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Abstract

Background: Regions within solid tumours often experience oxygen deprivation, which is associated with resistance
to chemotherapy and irradiation. The aim of this study was to evaluate the radiosensitising effect of gemcitabine and
its main metabolite dFdU under normoxia versus hypoxia and to determine whether hypoxia-inducible factor 1 (HIF-1)
is involved in the radiosensitising mechanism.

Methods: Stable expression of dominant negative HIF-1α (dnHIF) in MDA-MB-231 breast cancer cells, that ablated
endogenous HIF-1 transcriptional activity, was validated by western blot and functionality was assessed by HIF-1α
activity assay. Cells were exposed to varying oxygen environments and treated with gemcitabine or dFdU for 24 h,
followed by irradiation. Clonogenicity was then assessed. Using radiosensitising conditions, cells were collected for cell
cycle analysis.

Results: HIF-1 activity was significantly inhibited in cells stably expressing dnHIF. A clear radiosensitising effect under
normoxia and hypoxia was observed for both gemcitabine and dFdU. No significant difference in radiobiological
parameters between HIF-1 proficient and HIF-1 deficient MDA-MB-231 cells was demonstrated.

Conclusions: For the first time, radiosensitisation by dFdU, the main metabolite of gemcitabine, was demonstrated
under low oxygen conditions. No major role for functional HIF-1 protein in radiosensitisation by gemcitabine or dFdU
could be shown.
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Background
Regions within solid tumours often experience mild to
severe oxygen deprivation (hypoxia) owing to aberrant
vascular structure and function. Multiple clinical studies
have documented the importance of hypoxia and anoxia
(an absence of oxygen) in determining local tumour con-
trol in radiotherapy. In addition to the direct role of
oxygen in generating radiation-induced DNA damage,
the biological effects of hypoxia on tumour cells can also
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modulate their response to therapy [1,2]. One major
transcription factor involved in the cellular response to
reduced oxygen conditions is hypoxia inducible factor 1
(HIF-1). This heterodimeric transcription factor is formed
by the association of an oxygen-regulated HIF-1α subunit
with a constitutively expressed HIF-1β subunit. As HIF-1
modulates many cellular processes, including prolifera-
tion, apoptosis, metabolism and the tumour vasculature, it
has been reported that HIF-1 has divergent effects on
tumour radiosensitivity, which might cause tumours to
become more or less radiosensitive [3].
Among the most potent (normoxic) radiosensitisers

currently available are antimetabolites. Gemcitabine
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(2’,2’-difluorodeoxycytidine, dFdC) is a synthetic pyrimi-
dine nucleoside analogue clinically active against a broad
spectrum of solid tumours. Intracellularly, the diphos-
phate (dFdCDP) and triphosphate (dFdCTP) forms of the
drug are responsible for the cytotoxic effects, via inhib-
ition of ribonucleotide reductase and by incorporation
into the DNA, leading to chain termination, respectively.
In addition to its cytotoxic effect, gemcitabine has potent
radiosensitising properties, shown in both preclinical and
clinical studies [4]. Current evidence suggests that accu-
mulation in the S phase of the cell cycle, depletion of
dATP pools, reduction of apoptotic threshold, inhibition
of DNA synthesis and reduction of DNA repair may
contribute to, or might even be essential for gemcitabine-
mediated radiosensitisation [5].
Following intravenous administration of gemcitabine,

the drug rapidly undergoes deamination to its main me-
tabolite, 2’,2’-difluorodeoxyuridine (dFdU), resulting in a
plasma half-life of gemcitabine of only eight minutes [6].
In contrast, the half-life of dFdU is greater than 14 h,
yielding elevated dFdU plasma concentrations for a pro-
longed period of time (>24 h) at levels known to cause
growth inhibition. Importantly, although dFdU has li-
mited cytotoxic activity, it has been demonstrated that it
causes a clear concentration- and schedule-dependent
radiosensitising effect in vitro and potentially contributes
to the potent radiosensitising properties of gemcitabine
in the clinic [7].
Thus far, few preclinical studies have focused on the

outcome of chemoradiation treatments under hypoxia,
and on the potential impact of functional HIF-1 on the
radiosensitising effect of cytotoxic agents. The molecular
basis of hypoxia-mediated chemotherapy and radio-
therapy failure indeed has only recently been reported.
In these studies, a contribution of HIF-1 to drug resis-
tance has been observed in a wide spectrum of neoplas-
tic cells and many signalling pathways, including PI3K,
MAPK, HER2, EGFR and COX2, are reported to induce
chemoresistance through HIF-1 activity [8-11].
Concerning gemcitabine, it has recently been observed

that this drug radiosensitises both p53 wild type and p53
deficient non-small cell lung cancer cells under hypoxia
[12]. Although it was described that gemcitabine did not
affect tumour oxygenation or HIF-1α levels in HCT116
xenografts [13], it has also been reported that gemcita-
bine inhibited HIF-1α induction in A549 cells exposed
to the hypoxia mimetic agent DFX [14]. In contrast, a
more recent study showed gemcitabine-induced activa-
tion of HIF-1α in normoxic pancreatic cancer cells [15].
In order to further elucidate whether or not the HIF-1
transcription factor is involved in the retained radiosen-
sitisation by gemcitabine under low oxygen conditions,
in the present study, we evaluated the impact of hypoxia
on radiosensitisation by gemcitabine and dFdU in three
isogenic breast adenocarcinoma cell lines differing in
HIF-1 status.

Methods
Cell culture
The human tumour cell lines included were MDA-MB-
231 (breast adenocarcinoma; wild type (wt) HIF-1) and the
sublines MDA-MB-231 dnHIF (dominant-negative HIF-
1α; HIF-1 activity inhibited) and MDA-MB-231 empty vec-
tor control (EV; functional HIF-1). MDA-MB-231 sublines
were constructed as described previously [16], resulting in
MDA-MB-231 cells stably expressing dnHIF tagged with
enhanced green fluorescence protein (eGPF) or eGFP
alone (MDA-MB-231 dnHIF and MDA-MB-231 EV,
respectively). The dnHIF construct inhibits HIF-1 activity
by competing with endogenous HIF-1α for interaction
with HIF-1β and DNA binding; it is however likely that
non-canonical regulation by HIF-1 is not inhibited, since
the dnHIF construct is identical to endogenous HIF-1α
except for loss of the oxygen-dependent degradation
domains and DNA-binding domains. All cell lines were
free from mycoplasma contamination. Cultures were
maintained in exponential growth in a humidified 5%
CO2/95% air atmosphere at 37°C (normoxia).

Oxygen conditions
Hypoxia (<0.1% O2) was achieved in a Bactron IV anaerobic
chamber (Shel Lab, Cornelius, USA), as described pre-
viously [17]. Hypoxic incubation was initiated after cells
had been cultured under normoxia overnight, allowing
attachment to culture dishes.

Western blot analysis
Cells were placed under normoxia or hypoxia for 18 h,
yielding a robust induction of the expression of HIF-1α
and HIF-1-induced downstream targets. Subsequently,
cells were lysed and protocols were used as previously
described [18]. In short, cells were lysed in 100 μl lysis
buffer (10 mM Tris (pH 7.4), 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 50 mM NaF, 1 mM sodium orthova-
nadate, 1% Triton X-100 v/v, 0.5% Nonidet P-40 v/v,
2 mM leupeptin, 0.15 mM aprotinin, 1.46 mM pepstatin,
1 mM phenylmethansulfonyl fluoride). For western blot
analysis, proteins (20 μg/lane) were resolved on a 7.5%
SDS-PAGE gel and electrotransferred onto a polyvinyli-
dene fluoride (PVDF) membrane (Millipore, Schwalbach,
Germany) using standard procedures. After blocking
with 5% non-fat dry milk w/v in PBS-T (137 mM NaCl,
2.7 mM KCl, 4.3 mM di-sodiumhydrogenphosphate,
1.4 mM potassium-di-hydrogenphosphate, 0.1% Tween20
v/v) overnight at 4°C, the blot was probed with primary
antibodies (mouse monoclonal anti-HIF-1α (BD Trans-
duction Laboratories, Oxford, UK); monoclonal anti-CA9
(clone M75; kindly provided by Dr. Jaromir Pastorek,
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Bratislava, Slovakia)). The blot was then reacted with suit-
able secondary alkaline phosphatase-conjugated antibodies
(Dianova, Hamburg, Germany), followed by detection of
the protein with CDP-Star chemiluminescent reagent
(Applied Biosystems, Foster City, USA). Finally, the blot
was stripped and reprobed for β-actin (mouse monoclonal
anti-β-actin, Sigma-Aldrich, Dorset, UK) to ensure equal
loading and transfer of proteins.

Immunofluorescence
To assess dnHIF-mediated inhibition of CA9, cells were
cultured on sterile coverslips under normoxia or hypoxia
for 18 h, fixed for 10 min and permeabilised. Cells were in-
cubated with a mouse monoclonal anti-human CA9 anti-
body (clone M75) for 1 h at 37°C, washed and incubated
with a secondary Alexaflour antibody (Life Technologies,
Paisley, UK) for 45 min at 37°C. Cells were then washed
and nuclei were counterstained with 4’,6-diamidino-2-
phenylindole (DAPI) and mounted in DAKO fluorescent
mounting media (DAKO, Cambridgeshire, UK). Relative
localisation of green (eGFP; to identify eGFP in empty
vector cells and the dnHIF construct in dnHIF cells), red
(for CA9) and blue (for nuclei) fluorescence was analysed
with a snapshot wide-field fluorescence microscope and
MetaView software.

HIF-1 activity assay
HIF-1α activity was assessed as described previously [18].
Briefly, cells were transfected with an adenovirus contai-
ning trimers of the LDH-A HRE linked to luciferase and
were exposed to hypoxia for 18 h. Afterwards, cells were
lysed, luciferase activity per μg protein was calculated and
activity of MDA-MB-231 dnHIF cells was normalised to
MDA-MB-231 EV control cells.

Vascular endothelial growth factor ELISA
Cells were incubated under normoxia or hypoxia for 18 h,
then the media was removed for analysis of secreted VEGF
levels as previously described [18]. The concentration of
secreted VEGF was determined using a Duoset Human
VEGF ELISA kit (R&D Systems, Abingdon, UK) according
to the manufacturer’s instructions, and corrected to the
amount of protein within the cell cultures from which the
medium was taken.

Human hypoxia signalling pathway PCR array
After 24 h incubation under hypoxia, total RNA samples
were isolated from 4.106 normoxic and hypoxic cells,
using RNeasy® Mini Kit (Qiagen, Venlo, The Netherlands).
The concentration of extracted RNA (A260/A280 ratio) and
purity (A260/A230 ratio) were measured by Nanodrop
ND-1000 spectrophotometer (Isogen, Sint-Pieters-Leeuw,
Belgium). The quality of isolated RNA was confirmed by
capillary electrophoresis with an Agilent 2100 Bioanalyzer
(Agilent Technologies, Amstelveen, The Netherlands).
One μg RNA was reversed transcribed using Reaction-
Ready First Strand cDNA Synthesis Kit (Qiagen) in
accordance with the manufacturer’s instructions. The
relative expression of 84 genes related to the hypoxia
signalling pathway was assessed by use of the Human
Hypoxia Signalling Pathway PCR Array (Qiagen) and
the RT2 Real-time SYBR Green/Rox PCR Master mix
kit (Qiagen).

Chemoradiation clonogenic assay
MDA-MB-231 cells were exposed to normoxia or hyp-
oxia and treated with 0–8 nM gemcitabine or 0–4 μM
dFdU for 24 h immediately before and during irradi-
ation (0–8 Gy, room temperature, XRAD320 irradiator
(Precision X-Ray, North Branford, USA)). Treatment sched-
ule and concentrations of gemcitabine and dFdU were
chosen based on previous results [12,19]. To irradiate cells
under hypoxia, custom-made airtight Perspex shells, pre-
incubated in the anaerobic chamber overnight, were
used [17]. Immediately following irradiation, hypoxic
cells were reoxygenated and all cells were washed with
drug-free medium. Unirradiated control cells were
handled identically to treated cells. Following an 8-day
incubation period, cells were stained with crystal violet
and colonies (>50 cells) were counted as described previ-
ously [20].

Analysis of the cell cycle distribution
Cells were incubated with 0–8 nM gemcitabine or 0–
4 μM dFdU for 24 h, under normoxia or hypoxia. Cell
cycle distribution was monitored according to the Vindelov
method, as previously described [12]. Samples were ana-
lysed using a FACScan flow cytometer (Becton Dickinson).
Histograms of DNA content were analysed using WinMDI
software to determine the fractions in each phase of the
cell cycle (G0/G1, S and G2/M).

Statistical analysis
All experiments were performed independently at least
three times, and each experiment comprised at least two
parallel samples. Results, if not otherwise stated, are
presented as mean ± standard deviation (SD). Statistical
differences were evaluated with two-sided two-sample
t-tests, one-way ANOVA or two-way ANOVA, using
SPSS v16.0 software. Two-way ANOVA was used to
study the influence of oxygen tension, HIF functiona-
lity and treatment with gemcitabine, dFdU and/or
irradiation on the outcome parameter (i.e. cell survival or
cell cycle distribution). Post hoc comparisons revealed
which groups differed significantly from one another.
P values less than 0.05 were considered to be statistically
significant.
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For irradiation experiments, survival rates were calculated
as [mean plating efficiency of treated cells/mean plating effi-
ciency of control cells] × 100%. Radiation survival curves were
fitted according to the linear-quadratic model using WinNon-
lin (Pharsight, Mountain View, USA) with survival = exp
(−αD-βD2). The following parameters were calculated: ID50

(radiation dose producing a surviving fraction of 50%); SF2
(surviving fraction at 2 Gy); and mean inactivation dose
(MID). The oxygen enhancement ratio (OER) was determined
by dividing ID50 under hypoxia by ID50 under normoxia. The
dose enhancement factor (DEF) was calculated as ID50 for
control, untreated cells divided by ID50 for treated cells.
Possible synergism between gemcitabine or dFdU and ra-

diation was determined by calculation of the combination
index (CI) using CalcuSyn software (Biosoft, Cambridge,
UK). CI < 1.0, CI = 1.0 and CI > 1.0 indicated synergism,
additivity or antagonism, respectively.
To analyse the PCR array data, relative changes in

gene expression were calculated using the ΔΔCt method.
Based on the geNorm algorithm, four endogenous con-
trol genes were selected for normalisation. Each replicate
cycle threshold (Ct) was normalised to the average Ct of
the four endogenous controls on a per plate basis and
mRNA expression levels were presented as fold changes.
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Figure 1 dnHIF expression reduces expression of HIF-1 target protein
HIF-1α, dnHIF and CA9 protein level in MDA-MB-231 wt, EV and dnHIF cells
detection served as the loading control. B. Fluorescent images of MDA-MB
and DAPI (blue). Cells were exposed to normoxia or hypoxia for 18 h. C. HI
vector (EV) control following 18 h hypoxic exposure. Luciferase activity per
cells (**: p < 0.01 in dnHIF vs. EV cells). All results are from at least 3 indepe
and EV control cells in normoxia/hypoxia for 18 h. VEGF media levels were
media were taken. Hypoxia significantly increased VEGF expression in contr
but not in dnHIF cells. Most importantly, inhibition of HIF by use of a dom
expression (*: p < 0.05 in dnHIF vs. EV cells). All results are from at least 3 in
Results
Validation of stable transfection of MDA-MB-231 cells
with dnHIF
Exposure to 18 h hypoxia induced expression of HIF-1α and
its downstream target carbonic anhydrase 9 (CA9) in MDA-
MB-231 wt and EVcells (Figure 1A). In MDA-MB-231 dnHIF
cells, HIF-1α expression was detected in hypoxic cells exposed
to reduced oxygen levels too. However, due to the presence of
the dnHIF protein, CA9 expression remained markedly lower
in comparison with the HIF-1α proficient cell lines. As shown
in Figure 1B, the dnHIF construct was localised to the nucleus
and was expressed independently of oxygen availability. Trans-
fection with the control vector (EV) resulted in eGFP expres-
sion that was confined to the cytoplasm. Moreover, the
immunofluorescence images clearly showed induction of CA9
in the EV cells under hypoxic conditions, while CA9 staining
was absent in hypoxic dnHIF cells.
In order to quantitatively evaluate the impact of dnHIF

on HIF-1 function, an adenoviral-based HIF-1α reporter
gene assay showed that HIF-activity was significantly
inhibited (p < 0.01) in cells expressing the dnHIF protein
(Figure 1C). Furthermore, hypoxia-induced VEGF secre-
tion was significantly lower (p < 0.05) in dnHIF versus
EV cells (Figure 1D).
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Table 1 mRNA expression profiles of hypoxia-related genes in MDA-MB-231 wt, EV and dnHIF cells
Symbol Description Fold up- or downregulation under hypoxia versus normoxia

MDA-MB-231 wt MDA-MB-231 EV MDA-MB-231 dnHIF

ADM Adrenomedullin 2.18 1.73 −1.00

ANGPTL4 Angiopoetin-like 4 2.72 3.19 2.65

BHLHE40 Basic helix-loop-helix family, member e40 1.56 2.18 2.16

CASP1 Caspase-1 −1.44 −2.03 −1.67

HIF-1α Hypoxia inducible factor 1, alpha subunit −2.61 −3.26 −2.29

HIF-3α Hypoxia inducible factor 3, alpha subunit −2.25 −1.71 −1.68

IPCEF1 Interaction protein for cytohesin exchange factors 1 −3.75 −1.51 4.48

LCT Lactase −1.02 −2.39 −1.73

LEP Leptin −1.96 −1.04 −4.06

MT3 Metallothionein 3 1.52 1.06 2.01

SLC2A4 Solute carrier family 2 (facilitated glucose transporter), member 4 −2.10 −1.16 −1.38

Only genes with a more than two-fold up- or downregulation under hypoxia versus normoxia are presented. (−) represents downregulation. Cells were exposed
to normoxia/hypoxia for 24 h (see Methods for full details). All results are from at least 3 independent experiments.
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Human hypoxia signalling pathway PCR array
Out of 84 genes related to the hypoxia signalling pathway,
11 genes showed a more than two-fold up- or down-
regulation in mRNA levels between normoxic and hypoxic
conditions (Table 1). For HIF-1α, a decreased mRNA
expression level was observed after 24 h hypoxia (Figure 2).
Statistical analysis revealed no differential expression
profile between MDA-MB-231 wt and EV versus MDA-
MB-231 dnHIF cells for the hypoxia-related genes
included in the PCR array. A significant difference in ex-
pression level under normoxia versus hypoxia was noticed
for HIF-1α and angiopoetin-like 4 in MDA-MB-231 wt
HIF-1  

N-wt N-EV N-dnHIF H-wt H-EV H-dnHIF 

Figure 2 mRNA expression of hypoxia-related genes under normoxia
HIF-1α (left) and angiopoetin-like 4 (right), as analysed by the Human Hypo
values for MDA-MB-231 wt, EV and dnHIF cells exposed to normoxic (N) or
lower mRNA expression in the biological sample.
and EV cells (p < 0.042); in MDA-MB-231 dnHIF cells,
this was only detected for angiopoetin-like 4 (p = 0.026).
Significance was however lost when p-values were ad-
justed for multiple comparisons according to the Benjamini-
Hochberg procedure.

Cell survival after treatment with gemcitabine or dFdU
plus radiation
A concentration-dependent radiosensitising effect was
observed for gemcitabine and dFdU (Figure 3, Table 2),
yielding a moderately synergistic to synergistic interaction
between gemcitabine and irradiation. Radiosensitisation
Angiopoetin-like 4 

N-wt N-EV N-dnHIF H-wt H-EV H-dnHIF 

versus hypoxia in MDA-MB-231 cells. Normalised Ct values for
xia Signalling Pathway PCR array. Boxplots present the normalised Ct
hypoxic (H) conditions for 24 h. A higher Ct value corresponds to



Figure 3 Clonogenic survival after treatment with gemcitabine or dFdU plus radiation under normoxia versus hypoxia. Radiation dose
response curves of MDA-MB-231 wt (A, B), MDA-MB-231 EV (C, D) and MDA-MB-231 dnHIF (E, F) cells after 24 h treatment with 8 nM gemcitabine
(dFdC) or 2 μM dFdU under normoxia (N) or hypoxia (H), immediately followed by radiation (RT) and reoxygenation. Survival curves were corrected for
the cytotoxic effect of gemcitabine or dFdU alone and/or for loss of clonogenic capacity induced by exposure to hypoxia (see Table 2). All results are
from at least 3 independent experiments ± SD.
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was similar under normoxia and hypoxia (p = 0.477 for
gemcitabine, p = 0.563 for dFdU). Moreover, the dose
enhancement factor was not significantly influenced by
the cell line used (p = 0.736 for gemcitabine, p = 0.832 for
dFdU) and a similar degree of radiosensitisation was
observed with gemcitabine and dFdU in MDA-MB-231
wt, EV and dnHIF cells. Cell survival was significantly in-
fluenced by the concentration of gemcitabine or dFdU,
dose of radiation, and oxygen tension (p ≤ 0.001). While
treatment with gemcitabine or dFdU and exposure to
hypoxia both had a significant impact on ID50, MID and
SF2, no significant difference for these radiobiological
parameters was seen between EV versus dnHIF cells.

Cell cycle analysis after 24 h treatment with gemcitabine
or dFdU
In contrast to previous findings in other cell lines [17],
exposure of MDA-MB-231 cells to hypoxia did not in-
duce a significant increase in the percentage of G0/1 cells
(p = 0.213) (Figure 4). The number of cells in S phase
was significantly influenced by the concentration of
gemcitabine or dFdU (p < 0.001). Gemcitabine and dFdU
caused a S phase block in MDA-MB-231 wt, EV and
dnHIF cells, both under normoxia and hypoxia (Table 3).
As shown on the DNA histograms (Figure 4B), the cell
cycle arrest was clearly dependent on the concentration
of the drug and shifted from a S phase block to an early
S phase block, near the G1/S border, with increasing
concentrations of gemcitabine and dFdU. Post hoc ana-
lysis revealed no significant difference in the percentage
of G0/1, S or G2/M phase cells between MDA-MB-231
EV and MDA-MB-231 dnHIF at any condition tested,
suggesting that the cell cycle perturbations were not
dependent on functionality of HIF-1α.

Discussion
The therapeutic implications of oxygen deficiency have
been fuelling cancer research for over 100 years. However,



Table 2 Radiobiological parameters for the combination of gemcitabine or dFdU with irradiation under normoxia or
hypoxia

Condition OER SD DEF SD CI SD ID50 SD MID SD SF2 SD % survival SD

MDA-MB-231 wt

24 N→ RT 2.83 1.03 3.30 1.06 65.61 21.99 100 0

24 N + 8 nM dFdC→ RT 1.70 0.96 0.865 0.175 * 1.70 0.72 †† 2.00 0.76 †† 37.48 17.47 †† 60 27 ††

24 N + 2 μM dFdU→ RT 2.18 0.57 0.701 0.214 * 1.46 0.22 †† 1.62 0.28 †† 29.63 9.83 †† 41 12 ††

24 H→ RT 1.43 0.61 3.67 1.03 4.14 0.98 72.96 16.96 93 11

24 H + 8 nM dFdC→ RT 1.59 0.46 0.683 0.243 ¶ 2.37 1.32 †† 2.51 1.02 †† 58.92 17.91 60 25 ††

24 H + 2 μM dFdU→ RT 2.34 0.71 0.687 0.285 ¶ 1.87 0.59 †† 2.34 0.32 †,†† 49.39 15.89 44 8 ††

MDA-MB-231 EV

24 N→ RT 2.35 1.29 2.65 1.37 53.68 34.97 100 0

24 N + 8 nM dFdC→ RT 1.70 0.82 0.932 0.273 1.59 0.66 1.61 0.24 28.02 8.46 39 9 ††

24 N + 2 μM dFdU→ RT 1.74 1.06 0.839 0.231 * 1.80 0.75 2.05 0.72 40.16 26.53 45 23 ††

24 H→ RT 1.57 0.76 3.41 1.78 4.42 1.81 68.53 32.22 92 36

24 H + 8 nM dFdC→ RT 1.77 0.85 0.381 0.023 ¶ 2.00 0.47 2.56 1.04 52.56 22.09 40 30 ††

24 H + 2 μM dFdU→ RT 2.35 1.16 0.711 0.245 * 2.01 0.45 2.59 0.71 48.64 7.71 49 24

MDA-MB-231 dnHIF

24 N→ RT 3.02 1.42 3.46 1.73 69.79 38.04 100 0

24 N + 8 nM dFdC→ RT 1.50 0.75 0.761 0.182 * 1.82 1.18 2.25 1.16 42.90 26.39 30 15 ††

24 N + 2 μM dFdU→ RT 2.45 0.67 0.818 0.274 * 1.86 0.99 2.07 1.13 45.32 33.00 61 15 ††

24 H→ RT 1.43 0.54 3.80 1.40 4.93 1.47 81.34 35.51 97 19

24 H + 8 nM dFdC→ RT 2.04 0.93 0.587 0.280 ¶ 1.90 0.86 †† 1.97 0.69 †† 42.62 20.43 †† 32 15 ††

24 H + 2 μM dFdU→ RT 2.08 0.52 0.798 0.311 * 2.54 0.77 2.85 0.83 †† 59.16 14.76 63 16 ††

dFdC: gemcitabine; RT: irradiation; N: normoxia; H: hypoxia; SD: standard deviation; OER: oxygen enhancement ratio; DEF: dose enhancement factor; CI:
combination index, ID50: radiation dose producing a surviving fraction of 50%; MID: mean inactivation dose (MID), SF2: surviving fraction at 2 Gy; % survival:
representing the cytotoxic effect of gemcitabine (dFdC) or dFdU and/or hypoxia alone, 0 Gy.
†: p < 0.05 vs. corresponding normoxic condition (same treatment, same cell line); ††: p < 0.05 vs. corresponding untreated condition (same pO2, same cell line).
*: moderate synergism (0.7 > CI > 0.9); ¶: synergism (CI < 0.7).
All results are from at least 3 independent experiments ± SD.
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detailed studies on the impact of hypoxia on the cytotoxic
and/or radiosensitising effects of anticancer drugs are
lacking. As the adaptation of tumour cells to hypoxia is
primarily mediated by stabilisation of HIF-1, we evaluated
the role of functional HIF-1 in the response to chemora-
diotherapy. Interestingly, several studies have shown that
the presence of HIF-1α is a negative prognostic factor for
human breast cancer [21-23]. Animal studies of metastatic
breast cancer have demonstrated that lack of HIF-1α in
malignant cells significantly reduced tumour progression
and metastasis [24]. Moreover, high HIF-1α levels were
shown to be predictive of response to epirubicin therapy
in patients with breast cancer [25].
In our study, Western blotting showed a consistent

upregulation of HIF-1α protein level under hypoxia,
whereas the PCR array indicated that HIF-1α was down-
regulated on mRNA level under hypoxia. Similarly,
exposure of HeLa cells to hypoxia (1% O2) or the oxygen
mimetic CoCl2 for 2.5 h did not change HIF-1α mRNA
levels significantly, while HIF-1α protein levels increased
[26]. In patients with colon cancer, high HIF-1 expression
was demonstrated using immunohistochemistry, but no
significant difference in HIF-1α mRNA expression be-
tween tumour groups and control groups was noticed
[27]. One possible explanation for such a discrepancy be-
tween mRNA and protein levels is that induction of HIF-
1α protein expression is not due to enhanced HIF-1α gene
transcription or elevated mRNA stability, but instead re-
sults from a longer half-life of the protein due to increased
HIF-1α translation and decreased HIF-1α proteolysis [26].
Importantly, due to the above-described transient

stabilisation and short half-life of endogenous HIF-1α,
HIF targets such as CA9 and the glucose transporter 1
(GLUT-1) have been used to detect hypoxic response in
tumour tissues. In breast cancer, abundant expression of
CA9 and GLUT-1 was shown to be associated with high-
grade cancers and poor prognosis [28,29]. Moreover, CA9
has also been suggested as a predictive marker for re-
sponse to doxorubicin treatment and adjuvant endocrine
therapy in patients with breast cancer [30,31]. In addition,
several gene and miRNA expression signatures have been
described to be associated with poor prognosis in breast
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carcinoma [32]. In this respect, there is a pressing need
for better biomarkers of hypoxia (including gene expres-
sion profiles, serum proteins, circulating tumour cells or
functional imaging) that could be used non-invasively in
patients to enable more rigorous testing of its prognostic/
predictive value [33].
Concerning the cytotoxic effect of gemcitabine, no

significant influence of hypoxia was observed in the
breast carcinoma cell lines included in the present study.
In addition, for the first time, the effect of gemcitabine’s
main metabolite dFdU was investigated under reduced
oxygen conditions and a similar cytotoxic effect was shown
under normoxia and hypoxia. This might be explained by
the fact that hypoxia has been shown to have no effect on
protein expression of several key enzymes (including dCK
and cytidine monophosphate kinase) responsible for
metabolism of gemcitabine [34].
Moreover, we noticed that both gemcitabine and dFdU

induced a clear S phase block in normoxic and hypoxic cells,
independent on HIF-1 functionality. Also, no reduction of
cellular uptake and DNA incorporation of gemcitabine
under hypoxia was reported in pancreatic carcinoma and
hepatoma-derived cell lines [35].
Other papers however showed that oxygen deficiency

did compromise the cytotoxic effect of gemcitabine, sug-
gesting a cell type dependency of this phenomenon.
For example, treatment of transitional cell carcinoma
cells with gemcitabine was less effective under hy-
poxia [36]. For pancreatic cancer cells, several studies
reported that hypoxia induced resistance to gemcita-
bine, by altered signalling through PI3K/Akt/NF-κB
pathways and partially through MAPK signalling path-
way [37], by reducing both inhibition of proliferation and
induction of apoptosis by gemcitabine [38], and by
decreasing the synthesis of active gemcitabine deoxynu-
cleotides, possibly also through downregulation of dCK
[39]. As such, the impact of tumour-associated hypoxia on
the cytotoxic effect of gemcitabine is still not completely
resolved.
The present report showed no association between radio-

sensitisation by gemcitabine or dFdU and HIF-1 function-
ality. Previous work either focused on the relationship



Table 3 Cell cycle distribution after 24 h gemcitabine or dFdU under normoxia or hypoxia

Condition G0/1 phase S phase G2/M phase

Mean SD Mean SD Mean SD

MDA-MB-231 wt

0 nM dFdC/dFdU (N) 51.36 7.38 24.85 3.39 18.79 4.90

8 nM dFdC (N) 25.76 8.82 * 67.73 6.35 * 9.65 1.66 *

2 μM dFdU (N) 37.25 8.74 * 44.28 18.19 * 13.07 8.33

0 nM dFdC/dFdU (H) 48.61 6.04 29.69 7.94 18.41 8.85

8 nM dFdC (H) 41.95 17.94 53.28 17.17 * 8.81 1.43 *

2 μM dFdU (H) 49.31 11.21 37.79 12.98 5.46 0.22

MDA-MB-231 EV

0 nM dFdC/dFdU (N) 44.02 9.86 25.31 5.77 16.31 2.50

8 nM dFdC (N) 43.97 6.20 29.82 7.59 13.53 4.80

2 μM dFdU (N) 39.05 15.49 * 42.19 19.60 * 8.72 2.45

0 nM dFdC/dFdU (H) 51.31 11.10 27.28 9.94 10.17 4.03 ¶

8 nM dFdC (H) 52.53 13.96 28.11 13.79 8.57 2.37 ¶

2 μM dFdU (H) 50.51 14.73 33.15 19.84 6.56 2.31

MDA-MB-231 dnHIF

0 nM dFdC/dFdU (N) 49.22 8.46 23.60 4.67 16.97 2.19

8 nM dFdC (N) 41.89 18.19 31.65 15.59 13.38 7.75

2 μM dFdU (N) 41.77 18.66 * 44.09 14.32 * 7.94 1.98

0 nM dFdC/dFdU (H) 47.65 8.00 28.50 5.61 ¶ 13.03 3.99 ¶

8 nM dFdC (H) 40.86 13.01 34.76 14.29 12.90 8.00

2 μM dFdU (H) 51.22 12.61 34.17 8.23 7.18 1.81

dFdC: gemcitabine; N: normoxia; H: hypoxia.
¶: p < 0.05 vs. corresponding normoxic condition (same treatment, same cell line); *: p < 0.05 vs. untreated control (same pO2, same cell line).
All results are from at least 3 independent experiments ± SD.
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between HIF-1 and the cytotoxic effect of gemcitabine or
between HIF-1 and radiosensitivity per se.
Firstly, previous observations have been somewhat con-

troversial regarding HIF-1α expression and the sensi-
tivity to gemcitabine. Suppression of HIF-1α using siRNA
resulted in an enhanced efficacy of gemcitabine in the
treatment of several pancreatic tumour cell lines [40,41].
Nevertheless, in line with our results, knockdown of
HIF-1α has also been reported to have no effect on the
sensitivity of pancreatic PANC-1 cells when treated with
gemcitabine under hypoxic conditions [35]. In addition,
HIF-1α expression levels after platinum/gemcitabine the-
rapy did not correlate with outcome of patients with stage
II/III non-small cell lung cancer and HIF-1α expression
was not associated with adverse effects or outcome in
patients with pancreatic cancer [42]. As such, the thera-
peutic value of an approach by which gemcitabine is com-
bined with inactivation of HIF-1α signalling by novel
strategies remains to be fully elucidated.
Secondly, the effects of HIF-1 blockade on tumour

radiosensitivity are complex. Downstream effects of
HIF-1 serve to help tumour cells to adapt to hypoxic
stress. In doing so, they change the tumour phenotype
in ways that might impact radiosensitivity, some posi-
tively and some negatively, but the degree and direction
of that influence appears to be dependent on the con-
text. For example, inhibition of HIF-1 activation using
siRNA clearly increased radiosensitivity of hypoxic fibro-
sarcoma cells [43]. Other studies however suggested that
HIF-1 would not affect radiosensitivity [44]. From the
experimental model used in this study, two conclusions
can be drawn. Firstly, no significant difference in radio-
sensitivity was observed for HIF-1 proficient versus defi-
cient cells, with an OER around 1.50 for all three cell
lines. A comparable and relatively low OER of 1.86 ±
0.73 has been reported for MDA-MB-231 by Lagadec
et al., who suggested that a negative correlation exists
between the OER and increasing malignancy of the
breast cancer subtype the cell lines were originally de-
rived from [45]. Secondly, none of the radiobiological
parameters (ID50, MID, SF2) calculated were significantly
influenced by HIF-1 functionality after treatment with
gemcitabine or dFdU in combination with radiation.
One important limitation of our in vitro study is the lack

of the microenvironment that would surround tumours
in vivo. Therefore, further studies using tumour animal
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models would certainly be warranted. Only in this way, an
in-depth understanding and characterisation of hypoxia in
breast cancer and other relevant tumour types can be
established, ultimately enabling an enhanced prediction of
prognosis, optimisation of (gemcitabine and/or radiation)
treatment and information on whether and how to target
tumour hypoxia.

Conclusions
Taking into account our previous work in lung cancer
cell lines [12], this study showed that the retained radio-
sensitising effect of gemcitabine under hypoxia was not
tumour tissue specific and could be observed in MDA-
MB-231 breast cancer cells. For the first time, radio-
sensitisation by dFdU, the main metabolite of gemcita-
bine, was investigated and demonstrated under low
oxygen conditions. As dFdU has a prolonged half-life, the
sustained presence of dFdU in the blood might induce
radiosensitisation despite the short half-life of the parent
drug gemcitabine. This might be highly relevant, especially
considering delivery of the drug to hypoxic tumour
regions. As HIF-1 proficient and HIF-1 deficient cells were
equally radiosensitised, no major role for functional HIF-1
protein in radiosensitisation by gemcitabine or dFdU
could be demonstrated.
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