−1∂ηφk(η), in the Heisen-
berg picture.

We should stress at this stage that Â and Â† do not necessarily diagonalise the Hamil-
tonian, and so a general Gaussian state is not necessarily a ground state (vacuum) of any
H(η). Rather, at each time, it is only a particular family of Gaussian states that minimize
the energy — those that satisfy the vacuum condition ω2

k(η0) = k2 +m2Ω2(η0) at time η0
(equivalent to ∂η c2 = 0 instantaneously). At this time, Âk(η0) momentarily diagonalises
the Hamiltonian, Ĥ(η0) =

∫
ddk 1

2

√
Ωd−1(η0)ωk(η0) Â†k(η0)Âk(η0), and the instantaneous

ground state is therefore given by a Gaussian state in which ck−k(η) has a boundary value
ck−k(η0) = iΩd−1(η0)

√
k2 +m2Ω2(η0) at time η0. Note that even under free time evolu-

tion, the width ck−k(η) at later η 6= η0 will in general not obey ω2
k(η) = k2 + m2Ω2(η)

and is therefore no longer a vacuum state. Since under free evolution the state remains
Gaussian, there is always a linear operator (2.7) which annihilates the state, but in general
this operator does not diagonalise the instantaneous Hamiltonian.
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2.2 Interacting evolution

Now consider a Hamiltonian with small interactions,

H [φ,Π] = Hfree[φ,Π] +Hint[φ,Π] . (2.15)

The interactions act as a source for the non-Gaussianities, and setting cn(η) = 0 is no
longer a possible solution — i.e. an initially Gaussian state will evolve into a non-Gaussian
one. For example, the quartic coefficients evolves as,

−∂ηck1k2k3k4 = δ4Hint
δφk1 . . . δφk4

(2.16)

+ 1
Ωd−1

{ 4∑
j=1

ckj ,−kjck1k2k3k4 +
3∑

perm.
ck1k2−ksck3k4ks − i

∫
p
ck1...k4p,−p

}
,

where ks = k1+k2, kt = k1+k3 and ku = k1+k4 are the three permutations which appear
in the c3c3 sum. In addition to the time-evolution from Hint, the existing non-Gaussian
features of the wavefunction also contribute to the time-evolution. The coefficients cn(η)
mix with each other (even in a completely free theory like (2.4)) and therefore evolve in a
non-trivial way. Our goal in this section will be to study (2.6) in more detail and express
the time evolution of the cn(η) as simply as possible.

Connection to Feynman-Witten diagrams. Before developing relations like (2.16)
further, it is worth stressing that solving this system of differential equations for cn is
equivalent to conventional path integral techniques, which express the cn as integrals over
products of the bulk-to-bulk propagator,6 Gη∗k (η1, η2) and bulk-to-boundary propagator,7

Kη∗
k (η). For instance, the exchange contribution to the wavefunction coefficient c4 can be

expressed at leading order as the Feynman-Witten diagram,

η∗

η1

η2

Kη∗
k1

(η1) Kη∗
k2

(η1) Kη∗
k3

(η2) Kη∗
k4

(η2)

Gη∗
k1+k2

(η1, η2)

ck1k2k3k4(η∗)

=
∫ η∗

−∞
dη1

∫ η∗

−∞
dη2 Kη∗

k1
(η1)Kη∗

k2
(η1)Gη∗k1+k2

(η1, η2)Kη∗
k3

(η2)Kη∗
k4

(η2) , (2.19)

6Explicitly, this propagator can be expressed in terms of mode functions as,

Gη∗
k (η1, η2) = i

2

(
fk(η1)− fk(η∗)

f∗k(η∗)
f∗k(η1)

)
f∗k(η2)Θ(η1 − η2) + (η1 ↔ η2) , (2.17)

where fk(η) has been normalised so that Ωd−1f∗k
↔
∂ ηf−k = −i.

7Explicitly, this propagator can be expressed in terms of mode functions as,

Kη∗
k (η) = f∗k(η)

f∗k(η∗)
. (2.18)
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where we have imposed boundary conditions at η → −∞. Rather than compute this
integral directly (which is difficult even for simple spacetime backgrounds), notice that by
considering a small variation in the position η∗ of our timeslice, the propagators obey,8

∂η∗K
η∗
k (η) = −ck−k(η∗)Kη∗

k (η)

∂η∗G
η∗
k (η1, η2) = 1

2K
η∗
k (η1)Kη∗

k (η2) (2.20)

and the four-point wavefunction coefficient decomposes into two-point and three-point
coefficients, as in (2.16). In fact, armed with (2.20), it is straightforward to show that
∂η∗ of the conventional expressions for cn(η∗) in terms of Kη∗

k and Gη∗k always coincides9

with the Hamilton-Jacobi equation (2.24) — this is not surprising, since both approaches
are solving the same underlying Schrödinger equation for Ψη[φ]. Some advantages10 of
describing cn(η) with a differential equation (rather than an integral expression like (2.19))
are: (i) it is easier to manipulate these equations of motion into the form ∂ηβn = 0 to
derive constants of motion (which we will carry out in section 2.3), (ii) these differential
equations for cn can be readily compared with the differential constraints arising from
spacetime isometries and other symmetries (as we will see in section 3), and (iii) the
complementary solutions of the differential equations can be used to study the dependence
on initial conditions (which we will use in section 4).

Interaction picture. We will now take steps to simplify (2.16). First, note that solv-
ing (2.16) requires inverting ∂η +

∑n
j=1 ckj−kj (η). Diagrammatically, this contribution

from ck−k is associated with the propagation of the external legs, rather than any nonlin-
ear interaction. To simplify matters, we can use our knowledge of Hfree to transform into
the interaction picture, performing a unitary transformation at each time to define a new
operator φ̂Ik(η) = φ̂k/f

∗
k(η). This corresponds to rescaling the wavefunction coefficients,

ck1...kn(η) =
cIk1...kn(η)

f∗k1
(η) . . . f∗kn(η) , (2.21)

so that for example (2.16) becomes,

−∂ηcIk1k2k3k4 −
δ4HIint

δφIk1
. . . δφIk4

= 1
Ωd−1


3∑
ij

cIkikjkijc
I
ki′kj′ki′j′

f∗kijf
∗
ki′j′

− i
∫

p

cIk1...k4p,−p
f∗pf

∗
−p

 , (2.22)

and the term
∑
c2c4 associated with the free propagation has been removed. The interac-

tion picture Hamiltonian is HIint[φI ] =Hint[f∗kφIk] — for instance the interaction λφk1 . . .φkn
in Hint would correspond to the time-dependent interaction λf∗k1

. . .f∗knφ
I
k1
. . .φIkn in HIint.

8This representation of the bulk-to-bulk propagator as an integral over the boundary of two bulk-to-
boundary propagators is known in the holography literature as the “split representation” (see e.g. [39–41]).

9It is, of course, also possible to go the other way, writing the general solution to the first order HJ
equation in terms of an integrating factor, which produces integral expressions like (2.19).

10It would be interesting to see whether aspects of our approach could be exported to an AdS context. The
main difference is that we are using a Schrödinger equation to describe bulk time evolution (constrained by
bulk unitarity), whereas in AdS it would be a radial equation of motion in the bulk (somewhat disconnected
from unitarity, which can be implemented at the time-like boundary without any reference to the bulk).
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Figure 2. The Hamilton-Jacobi equations for the wavefunction phase, Γ. The time derivative is
given by all possible ways of splitting the interaction into two pieces (exchange contribution), plus
all possible ways of contracting a single higher-point coefficient into a loop (loop contribution), plus
any interactions in the Hamiltonian (contact contribution).

In general, if we split the effective action into its free and interacting parts,

Γη[φ] = Γη, free[φ] + Γη, int[φ] , (2.23)

where Γη, free[φ] =
∫

k
1
2 ck1k2(η)φk1φk2 , the Schrödinger equation (2.3) becomes,

−∂ηΓIη,int[φI ] = HIint + 1
2

∫
k1k2

Ω1−d

f∗k1
f∗k2


(

δ

δφIk
ΓIη int[φI ]

)2

− i
δ2ΓIη int[φI ]
δφIkδφ

I
k

 , (2.24)

where in the interaction picture, ΓIη,int[φIk] = Γη, int
[
f∗k(η)φIk

]
. This corresponds to the

evolution of ΨI = eiΓ
I
int generated by HIint, which is now decoupled from the free evolution

(contained implicitly within fk, which are determined from (2.9) and (2.13)).
Each of the terms in (2.24) can be expressed diagrammatically, as shown in figure 2.

There are three distinct source terms on the right-hand side: a contact contribution from
HIint, an exchange contribution from (δΓ/δφ)2, and a loop contribution from δ2Γ/δφ2. We
will now discuss each of these in turn.

Loop contributions. Note that if each field is given a small coupling, so that the wave-
function phase is written as11 1

g2 Γ[gφk], then the final term in (2.24) is O(g2) suppressed
relative to the other terms. This δ2Γη[φ]/δφ2

k term is formally divergent but can be treated
in a perturbative expansion in g (this corresponds to the usual loop expansion). For a
general Hamiltonian (with momentum-dependent interactions), the Schrödinger equation
at weak coupling can therefore be written as,

−∂ηΓη[φ] = H
[
φ,
δΓη[φ]
δφ

]
, (2.25)

which coincides with the classical Hamilton-Jacobi equation, and therefore Γη[φ] coincides
with the classical on-shell action at tree level. We postpone any further discussion of
loop contributions to the Hamilton-Jacobi equation for the future, and in this work we
will assume throughout that interaction strengths are sufficiently weak that all terms in
δ2Γ/δφ2 can be neglected.

11This is motivated by the power counting rules familiar from flat space, which guarantee that this scaling
with g is radiatively stable.
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Contact contributions. We refer to the contribution of a φn interaction in Hint to the
n-point coefficient cn as a contact contribution. The most general set of interactions that
can appear in Hint at this order can be written as,

{ V0φ
n , V1φ

n−1Π , . . . , Vjφ
n−jΠj , . . . , VnΠn } , (2.26)

where each Vj(η,k1, . . . ,kn) is a function of both time and momenta. In local, rotationally
invariant, theories these functions are analytic in the momenta — this is most easily seen
in the corresponding Lagrangian, in which local interactions either have contracted pairs
of spatial derivatives (which give ki · kj), or a single time derivative φ̇ (which produces
the Π dependent terms), or more time derivatives (which can be reduced to φ and φ̇, with
analytic coefficients, using the equations of motion).

In the Hamilton-Jacobi equation, each of the terms in (2.26) contribute to cn as Vj(c2)j

(i.e. imagine taking n functional derivatives with respect to φ and then set both φ and δΓ/δφ
equal to zero). Therefore for contact contributions we can treat Πk as ck−k(η)φk when
acting on the wavefunction at time η (at leading order in the small coupling). The simplest
example of this is the cubic coefficient, which is sourced solely by contact contributions,

−∂ηcIk1k2k3 =
3∏
j=1

f∗kj (η)δ
3H[φ, c2(η)φ]
δφk1δφk2δφk3

∣∣∣
φ=0

. (2.27)

The most general time evolution for the bispectrum is therefore encoded in four independent
functions of k,

−∂ηcIk1k2k3 =
∑
sj

Vs1s2s3(η,kj)∂s1η f∗k1∂
s1
η f
∗
k2∂

s1
η f
∗
k3 , (2.28)

where the sj are either 0 or 1.

Exchange contributions. Now we turn our attention to the term in (2.24) which
is quadratic in δΓ/δφ, which we refer to as an exchange contribution. The factor of
Ω1−d/f∗k1

f∗k2
now plays the role of the “propagator” for the wavefunction coefficients

cIk1...kn . However, this is not always straightforward to integrate — in particular, if cIk1k2k3

is already quite complicated, then the exchange contribution to (2.16) will be very dif-
ficult to integrate. Fortunately, the exchange terms can be simplified by noting that
Ω1−d/f∗kf

∗
k = i∂η [fk/f

∗
k], so for example by shifting the wavefunction coefficient,

Ck1k2k3k4(η) = ck1k2k3k4(η) + i
3∑

perm.
ck1k2−ks(η)ck3k4ks(η)|fks(η)|2 (2.29)

we arrive at a simpler HJ equation,

−∂ηCIk1k2k3k4 = f∗k1f
∗
k2f
∗
k3f
∗
k4

δ4Hint
δφk1 . . . δφk4

− i
6∑

perm.
cIk1k2−ks

fks
f∗ks

∂ηc
I
k3k4ks + loops (2.30)

in which the exchange contribution to the time evolution is now linear (rather than
quadratic) in c3, since (2.27) can be used to replace ∂ηcIk1k2k3

with H.
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This simplification can be achieved in general by subtracting a boundary term from
the time integral,

Γ̃Iη int = ΓIη int + i

2

∫
k

δΓIη int
δφk

δΓIη int
δφ−k

fk(η)
f∗k(η) (2.31)

which produces,

−∂ηΓ̃Iη int[φI ] = HIint[φI ]−
i

2

∫
k

fk
f∗k
∂η

(
δΓIη int
δφIk

δΓIη int
δφI−k

)
+ loops . (2.32)

In practice, (2.32) is often easier to integrate than (2.24), and its solution can then be used
to find Γη,int using (2.31) (which no longer contains any time integrals).

In fact, (2.30) can be simplified even further. Consider for instance a simple gφ3

interaction in Hint. Then each exchange contribution can be written as,

cIk1k2−ks
fks
f∗ks

∂ηc
I
k3k4ks = −cIk1k2−ks gfksf

∗
k3f
∗
k4

= cIk1k2−ks ∂ηc
I
k3k4k̄s (2.33)

where we have defined k̄s such that fk̄(η) = f∗k(η). If we had considered instead the most
general cubic interaction in Hint, given in (2.28), we would have found several terms from
δ3Hint/δφ

3, which always combine into the combination (2.33). For instance, the next
simplest interaction is V1φ

2Π, and so replacing Π with δΓ/δφ leads to a contribution from
δ4Hint/δφ

4, which combines with the cIk1k2ks∂ηc
I
k3k4ks term to give,

−∂ηCIk1k2k3k4

=
6∑

perm.
cIk1k2−ksV1(k3,k4,ks)

f∗k3
f∗k4

f∗ks

+i
6∑

perm.
cIk1k2−ksV1(k3,k4,ks)Ωd−1

(
f∗k3

f∗k4

f∗ks
fks∂ηf

∗
ks+∂ηf∗k3f

∗
k4fks+f∗k3∂ηf

∗
k4fks

)

=−i
6∑

perm.
cIk1k2−ks∂ηc

I
k3k4k̄s (2.34)

where we have made use of the normalisation fk∂ηf
∗
k − f∗k∂ηfk = iΩ1−d. Therefore the

quartic wavefunction coefficient can be found from the following relation,

−∂ηCIk1k2k3k4 = −i
6∑

perm.
cIk1k2−ks∂ηc

I
k3k4k̄s +

4∏
j=1

f∗kj (η) δ

δφkj
H[φ, c2φ]

∣∣∣
φ=0

. (2.35)

The equations of motion, (2.27) and (2.35), describe how the non-Gaussianities in the
wavefunction evolve with time in response to a Hamiltonian H. We will now show that, by
manipulating these equations, one can construct constants of motion which are preserved
by any unitary dynamics.
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2.3 Constants of motion from unitarity

During the final stages of this work, [24] appeared, in which the properties of de Sitter
bulk-to-bulk and bulk-to-boundary propagators (under a careful analytic continuation to
negative values of |kj |) are used to establish a “Cosmological Optical Theorem”. We believe
that our relations (2.27) and (2.35) shed light on this important result.

It will prove useful to define the discontinuity,

Disc [ck1...kn ] = ck1...k4 − c
∗
k̄1...k̄4

(2.36)

where k̄ is again the continuation of the momentum which achieves fk̄ = f∗k. This has the
advantage that Disc fk = 0 by construction, and similarly Disc c2 = 0. For instance, in
a general Gaussian state on pure de Sitter, with Ω = 1/(−Hη), the Bunch-Davies mode
function is,

fk(η) =
√
πe−i

π
2 (ν−1)

2
√
H

Ω−d/2H(2)
ν (−kη) , (2.37)

which has been normalised so that fk
↔
∂ηf

∗
k = iΩ1−d and where we have chosen the over-

all phase12 so that k̄ corresponds to the replacement |k̄| = e−iπ|k|∗, since H(2)
ν (ze−iπ) =

−eiπνH(2)∗
ν (z∗) (for Im(z) < 0). For more general initial states or background spacetimes,

k̄ may be more complicated, but one can always keep in mind the simple de Sitter exam-
ple (2.37).

The discontinuity (2.36) is useful for the following reason. For a pure potential inter-
action, e.g. V000φ

3, then unitarity requires Im V000 = 0 and so the imaginary part of c3 is
fixed in terms of its real part independently of the interaction (much like (2.10) for c2),

−∂ηIm ck1k2k3 = Im

i∑
j

ωkj ck1k2k3

 when Hint = V000φ
3 . (2.39)

However, taking the imaginary part in this way will not remove interactions like V001φ
2Π

from (2.27), since they depend on c2 and thus Im (c2V001) can be non-zero even in a unitary
theory. It is this subtlety that the Disc in (2.36) is overcoming, since13 Disc (c2V001) = 0.
The extension of (2.39), which removes every cubic interaction (2.28) from the equation of
motion (2.27), is,

−∂ηDisc ck1k2k3 = i
∑

ωkj Disc ck1k2k3 for any Hint . (2.40)

Since factors of fk(η) commute with the Disc, this can also be written simply as,

∂η Disc cIk1k2k3 = 0 , (2.41)
12Alternatively, one could use the de Sitter invariant mode function,

f̂k(η) = i
√
πkν

2
√
H

Ω−d/2H(2)
ν (−kη) (2.38)

which is annihilated by de Sitter boosts and has weight ∆ under dilations.
13Recall that a local V001 is analytic in the kj and therefore does not depend on any kj =

√
kj · kj , so

Disc(c2V001) = c2ImV001 vanishes by unitarity.
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and therefore Disc cIk1k2k3
is a constant of motion. In fact, this argument applies to any

contact contribution to any cn coefficient: if exchange and loop contributions are neglected,
then Disc cIn is always conserved by a unitary evolution.

For n > 3, the cn coefficient generically has exchange interactions which also contribute
to the Disc. For example, (2.35) can be written as,

−∂ηDisc
[
CIk1k2k3k4 − i

3∑
perm.

cIk1k2−ksc
I ∗
k̄3k̄4ks

]
=

4∏
j=1

f∗kj
δ

δφkj

(
H[φ, c2φ]−H†[φ, c2φ]

) ∣∣∣
φ=0

(2.42)

where H† is the Hermitian conjugate of the Hamiltonian, and we have again used that
c∗k̄−k̄ = ck−k. A unitary time evolution (Hermitian Hamiltonian), therefore requires that
the right-hand side of this equation vanishes, and therefore that this particular discontinuity
is also a constant of motion.

In summary, the Hamilton-Jacobi relations (2.27) and (2.35), together with unitarity
of the interaction Hamiltonian, establish that at each order in φ there is one additional
constant of motion, which we shall call βn. At cubic and quartic order, these are given
explicitly by,14

βk1k2k3

f∗k1
f∗k2

f∗k3

= ck1k2k3−c
∗
k̄1k̄2k̄3

(2.43)

βk1k2k3k4

f∗k1
f∗k2

f∗k3
f∗k4

= ck1k2k3k4−c
∗
k̄1k̄2k̄3k̄4

+i
3∑

perm.
|fks |2

(
ck1k2−ks−c∗k̄1k̄2−ks

)(
ck3k4ks−c∗k̄3k̄4ks

)
since our equations of motion (2.41) and (2.42) set ∂ηβk1k2k3 = 0 and ∂ηβk1k2k3k4 = 0 for
any hermitian Hamiltonian. This is somewhat analogous to classical mechanics, in which
the Hamilton-Jacobi approach identifies a pair of constants (corresponding to the initial
position and initial velocity) for each degree of freedom. Once the boundary value for
the wavefunction Ψ[φ] has been specified, (2.43) allows the constant βn to be calculated
immediately (without the need for any time integration) — they are a property of the
initial state. In [24], a Bunch-Davies vacuum state was assumed in the past — setting
αin
n = 0 in this way for the initial state then sets βn = 0 for all time. Now we see that in

fact any initial state in which βn = 0 will have βn = 0 for all time, and more generally
that an arbitrary initial condition (specified at an arbitrary time in the bulk or on the
boundary) will likewise have a conserved (in general non-zero) set of βn.

3 de Sitter isometries

While the preceding formalism may be applied to a scalar field on any conformally flat
spacetime, we will now focus on the particular case of a (at least quasi-)de Sitter back-
ground. This means that, providing the state is initially de Sitter invariant, time evolution

14Note that on Minkowski or de Sitter with (2.37), if ck1k2k3 = c3(k1, k2, k3) is written in terms of the
magnitudes of kj only (which can always be done without loss of generality using k1 + k2 + k3 = 0), then
ck̄1k̄2k3 = c3(−k1,−k2, k3) is the same function with the signs of |k1| and |k2| reversed.
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will produce a state at later times which is also de Sitter invariant. This provides powerful
constraints on the wavefunction and its evolution, which we now describe.

We will work in the expanding Poincare patch, ds2 = 1
H2η2 (−dη2 +dx2), which is most

relevant for cosmology. Here, the Hubble constant H is the inverse of the de Sitter radius
and the conformal time η runs from −∞ in the past to 0 in the asymptotic future. First we
will briefly review the generators of the de Sitter isometries and their associated Noether
charges in 3.1, then their simple action on equal-time correlation functions in 3.2, and finally
how they can be implemented directly on wavefunction coefficients in 3.3. While the action
of these generators is well-known near the conformal boundary at η → 0 (where they reduce
to the d-dimensional conformal group), the way that they constrain the correlators and
wavefunction in the bulk is less widely appreciated. Our aim is to describe these constraints
in a similar fashion to our Hamilton-Jacobi equations from section 2, providing a further
set of differential equations which can be used to determine properties of the cn coefficients.

3.1 Symmetry generators

In addition to spatial translations/rotations and dilations,

η → αη , x→ αx , (3.1)

de Sitter spacetime has an additional d “boost” isometries,

η → γ η , x→ γ
(
x + b · (η2 − |x|2)

)
(3.2)

where γ =
(
1− 2b · x− |b|2(η2 − |x|2)

)−1
,

parametrised here by the constant (d-dimensional) vector b. The infinitesimal versions
of (3.1) and (3.2) are generated by,15

D = −η∂η − x · ∂x (3.4)
K = −2xD + (η2 − x2)∂x . (3.5)

Transforming the generators (3.4) and (3.5) to momentum space is straightforward (see,
for instance, [34]), and amounts to replacing ~x→ −i∂~k and ∂~x → −i~k (taking suitable care
with products like x · ∂x),16

D = d− η∂η + k · ∂k (3.7)

K = 2D∂k − k
(
η2 + ∂2

k

)
. (3.8)

15Note that writing xµ = (η,x), with the understanding that Greek indices are raised/lowered with ηµν ,
these generators

D = −xµ∂µ and Ki = 2xixν∂ν − x2∂i (3.3)

can be thought of as the usual time translations and boosts of Minkowski space with the time direction
replaced by t→ xµxµ.

16Note that, when acting on a function of |k| only, the boost generator simplifies to,

K = k
k

[
2(d− 1− η∂η)∂k − k

(
η2 + ∂2

k

)]
. (3.6)
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Noether currents. Invariance of the scalar field action S[φ] =
∫
d4x
√
−gL under these

symmetries gives rise to conserved Noether currents,17

J0
D = δL

δ∂ηφ
D̂[φ] + ηL , J iD = − δL

δ∂iφ
D̂[φ] + xiL (3.9)

J0
Ki = δL

δ∂ηφ
K̂i[φ]− 2xiηL , J jKi = δL

δ∂jφ
K̂i[φ]−

(
δji (η

2 − x2) + 2xixj
)
L (3.10)

Once promoted to operators (and normally ordered appropriately), these can be used to
implement (3.4) and (3.5) directly on the wavefunction. For instance, dilations in the
quantum theory are implemented by,

Q̂D = :
∫

x

(
−Π̂x x · ∂xφ̂x − η Ĥx

)
: (3.11)

and similarly for de Sitter boosts,

Q̂Ki = :
∫

x

(
Π̂x
(
2xi x · ∂x + (η2 − x2)∂xi

)
φ̂x + 2xiηĤx

)
: (3.12)

where we have defined the Hamiltonian density,
∫
ddxHx = H, and used : Ô : to highlight

the normal ordering.

3.2 Equal-time correlators

Equal-time correlators in approximately Gaussian states can be computed either by us-
ing (2.7) to express φ̂ and Π̂ in terms of Â and Â† as in usual canonical quantisation, or
equivalently by inserting a functional integral over a complete set of field eigenstates,18

〈Ψη| O[φ̂, Π̂] |Ψη〉 =
∫
Dφ Ψ∗η[φ] O

[
φ,

1
i

δ

δφ

]
Ψη[φ] . (3.13)

Note that this is not an integral over paths — the φ here is a function of spatial momentum
only — but rather an average over all possible field realisations on a fixed hypersurface,
weighted by how likely each is given that the system is in the state Ψη[η].

Field correlators. For instance, to leading order in the non-Gaussianity (i.e. assuming
weak coupling), the first few equal-time correlators of the scalar field φ̂ are,

〈φkφ−k〉′= |fk|2 (3.14)
〈φk1φk2φk3〉′

|fk1 |2|fk2 |2|fk3 |2
= i
(
ck1k2k3−c

∗
k1k2k3

)
. (3.15)

〈φk1φk2φk3φk4〉′

|fk1 |2|fk2 |2|fk3 |2|fk4 |2
= i
(
ck1k2k3k4−c

∗
k1k2k3k4

)
−|fks |22iImck1k2−ks2iImck3k4ks

−|fkt |22iImck1k3−kt2iImck2k4kt−|fku |22iImck1k4−ku2iImck2k3ku .

(3.16)

where 〈O〉′ is 〈Ψη|Ô|Ψη〉 with the overall momentum-conserving δ-function removed. Note
that the phase of the wavefunction (the Re ck1...kn) does not affect these observables —
any observable O[φ] which depends only on φ is sensitive only to the magnitude |Ψη|2.

17These may be recognised as the components of the Noether stress-energy and angular momentum
tensors (associated to translations and boosts) from Minkowski space, with time replaced by xµxµ.

18Note that this equation is implicitly normalised with a factor of 〈Ψη|Ψη〉 =
∫
D φ|Ψη|2.
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Momentum correlators. While the phase of the wavefunction does not contribute to
correlators of φ̂, it does contribute to their time derivatives (much like the rate of change of
the phase determines the velocity for non-relativistic particles). In the Schrödinger picture,
although φ̂ is not explicitly time dependent, one can form correlators of the canonical
momentum Π̂k — for instance the quadratic correlators are,

〈Πkφ−k〉′ =
i

2 + |fk|2 Re ck−k , (3.17)

〈ΠkΠ−k〉′ =
1

4|fk|2
+ |fk|2 (Re ck−k)2 , (3.18)

and depend on Re c2. Similarly, cubic correlators containing Πk now depend on Re c3,

〈Πk1φk2φk3〉′

|fk1 |2|fk2 |2|fk3 |2
= i

(
ck1k2k3c

∗
k1−k1 − c

∗
k1k2k3ck1−k1

)
, (3.19)

and so on.
However, recall that Re c2 is due to the damping of the mode functions ∂η|fk(η)|. This

results in an additional contribution to the canonical momentum, as can be seen from (2.8).
For example, if |Ψη〉 was the time evolution of a vacuum state, then the momentum variance
in this state would be larger than naively expected from the Heisenberg uncertainty relation,
∆φ∆Π = ~/2. Due to Re c2, the vacuum is effectively squeezed by the time evolution, and
this unnecessarily complicates the equal-time correlation functions of Π̂.

Removing the damping. Fortunately, this damping can be removed from Ψη[φ] by
performing the (time-dependent) unitary transformation,

B̂(η) = exp
(
−i
∫

k1k2

Re ck−k(η)
2 φ̂k1 φ̂k2

)
(3.20)

which explicitly shifts the momentum,

Π̃k(η) := B̂†(η)Π̂kB̂(η) = Π̂k − Re ck−k(η)φ̂k , (3.21)

for which the quadratic correlators are now 〈φ̂kΠ̃k〉 = i/2 and ∆φ∆Π̃ = ~/2, saturating
the Heisenberg uncertainty bound. Once the damping has been removed by (3.21), the
cubic correlators are now simply,

〈φk1φk2φk3〉′

|fk1 |2|fk2 |2|fk3 |2
= i

(
ck1k2k3 − c

∗
k1k2k3

)
, (3.22)(2

i

) 〈Π̃k1φk2φk3〉′

|fk2 |2|fk3 |2
= −i

(
ck1k2k3 + c∗k1k2k3

)
, (3.23)(2

i

)2 〈Π̃k1Π̃k2φk3〉′

|fk3 |2
= i

(
ck1k2k3 − c

∗
k1k2k3

)
(3.24)(2

i

)3
〈Π̃k1Π̃k2Π̃k3〉

′ = −i
(
ck1k2k3 + c∗k1k2k3

)
, (3.25)
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and are determined solely by Re c3 or Im c3, depending on whether there is an even or odd
number of momenta in the correlator.19 The quartic correlators follow the same pattern,
and are all related to (3.16) (up to an overall normalisation) by substituting Im cn for Re cn
when an odd number of the momenta are carried by Π̃’s. For the sake of concreteness,
they are given explicitly by,(2

i

) 〈Π̃k1φk2φk3φk4〉′

|fk2 |2|fk3 |2|fk4 |2
=−i

(
ck1k2k3k4 +c∗k1k2k3k4

)
−|fks |22Reck1k2−ks2iImck3k4ks

−|fkt |22Reck1k3−kt2iImck2k4kt−|fku |22Reck1k4−ku2iImck2k3ku
(3.26)(2

i

)2 〈Π̃k1Π̃k2φk3φk4〉′

|fk3 |2|fk4 |2
= i
(
ck1k2k3k4−c

∗
k1k2k3k4

)
−|fks |22Imck1k2−ks2iImck3k4ks

−|fkt |22Reck1k3−kt2Reck2k4kt−|fku |22Reck1k4−ku2Reck2k3ku
(3.27)(2

i

)3 〈Π̃k1Π̃k2Π̃k3φk4〉′

|fk4 |2
=−i

(
ck1k2k3k4 +c∗k1k2k3k4

)
−|fks |22iImck1k2−ks2Reck3k4ks

−|fkt |22iImck1k3−kt2Reck2k4kt−|fku |22Reck1k4−ku2iImck2k3ku
(3.28)(2

i

)4
〈Π̃k1Π̃k2Π̃k3Π̃k4〉

′= i
(
ck1k2k3k4−c

∗
k1k2k3k4

)
−|fks |22iImck1k2−ks2iImck3k4ks

−|fkt |22iImck1k3−kt2iImck2k4kt−|fku |22iImck1k4−ku2iImck2k3ku
(3.29)

To summarise, once the Hamilton-Jacobi equation of section 2.1 has been solved for
(both the real and imaginary parts of) the wavefunction coefficients cn, they can be trans-
lated straightforwardly into the equal-time correlation functions of φ and Π̃.

de Sitter invariance. Equal-time correlators are generally not manifestly invariant un-
der spacetime isometries, because the restriction of a correlation like 〈φk1(η1) . . . φkn(ηn)〉
to “equal times” is not a frame-independent procedure — different observers will construct
different equal-time correlators. However, the underlying dynamics is still invariant under
the isometries, and this should leave some imprint on the equal-time correlators.

To find this constraint, first consider the unequal-time in-in correlator in the Heisenberg
picture, 〈φk1(η1) . . . φkn(ηn)〉. Such an object is invariant under the isometries providing
that, ∑

J

DJ [〈φk1(η1) . . . φkn(ηn)〉] = 0 (3.30)∑
J

KJ [〈φk1(η1) . . . φkn(ηn)〉] = 0 , (3.31)

19In an approximately Gaussian state, because there is always a linear combination of φ and Π for
which Â|Ψ〉 = 0, there are only two independent cubic correlators (namely AAA† and AA†A†) — this is
consistent with the wavefunction carrying only two independent functions at this order, Rec3 and Imc3.
At quartic order, there are two new independent functions in the wavefunction, Rec4 and Imc4, consistent
with inserting either an additional A or an additional A† into the correlator.
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where DJ and KJ are given by (3.7) and (3.8) with (η,k) replaced by (ηJ ,kJ). Once the
overall momentum-conserving δ-function has been removed, this requires that,

0 =

(n− 1)d+
n∑
j=1

(
−ηj∂ηj + kj · ∂kj

) 〈φk1(η1) . . . φkn(ηn)〉′

0 =
n∑
j=1

[
2(d− ηj∂ηj + kj · ∂kj )∂kj − kj

(
∂2

kj + η2
j

)]
〈φk1(η1) . . . φkn(ηn)〉′ , (3.32)

which differ from (3.30) and (3.31) only by the scaling weight (−d) of the δ-function.20

Analogous relations hold with any number of φ̂’s replaced with Π̂.
Now, since the equal-time limit of 〈φk1(η1) . . .φkn(ηn)〉 is nothing but the 〈φk1 . . .φkn〉(η)

given above in the Schrödinger picture, the equal-time limit of (3.32) provides the constraint
corresponding to bulk de Sitter invariance. Since de Sitter boosts involve

∑
J ηJ∂ηJ∂kJ , the

equal-time limit must be taken with care (as this cannot be extracted from 〈φk1 . . .φkn〉
alone) — each ∂ηφ in (3.32) must first be replaced with the canonical momentum Π be-
fore taking the equal-time limit. This results in the “equal-time” version of the de Sitter
isometries,(

(n− 1)d− η∂η +
∑
J

kJ · ∂kJ

)
〈φk1 . . . φkn〉′ = 0 (3.33)

∑
J

(
2 (d+ kJ · ∂kJ ) ∂kJ − kJ∂2

kJ

)
〈φk1 . . . φkn〉′ =

2η
Ωd−1

∑
J

∂kJ 〈φk1 . . .ΠkJ . . . φkn〉′ ,

where we have assumed weak coupling so that Π = Ωd−1∂ηφ + O(g) in the Heisenberg
picture.

We note for later convenience that when 〈φk1(η1) . . . φkn(ηn)〉′ depends only on the
magnitude of the vectors, kJ = |kJ | (which is the case for the two-point and three-point cor-
relators, and also all φn contact contributions), then (3.32) can be written more simply as,

0 = (KI −KJ) 〈φk1(η1) . . . φkn(ηn)〉′ (3.34)

where KJ = 1
kJ

(d+ 1− 2DJ) ∂kJ + ∂2
kJ

+ η2
J .

for any pair (I, J) of fields. The equal time limit of (3.34) (again taking care to replace
∂ηφ with Π) results in a constraint on 〈φk1 . . . φkn〉(η) which is often easier to implement
than (3.33).

Given a set of equal-time correlators, (3.33) may be used to check whether they were
produced by a de Sitter invariant state. Now, while these correlators can be written in terms
of the cn, we will see later in explicit examples that (3.33) applied to just one correlator
(say 〈φn〉) is actually not sufficient to guarantee that the whole state is de Sitter invariant,
and it can be cumbersome to apply (3.33) to every correlator of both φ and Π. Ideally, we
would instead have a simple constraint written directly in terms of the cn coefficients.

20Note that for K, we have dropped the η2k term (which vanishes through momentum conservation), and
used the fact that the action of the ∂k derivatives on the δ function also vanishes by dilation and rotation
invariance (as described in appendix D of [34]).
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While the wavefunction coefficients can themselves be written as an equal-time
correlator,

ck1...kn(η) ∝ 〈φk = 0|Πk1 . . .Πkn |Ψ〉(η) (3.35)

involving a field eigenstate (defined such that φ̂k|φk = gk〉 = gk|φk = gk〉 for all k),
since the different φ̂kJ only commute at equal times it does not seem possible to construct
this state using the equal-time limit of some unequal-time correlator, as we did above for
〈φk1 . . . φkn〉(η). In fact, we will now use the Noether charges constructed in section 3.1 in
order to implement dilations and boosts directly on |Ψη〉.

3.3 Wavefunction coefficients

Dilation constraints. A dilation acts on the wavefunction as Q̂D|Ψ〉, where the charge
Q̂D is defined in (3.11). Transforming to momentum space, this symmetry generator shifts
the wavefunction phase by,

δDΓη = −η∂ηΓη +
∫

p
φ−p p · ∂p

δΓη
δφp

. (3.36)

Written in terms of the cn(η) coefficients (taking care to also account for the ∂p acting on
the overall momentum conserving δ-function),

δD ck1...kn(η) =
(
−d− η∂η +

∑
J

kJ · ∂kJ

)
ck1...kn(η) . (3.37)

Note that, crucially, this differs from the way that dilations are implemented on correla-
tors (3.33) by the replacement d − η∂η → −η∂η. This will be important when we study
the conformal boundary at η → 0, where η∂η acting on a φ correlator will give the scaling
dimension ∆, while η∂η acting on a cn coefficient will give the shadow weight d−∆.

Note that although
∑
J DJ contains derivatives with respect to unequal times, since∑

∂ηJf(η1, η2, . . . , ηn) = ∂ηf(η, η, . . . , η) it is possible to write the dilation constraint simply
in terms of ∂ηcn(η). This can even be combined with (2.16), the equation of motion for
∂ηΓη, and written directly in terms of wavefunction coefficients,

δDck1...kn(η) =
[
−d+

∑
J

(
ηckJ−kJ (η)

Ωd−1 + kJ · ∂kJ

)]
ck1...kn + η

δnHint
δφk1 . . . δφkn

(3.38)

plus exchange contributions.

Boost constraints. A boost acts on the wavefunction as Q̂K|Ψ〉, where Q̂K is defined
in (3.12). Transforming to momentum space, this symmetry generator shifts the wavefunc-
tion phase by,

δKΓη =
∫

p

[
η

Ωd−1
δΓη
δφ−p

∂

∂p
δΓη
δφp

+ φ−p

(
2p · ∂p

∂

∂p − p∂2
p

)
δΓη
δφp

]
+ 2η∂qHint

q |q=0 (3.39)

plus terms quadratic in φ (which do not affect the wavefunction coefficients cn with n > 2).
We have used the Fourier transform of the Hamiltonian density, Hq =

∫
ddx eiq·xHx, to
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express xHx as ∂qHq|q=0. Unlike the dilation constraint, which resembles the dilation
operator with

∑
∂ηJ replaced by ∂η, it is not possible to write the boost constraint simply

in terms of ∂ηΓ, since
∑
J ∂kJ∂ηJ acting on an unequal-time object cannot be replaced by

a single ∂η acting on an equal-time object. In terms of wavefunction coefficients,21

δK ck1...kn(η) =
n∑
J=1

[
2
(
η ckJ−kJ (η)

Ωd−1 + kJ · ∂kJ

)
∂

∂kJ
− kJ∂2

kJ

]
ck1...kn(η) (3.41)

plus exchange and interaction terms.

α vacua. Armed with these de Sitter isometries, it is now straightforward to determine
which states are de Sitter invariant. For instance, consider the Gaussian states described
in section 2.1. On a de Sitter background, we can solve (2.9) for c2,

ck,−k(η) = −ΩdH

(
∆− kη (H(2) + αin

k H
(1))ν−1(−kη)

(H(2) + αin
k H

(1))ν(−kη)

)
(3.42)

with αin
k a constant function of k, and ν =

√
d2

4 −
m2

H2 is the order of the Hankel functions.
The associated mode function (2.13) is,

fk(η) = N(k)Ω−d/2
(
H(1)
ν (−kη) +

(
αin

k

)∗
H(2)
ν (−kη)

)
, (3.43)

where the overall normalisation N(k) does not affect any observable.22

Specifying an initial value of c2 fixes αin
k , which could in principle be an arbitrarily

complicated function of k. However, if the initial state is to respect the de Sitter isometries,
this uniquely fixes αin

k up to a constant. For example, in the asymptotic past, η → −∞,
invariance under dilations requires that ∂kαin

k = 0 (independently of Hint, which becomes
unimportant in this limit). Since rotational invariance restricts αin

k to be a function of
k only, this shows that the only Gaussian states which are de Sitter invariant can be
parametrised by a single complex constant, αin. These states correspond to the well-known
α-vacua, originally derived in [42] from studying properties of two-point Green’s functions.

Anomalies. For particular values of the scalar field mass, the interactions can persist
until late times and lead to divergences in the wavefunction coefficients. This requires
renormalisation, and in particular the renormalisation of the boundary term in Noether’s
theorem leads to additional (anomalous) contributions to the above Ward identities as

21Note that if the coefficient is a function of the |kJ | only, then this simplifies to,

δKck1...kn (η) =
n∑
J=1

kJ
kJ

[
2
(
ηckJ−kJ

Ωd−1 − 1
)
∂kJ + kJ∂

2
kJ

]
ck1...kn (η) (3.40)

plus exchange and interaction terms.
22By this we mean that the physical wavefunction coefficients, cn, only ever depend on ratios of mode

functions, fk(η2)/fk(η1), and their derivatives. Of course, when writing expressions like (3.14)–(3.16) in
section 3.2, we have assumed that fk is normalized as in (2.12) in order to simplify expressions. Un-
less stated otherwise, we will always choose N(k) such that the commutation relations are canonically
normalised (2.12), and such that |k̄| = −|k| when αin

k = 0, as in (2.37).
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η → 0. Unlike on Minkowski spacetime, where the only such divergences arise from loops
(from the momentum p→∞ limit, in which the theory breaks down), on de Sitter space-
time these divergences can arise at tree level (from the late time η → 0 limit, in which the
volume element diverges). We will discuss this subtlety further in the next section, where
we study the behaviour of the bulk coefficients cn(η) in the limit η → 0.

4 Locality and analyticity on superhorizon scales

We will begin this section by describing how the de Sitter isometry conditions in the bulk
(given in section 3) become conformal Ward identities near the boundary — this is the
essence of the recent Cosmological Bootstrap program [30–33] (see also [25–29]).

Then in section 4.2, we discuss how the bulk wavefunction coefficients may be expressed
as a power series in η near the boundary at η = 0, assuming some generic value of the
scalar field mass. We refer to the coefficients in this series as “transfer functions”, since
they are the objects which propagate the boundary data into the bulk spacetime. For
local interactions, these transfer functions are analytic in the momenta of the fields outside
the horizon (i.e. for every |kη| < 1), and only once |kη| exceeds one do they develop
non-analyticities (such as a 1/kT pole in the total energy). This can be summarised by
saying that, once a boundary value cn(η → 0) = αn is specified for the state Ψη→0[φ], the
resulting bulk wavefunction coefficients ck1...kn(η) have non-analyticities in momenta due
to the following three sources,23

(a) From non-analyticities in the boundary value of the wavefunction — this can be
interpreted as non-localities in the initial state (for instance, imposing the Bunch-
Davies initial condition in the far past produces non-analytic αn at late times),

(b) From non-analyticities in the interaction Hamiltonian — this would be due to the
presence of non-local interactions,

(c) From the resummation which takes place in the transfer function once |kη| ∼ 1 for a
particular mode — this can be interpreted as the field beginning to oscillate.

We will also find that in particular cases (in which ν is rational) this series solution be-
comes ill-defined, and this signals the presence of divergences which must be renormalised.
This is discussed systematically in section 4.3, first by renormalising the boundary condition
for Ψη→0[φ] (analogous to the usual renormalisation of the boundary value for φ(η → 0) in
holography), and then from the viewpoint of boundary operator mixing (analogous to the
usual renormalisation of composite operators in flat space QFT).

Throughout this section, we will allow for the n fields which multiply cn(η) to have
different masses (conformal weights), since this both achieves a greater level of generality
(the results apply to any number of distinct scalar fields) and also makes the origin of
various terms clear notationally.

23At tree level, this seems to exhaust all possible sources of non-analyticity. Further non-analyticities can
develop once loop corrections are included.
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4.1 The conformal boundary

Near the η → 0 boundary of the expanding Poincare patch, the de Sitter isometries (3.4)
and (3.5) become conformal symmetries,

Dj → d−∆j + kj · ∂kj (Dil.) (4.1)

Kj → 2(d−∆j + kj · ∂kj )∂kj − kj∂2
kj (SCT) (4.2)

namely dilations and special conformal transformations24 (SCT). These symmetries pro-
vide a set of Ward identites on the wavefunction coefficients which uniquely determine
the two- and three-point function (up to constant coefficients), and which can be used to
bootstrap four (and higher) point functions. We will now show how our bulk constraints
on the cn(η) from de Sitter dilations (3.38) and de Sitter boosts (3.41) are related to these
conformal Ward identities.

Free evolution. First, let us ignore the effect of the bulk interactions and consider
the free evolution given by (2.4). Given an initial condition for the wavefunction at any
time, the resulting wavefunction coefficients are ck1...kn(η) ∝ αin

k1...kn/fk1(η) . . . fkn(η). The
operators δDcn and δKcn defined in (3.38) and (3.41) have the interesting property,

kν1fk1(η) . . .kνnfkn(η)δD

[
αin

k1...kn
kν1fk1(η) . . .kν1fkn(η)

]
=
[
−d+

∑
J

(∆J+kJ ·∂kJ )
]
αin

k1...kn (4.4)

kν1fk1(η) . . .kνnfkn(η)δK

[
αin

k1...kn
kν1fk1(η) . . .kνnfkn(η)

]
=
∑
J

[
2(∆J+kJ ·∂kJ ) ∂

∂kJ
−kJ∂2

kJ

]
αin

k1...kn

(4.5)

since the mode functions are themselves eigenstates of D and K. While δD and δK are
explicitly η-dependent, they reduce to the conformal constraints from dilations and SCT
when acting on αin

n , which has the conformal weight of a correlator of primary operators25

each of weight d−∆j . This shows that de Sitter invariance of cn(η) in the bulk is equivalent
to conformal invariance of the initial condition αin

n , regardless of the timeslice on which αin
n

is specified (it need not be the boundary condition at η = 0).
Once interactions are included, this need no longer be the case, since cn(η) is now gen-

erally a more complicated function of time and the operators δD and δK acquire additional
terms in Hint. However, in the limit η → 0, providing the interactions turn off sufficiently
fast, one recovers the conclusion that cn(η → 0) is de Sitter invariant only if the boundary
value αn (now supplied strictly at η = 0) is conformal.

24When acting on a function which depends on the |k| only, the action of SCT simplifies to,

K → kj
kj

[
2(d− 1−∆j)∂kj + kj∂

2
kj

]
. (4.3)

25Recall that an overall momentum-conserving δ-function has been removed from αk1...kn , so (4.4) really
does correspond to

∑
j
Dj with d−∆j in place of ∆j .

– 25 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
2

Boundary coefficients. Near the conformal boundary, we have the following scaling
with time,

ck1...kn ∼
1

η
∑

J
∆J

and ηckJ−kJ = ∆J

(−Hη)d−1 + . . . and Hint ∼
√
−g = 1

(−Hη)d+1 ,

(4.6)

where we write the momentum (and conformal weight) of each of the n fields multiplying
cn as k1 (and ∆1), k2 (and ∆2). . . , kn (and ∆n). Providing

∑
J ∆J > d, the interactions

become subdominant as η → 0. Consequently, the bulk dilation constraint (3.38) and bulk
boost constraint (3.41) become at late times,

lim
η→0

δDck1...kn(η) =
[
−d+

∑
J

(∆J + kJ · ∂kJ )
]
ck1...kn(η = 0) , (4.7)

lim
η→0

δKck1...kn(η) =
∑
J

[
2 (∆J + kJ · ∂kJ ) ∂kJ − kJ∂2

kJ

]
ck1...kn(η = 0) , (4.8)

and coincide with the action of dilations and SCT in a d-dimensional CFT correlator (of
operators with scaling dimension d−∆J).

Given (4.6), the limit limη→0 ck1...kn(η) is not regular. Instead, we will define the
boundary value of the wavefunction coefficient via,26

αn = lim
η→0

[
(−η)

∑
J

∆J cn(η)
]

(4.9)

The coefficients αk1...kn must then obey the conformal Ward identities (4.7) and (4.8),
which can be used to determine which boundary conditions for the wavefunction respect
the spacetime isometries.

Although (4.7) and (4.8) are themselves well-known, to the best of our knowledge the
bulk analogues (3.38) and (3.41) are novel — the fact that (3.38) and (3.41) reduce to the
expected conformal Ward identities as η → 0 is an important sanity check.

Anomalous Ward identities. Before moving on to discuss the late-time limit of the
cn coefficients in more detail, we must highlight an important caveat to the conformal
constraints (4.7) and (4.8). In section 4.2, we will encounter divergences in the late-
time limit of the wavefunction coefficients — these divergences can be renormalised via a
(formally singular) redefinition of the boundary condition for the Ψη=0 (the αn in (4.9)),
as we will describe in section 4.3. This can be viewed as a Boundary Operator Expansion
(BOE), in which the bulk operators φ̂ and Π̂ are rewritten in terms of boundary operators
ϕ̂ and π̂— the coefficients of this expansion depend on both a small regulator (e.g. δ = d−3
in dimensional regularisation, or a hard cutoff at time ηδ) and an RG scale µ, introduced
for dimensional consistency. The renormalisation thus introduces anomalous terms into
the conformal Ward identities, through this new scale µ.

26The scaling (4.9) will also emerge naturally in section 4.3 when we express the bulk operator φ̂ in
terms of the boundary operator ϕ̂. Since limη→0

(
φ̂/(−η)∆) = ϕ̂, the αn are naturally the wavefunction

coefficients of Ψη=0[ϕ].
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This is best illustrated with a simple example. Consider the cubic wavefunction coeffi-
cient of conformally coupled scalars (which we discuss in more detail in section 5). Setting
αin

2 = 0 and αin
3 = 0 in the past (i.e. Bunch-Davies initial condition) produces a boundary

coefficient,

αk1k2k3 ∝
1

3− d − log (ikT ) (4.10)

where kT = k1 + k2 + k3. This function is perfectly invariant under d-dimensional dila-
tions (4.1) (recall that ∆ = 1 for a conformally coupled scalar),

Dd dim. [αk1k2k3 ] =
(
−d+ 3 +

∑
J

kJ · ∂kJ

)
αk1k2k3 = 0, (4.11)

however once the divergence is subtracted and d → 3, the resulting (finite) α3 is not
invariant under 3-dimensional dilations,

D3 dim.

[
lim
d→3

(
αk1k2k3 −

1
3− d

)]
=
∑
J

kJ · ∂kJ [− log (kT )] = −1 6= 0 . (4.12)

In general, the 3-dimensional dilations acting on a regulated αn will pick out the residue of
the 1/(d−n∆) pole. The discrepancy between (4.11) and (4.12) can be understood simply
by noting that, in d dimensions, the coefficient αk1k2k3 has a mass dimension [α3] = d− 3,
and so simply subtracting 1/(3 − d) is not dimensionally consistent. Rather, we should
define,

αren
3 (µ) = α3 −

µd−3

3− d = − log
(
ikT
µ

)
+O(d− 3) , (4.13)

where µ is an arbitrary scale introduced on dimensional grounds. This renormalised co-
efficient now satisfies D3 dim [α3] = −µ∂µα3, and we interpret the right-hand side as an
anomalous contribution to the dilation Ward identity.

In general, the αn satisfy the anomalous form of the Ward identities,27[
−d+

∑
J

(∆J + kJ · ∂kJ )
]
αren

k1...kn = An (4.14)

∑
J

[
2 (∆J + kJ · ∂kJ ) ∂kJ − kJ∂2

kJ

]
αren

k1...kn = −
∑
J

2∂kJAn (4.15)

where An is a known function of the αj (e.g. A3 = µ∂µα3 in the above example).

4.2 Analyticity from locality

Now we turn our attention to the behaviour of cn(η) at small η, close to the conformal
boundary. Given a boundary condition for the state Ψη=0 (i.e. a set of αn coefficients),
obtained for instance from a conformal bootstrap approach or even from a direct measure-
ment of the end of inflation, what does that tell us about the bulk evolution? To answer
this question, we will now solve the equations of motion for the cn(η) perturbatively at
small η, beginning with the quadratic coefficient c2 in the free theory. Throughout this
section we will work in units in which H = 1, so that e.g. Ω = 1/(−η).

27See e.g. [43] for a careful derivation of the anomalous contributions to the conformal Ward identity for
3-point correlators in position space.
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Mode functions. The classical equations of motion at small η enforce either fk(η) ∝
(−η)∆ or fk(η) ∝ (−η)d−∆. Choosing (−η)∆ (which dominates for light fields since ∆ <

d−∆), the classical equation of motion then has a series solution, fk(η) ∝ (−η)∆F−ν(−kη),
where F−ν is an analytic function28 of both η and k,

F−ν(kη) =
∞∑
r=0

(−4)−r

Γ (1 + r − ν)
(−kη)2r

r! = 2−νΓ(1− ν)J−ν(−kη)
(−kη)−ν . (4.16)

The other boundary behaviour corresponds to the solution (−η)d−∆F+ν(−kη), and so the
general solution for the mode function is given by,

fk(η) = N ′(k)(−η)∆
(
F−ν(kη)− α∗k(−η)2νF+ν(kη)

)
, (4.17)

where N ′(k) is an overall normalisation that does not affect any observable, and αk is a
constant function of the momentum which must be fixed using the initial condition for
Ψ[φ]. Near the boundary, fk(η) ∝ (−η)∆ + αk(−η)d−∆, and so physically αk is capturing
the subleading η dependence at late times.29

(4.17) already exhibits a very general feature: when written in terms of the data αn at
the conformal boundary,30 the coefficients in this expansion are analytic functions of the
momenta at small η (for |kη| < 1) and only develop non-analyticities once |kη| > 1 and the
mode crosses the horizon. This behaviour is not manifest if the initial condition for Ψ[φ] is
supplied in the bulk, for instance comparing (4.17) with the de Sitter mode function given
in (3.43), we see that αk is related to αin

k by,31

αk = ik2ν

(1− e2iπν)
1 + αin

k e
−2iπν

1 + αin
k

π21−2ν

Γ(ν)Γ(ν + 1) . (4.18)

The Bunch-Davies initial condition, for instance, sets αk ∝ ik2ν , and this introduces non-
analyticity32 into fk(η) (since k =

√
k · k is not analytic in k).

Quadratic coefficient. Analogously, (2.9) fixes the small η limit of ck−k(η) to be either
∆/(−η)d or (d − ∆)/(−η)d. Choosing ∆/(−η)d results in a series solution ck−k(η) =
(−η)−dcseries

k−k in which cseries
k−k is analytic in both η and k,

cseries
k−k (η) = ∆ + (−kη)2

2(ν − 1) + (−kη)4

8(ν − 2)(ν − 1)2 + . . .

= ∆ + kη
J1−ν(−kη)
J−ν(−kη) , (4.19)

that coincides with Ωdη∂ηF−ν/F−ν of (4.16).
28Note that the series F−ν(kη) = 0F1

(
1− ν;− 1

4k
2η2) can also be written in terms of a hypergeometric

function, which makes the analytic structure manifest — we have used a Bessel J function in (4.16) to
make contact with the Hankel mode functions of (3.43).

29One can therefore relate αk to the conjugate momentum for φ, since it is well-known holographically
that the coefficient of the (−η)d−∆ mode is conjugate to the coefficient of the (−η)∆ mode.

30Neglecting the overall normalisation, (4.17) obeys, fk
↔
∂ ηf

∗
k ∝ 2iνIm (αk) Ω1−d, and so when expanding

around αk = 0 the commutator [φ̂, Π̂] vanishes and fluctuations behave classically.
31Note that the overall normalisations are also related, N ′(k) = −N(k) i

π
2neiνπΓ(ν)(−k)−ν

(
1 + (αin

k )∗
)
.

32Fixing αk is essentially integrating out the conjugate momentum, which leaves behind an effective
description of φ dynamics which contains non-analyticities.
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While cseries
k−k /(−η)d is a particular solution to the Hamilton-Jacobi equation,

−(−η)dη∂η

(
cseries

k−k
(−η)d

)
=
(
cseries

k−k

)2
−
(
m2 + k2η2

)
, (4.20)

there is also the freedom to add to ck−k any solution of

−η∂ηck−k = 2cseries
k−k ck−k + (−η)d(ck−k)2 (4.21)

which depends on the Hamiltonian only implicitly (via cseries
k−k ). This corresponds to the free-

dom to add (−η)d−∆F+ν to our solution to the classical equations of motion. In particular,
for the mode function (4.17), the corresponding wavefunction coefficient is,

ck−k(η) =
cseries

k−k (η)
(−η)d + αk

(−η)2∆ c
initial
k−k (η) , (4.22)

where αk can be determined by specifying an initial condition for ck−k, and the function
cinitial

k−k (η) can also be written in terms of analytic functions as,

cinitial
k−k (η) =

∑
r=0

αrk(−η)2rνI
(r)
k (η) (4.23)

where the functions I(r)
k (η) are analytic in both η and k,

I
(r)
k = 1

F−νF−ν

(
F+ν
F−ν

)r
. (4.24)

This leads to the resummed, cinitial
k−k = 1/F−ν/(F−ν−αk(−η)2νF+ν). This resummation can

be represented graphically,33 as shown in figure 3.

Cubic coefficient. We can represent the transition from boundary αn to bulk cn graph-
ically for any non-Gaussian wavefunction coefficient. The simplest of these is the cubic
coefficient. Anticipating the resummation of the αk series for the external lines, we first
define a new coefficient,34

c̃k1k2k3 = ck1k2k3

3∏
j=1

(
F−ν(kjη)− αkj (−η)2νF+ν(kjη)

)
(4.26)

such that c̃k1k2k3 coincides with ck1k2k3 near the boundary and depends at most linearly
on any single αkJ ,

c̃k1k2k3(η) = αk1k2k3

(−η)3∆ + c̃k1k2k3(η)|α=0 +
3∑

perm.

δc̃k1k2k3

δαk1

∣∣∣
α=0

αk1

+
3∑

perm.

δ2c̃k1k2k3

δαk1δαk2

∣∣∣
α=0

αk1αk2 + δ3c̃k1k2k3

δαk1δαk2αk3

∣∣∣
α=0

αk1αk2αk3 , (4.27)

33The reason that it is factors of F+ν/F−ν which appear on the red internal lines of figure 3 is that,

(−η)2ν F+ν(kη)
F−ν(kη) =

∫
dη

η

2ν(−η)2ν

F−ν(kη)F−ν(kη) , (4.25)

where the right-hand side is an integral over all time of the αk = 0 propagator, 1/F−νF−ν .
34Note that this is simply (−η)−3∆cIk1k2k3 for the mode function (4.17).
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Figure 3. Adding a quadratic α2φ
2 to the boundary wavefunction (at time η = 0) affects the

two-point coefficient c2(η)φ2 at a bulk time η via the resummation shown above. This is analo-
gous to a mass insertion, m2φ2, shifting the propagator from 1/p2 to 1/(p2 − m2) in a standard
Lorentzian QFT.

where |α=0 denotes the function evaluated with all αn = 0. The η dependence of c̃3 is
now encoded in the various transfer coefficients δnc̃i/δαnj

∣∣∣
α=0

. For instance, for the cubic
interaction Hint = Ωd+1 1

3!v3φ
3, the corresponding coefficients are,

(−η)dc̃k1k2k3(η)|α=0 = v3I−−−k1k2k3
(η) (4.28)

(−η)d

(−η)2ν1

δc̃k1k2k3(η)
δαk1

∣∣∣
α=0

= v3I+−−
k1k2k3

(η)

(−η)d

(−η)2ν1+2ν2

δ2c̃k1k2k3(η)
δαk1δαk2

∣∣∣
α=0

= v3I++−
k1k2k3

(η)

(−η)d

(−η)2ν1+2ν2+2ν3

δ3c̃k1k2k3k4(η)
δαk1δαk2δαk3

∣∣∣
α=0

= v3I+++
k1k2k3

(η)

where the functions Iν1ν2ν3
k1k2k3

are analytic for |kjη| < 1, and straightforward to write down
by solving (2.27) with mode function (4.16),

Iσ1σ2σ3
k1k2k3

(η) = 1∑
i∆

σi
i −d

+ (−η)2∑
i∆

σi
i −d+2

∑
j

k2
j

4(σjνj−1)

+ (−η)4∑
i∆

σi
i −d+4

∑
j

k4
j

32(σjνj−1)(σjνj−2) +
∑
jj′

k2
jk

2
j′

16(σjνj−1)(σj′νj′−1)


+O(k6η6) . (4.29)

where ∆±j = d
2 ± νj (so ∆−j = ∆j and ∆+

j = d − ∆j). The main virtue of the expan-
sion (4.27) is that, since the Iσ1σ2σ3

k1k2k3
(η) are analytic in the momentum, locality of the

interaction Hamiltonian (i.e. that v3 is an analytic function35 of the kj) translates directly
into analyticity of the transfer coefficients given by (4.28).

35Of course, for a local interaction which is also de Sitter invariant, v3 will depend on η through the
combination Ω−2ki · kj . This does not affect our argument, since any polynomial dependence on η can be
incorporated into an analogous Iσ1...σn

k1...kn
(η) object by shifting the location of the poles in (4.29) (but this

will not change the analyticity of I in the momentum).
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Quartic coefficient. Next, we move on to the quartic coefficient, c4. Again anticipating
the resummation of the αk series for the external lines, we can define,36

c̃k1k2k3k4(η) = ck1k2k3k4

4∏
j=1

(
F−ν(kjη)− αkj (−η)2νF+ν(kjη)

)
(4.30)

− (−η)dck1k2−ksck3k4ksF+ν(ksη)
(
F−ν(ksη)− αks(−η)2νF+ν(ksη)

)
which coincides with ck1k2k3k4(η) at small η, and has an analogous expansion to (4.27)
which is at most linear in any particular αkJ . A few of the relevant transfer functions are
shown graphically in figure 4, and are listed below. As with the cubic coefficient, the quartic
transfer functions can be written in terms of manifestly analytic functions Iσ1σ2σ3σ4

k1k2k3k4
(η)

(which describes the contact contribution) and Iσ1σ2σs|σ3σ4+
k1k2−ks|k3k4ks(η) (which describes the

exchange contribution). While Iσ1σ2σ3σ4
k1k2k3k4

(η) is given by (4.29) (where the sums now run
from 1 to 4), the exchange contribution is captured by,37

Iσ1σ2σs|σ4σ4+
k1k2−ks|k3k4ks(η) = 1(∑4

i=1 ∆σi
i − d− (σs + 1)νs

)
(∆σ1

1 + ∆σ2
2 + ∆σs

s − d)

+
(−k3η)2

4(σ3ν3−1) + (−k4η)2

4(σ4ν4−1) + (−ksη)2

4(νs−1)(∑4
i=1 ∆σi

i − d− (σs + 1)νs + 2
)

(∆σ1
1 + ∆σ2

2 + ∆σs
s − d)

+
(−k1η)2

4(σ1ν1−1) + (−k2η)2

4(σ2ν2−1) + (−ksη)2

4(σsνs−1)(∑4
i=1 ∆σi

i − d− (σs + 1)νs + 2
)

(∆σ1
1 + ∆σ2

2 + ∆σs
s − d+ 2)

+O(k4η4) (4.32)

where ∆s = d
2 − νs is the weight of the exchanged particle.

In terms of the analytic I functions (4.37) and (4.32), the transfer functions for c̃4
under the interaction Hamiltonian Hint = Ωd+1

(
1
3!v3φ

3 + 1
4!v4φ

4
)
are given by:

• The term which is independent of the αn boundary conditions is,

(−η)dc̃k1k2k3k4(η)|α=0 = v4I−−−−k1k2k3k4
(η)

+ v2
3 I
−−−|−−+
k1k2−ks|k3k4ks(η) + 5 perm. (4.33)

36Note that this is the analogue of (−η)−4∆Ck1k2k3k4 for the mode function (4.17).
37This follows from solving (2.32) at small η, using the relation,∫

dη

η

2ν(−η)2ν

(F−ν(kη)− αk(−η)2νF+ν(kη))2 = (−η)2νF+ν(kη)
F−ν(kη)− αk(−η)2νF+ν(kη) , (4.31)

in place of Ω1−d/f∗kf
∗
k = i∂η [fk/f

∗
k ].
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Figure 4. Diagrammatic representation of the wavefunction coefficient c̃k1k2k3k4(η) and its depen-
dence on the boundary wavefunction coefficients αk1...kn

at η = 0.
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• The dependence on the quadratic initial condition, αk, is given by,

(−η)d

(−η)2ν1

δc̃k1k2k3k4(η)
δαk1

∣∣∣
α=0

= v4I+−−−
k1k2k3k4

(η) + v2
3 I

+−−|−−+
k1k2−ks|k3k4ks(η) + 5 perm.

(−η)d

(−η)2νs
δc̃k1k2k3k4(η)

δαks

∣∣∣
α=0

= v2
3 I
−−+|−−+
k1k2−ks|k3k4ks(η) + 5 perm.

(−η)d

(−η)2ν1+2ν2

δ2c̃k1k2k3k4(η)
δαk1δαk2

∣∣∣
α=0

= v4I++−−
k1k2k3k4

(η) + v2
3 I

++−|−−+
k1k2−ks|k3k4ks(η) + 5 perm.

(−η)d

(−η)2ν1+2νs
δ2c̃k1k2k3k4(η)
δαksδαk1

∣∣∣
α=0

= v2
3 I

+−+|−−+
k1k2−ks|k3k4ks(η) + 5 perm. (4.34)

and so forth — just as for the cubic coefficient, each of the αk1 , . . . , αk4 may only ap-
pear once in any term, and now there may further be an additional αks or αkt or αku .

• The cubic initial condition, αk1k2k3 , contributes in only three ways,

(−η)∆1+∆2+∆s
δc̃k1k2k3k4(η)
δαk1k2−ks

∣∣∣
α=0

= v3I−−+
k3k4ks(η)

(−η)∆1+∆2+∆s

(−η)2ν3

δc̃k1k2k3k4(η)
δαk1k2−ksδαk3

∣∣∣
α=0

= v3I+−+
k3k4ks(η)

(−η)∆1+∆2+∆s

(−η)2ν3+2ν4

δc̃k1k2k3k4(η)
δαk1k2−ksδαk3δαk4

∣∣∣
α=0

= v3I+++
k3k4ks(η) , (4.35)

plus terms related by permuting the external legs.

• Finally, we have a new initial condition, αk1k2k3k4 , which appears as a single term in
c̃k1k2k3k4 ,

(−η)4∆ δc̃k1k2k3k4(η)
δαk1k2k3k4

∣∣∣
α=0

= 1 , (4.36)

just like the first term in (4.27).

Since all of the transfer coefficients have the form vj × I, where the I functions are
analytic outside the horizon, we can again conclude that locality of the interaction Hamil-
tonian (in this case analyticity of both v3 and v4) is translated into analyticity of the c̃4
transfer coefficients. The same procedure can be carried out for any c̃n wavefunction coef-
ficient, and although we have focused on interactions of the form φn the same conclusion
can be reached for more general interactions which also contain Π (this requires defining a
new I object in which a ∂µF−ν is used in place of F−ν , but otherwise proceeds as above).
Locality of the bulk interactions guarantees that the transfer coefficients which relate c̃n(η)
to αn on superhorizon scales are analytic functions of the momenta.
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Horizon crossing. As |kη| approaches unity, the series solutions for the transfer coeffi-
cients must be resummed. Formally, this can be done using integrals over products of the
Bessel mode function, resumming (4.29) and (4.32) into,

Iσ1...σn
k1...kn(η) =

∫ η

0

dη′

η′

(
η′

η

)−d+
∑

i
∆σi
i

Fσ1ν1(k1η
′) . . . Fσnνn(knη′) , (4.37)

Iσ1σ2σs|σ4σ4+
k1k2−ks|k3k4ks(η) =

∫ η

0

dη′′

η′′

(
η′′

η

)∆σ3
3 +∆σ4

4 −∆s

Fσ3ν3(k3η
′′)Fσ4ν4(k4η

′′)F+νs(ksη′′)

×
∫ η′′

0

dη′

η′

(
η′

η

)−d+∆σ1
1 +∆σ2

2 +∆σs
s

Fσ1ν1(k1η
′)Fσ2ν2(k2η

′)Fσsνs(ksη′) ,

(4.38)

where again we have used ∆±j = d
2 ± νj (so ∆−j = ∆j and ∆+

j = d − ∆j). While these
expressions are not particularly enlightening for general ν, in section 5 we will see particular
cases in which these integrals can be performed and the transfer functions extended to
|kη| > 1 and into the horizon.

Method of regions. One useful feature of (4.37) and (4.38), even if they cannot always
be evaluated explicitly, is that they allow us to infer properties of our transfer functions
in the deep subhorizon limit, |kη| � 1. We do this by dividing the integration over η
into a number of regions, determined by the momenta. For example, consider the quartic
coefficients c̃k1k2k3k4 , where the arguments have been ordered so that k1 ≥ k2 ≥ k3 ≥ k4.
The η integrals in the transfer function can be written as,∫ η

0
dη′ =

(∫ −1/k1

0
+
∫ −1/k2

−1/k1
+
∫ −1/k3

−1/k2
+
∫ −1/k4

−1/k3
+
∫ η

−1/k4

)
dη′ , (4.39)

and in each region a different approximation for the mode functions may be used. If |η′|
is smaller than 1/kj , then the analytic expansion (4.16) is used, while if |η′| is larger than
1/kj then the asymptotic expansion,38

(−η)∆F−ν(kη) ∝ η
(
eikη − ieiνπe−ikη

)
, (4.40)

is used.
Focussing on the final region in (4.39), in which |η| is much larger than any momenta

and we can use (4.40), we see that each Iσ1σ2σ3σ4
k1k2k3k4

(η) will contain,

Iσ1σ2σ3σ4
k1k2k3k4

(η) ⊃
∫ η

−1/k4
dη (−η)−d+3 ∑

σ′j=±
ei(σ

′
1k1+σ′2k2+σ′3k3+σ′4k4)η (4.41)

and therefore in d = 3 will generically develop poles in 1/
∑
j kj , as well as all other folded

configurations (k1 +k2 +k3−k4, k1 +k2−k3−k4, etc.), when we transfer from the boundary
to deep inside the horizon. While the transfer functions are analytic outside the horizon

38Strictly speaking, one requires |kη| � |ν2−1/4| in d = 3 dimensions to use this expansion, but for light
fields we can safely treat the right-hand side as an order one number.
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for local interactions, non-analyticities inevitably develop once |kη| > 1. This argument is
somewhat heuristic, since we have neglected the other regions in (4.39), but nonetheless
we will observe precisely this behaviour in explicit examples in section 5.

The above discussion has assumed generic values of the conformal weights ∆j . How-
ever, note that for particular values of

∑
j ∆j and d there are simple-pole divergences in

both Iν1...νn
k1...kn and I

ν1...νn|ν′1...ν
′
n′

k1...kn|p1...pn′
(the integrals which determine the transfer coefficients).

We will now show how these can be systematically renormalised.

4.3 Renormalisation of the boundary wavefunction

In addition to the manifest analyticity, another advantage of expressing the wavefunction
coefficients in terms of the transfer functions is that the structure of boundary divergences
becomes clear. The integrals (4.37) and (4.38) have simple poles at particular values of the
scalar field masses and spatial dimension d. We will now show how these can be removed
in a systematic way by renormalising the wavefunction’s boundary condition.

Types of divergence. Let us begin by listing the various kinds of divergence we may
encounter at the boundary. Beginning with the contact integral (4.29), we see that this
leads to two qualitatively different kinds of divergence in the transfer functions. Firstly,
the I−...−k1...kn contain divergences when

∑n
j=1 ∆j = d− 2` (for any positive integer `), as can

be seen from (4.37). Adopting the language of [43], we will refer to this as an ultralocal
divergence. Secondly, there is an analogous divergence in I+−...−

k1...kn when d−∆1 +
∑n
j=2 ∆j =

d−2` approaches zero. Again following [43], we will refer to this as a semilocal divergence.
I++−...−

k1k2...kn and the other functions in (4.37) are finite for light fields39 in any d since 0 ≤
∆ < d/2, so 2d−∆1 −∆2 +

∑n
j=3 ∆j is always greater than d (and can never approach a

pole at d− 2`).
Moving on to the simplest exchange integral (4.32), we find the same ultralocal and

semilocal divergences, plus a new kind of divergence which appears only in Iσ1σ2+|σ3σ4+
k1k2−ks|k3k4ks ,

when
∑4
j=1 ∆σj

j = 2∆s − 2`, where ∆s is the conformal weight of the exchanged field.
Since this kind of divergence can appear only in 4-point correlators and higher, it does
not appear in the 3-point analysis of [43]. We dub these exchange divergences. In higher
n-point correlators, there are triple integrals, quadruple integrals, etc., and it seems that
at each order new exchange divergences are introduced.

We will not attempt a systematic classification of all such divergences here. Rather,
we will focus on the ultralocal and semilocal divergences stemming from the contact in-
tegrals (4.37). We will first show that both types of divergence can be dealt with by
renormalising the boundary condition at the conformal boundary, and then further show
that this is equivalent to performing a Boundary Operator Expansion to replace the (sin-
gular) bulk operators with (finite) boundary operators.

Ultralocal divergences. An ultralocal divergence appears as a 1/δn` pole, where δn` =∑n
j=1 ∆j − d + 2`. This kind of divergence can be removed by renormalising a single

39By ‘light’, we mean that they belong to the “complementary series” of de Sitter representations.
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wavefunction coefficient,

αren
n = αn −

µ−δn`

δn`
P2`(kJ) , (4.42)

where P2` is an analytic polynomial of degree 2` in the momenta, and µ is an arbitrary
scale introduced on dimensional grounds. For instance, the example of three conformally
coupled scalars from (4.13) corresponds to

∑
J ∆J = 3 in d = 3, which gives ` = 0 and so

P0 = 1 is a simple constant. More generally, from our expression (4.37) for the integral
Iσ1...σn

k1...kn (which determines the transfer function for any vnφn contact interaction), we see
that an ultralocal divergence in c̃n can indeed always be removed by (4.42),

c̃n = αn

(−η)
∑

j
∆j

+ vn
(−η)dI

−...−
k1...kn +O (αj<n)

= lim
δ`→0

 αn

(−η)
∑

j
∆j

+ vn

(−η)
∑

j
∆j+2`−δn`

(−kη)2`

δn`
+ finite


= αren

n

(−η)
∑

j
∆j

+ vn(−kη)2` log(−ηµ) + finite , (4.43)

where we have used (−kη)2` to represent a polynomial of degree 2` in the kJ (i.e. the coeffi-
cient at order (−η)2` in (4.29)). In fact, any interaction (not only φn) can be renormalised
in the same way, by choosing the function P2` in (4.42) appropriately.

Semilocal divergences. A semilocal divergence appears as a 1/δ′n` pole, where δ′n` =∑n
j=2 ∆j − ∆1 + 2`. This kind of divergence can only be removed by renormalising an

infinite number of wavefunction coefficients, starting at order n,

αren
k1...kn = αk1...kn +

∑
perm.

αp−p
δ′n`

P2`(p; k2, . . . ,kn) , (4.44)

αren
k1...kn+1 = αk1...kn+1 +

∑
perm.

αk1k2−p
δ′n`

P2`(p; k3, . . . ,kn+1) ,

...

αren
k1...k2n−2 = αk1...k2n−2 +

∑
perm.

αk1...kn−1p

δ′n`
P2` (−p,kn, . . . ,k2n−2)

+
∑

perm.

αp−p
δ′2n`

P2`(p; k1, . . . ,kn−1)P2`(−p; kn, . . . ,k2n−2)

...

where the P2`(p; k1 . . . ,kn−1) are again polynomials of degree 2` in the momenta, and we
adopted the convention that p =

∑n−1
j=1 kj is always set to be the sum of the remaining

n−1 arguments. Taking n = 3 and focussing on the δ′30 divergences found in our c̃4 transfer
coefficients above, we can see explicitly that (4.44) (with P0 a constant) has the effect of
removing the 1/δ′30 divergence from I+−−−

k1k2k3k4
and from every Iσ1σ2σ3|−−+

k1k2−ks|k3k4ks , and also the
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double pole from I−−+|−−+
k1k2−ks|k3k4ks . In fact, this tower of redefinitions (4.44) coincides with

a particular redefinition of the field φ1 (with conformal weight ∆1),

φ1 → φ1 + P2`(k1; k2, . . . ,kn)
δ′n`

φ2 . . . φn . (4.45)

In section 5 we will study an example of this kind of divergence, namely the three-
point coefficient of a massless field (which requires performing (4.45) with n = 3 and ` = 0).
Another example of this kind of divergence is the two-point coefficient, α2, which always
exhibits an ` = 0 divergence since (d −∆) + ∆ = d. In this case, n = 2 in (4.45) and all
that is required is a rescaling φ → Zφ. We will show below that this is most easily done
using a hard cutoff, namely φ → (−ηδ)∆φ (which is the familiar renormalisation of the
boundary value routinely used in holography).

When the initial condition for Ψ is provided at the boundary, η = 0, then renormal-
isation can be carried out straightforwardly by shifting the αn coefficients as in (4.42)
or (4.44). On the other hand, when the initial condition is provided in the bulk (e.g.
Bunch-Davies vacuum in the past), then the renormalisation must be carried out at the
level of the operators φ̂ and Π̂. We will now describe how this is done.

Operator mixing. On the boundary, we have a set of local operators, namely ϕ̂, its
momentum π̂ and their descendents, k2ϕ̂, k2π̂, . . .. When the bulk operator φ̂(η) (and its
canonical momentum Π̂(η)) approach the boundary, we must specify how it is mapped onto
the boundary operators.40 This mapping is known in the CFT literature as the “Boundary
Operator Expansion” (BOE), and in general takes the form,

lim
η→0
Ôbulk
i (η) =

∑
j

Zij Ôboundary
j . (4.46)

Since this limit is singular, it requires a small regulator, δ. The BOE coefficients Zij then
depend on this regulator in a way which is fixed by the isometries. For instance, in the
free theory with a hard cutoff at ηδ, the BOE is,

lim
η→0

[ Φ(η)
(−η)∆−

]
= Zφϕϕ̂+ Zφπ(−ηδ)2ν π̂ (4.47)

lim
η→0

[
(−η)∆−Π(η)

]
= ZΠππ̂ + ZΠϕ(−ηδ)−2νϕ̂ (4.48)

where the scaling weights are [ϕ̂] = ∆ and [π̂] = d−∆, and we have used scale-invariance
to write the Zij as constants (multiplying the appropriate power of δ). The commutation
relation,

[ϕ̂, π̂] = limη→0[φ̂(η), Π̂(η)]]
ZφϕZΠπ − ZφπZΠϕ

(4.49)

40Note that we have switched to the Heisenberg picture for the field operators for notational convenience.
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is canonically normalised providing ZφϕZΠπ − ZφπZΠϕ = 1. The quadratic correlators are
given by,

〈ϕ̂ϕ̂〉 = 1
2(−ηδ)2∆Im c2(ηδ)

(
ZΠπ − Zφπ (−ηδ)dRe c2(ηδ)

)
(4.50)

〈ϕ̂π̂〉 = − i2 + (−ηδ)−2ν (ZφϕZΠπ + ZφϕZΠϕ)(−ηδ)dRe c2(ηδ)
2(−ηδ)2∆Im c2(ηδ)

− (−ηδ)−2ν
ZΠπZΠϕ + ZφϕZφπ

(
(−ηδ)dRe c2(ηδ)

)2

2(−ηδ)2∆Im c2(ηδ)

〈π̂π̂〉 = (−η)−2ν

(
ZΠϕ − Zφϕ(ηδ)dRe c2(ηδ)

)2

2(−ηδ)2∆Im c2(ηδ)
+ Z2

φϕ

(−ηδ)2∆Im c2(ηδ)
2 .

Note that since Re c2 ∼ ∆/ηd and Im c2 ∼ 1/η2∆, these are finite providing we fix
ZΠϕ = ∆Zφϕ. The subleading Zφπ parameter may take any value,41 and we choose,

Zφϕ = 1 , Zφπ = 0 , ZΠπ = 1 , ZΠϕ = ∆ , (4.51)

which corresponds to the definition φ̂ = (−ηδ)∆ϕ̂ in the free theory. This is the reason that
the rescaling (4.9) is necessary to translate cn(η) (the wavefunction coefficients of Ψη[φ])
to αn (the wavefunction coefficients of Ψ0[ϕ]).

In an interacting theory, there can be further non-zero Zij coefficients. For instance,
whenever

∑n
j=1 ∆j = d, or equivalently d−∆1 =

∑n
j=2 ∆j , we can have mixing between π̂

and ϕ̂n−1,

lim
η→0

(
η∆−Πk1(η)

)
= ∆(−ηδ)−2νϕ̂k1 +π̂k1 +

ZΠϕn−1

n!

∫
k2...kn

ϕ̂k2 . . . ϕ̂knδ
d

 n∑
j=1

kj

 . (4.52)

because ZΠϕn−1 is no longer constrained to be zero by scale invariance. This occurs precisely
when δn0 = 0, corresponding to the ultralocal type of divergence. The effect of this mixing
is to introduce an additive counterterm in the boundary wavefunction coefficient (3.35),

lim
η→0

[
(−η)

∑
j

∆jcn(η)
]

= αn + ZΠϕn−1 (4.53)

which can be used to renormalise the ultralocal divergence, as shown in (4.43). The higher
` divergences, when δn` =

∑n
j=1 ∆j − d+ 2`→ 0, correspond to the mixing of ∂2`ϕ̂n−1 into

the BOE of Π̂, and can be similarly renormalised using the mixing coefficients ZΠ∂2`ϕn−1 .
Similarly, there is a second kind of mixing that takes place when ∆1 =

∑n
j=2 ∆j , which

allows ϕ̂ to mix with ϕ̂n−1,

lim
η→0

(Φk1(η)
η∆−

)
= ϕ̂k1 +

Zφϕn−1

n!

∫
k2...kn

ϕ̂k2 . . . ϕ̂knδ
3

 n∑
j=1

kj

 , (4.54)

41It is related to the Reparametrization Invariance (RPI) that one inevitably introduces when splitting
up degrees of freedom, see e.g. [44].
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since now a non-zero Zφϕn−1 is permitted by scale invariance. This has the effect of mixing
wavefunction coefficients of different order, e.g. when n = 3 the boundary coefficient (4.9)
becomes,

lim
η→0

[
(−η)

∑
j

∆jc3(η)
]

= α3 + Zφϕn−1
∑

perm.
α2 , (4.55)

while the c4, c5, etc. coefficients are also shifted into each other, as shown in (4.44). This
shift can be used to renormalise the semilocal divergences when δ′n0 → 0. The higher `
divergences, when δ′n` =

∑n
j=2 ∆j −∆1 + 2`→ 0, correspond to the mixing of ∂2`ϕ̂n−1 into

the BOE of φ̂, and can be similarly renormalised using the mixing coefficients Zφ∂2`ϕn−1 .
Finally, let us close this section with a conjecture. The new kind of exchange diver-

gence which we encountered in (4.38) is a result of 2∆s =
∑4
j=1 ∆j + 2`, which would be

the condition for a composite operator like : ϕsϕs : to mix with ∂2` : ϕ1ϕ2ϕ3ϕ4 :. Although
contact divergences can always be removed by the Boundary Operator Expansion of φ̂ and
Π̂, we speculate that to remove exchange divergences may also require an analogous expan-
sion of composite bulk operators. Understanding how to renormalise exchange divergences
is important, since they appear in even simple examples like the exchange of a massless
field (for which ∆ = 0). We will not pursue this further here, and instead turn now to three
concrete examples to which the above discussion in sections 2, 3 and 4 can be applied.

5 Some examples

In the preceding sections, we have discussed the impact of unitarity, de Sitter invariance and
locality of the bulk interactions on the wavefunction coefficients (and equal-time correlation
functions). These basic properties allowed us to draw very general conclusions about the
properties that we should expect from cosmological correlators, regardless of the specific
details of the interactions.

We will now focus on a small number of specific models, primarily as a sanity check —
to confirm that our general conclusions are realised in practice — but also to make many
of our main ideas more concrete and intuitive. Throughout this section we will work in
d = 3 spatial dimensions (except for the purposes of dimensional regularisation).

5.1 Conformally coupled scalar

As our first example, consider a conformally coupled scalar field on a fixed de Sitter back-
ground,

H[σ,Σ] =
∫

k

[
1

2Ωd−1 ΣkΣ−k + Ωd−1

2

(
k2 + 2

η2

)
σkσ−k

]
+Hint , (5.1)

where Σ is the momentum conjugate to σ, and Ω = 1/(−Hη).

Free theory

We begin by solving the free theory, with Hint = 0.
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Gaussian coefficient. The two-point wavefunction coefficient is given by solving the
nonlinear first-order differential equation (2.9), with ν = 1/2 (i.e. ∆ = 1), which gives,

ck,−k(η) = 1
H2η3 + ik

H2η2

(
1− 2αin

k
αin

k − ei2kη

)
, (5.2)

up to an undetermined constant of integration αin
k . Solving (2.13) for the mode function

introduces a second undetermined constant, N ,

fk(η) = −Hη√
2ik

N(k)
(
e−ikη +

(
αin

k

)∗
e+ikη

)
. (5.3)

The choice of N does not affect any wavefunction coefficient, and it is conventional to set
N(k) = 1/

√
1− |αin

k |2 in order to normalise the Wronskian, f∗k
↔
∂ ηfk = −iH2η2 (which

gives canonical commutation relations). Choosing the Bunch-Davies vacuum in the past
corresponds to setting the integration constant αin

k = 0 (which ensures that fk(η) ∼ e−ikη

at early times). Note that we have chosen the constant phase of fk(η) so that, when
restricted to the Bunch-Davies state, fk̄(η) = f∗k(η) implies simply |k̄| = −|k|.
de Sitter isometries. (3.14) and (3.18) give the following two-point correlation functions,

〈σkσ−k〉′(η) = −H
2η2

2k
1 + |αin

k |2 + 2Re
[
αin

k e
i2kη

]
1− |αin

k |2
, (5.4)

〈Σkσ−k〉′(η) = i

2 −
1

2kη
1 + |αin

k |2 + 2Re
[
αin

k (1 + ikη)ei2kη
]

1− |αin
k |2

, (5.5)

〈ΣkΣ−k〉′(η) = −
k

(
1− |αin

k |2 + (1+|αin
k |

2+2 Re[αin
k (1+ikη)ei2kη])2

k2η2(1−|αin
k |2)

)
2H2η2 (1 + |αin

k |2 + 2Re
[
αin

k e
i2kη]) , (5.6)

where Σ is the momentum conjugate to σ. For the corresponding unequal-time correlator to
be invariant under dilations,

∑
J DJ〈σk1(η1)σk2(η2)〉 = 0, the equal-time correlator (with

δ3(k1 + k2) removed), must satisfy,42

(3− η∂η + k∂k) 〈σkσ−k〉′(η) = 0 , (5.7)

which in the case of (5.4) sets ∂kαin
k = 0 (and we have assumed rotational invariance, so

that αk is a function of k only). Note that invariance under the other three de Sitter
isometries,

∑
J KJ〈σkσ−k〉′ = 0, is automatic since KJ is odd in kJ (and k1 = −k2). The

same conclusion is reached by instead applying (3.38) and (3.41) directly to (5.2).

Boundary coefficient. If we instead write c2 in terms of the late time boundary condi-
tion αk, so that,

ck−k(η) = 1
H2η3 + k

H2η2
αk cos(kη)− k sin(kη)
k cos(kη) + αk sin(kη) , (5.8)

42Note that ∂η〈φk1 . . . φkn〉(η) =
∑

J
∂ηJ 〈φk1 (η1) . . . φkn (ηn)〉|η, and for the two-point function in par-

ticular k∂k〈φkφ−k〉′ =
∑

J
kJ · ∂kJ 〈φk1φk2〉′.
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which corresponds to mode functions,

fk(η) ∝ η cos(kη) + α∗k
η

k
sin(kη) = η + α∗kη

2 +O(η3) , (5.9)

then we see that,

αk = ik
1 + αin

k
1− αin

k
, (5.10)

consistent with the general relation (4.18). The Bunch-Davies condition in the past corre-
sponds to the non-analytic boundary condition αk = ik in the future, and more generally
any de Sitter invariant state is characterised by an αk = ik × const.

Quartic interaction, σ4

Now consider turning on a single quartic interaction, Hint = Ωd+1λ 1
4!σ

4
x.

Quartic coefficient. Solving (2.24), assuming for the moment a Bunch-Davies boundary
condition for c2, gives a simple quartic wavefunction coefficient,

ck1k2k3k4(η) = 1
H4η4

[
iλ

kT
+ αin

k1k2k3k4e
−ikT η

]
, (5.11)

in terms of a single undetermined coefficient, αin
k1k2k3k4

(recall that kT = k1 + k2 + k3 + k4
is the total |kJ |).

Note that in this case there is no exchange contribution to c4, and consequently the
constant of motion β4 (2.43) is given solely by the discontinuity (2.36) of (5.11),

β4 = Disc cI4 = Discαin
4√

ik1ik2ik3ik4
(5.12)

and ∂ηβ4 = 0 is indeed conserved, since it is determined by the initial condition αin
4 .

de Sitter isometries. The corresponding equal-time correlators from (3.16) and (3.26)
are,

〈σk1σk2σk3σk4〉
′(η) = λH4η4∏

j kj

[ 1
kT

+ Im
[
αin

4 e
−ikT η

]]
, (5.13)

〈Σk1σk2σk3σk4〉
′(η) = λH2η∏

j kj

[ 1
kT

+ Im
[
αin

4 e
−ikT η

]
− Re

[
αin

4 ikT ηe
−ikT η

]]
. (5.14)

For the corresponding unequal-time correlator to be invariant under the de Sitter isometries,
the equal-time correlator (with δ3(k1 + k2) removed) must satisfy (3.38) and (3.41),(

+9− η∂η +
∑
J

kJ∂kJ

)
〈σk1σk2σk3σk4〉

′ = 0 (5.15)

∑
J

kJ
kJ

[(
4∂kJ + kJ∂

2
kJ

)
〈σk1σk2σk3σk4〉

′ − 2η
Ω2∂kJ 〈σk1 . . .ΣkJ . . . σk4〉

′
]

= 0 , (5.16)
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where we assumed that the correlator is a function of the |kj | only (for a simple φ4 contact
interaction, this is guaranteed providing αin

4 depends only on the |kj |). Dilations require
that αin

4 ∼ 1/k, while de Sitter boosts require that (∂2
kI
− ∂2

kJ
)αin

4 for every pair of I
and J . Obvious solutions are αin

4 ∝ 1/kT , and the Bunch-Davies condition, αin
4 = 0,

which both satisfy these conditions.43 This coincides with the conformal constraints (4.4)
and (4.5) placed on αin

4 by the isometries δDΓ (3.36) and δKΓ (3.39) acting directly on the
wavefunction.

Boundary coefficient. Near the boundary at η = 0, there is no divergence in η4c4(η),
and so we can immediately write down the boundary coefficient α4 in terms of the initial
condition αin

4 (assuming αin
2 = 0),

α4 = iλ

kT
+ αin

4 . (5.17)

Providing αin
4 satisfies the above conditions, this satisfies the Ward identities of a primary

correlator in a 3d CFT. Also note that the Bunch Davies initial condition, αin
4 = 0,

corresponds to the non-analytical boundary state, α4 = iλ/kT in the future.
Despite σ4

x being a simple local interaction, the expressions (5.11) and (5.17) are not
analytic in the momenta since we have enforced a condition on αin

k in the far past (effectively
integrating out the canonical momentum, fixing ∂ηφ in terms of a non-analytic function
of k). Instead, we can write a more general expression for c4 by leaving the boundary
condition for c2 arbitrary, and utilizing the transfer functions (4.33)–(4.36). For this simple
contact interaction, only the Iσ1σ2σ3σ4

k1k2k3k4
(η) integrals (4.37) are needed, and they are given by,

I−−−−k1k2k3k4
(η′) = 1

η′

∫ η′

0
dη cos(k1η) cos(k2η) cos(k3η) cos(k4η) (5.18)

I+−−−
k1k2k3k4

(η′) = 1
η′

∫ η′

0
dη sin(k1η) cos(k2η) cos(k3η) cos(k4η) . . . etc. (5.19)

These are manifestly analytic outside the horizon (i.e. for |kη| < 1), for instance,

I−−−−k1k2k3k4
(η) = 1− 1

6

4∑
perm.

k2
1η

2 + 1
120

4∑
perm.

k4
1η

4 + 1
20

6∑
perm.

k2
1k

2
2η

4 +O(|kη|6) , (5.20)

but then as |kη| ∼ 1 it is necessary to resum this series, which in this simple example can
be done exactly,

I−−−−k1k2k3k4
(η) = 1

16

16∑
sJ=±

ei(s1k1+s2k2+s3k3+s4k4)η

s1k1 + s2k2 + s3k3 + s4k4
(5.21)

which produces the familiar kT pole, as well as the various folded singularities, as antic-
ipated by our previous Method of Regions argument in section 4.2. Choosing αk = ik

(the Bunch-Davies condition) leads to a cancellation of all folded singularities, produc-
ing (5.17), but while this has simplified the analytic structure at |kη| > 1 it comes at the
cost of manifest analyticity at |kη| < 1 scales.

43We also note that when αin
4 = 0, choosing any constant αin

2 also gives a 〈σk1σk2σk3σk4〉′ which satis-
fies (5.15) and (5.16), and therefore any α-vacuum is also consistent with the de Sitter isometries.
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General contact contribution, σn

For a general g
n!Ω

d+1σn interaction, the contact contribution to cn (assuming a Bunch-
Davies initial condition for c2) can be written simply as,

cn(η) = αin
n

ηn
e−ikT η − g

ηd
e−ikT ηEn−d+1 (−ikT η) , (5.22)

where we have used d = 3 dimensional mode functions but allowed for a general d-
dimensional volume element Ωd+1 in the interaction (since this will allow us to compare
with the divergent case n = 3 below). We have also momentarily set H = 1 (since it can
always be restored by inspecting the mass dimension of each term).

Constants of motion. Since this is purely a contact contribution to cn, the discontinu-
ity (2.36) must be conserved. Indeed, we see explicitly that,

βn = Disc cIn(η) = Discαin
n√

ik1 . . . ikn
− Im g

ηd−n
√
ik1 . . . ikn

En−d+1 (−ikT η) (5.23)

and so for unitary dynamics (i.e. a real potential, so that Im g = 0), βn is indeed a constant
of motion, and is set by the initial condition for αin

n .

de Sitter isometries. A dilation acting on this cn(η) gives,

δD cn(η) = e−ikT η

ηn

[
−d+ n+

∑
J

kJ · ∂kJ

]
αin
n (5.24)

using (3.37) and (4.4). For boosts, notice that since ∂2
k1

and 1
k1

(
1− η∂ηf∗k1

/f∗k1

)
∂k1 acting

on the interaction contribution both yield results which depend only on kT , the interaction
contribution to (3.40) vanishes by momentum conservation, leaving only a special conformal
transformation (4.5) acting on αin

n ,

δKcn(η) = e−ikT η

ηn

∑
J

[
2
(
∆−J + kJ · ∂kJ

) ∂

∂kJ
− kJ∂2

kJ

]
αin
n . (5.25)

The result (5.22) is therefore de Sitter invariant providing that the initial state αin
n is

conformally invariant, with the scaling of a correlator of n fields each of weight 2 (= d−∆
for a conformally coupled mass).

Boundary coefficient. At late times, assuming n > d,

cn(η) = 1
ηn

[
αin
n + g

(−ikT )n−dΓ(n− d) +O(η)
]
, (5.26)

we see that this has an order (n− d) pole in kT .
So the general picture for contact interactions is quite simple. In terms of the αn

near η = 0, the wavefunction coefficient cn can be written via transfer functions which are
analytic providing every |kJη| < 1, e.g.,

I−...−k1...kn(η) = 1
n− d

− 1
2(n− d+ 2)

n∑
perm.

k2
1η

2 +O(|kη|4) , (5.27)

but once |kη| exceeds 1 then this series resums into kT poles up to order44 (n− d).
44Note that if we had considered an interaction with derivatives, then this would also increase the order

of the kT pole (at fixed n− d).
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If n = d, then there are divergences in the transfer functions which must be regulated
— we will now discuss this case in more detail.

Cubic interaction, σ3

Consider the single interaction Hint = Ωd+1H
3!λσ

3
x (the factor of H ensures that λ, our

expansion parameter, is dimensionless).

Bunch-Davies state. Solving the Hamilton-Jacobi equation gives,

ck1k2k3(η) = ei
∑

J
kJη

H3η3

(
λEi [−ikT η] + αin

k1k2k3

)
(5.28)

where αin
3 is an undetermined constant of integration.

de Sitter isometries. Assuming αin
3 is real, the equal-time correlators are,

〈σk1σk2σk3〉(η) = λH3η3∏
J kJ

[
−(Ci + αin

3 ) sin +Si cos
]
, (5.29)

〈Σk1σk2σk3〉(η) = λH∏
J kJ

[
− (k1η cos + sin)

(
Ci + αin

3

)
+ (cos−k1η sin) Si

]
.

where we have suppressed the kT η argument of sin and cos, as well as of the sine integral,
Si, and the cosine integral Ci. Invariance of 〈σk1(η1)σk2(η2)σk3(η3)〉 under dilations and
de Sitter boosts places the constraints (3.33) on (5.29), requiring that

∑
J kJ∂kJα

in
3 = 0

and that (∂2
kI
− ∂2

kJ
)αin

3 = 0 for every pair of I and J (where we have used that αin
3 can

always be written in terms of the three |kj | only, using k1 + k2 + k3 = 0). αin
3 is therefore

constrained to be dimensionless and simultaneously a function of k1±k2, k1±k3 and k2±k3
only — the final requirement of crossing symmetry then fixes αin

3 to be a constant.

Boundary divergence. Near the boundary, there is a logarithmic divergence,

Ei
[
−i
∑
J

kJη

]
= log(ikT η) + γE +O(η) (5.30)

and so we must renormalise α3 = limη→0H
3η3ck1k2k3 .

In d = 3−δ dimensions, the boundary coefficient α3 can be computed directly in terms
of αin

3 using a triple-H integral (evaluated in the appendix),

αk1k2k3 = N1N2N3

∫ 0

−∞
dη ∂ηc

I
k1k2k3

= αin
k1k2k3 + λ

2

[1
δ

+ log (kT ) + finite
]
, (5.31)

where NJ = iπ(kJ/2)νJ/Γ(ν̃J)N(kJ) is the finite limη→0Hη
∆/fk(η), and ∂ηc

I
k1k2k3

=
λHΩd+1fk1fk2fk3 from the equation of motion (2.27). In the minimal subtraction
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scheme (4.42), the coefficient is rendered finite by an additive renormalisation of the bound-
ary condition,

αk1k2k3 = αren
k1k2k3 −

λµ−δ

2δ (5.32)

as discussed in (4.13). This results in a finite αren
3 , which depends logarithmically on the

momenta, and satisfies an anomalous conformal Ward identity (4.15).
Rather than start in the Bunch-Davies state and evolve forward until we encounter

this divergence at the endpoint of the evolution, we can instead describe the bulk c3(η)
using the transfer functions (4.27).

Transfer functions. Since
∑
i ∆i = d, it is I−−−k1k2k3

which is responsible for the late time
divergence in the transfer function,

I−−−k1k2k3
(η) = 1

d− 3 − log(η)− 1
4
∑
J

k2
Jη

2 +O(|kη|4) (5.33)

we see that the transfer function is analytic in momenta for |kη| < 1, but due to the
divergence has developed a logarithmic dependence on η. As we transfer from the boundary
at η = 0 into the bulk, eventually we reach horizon crossing at |kη| ∼ 1 and it is necessary
to resum the series. In this case we can perform the resummation exactly,

I−−−k1k2k3
= 1

3−d−log(η)

− 1
8

8∑
sJ=±

(Ci((s1k1+s2k3+s3k3)η)−log((s1k1+s2k3+s3k3)η)−γE) , (5.34)

and the series in k2j becomes a logarithmic singularity at large η (in both kT and its
folded counterparts), consistent with our previous expectation of an order n− 3 pole from
a general contact contribution to cn.

To remove this divergence from I−−−k1k2k3
, we must redefine the boundary condition

on α3,

αren
k1k2k3 = αk1k2k3 −

λµd−3

d− 3 (5.35)

where we have introduced a scale µ required on dimensional grounds. When written in
terms of this αren

3 , the coefficient c3(η) is now finite as d → 3 for any value of α2. In
particular, choosing the Bunch-Davies α2 = ik removes the folded singularities at early
times and produces a renormalised coefficient,

cIk1k2k3(η) = αren
k1k2k3 + λ

(
Ei[−ikT η]− log

(−ikT
µ

)
− γE

)
. (5.36)

Taking the limit η → −∞(1− iε) to connect with the state in the far past, we find that,

αin
3 = αren

3 − λ log
(−ikT

µ

)
− λγE . (5.37)

Setting the scale µ close to kT ensures that the log is small and allows a constant αren
3 to

reproduce the Bunch-Davies correlators in the bulk.
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5.2 Massless scalar

Now we will consider a massless scalar, φ, on de Sitter, with free Hamiltonian given by (2.4)
with m = 0 and Ω = 1/(−Hη).

Free theory

The Gaussian width is given by,

ck−k(η) = k2

H2η(1− ikη) , (5.38)

where we have chosen the Bunch-Davies boundary condition αin
2 = 0 so that the corre-

sponding mode function,

fk(η) = H(1 + ikη)
ik

e−ikη√
2ik

, (5.39)

vanishes as η → −∞(1− iε). Note that we have chosen the overall phase of fk(η) so that
sending k → −k gives fk(η)→ f∗k(η).

This corresponds to a field correlator,

〈φkφ−k〉 = H2

2k3 (1 + k2η2) . (5.40)

Boundary coefficient. Note that while c2 diverges as we approach the boundary at
η = 0, since ∆ = 0 for massless fields the divergence is softened from ∆η−d to k2η2−d/(2ν−
2). In dimensional regularisation this vanishes, but with a hard cutoff at ηδ this requires
an additional renormalisation of the α2 boundary condition,

αk = αin
k −

k2

3ηδ
, (5.41)

which can be thought of as adding a counterterm (∂µφ)2 to the effective action. The
Bunch-Davies condition in the past corresponds to setting this αren

2 = i in the future (and
not the bare α2).

This gives a renormalised correlator of boundary sources,

αren
2 = k3

iH2 (5.42)

which satisfies the Ward identity for a 3-dimensional two-point function of primary opera-
tors each with weight 3.

φ3 interaction

Cubic coefficient. The cubic wavefunction coefficient (with αin
2 = 0) is given by,

cIk1k2k3(η) = αin
k1k2k3 + g

6
√

2H(−ik1k2k3)3/2

(
− Ei[ikT η]

3∑
perm.

ik3
1

eikT η
3∑

perm.

(
1

3η3 −
ik1
η2 + k2

1 − k1k2
η

))
,

(5.43)
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where kT = k1 + k2 + k3. Note that since the exponential integral obeys Ei[z]∗ = Ei[z∗],
we have that,

Disc cIk1k2k3(η) = Discαin
k1k2k3 (5.44)

whenever gφ3 is a unitary interaction (i.e. Im g = 0), and so the βk1k2k3 = Discαin
k1k2k3

of
the initial state is conserved throughout the time evolution.

de Sitter isometries. This corresponds to an equal-time correlator,

〈φk1φk2φk3〉
′ = Im

(
αin

k1k2k3

∏
J

fkJ (η)
)

+ gH2∑
J k

3
J

24k3
1k

3
2k

3
3

((
1−

3∑
perm.

k1k2η
2
)
Re
(
e−ikT ηEi [ikT η]

)

−
(
kT η + η3k1k2k3

)
Im
(
e−ikT ηEi [ikT η]

)
− 1

)

+ gH2

24k3
1k

3
2k

3
3

(
k1k2k3

(
1 +

∑
J

k2
Jη

2 −
3∑

perm.
k1k2η

2
)
−

6∑
perm.

k1k
2
2

)
(5.45)

which indeed obeys (3.33), providing αin
3 satisfies the conformal Ward identities (4.4)

and (4.5).

Boundary renormalisation. As η → 0, the contribution from interactions to (5.43)
diverges — the interactions do not turn off fast enough at late times, and lead to a formally
infinite change in the wavefunction between αin

3 and α3 on the boundary. To renormalise
the divergence in c3, we will now write it in terms of the boundary value of Ψ at η → 0.
Using a hard-cutoff, this is given by,

cIk1k2k3(η) = lim
ηδ→0

(
fk1(ηδ)fk2(ηδ)fk3(ηδ)fk4(ηδ)αk1k2k3(ηδ)+

∫ η

ηδ

dη′∂ηck1k2k3(η′)
)

(5.46)

=αren
k1k2k3(µ)− g

H4

3∑
perm.

(
(−2+2γE+iπ)k3

1−2k2
1(k2+k3)+ ik3

1
3 log(−kTµ)

)

+ g

6
√

2H(−ik1k2k3)3/2

(
−Ei[ikT η]

3∑
perm.

ik3
1 +eikT η

3∑
perm.

(
1

3η3−
ik1

η2 + k2
1−k1k2

η

))

where we have renormalised the boundary condition (adopting a minimal subtraction
scheme),45

αren
k1k2k3(µ) = αk1k2k3 −

2g
H4

[ 3∑
perm.

(
1

3η3
δ

+ k2
1 − k1k2
ηδ

− ik3
1

3 log(−µηδ

)]
. (5.47)

45In order to remove the logarithmic log(ηδ) divergence, it is necessary to introduce a scale µ in this
redefinition.
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This produces a c3(η) which is now finite for any η (assuming |η| > |ηδ| before ηδ is taken
to zero), and which asymptotes to αren

k1k2k3
at the boundary. Choosing Bunch-Davies in the

past, αin
3 = 0 in (5.43), corresponds to choosing,

αren
k1k2k3 = g

H4

3∑
perm.

(
(−2 + 2γE + iπ)k3

1 − 2k2
1(k2 + k3)

)
, (5.48)

in (5.46). At the conformal boundary, the Bunch-Davies vacuum corresponds to a non-local
state.

The coefficient of the logarithmic running is scheme-independent. For instance, using
instead dimensional regularisation,

cIk1k2k3(η) = lim
δ→0

(
αk1k2k3 +

∫ η

0
dη′ ∂ηck1k2k3(η′)

)
= lim

δ→0

(
− i

H4
k3

1 + k3
2 + k3

3
3δ

)
, (5.49)

requires a different redefinition of the boundary condition,46

αk1k2k3 = αren
k1k2k3 − µ

−εk
3

δ
(5.50)

but produces a renormalised coefficient with the same log(kµ) dependence on the RG
scale µ.

Boundary operator mixing. For massless scalars, ∆− = 0 and so 2∆− + ∆+ − d = 0
and the three-point function has a logarithmic semi-local divergence. The renormalisation
of α3 can be understood as the operator redefinition,

φ→ φ− g

δ
φ2 , (5.51)

which implements the following redefinition of the boundary condition,

αk1k2k3 = αren
k1k2k3 −

2g
ε
α2 , αk1k2k3k4 = αren

k1k2k3k4 −
g

δ
αk1k2k3 −

g

δ2α2 , . . . (5.52)

Note that since we are working with the Bunch-Davies initial condition, αin
2 = 0, this

corresponds to α2 = ik3, and so (5.52) indeed corresponds to (5.50) for α3.

5.3 EFT of inflation

Let us move from the pure de Sitter spacetime to discuss inflation. An inflationary epoch
can be thought of as a de Sitter spacetime where time translations are spontaneusly broken.
This broken symmetry will imply the existence of a Goldstone mode π(x). From an effective
field theory point of view we can write the most general action for the scalar field π which
is consistent with the rest of the symmetries of de Sitter. The advantge of this approach is
that we can be rather agnostic about the field content of de Sitter, and for example include
the case where there is a non canonical kinetic term for the inflaton.

46The mass dimension of αk1k2k3 requires the addition of a scale µ in this redefinition.
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There is a general procedure for implementing this [11], where one starts by writing
down the most general action consistent with softly broken time traslations. This implies
that, for example, the first terms will be S ∼

∫
d4x
√
−g(c(t)R+g00 +Λ(t)+ . . .), where the

coeffiecients c(t) and Λ(t) parametrise the new time dependence, and the dots are higher
order terms in derivatives of the metric. To obtain the Goldstone mode one reintroduces
time reparametrisations via the Stuckelberg trick, t → t − π(x). Doing so, one gets an
action for the graviton and the scalar field π. This action contains the kinetic term and
also the self interactions of the Goldston mode, but also all allowed interactions with the
graviton, so solving the system in full generality is not possible analytically.

In order to proceed let us notice following [11], that the leading order mixing term of
the scalar field π with the graviton is given by 2MPl

2Ḣπ̇δg00 ∼ −6MPl
2Ḣ(εH2π2). This

has to be compared with the kinetic term for π, −MPl
2Ḣπ̇2. We have that,

mixing
kinetic = 3εH2π2

π̇2 = 3εH2

ω2 . (5.53)

The mixing becomes negligible in the limit when frequencies are ω � ωmix ≡
√
εH. So large

frequency modes are effectively decoupled from gravitational fluctuations, and we can write
the action for Goldstone mode on a fixed curved background neglecting couplings with the
graviton modes. The decoupled action is,47

S=
∫
d4x
√
−g
[
−MPl

2Ḣ

c2
s

(
π̇2−c2

s

(∂iπ)2

a2

)
+MPl

2Ḣ
(1−c2

s)
c2
s

(
π̇3−π̇ (∂iπ)2

a2

)
− 4

3M
4
3 π̇

3
]

+. . .

(5.54)

First let us note that modes leave the horizon at ω = H, so we can relate the Goldstone
to observations by considering this action. Let us discuss the action (5.54). Besides the
usual kinetic term we have introduced the speed of sound for the peturbations c2

s. This
parametrises the effect of a non-canonical kinetic term (and also as the effect of integrated
out heavy degree of freedoms [45–47]). Note that when cs 6= 1 scale invariance is broken
even at kη → 0 and so fixing the correlation functions by using conformal symmetry at the
future infinity is no longer possible. The second term M4

3 , parameterises self interactions
of the Goldstone mode and is present even in single field inflation where it is of order ε2.

It is convenient to introduce the symmetry breaking scale f4
π ≡ 2MPl

2|Ḣ|cs, which
corresponds to the scale when time traslations are broken [20]. For the case of single field
inflation f4

π = φ̇, which matches the intuition that a background spontaneously break the
de Sitter symmetry.

Equations of motion. To calculate the Hamiltonian associated to (5.54) we first need
the conjugate momentum to π, Pπ = ∂L

∂π̇
, which is a non linear equation in π̇. We can

invert this relation if we consider that f−4
π � 1. Using the solution for π̇ we can write

47Note that we are working to leading order in a slow-roll expansion, and neglecting the time dependence
of the Wilson coefficients and the corresponding mass term for π.
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down the Hamiltonian, which at leading order is,

H =− 1√
−g

c3
s

8f4
π

P 2
π+2
√
−g f4

π

a2cs
∇2
π−

(c2
s−1)
2a2 Pπ(∇π)2+ 1

g

(
c6
s(c2

s−1)
32f8

π

+ 1
48
M4

3 c
9
s

f12
π

)
P 3
π+. . .

(5.55)
For energies much below the symmetry breaking scale f4

π , the wavefunction evolution is
given by the Schrödinger equation H = ∂ηS. Now given an observed state |Ψ〉 we can
constrain the coefficients of the Hamiltonian by assuming that the initial state was Bunch
Davis. The equation for the two point function is given by

3Hck−k + 1
a2∂ηck−k = c3

s

f4
π

c2
k−k + f4

π

cs

1
a2k

2. (5.56)

This equation looks similar to a massless scalar field on FLRW but now the coefficients
are time dependent. The above equation can be solved analytically when we consider de
Sitter evolution and that cs and f4

π are time and scale independent. We have that,

ck−k(η) = f4
πH

2

c3
s

k2η2c2
s

1 + ikηcs
, (5.57)

where to fix the initial conditions we have assumed a Bunch-Davies initial state. In gen-
eral inflation breaks the de Sitter isometries and in particular the spacetime is no longer
conformally invariant at kη → 0.

The Hamiltonian (5.55) contains interactions which are higher order in momentum and
that we did not take into account before. We can still use (2.24) to obtain the wavefunction
coefficients. For example the equation for the three point function is given by,(

3H + 1
a2

∂

∂η

)
cIk1k2k3 =(

c6
s(c2

s − 1)
32f8

π

+ 1
48
M4

3 c
9
s

f12
π

) 3∏
i=1

cIk−k
fki
− (c2

s − 1)
a2 fk1fk2fk3

∑
perms(1,2,3)

cIk−k
fkif−ki

(kj · kk)

(5.58)

Boundary coefficients. This differential equation can be brought to an integral form.
Although it is possible to specify an arbitrary initial condition, for now let us assume a
Bunch-Davies initial state. This allows to specify the contour at η → −∞ so the integral
vanishes there. Then to fix the Hamiltonian one will have to rely on a potentially observed
bispectrum. This means that one, in principle, can constrain all the coefficients appearing
in the Hamiltonian (5.55). The first term appears in slow roll inflation, in which case cs = 1
and 1

48
M4

3 c
9
s

f12
π

= −1
ε , where ε is the slow roll parameter. The three point function coefficient

is given by,

(αk1k2k3)π̇3 ∼
(Hηδ)3∏3
i=1 f

∗
ki

(ηδ)

∫ ηδ

−∞

dη′

(Hη′)4

3∏
i=1

f∗ki(η
′)cki−ki(η

′)

= 1
a(ηδ)3

(
k2

1k
2
2k

2
3

(k1 + k2 + k3)3 +O(ηδ)
)

(5.59)
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When cs 6= 1 the second term also contributes to the three point function. After a straight-
forward calculation we get,

(αk1k2k3)π̇∇π2 = c2
s−1

a(ηδ)3∏3
i=1 f

∗
ki

(ηδ)

∫ ηδ

−∞

dη′

(Hη′)2

3∏
i=1

f∗ki(η
′)
∑

perm.
ck1−k1(η′)k2 ·k3

= c2
s−1
a(ηδ)3

∑
perm.

(
k2

1−k2
2−k2

3
(k1+k2+k3)3k

2
1(k2

1 +3k1(k2+k3)+2(k2
2 +3k2k3+k2

3))+O(ηδ)
)

(5.60)

Both results match known expressions at η → 0 for the three point function [48].

Bulk coefficients. We close this section with explicit formulae for the wavefunction in
the EFT of inflation at finite η,

(ck1k2k3)Sπ̇3 ∼ (Hη)3
∫ η

−∞

dη′

(Hη′)4

3∏
i=1

(
Kki(η′)cki−ki(η

′)
)

= i

k3
T

3∏
i=1

(
ki

kiη − i

)( 3∑
i=1

kiη (kT η − 2i)− 2
)

(5.61)

When cs 6= 1 the second term also contributes to the three point function,

(ck1k2k3)Sπ̇∇π2 = c2
s−1
a(η)3

∫ η

−∞

dη′

(Hη′)2

3∏
i=1

Kki(η′)
∑

perms(1,2,3)

(
cki−ki(η

′)kj ·kk
)

=− (c2
s−1)a(η)−3

(k1η−i)(k2η−i)(k3η−i)k3
T

×
3∑

perm
k2

1

(
−k2

1 +k2
2 +k2

3)((2kT−k1)kT +2k2k3+ikT (k1kT +2k2k3)η−k2
Tk2k3η

2
)

(5.62)

6 Discussion

In this work, we have studied the time evolution of scalar field correlators on a fixed de
Sitter background using the wavefunction in the Schrödinger picture. This is a concrete
arena in which to explore properties of cosmological correlators, since the dominant signals
produced during inflation originate in the correlations of a scalar field on a quasi-de Sitter
background. Rather than focus on any particular model of inflation, we have assumed only
that the interaction Hamiltonian has certain foundational properties — namely unitary, de
Sitter invariance and locality. We have shown that,

Unitarity ⇒ One constant of motion, βn, for every wavefunction coefficient cn(η).

de Sitter ⇒ Constraints on equal-time correlators (of both φ and Π) and wavefunction
coefficients (which depend explicitly on Hint) at any time in the bulk — the
latter reduce to the familiar conformal Ward identities at η → 0.

Locality ⇒ Analyticity of transfer functions outside the horizon — as a result, non-
analyticities in the bulk cn(η) only arise when |kη| > 1 and fields enter the
horizon and begin to oscillate (or from the boundary condition itself).

– 51 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
2

These results have a number of interesting consequences. Firstly, the absence of a con-
served invariant energy with which to label states on de Sitter has long made describing
interactions more difficult than on Minkowski space. Since our βn are conserved in any
unitary theory, and can be computed from the initial data (assuming the free theory can
be solved exactly so that k̄ can be identified from fk̄(η) = f∗k(η)), they could be used as
good quantum numbers to label the different states in the Hilbert space. Furthermore,
since the constraints from de Sitter isometries in the bulk may depend explicitly on the in-
teraction Hamiltonian, it seems that performing a model-independent bootstrap (in which
cn is determined by symmetries alone) is only possible in the limits where the interactions
turn off — namely η → −∞ in the far past, and η → 0 at late times (modulo IR diver-
gences). Finally, although the Bunch-Davies initial condition (fixing αin

k = 0 in the past)
often results in a simpler analytic structure for the correlators (e.g. removing the folded
non-analyticities), this corresponds to a non-analytic boundary condition at late times
(αk = k) and can obscure the otherwise analytic behaviour of cn(η) near the conformal
boundary. Rather than studying cn(η) itself, whose analytic structure is sensitive to the
initial conditions, one might investigate the properties of objects like δcn/δαn′ |αj=0, which
are always analytic outside the horizon, and more closely resemble a scattering amplitude
(since it is the change in the (final) bulk state in response to a change in the (initial)
boundary state).

Furthermore, there are interesting connections between our results and other recent
progress from a purely boundary perspective. The asymptotic expansion of our equations
of motion for the wavefunction coefficients is similar to the Hamilton-Jacobi approach to
Holographic Renormalisation [43, 49, 50], in which the equations of motions are solved per-
turbatively in a derivative expansion (in order to identify the required local counterterms),
which also underpins recent holographic approaches to inflationary cosmology [51–56]. The
boundary divergences which we have encountered are entirely distinct from the bulk diver-
gences from loops, which have a separate degree of divergence and must be renormalised
at any η, not just at the boundary (they are related to the divergences that appear in
flat space, and can be resummed using dynamical RG [57]). Recently, [44] has proposed
a soft de Sitter EFT for superhorizon modes — it would be interesting to explore further
the connection between the Hamiltonian approach used here (in particular our transfer
functions and boundary renormalisation) and the Lagrangian approach of [44].

Although we have worked throughout at weak coupling (i.e. tree level only), we believe
that much of our construction can be carried over to loop corrections as well (using the
fully non-perturbative (2.24)) — this is certainly an important next step. In particular,
the loop corrections can also exhibit secular divergences near the boundary and affect the
dynamics of long wavelength modes, as recently described in [58] (see also [59, 60]) as
systematic corrections to Starobinsky’s stochastic description [61]. In terms of diagrams,
although we have assumed that a weak coupling suppressed loop diagrams relative to tree
diagrams, if a loop contribution were to diverge near the boundary faster than the tree-
level coefficient then one might worry that this invalidates perturbation theory for any finite
value of the coupling (no matter how small). Here we adopt the view that, since physical
observables at the boundary are finite, it should be possible to systematically renormalise
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these divergences, defining a new set of boundary operators (with finite correlators) which
are related to the bulk operators by a (singular) boundary operator expansion. We have
shown this explicitly for the boundary divergences which occur at tree-level (from a bulk
operator colliding with its image at the boundary), and in the future it would be interesting
to investigate how the loop-level divergences might be similarly absorbed into coefficients
of a boundary operator expansion, and also how this procedure could be related to the
stochastic approach.

In the future, it is imperative that we continue to exploit the connections between
cosmological correlators and amplitudes. For instance, our equation of motion for c4 takes
the form of a factorisation condition, ∂ηc4 ∼ c3c3, and one could explore whether there is
some general factorisation theorem for cosmological correlators (akin to the factorisation
of flat space amplitude) — see for instance [62–64] for recent discussions of the consistency
conditions imposed by factorisation when Lorentz boosts are broken. Further, combining
such axiomatic properties of the S-matrix (namely unitarity, causality, locality and Lorentz
invariance) gives rise to powerful UV/IR relations known as “positivity bounds” [65]. One
key goal should be to develop analogous relations for cosmological correlators, so that our
late-time (low-energy) observables can be translated into statements about UV properties
of the fields/interactions present during inflation.48

Cosmological correlators offer an exiting new window into the early Universe and fun-
damental physics in the high-energy regime. As a new generation of cosmological surveys
searches the skies for signs of primordial non-Gaussianity, we must be ready with a devel-
oped theoretical framework for translating these observations into concrete features of the
high-energy inflationary Universe. In this work, we have made a step forward in deriving
model-independent constraints on the evolution of the wavefunction — from fundamen-
tal properties like unitarity, de Sitter invariance and locality — and hereby advanced this
ambitious cosmological correlator programme.
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A Comparison with wavefunctions on Minkowski spacetime

In this short appendix we compare some of our above (de Sitter) discussion with the
Minkowski case.

48See [22] for an application of these ideas to subhorizon scattering during inflation and [66] for an anti-de
Sitter analogue.

– 53 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
2

Equations of motion

Since c2 = ik and time-translation invariance sets ∂ηcn = 0, the equations of motion (2.24)
for the wavefunction coefficients become purely algebraic,

0 = ikT ck1...kn + δnH
δφk1 . . . δφkn

+ exchange (A.1)

and the n-point coefficient is related to lower order coefficients (as well as bulk sources) by
a simple factor of i/kT .

Since the mode functions are simply fk(t) = e−ikt/
√

2ik, they have the property
that fk̄(t) = f∗k(t) for |k̄| = −|k|. The constants of motion (2.43) are also conserved
on Minkowski space (and indeed on any conformally flat spacetime), but with the simple
relation for k̄ the Disc in (2.36) can now be interpreted as a genuine discontinuity of the
function as one crosses |k| = 0. See [24] for a detailed discussion of this important point.

Minkowski isometries

The isometries of Minkowski spacetime are,

Pα = ∂α and Mαβ = xα∂β − xβ∂α . (A.2)

Invariance of the scalar field action S =
∫
d4xL under these symmetries leads to 10 con-

served Noether currents,

J µ
Pα

= ∂L
∂µφ

∂αφ− δµαL (A.3)

J µ
Mαβ

= xαJ
µ
Pβ
− xβJ µ

Pα
, (A.4)

whose corresponding charges may be written in terms of the Hamiltonian density and
canonical momenta,

QP0 =
∫
d3xHx , QPi =

∫
d3x Πx∂iφx (A.5)

QM0i =
∫
d3x [−tΠx∂iφx − xiHx] (A.6)

In the quantum theory, these must be normally ordered. For instance, the charge associated
with translations may be written

Q̂Pi =
∫

k
iki

Π̂−kφ̂k + φ̂kΠ̂−k
2 =

∫
k

ki â†kâk (A.7)

so that a one-particle state, â†k|0〉 has momentum +k. The charge associated with boosts
may be written,49

Q̂M0i = ∂

∂qiHq
∣∣
q=0 , (A.8)

49Note that since the charge is time-independent we can define the Schrödinger-picture operator using
the classical QM0i at t = 0.
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where Hq =
∫

x e
iq·xHx is the momentum space Hamiltonian density, such that Hq=0 is

the usual Hamiltonian and generator of time translations. In the free theory,

Hq =
∫

k1k2

k1k2 − k1 · k2

2
√
k1k2

â†k1
âk2 δ(q + k1 − k2) (A.9)

= Hq=0 + q ·
(∫

k
kâ†k∂kâk +

∫
k

k
2k â

†
kâk

)
+O(q2) . (A.10)

Note that Ĥq
† = H−q since the Hamiltonian is Hermitian. This generates the expected

transformation of φ̂k,

[Q̂M0i , φ̂k] = −itkφ̂k − i∂kΠ̂k , (A.11)

which is indeed x0∂i − xi∂0 when written in position-space.
Under an infinitesimal boost, the wavefunction Ψi[φ] = 〈φ|Ψt〉 changes by,

δΨt[φ] = 〈φ|iQ̂M0i |Ψt〉 . (A.12)

In terms of the effective action, Ψt[φ] = eiΓt[φ],

δM0iΓt =
∫

p1p2

(
1
2
δΓt
δφp1

δΓt
δφp2

− p1 · p2
2 φp1φp2

)
∂iδ

3 (p1 + p2) + ∂qiHint
q
∣∣
q=0 (A.13)

where we have split Hx = 1
2Π2

x + 1
2(∂iφx)2 +Hint

x into a free and interacting part.
For example, while there are many possible vacuum states, ck1k2(t), for Minowski, only

one is both time-translation and boost invariant, namely ck1k2(t) = i|k1|δ3(k1 + k2). In
fact, suppose that we demand this particular Q̂M0i as a symmetry (i.e. invariance under
boosts with speed c = 1), then if we consider the time evolution generated by,

L = 1
2
(
φ̇2 − c′2(∂iφ)2

)
(A.14)

we find that (A.13) requires that c′ = 1.
As another example, take the cubic interactions λφ3 and λ′φ(∇φ)2. The corresponding

wavefunction coefficients are,

ck1k2k3(t) = λ

(
i

kT
+ α(k1, k2, k3)e−ikT t

)
δ3(k1 + k2 + k3) (A.15)

and

ck1k2k3(t) = λ′
(
ikT + α(k1, k2, k3)e−ikT t

)
δ3(k1 + k2 + k3) (A.16)

respectively, where kT = k1 + k2 + k3. Lorentz invariance in this case requires,

δck1k2k3 =
∑
j

kj∂kjck1k2k3 = 0 . (A.17)

This is satisfied by the α-independent terms (which were generated by the Lorentz-invariant
interactions), but for our initial state to preserve Lorentz-invariance we must have that α
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is a function of kT only.50 Further demanding invariance under time-translations requires
that α contains a δ(kT ), and so Lorentz invariance uniquely fixes the three-point coefficients
in terms of a single constant,

ck1k2k3(t) = λ

(
i

kT
+ const.× δ(kT )

)
δ3(k1 + k2 + k3) (A.18)

and

ck1k2k3(t) = λ′ (ikT + const.× δ(kT )) δ3(k1 + k2 + k3) (A.19)

For higher derivative interactions, e.g. ∇µφ∇µ(∇φ)2 has a simple wavefunction coeffi-
cient,

ck1k2k3 = iλ

k1 + k2 + k3
[(k1(k2 + k3)− k1 · k23) (k2k3 − k2 · k3) + 2 perms.] . (A.20)

Since,

∑
J

kJ
∂

∂kJ
ck1k2k3 = −ck1k2k3

kT

∑
J

kJ , (A.21)

the boost constraint is satisfied. Note that using momentum conservation we may also
write this coefficient more simply as,

ck1k2k3 = iλ (k1k2 · k3 + 2 perms.) (A.22)

which is consistent with integrating the interaction by parts, contributing only a boundary
term φ̇(∇φ)2 to the on-shell action.

We will now show that the boost constraint (A.13) is also satisfied by in a number of
simple examples

Some examples

λφ4 interaction

Consider a λφ4 interaction. The corresponding wavefunction coefficient is,

ck1k2k3kn = iλ

kT
. (A.23)

Since,

∑
J

kJ
∂

∂kJ
ck1k2k3k4 = iλ

k2
T

∑
J

kJ (A.24)

the boost constraint is satisfied.
50By crossing symmetry, α can depend only on the combinations kT , k2

1 + k2
2 + k2

3 and k1k2k3. Only the
first of these satisfies (A.17).
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λφ3 interaction

Consider a λφ3 interaction. The corresponding wavefunction coefficients are,

ck1k2k3 = iλ

k1 + k2 + k3
(A.25)

ck1k2k3kn = iλ

kT (k1 + k2 + k12)(k3 + k4 + k34) + 2 perms. (A.26)

and so on. Note that the following k derivatives vanish when the total momentum is
conserved,

∑
J

kJ
∂

∂kJ
ck1k2k3 = iλ

k2
T

∑
J

kJ (A.27)

∑
J

kJ
∂

∂kJ
ck1k2k3k4 =

(
λ2

(k1+k2+k12)(k3+k4+k34) +2 perms.
)

1+kT
k2
T

∑
J

kJ

(A.28)

ck1k2−k12

∂

∂k12
ck3k4k12 +2 perms=

(
λ2

k12(k1+k2+k12)2(k3+k4+k34) +2 perms.
)∑

J

kJ

(A.29)

and so the boost constraint is satisfied for any kJ .

λφ(∇φ)2 interaction

Consider a λφ(∇φ)2 interaction. The corresponding wavefunction coefficient is,

ck1k2k3 = iλ

k1 + k2 + k3
(k1k2 − k1 · k2 + 2 perms.) . (A.30)

Since,

∑
J

kJ
∂

∂kJ
ck1k2k3 = −ck1k2k3

kT

∑
J

kJ , (A.31)

the boost constraint is satisfied. Note that using momentum conservation we may also
write this coefficient more simply as,

ck1k2k3 = iλkT (A.32)

which is consistent with writing the interaction as ∇µφ∇µ(φ2)/2 and integrating by parts,
contributing only a boundary term φ̇φ2 to the on-shell action.

λ∇µφ∇µ(∇φ)2 interaction

Consider a λ∇µφ∇µ(∇φ)2 interaction. The corresponding wavefunction coefficient is,

ck1k2k3 = iλ

k1 + k2 + k3
[(k1(k2 + k3)− k1 · k23) (k2k3 − k2 · k3) + 2 perms.] . (A.33)
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Since,

∑
J

kJ
∂

∂kJ
ck1k2k3 = −ck1k2k3

kT

∑
J

kJ , (A.34)

the boost constraint is satisfied. Note that using momentum conservation we may also
write this coefficient more simply as,

ck1k2k3 = iλ (k1k2 · k3 + 2 perms.) (A.35)

which is consistent with integrating the interaction by parts, contributing only a boundary
term φ̇(∇φ)2 to the on-shell action.

Locality and analyticity

Finally, we remark that it would be interesting to study the analogue of our “transfer
functions” from section 4.2 on Minkowski space. Although there is no horizon, one could
nonetheless imagine specifying a boundary condition for the wavefunction at t = 0, and
then write the future time evolution of the state in terms of this boundary condition. By
analogy with section 4.2, the coefficients in this expansion should be analytic functions of
the momenta for times |t| < 1/k, i.e. before the field begins to oscillate appreciably.

B Some properties of Bessel functions

Dimensional regularisation

In Minkowski, analytically continuing to d dimensions does not change the form of the
momentum-space mode function, eikµxµ .

In d dimensions, the free vacuum state is given by,

−∂ηck,−k = Ω1−dc2
k,−k + Ω1−d

(
k2 + Ω2m2

)
(B.1)

Choosing the Bunch-Davies vacuum,51

ck,−k(η) = HΩd
(
−d− 2ν̃

2 + kηHν̃−1(−kη)
Hν̃(−kη)

)
(B.2)

where Hν is a Hankel function of the first kind, with order given by,

ν̃ =

√
d2

4 −
m2

H2 = ν + 3(d− 3)
4ν +O((d− 3)2) , (B.3)

in the limit d→ 3, where ν =
√

9/4−m2/H2. The mode functions, given by Ωd−1∂ηf̃k =
ck,−kf̃k, become,

f̃k(η) = N(k) Ω−d/2Hν̃(−kη) (B.4)
51In principle one could mix in e+ikη by an amount which vanishes as d → 3, but we will not explore

such schemes.
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and its complex conjugate, where N(k) is an overall normalisation which does not affect
correlations.

When regulating divergent integrals, the limit η → 0 does not commute with taking
d → 3. In particular, this means that integrals of the form

∫ η
∞ dη/η

4∂ηc
I
k1...kn must be

first carried out up to η = 0 at general d, and only after the integral is performed can we
expand in powers of (d − 3) (prematurely expanding the integrand in powers of (d − 3)
would give spurious results). This scheme therefore requires integrals over products of
Hankel functions.52 For convenience, we collect relevant identities below.

Triple-H integrals

In general, an integral over n Hankel functions can be expressed in closed form as a gener-
alised hypergeometric function of n− 1 variables. For example, we will show below that,

∫ ∞
0

dt

t
tλ

3∏
J=1

H(1)
νJ

(kJ t) (B.5)

= i2λ

2π3 e
−iπ/2

∑
J
νJ
(
k3e
−iπ/2

)−λ
(Aν1ν2 +Aν1−ν2 +A−ν1ν2 +A−ν1−ν2) ,

Aν1ν2 =
(
k1
k3

)ν1 (k2
k3

)ν2

Γ(−ν1)Γ(−ν2)Γ(a1)Γ(a2)F4

(
a1, a2 ; 1 + ν1, 1 + ν2 ; k

2
1
k2

3
,
k2

2
k2

3

)
,

where F4 is the fourth Appell function (hypergeometric series in two variables),
a1 = (λ+

∑
J νJ)/2 and a2 = a1 − ν3, and we have assumed that Re (λ−

∑
J νJ) > 0 and

that the t contour can be deformed to t → ∞(1 + iε). While these special functions are
not particularly enlightening (particularly when n > 3, not much more is known about
them than the original Hankel integrals), they can be simplified for particular values of
the νj . For example, we see from the triple-H integral (B.5) with λ = d/2 the simple pole
arising whenever ∆−1 + ∆−2 + ∆−3 = d (i.e. a1 = 0) or ∆−1 + ∆−2 + ∆+

3 = d (i.e. a2 = 0),
whose residue is straightforwardly read off using the fact that,

F4(ε, a2 ; b1, b2 ; x, y) = 1 +O(ε) . (B.6)

In particular, for the three-point coefficient of conformally coupled scalars
(λ = d/2, νj = 1/2 for all j) discussed in section 5, the first subleading correction is,

F4

(
a1, a2 ; 1− ν1, 1− ν2 ; k

2
1
k2

3
,
k2

2
k2

3

)

= 1− 2(d− 3) ∂

∂a1
F4

(
a1,

1
2 ; 1

2 ,
1
2 ; k

2
1
k2

3
,
k2

2
k2

3

) ∣∣
a1=0 +O((d− 3)2)

= 1 + (d− 3) log
((k23 − k1)(k12 − k3)(k13 − k2)k123

k4
3

)
+O((d− 3)2) (B.7)

52[43] also discuss alternative schemes in which the mode function order is not analytically continued
with the spacetime dimension — although computationally simpler, this results in wavefunction coefficients
which do not respect the equations of motion (just like a hard cutoff).
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when d → 3. Inside the log, the numerator is a manifestly crossing-symmetric function
of the kJ , while the denominator cancels against the log coming from the factor of
k−2a1

3 = k
4(d−3)+...
3 in (B.5).

In order to derive (B.5), we will make use of the Mellin-Barnes representation of the
Bessel functions,

Jν(z) = − 1
2π

∫ c+i∞

c−i∞
dsΓ(s)Γ(s− ν)

(
z

2

)ν−2s i sin (π(s− ν))
π

(B.8)

iYν(z) = − 1
2π

∫ c+i∞

c−i∞
dsΓ(s)Γ(s− ν)

(
z

2

)ν−2s cos (π(s− ν))
π

(B.9)

H(1)
ν (z) = − 1

2π

∫ c+i∞

c−i∞
dsΓ(s)Γ(s− ν)

(
z

2

)ν−2s eiπ(s−ν)

π
(B.10)

where c is a real positive constant > Re(ν). Using the relation π/ sin(νπ) = Γ(ν)Γ(1− ν),
we can express53

J±ν(z) = 1
2πi

∫ i∞

−i∞
ds

Γ(−s)
Γ(s+ 1± ν)

(
z

2

)2s±ν
(B.11)

H(1)
ν (z) = i

sin(νπ)
(
e−iπνJν − J−ν

)
(B.12)

and so the triple-H integral is given by,

−1
sin(ν1π) sin(ν2π)

[
I−ν1−ν2 − e−iπν1I−ν1ν2 − e−iπν2Iν1−ν2 + e−iπ(ν1+ν2)Iν1ν2

]
(B.13)

where Iν1ν2 is the integral,

Iν1ν2 =
∫ ∞

0

dt

t
tλ Jν1(k1t)Jν2(k2t)Hν3(k3t) (B.14)

= 1
(2π)3

∫
d3s 2πiδ(λ+ νT + 2(s1 + s2 − s3)) Γ(−s1)Γ(−s2)Γ(s3)Γ(s3 − ν3)

Γ(s1 + 1 + ν1)Γ(s2 + 1 + ν2)

×
(
k1
2

)2s1+ν1 (k2
2

)2s2+ν2 (k3
2

)ν3−2s3 eiπ(s3−ν3)

π
(B.15)

where νT =
∑
J νJ and the integration is

∫
d3s =

∏
J

∫ cJ+i∞
cJ−i∞ dsJ (with c1 > 0, c2 > 0 and

c3 > Re(ν3)), and we have used the identity,

∫ ∞
0

dt

t
tn = 2πiδ(n) , (B.16)

53Note that while the Jν integral representation is usually defined with ν > 0, we can use that J−ν =
cos(νπ)Jν − sin(νπ)Yν to derive the analogous representation also for negative order.
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to perform the t integration. We can perform the s3 integration using the delta function,

Iν1ν2

=− i2
λeiπa2

2π
kν1

1 k
ν2
2 k

ν3
3

k2a1
3

×
∫

d2s

(2πi)2
Γ(−s1)Γ(−s2)Γ(s1+s2+a1)Γ(s1+s2+a2)

Γ(s1+1+ν1)Γ(s2+1+ν2)

(
−k

2
1
k2

3

)s1(
−k

2
2
k2

3

)s2
(B.17)

=− i2
λeiπa2

2π
kν1

1 k
ν2
2 k

ν3
3

k2a1
3

Γ(a1)Γ(a2)
Γ(1+ν1)Γ(1+ν2) F4

(
a1,a2 ; 1+ν1,1+ν2 ; k

2
1
k2

3
,
k2

2
k2

3

)
, (B.18)

where the δ function has been used to set s3 = s1 + s2 + (λ+ νT )/2, and λ+ νT is assumed
positive. So defining,

Aν1ν2 =
(
k1
k3

)ν1 (k2
k3

)ν2

Γ(−ν1)Γ(−ν2)Γ(a1)Γ(a2)F4

(
a1, a2 ; 1 + ν1, 1 + ν2 ; k

2
1
k2

3
,
k2

2
k2

3

)
,

(B.19)

the triple-H integral is,

i2λ

2π3 e
−iνT π/2

(
k3e
−iπ/2

)−λ
(Aν1ν2 +Aν1−ν2 +A−ν1ν2 +A−ν1−ν2) (B.20)

(note a sign which comes from π/ sin(νπ) = Γ(ν)Γ(1 − ν) = −Γ(−ν)Γ(1 + ν)). The sum
over four such functions is clearly required by the property Hν(z) = eiπνH−ν(z). The
factor of (k3e

−iπ/2)−λ out front can be recognized as the analytic continuation from the
triple-K integral [27], since Kν(z) = iπ

2 e
iνπ/2Hν

(
zeiπ/2

)
.

Appel F4 identities. The Appel F4 function is a hypergeometric series of two variables,

F4(a1, a2; b1, b2;x, y) =
∞∑

m,n=0

(a1)m+n(a2)m+n
(b1)m(b2)n

xmyn , (B.21)

which can be represented as an integral,

F4(a1, a2; b1, b2;x, y) (B.22)

= Γ(b1)Γ(b2)
Γ(a1)Γ(a2)

∫ +i∞

−i∞

ds1ds2
(2πi)2

Γ(s1 + s2 + a1)Γ(s1 + s2 + a2)
Γ(s1 + b1)Γ(s2 + b2) Γ(−s1)Γ(−s2)(−x)s1(−y)s2 .

These representations make manifest the symmetry properties,

F4(a1, a2 ; b1, b2 ; x, y) = F4(a2, a1 ; b1, b2 ; x, y) = F4(a1, a2 ; b2, b1 ; y, x) (B.23)

as well as various recurrence relations such as,

a2 (F4(a1, a2 + 1 ; b1, b2 ; x, y)− F4(a1, a2 ; b1, b2 ; x, y))
= a1 (F4(a1 + 1, a2 ; b1, b2 ; x, y)− F4(a1, a2 ; b1, b2 ; x, y)) (B.24)

– 61 –



J
H
E
P
0
2
(
2
0
2
1
)
0
1
2

Less obvious is the crossing relation,

F4

(
a1, a2 ; b1, b2 ; k

2
1
k2

3
,
k2

2
k2

3

)
(B.25)

= Γ(b2)Γ(a2 − a1)
Γ(a2)Γ(b2 − a1)

(
eiπ

k2
2
k2

3

)−a1

F4

(
a1, a1 − b2 + 1 ; b1, a1 − a2 + 1 ; k

2
1
k2

2
; k

2
3
k2

2

)

+ Γ(b2)Γ(a1 − a2)
Γ(a1)Γ(b2 − a2)

(
eiπ

k2
2
k2

3

)−a2

F4

(
a2, a2 − b2 + 1 ; b1, a2 − a1 + 1 ; k

2
1
k2

2
; k

2
3
k2

2

)
which exchanges k2 ↔ k3, and can be used to show that the expression (B.20) is crossing
symmetric under the exchange of 2 and 3.

In practice the above representation (B.21) is of little use because the series only
converges for |x|1/2 + |y|1/2 < 1, which in terms of k1 and k2 corresponds to k1 + k2 < k3
(which is inconsistent with the triangle inequality required by momentum conservation),
and little is known about the analytic structure of F4 beyond this domain. However,
for certain values of {λ, ν1, ν2, ν3}, the Appell function may be expressed in terms of more
elementary functions (products of two hypergeometric functions of a single variable), which
can be analytically continued in a straightforward way to the physical region k1 + k2 > k3.

In particular, the fourth Appel function F4 reduces to the first Appel function F1
whenever a2 = b2,

F4

(
a1, b2 ; b1, b2 ; −x

(1− x)(1− y) ,
−y

(1− x)(1− y)

)
= (1− x)a1(1− y)a1 F1 (a1 , b1 − b2, 1 + a1 − b1 ; b1 ; x, xy) . (B.26)

When b1 also coincides with b2,

F1 (a1 , 0, 1 + a1 − b2 ; b2 ; x, xy) = 2F1 (a1 , 1 + a1 − b2 ; b2 ; xy) (B.27)

and when b1 coincides with 1 + a1 − b2,

F1 (a1 , 1 + a1 − 2b2 , b2 ; 1 + a1 − b2 ; x, xy) (B.28)

= (1− x)−a12F1

(
a1 , b2 ; 1 + a1 − b2 ; −x(1− y)

1− x

)
.

For example, when computing the correlators of conformally coupled scalar fields (i.e.
νJ = 1/2 and λ = d/2) one needs the Appell functions,

F4

(
1, 1

2 ; 3
2 ,

1
2 ; k

2
1
k2

3
,
k2

2
k2

3

)
= k3

4k1
log

(
k123(k13 − k2)

(k12 − k3)(k23 − k1)

)
(B.29)

F4

(
1, 3

2 ; 3
2 ,

3
2 ; k

2
1
k2

3
,
k2

2
k2

3

)
= k2

3
4k1k2

log
((k13 − k2)(k23 − k1)

k123(k12 − k3)

)
(B.30)

and the expansion of,

F4

(
d/2− 3ν

2 ,
d/2− ν

2 ; 1− ν, 1− ν ; k
2
1
k2

3
,
k2

2
k2

3

)

= 1− 1
4

(
d− 3

2 − 3
(
ν − 1

2

))
log

((k1 − k23)(k3 − k12)(k2 − k13)k123
k4

3

)
+ . . . (B.31)
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near d = 3 and ν = 1/2. This gives a triple-H integral,

8i√
2π3k1k2k3

 1
d− 3− 6

(
ν − 1

2

) (1− d− 3
2 γE −

(
ν − 1

2

)
log(8k1k2k3)

)
− 1

2 log (−ikT )

 .
(B.32)

Once multiplied by N1N2N3, it gives a three-point wavefunction coefficient,

α3 = 2i

 1
d− 3− 6

(
ν − 1

2

) − 1
2γE −

1
2 log (−ikT )

 . (B.33)

The pole depends on the scheme, but there is always an anomalous violation of scale
invariance due to the log(kT ) which is scheme-independent. See e.g. [43] for a general
demonstration of the scheme-independence of the anomaly in 3d scalar CFTs.

When ν2 and ν3 are both conformally coupled scalars (but ν1 is arbitrary), the relevant
Appell F4 is given by the identity,

2F4

(
a1,a1+ 1

2 ; b1,
1
2 ; x,y

)
= (1+√y)−2a1

2F1

(
a1,a1+ 1

2 ; b1 ; x

(1+√y)2

)

+(1−√y)−2a1
2F1

(
a1,a1+ 1

2 ; b1 ; x

(1−√y)2

)
. (B.34)

Finally, we also note that when λ = 1 (i.e. an integral over three HνJ (kJ t) with no overall
factor of t), the Appell function factorises, since

F4(a1, a2 ; b1, b2 ; X(1− Y ), Y (1−X)) = 2F1 (a1, a2 ; b1 ; X) 2F1 (a1, a2 ; b2 ; Y )
(B.35)

when a1 + a2 + 1 = b1 + b2. Both (B.34) and (B.35) may then be used to analytically
continue into the physical region k1 + k2 < k3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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