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SUMMARY 

There is increasing concern regarding the risk of swine disease transmission via feed ingredients, 

whether imported or domestically produced. This risk may be reduced in the feed ingredient supply 

chain by identifying and implementing preventive controls (supply chain, sanitation, 

transportation, and process) at different steps of the chain. The objective of this study was to 

develop a practical guide to help feed ingredient suppliers and buyers to safely manufacture, 

package, transport, and use feed ingredients in swine feeding programs. The Food Safety 

Modernization Act (FSMA) provides the basis of this study because these regulations require 

proactive risk-based preventive control processes that are applied in the food supply chain to 

prevent or reduce the risk of hazards from being present in the final product. Using this conceptual 

framework, implementation of preventive controls in the feed production chain can control or 

decrease the potential introduction of foreign animal viruses through feed ingredients into the U.S. 

A decision tree was developed as a first step in identifying preventive controls and potential high-

risk feed ingredient sourcing scenarios. A case-study using Porcine Epidemic Diarrhea virus 

(PEDV) and the corresponding decision tree was developed as an illustration on how to use this 

new approach. Although this approach is based on swine viral diseases, it can serve as a template 

for other pathogenic viruses and species.  
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GLOSARY OF TERMS AND DEFINITIONS 

 

Critical Limit: Maximum and/or minimum process parameter values (e.g. temperature) of a 

process preventive control to prevent, eliminate, or reduce to an acceptable level the occurrence of 

a virus  

Endemic: Constant presence and/or usual prevalence of a disease or infectious agent in an 

animal population within a geographic area 

FSMA: Food Safety Modernization Act 

HARPC: Hazard Analysis and Risk-based Preventive Controls 

HACCP: Hazard Analysis and Critical Control Points 

Minimum Infectious Dose (MID): Lowest virus concentration that can cause infection in at 

least one pig in a group  

Origin Facility: First facility or farm in a supply chain that grows, manufactures, or processes 

an ingredient or raw material for distribution to receiving facilities 

Preventive Controls: Risk-based, reasonably appropriate procedures, practices, and processes 

that a person knowledgeable about the safe manufacturing, processing, packing, or holding of 

animal feed would employ to significantly minimize or prevent the hazards identified under the 

hazard analysis, that are consistent with the current scientific understanding of safe food 

manufacturing, processing, packaging, or holding at the time of the analysis 

Process Preventive Controls: Procedures, practices, and processes to ensure the control of 

parameters during operations such as thermal processing, acidification, irradiation, and 

refrigeration of ingredients to control the virus identified in the hazard analysis 

Receiving Facility: Facility that receives a raw material or ingredient from a supplier for 

further manufacturing and processing in the U.S. or feeding to animals 

Risk mitigation: Procedures, practices, and processes that when implemented, decrease the 

survival of viruses in feed and feed ingredients. Risk mitigation differs from preventive controls 
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because there may not be scientific validation of the procedure, or because implementation varies 

greatly among facilities 

Sanitation Preventive Controls: Procedures, practices, and processes to ensure that the 

facility is maintained in a sanitary condition adequate for significantly minimizing or preventing 

the recontamination of the ingredient or finished product with a pathogen 

Supplier: Facility or farm that grows, manufactures, or processes an ingredient for 

distribution to receiving facilities. A supplier may be the origin facility or it may be a facility for 

further manufacturing, processing, distribution, or warehousing of ingredients. 

Supply Chain Preventive Controls: Procedures, practices, and processes in the raw material 

or ingredient distribution chain, involving multiple suppliers and receiving facilities, to prevent 

virus contamination and re-contamination 

Transportation Preventive Controls: Procedures, practices, and processes to ensure the 

sanitary transportation of ingredients or finished products to minimize the risk of recontamination 

of the product with the virus 

Validation: Obtaining and evaluating scientific and technical evidence that a process 

preventive control or combination of them, when properly implemented, is/are capable of 

effectively preventing virus presence 

Verification: Application of methods, procedures, tests, and other evaluations, in addition to 

monitoring, to determine whether a process preventive control or combination of them is or has 

been functioning as intended 

  



  Page 4 of 43 

1. INTRODUCTION 

Pork product exports represent 25.5% of total U.S. pork production and provide a significant source 

of nourishment to other countries that rely on imported U.S. products [1]. A 2015 University of 

Minnesota report developed for the National Pork Producers Council (NPPC) highlighted the 

significant trade volume and number of swine feed ingredients (animal-based, plant-based, and 

other synthetic and naturally occurring feed additives) being imported into the U.S. [2]. This 

frequent and high-volume trade of ingredients carries an inherent risk for transmission of foreign 

animal viruses [3]. The most recent example was the introduction of Porcine Epidemic Diarrhea 

virus (PEDV) to the U.S. in 2012-14, with evidence that feed and feed ingredients can serve as 

potential routes of transmission. Additional experimental evidence confirmed that the survival of 

PEDV and other coronaviruses (Transmissible Gastroenteritis Virus and Porcine Delta 

Coronavirus) in multiple feed ingredients [4]. The risk of foreign animal viruses entering and 

spreading within the U.S. via feed increases with factors such as: 1) sourcing ingredients from 

countries or geographic areas known to be endemic or with history of previous outbreaks, 2) the 

likelihood of virus introduction into the feed ingredient supply chain, 3) the ability of viruses to 

survive in the ingredients for extended periods of time, and 4) the quantity of the ingredients 

imported or transported. 

The Food Safety Modernization Act (FSMA) aims to ensure that the U.S. food supply is safe by 

shifting the focus of FDA regulation of human and animal food safety from responding to 

contamination to preventing it [5]. To do this, the agriculture industry and producers must identify 

preventive controls to avoid reasonable or foreseeable food safety hazards being introduced or 

present in the food supply chain (human or animal food) either from a domestic or an international 

source. The FSMA obligates human and animal food producers (FDA-regulated products) to use a 

Hazard Analysis and Risk-Based Preventive Controls (HARPC) system. The HARPC system is 

broader in scope than the traditional Hazard Analysis and Critical Control Points (HACCP) system. 

The HARPC system not only focuses on process preventive controls (like critical control points in 

a HACCP system), but it also includes other preventive controls such as supply chain preventive 
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controls, allergen preventive controls, and sanitation preventive controls. Furthermore, the FSMA 

rule to “Establish Current Good Manufacturing Practice and Hazard Analysis and Risk-Based 

Preventive Controls for Food for Animals” (Animal Food PC Rule), outlines how to develop a 

HARPC plan for food animal producers. The plan is focused on preventing physical, chemical, and 

biological food safety hazards. However, the Animal Food PC Rule does not specifically require 

consideration of viral contamination in feed. Regardless, most of the FSMA principles and 

preventive controls can be effectively applied to control and prevent viral contamination in feed 

ingredients. This document provides guidelines to develop and implement a generic risk-based 

preventive control plan in the animal feed supply chain focused on preventing foreign viruses from 

being introduced into the U.S. via imported feed ingredients. These guidelines can also be used for 

domestic sourcing and transportation of animals during disease outbreaks. A pilot case for PEDV 

risk-based preventive control was used to provide an example of the application of the current 

methodology. However, this methodology is also applicable to any foreign animal disease (FAD) 

using specific data and supply chain information for any virus of concern. 

2. RISK-BASED PREVENTIVE CONTROL PLAN FOR VIRUSES IN FEED 

Hazard identification 

The Swine Health Information Center (Ames, IA) has created a list of endemic and foreign swine 

diseases that are a high priority for preventing entry into the U.S. These high priority FAD were 

classified based on 1) likelihood of entry, 2) economic impact on pork production, and 3) impact 

on access to domestic and international markets. The outcome of this disease priority matrix ranks 

Food and Mouth Disease Virus (FMDV), African Swine Fever Virus (ASFV), and Classical Swine 

Fever Virus (CSFV) as the three most important viruses (Table 1). These three viruses have been 

demonstrated to survive in multiple feed ingredients for a period of 37 days at a temperature of 

about 10°C and relative humidity of about 70%.  

Table 1. Virus of interest to the U.S. swine industry for hazards analysis and risk mitigation 
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Virus Family Genome, 
sense 

Enveloped Impact1 Survival2 Heat 
resistance3 

FMDV Picornaviridae ssRNA, + No 9.0 12/14 D50 = 732-1,275 
s 
D80 = 2 - 6 s 

ASFV Asfaviridae dsDNA, + Yes 8.3 10/14 N/A 
CSFV Flaviviridae ssRNA, + Yes 7.7 0/14 N/A 
PEDV Alphacoronaviridae ssRNA, + Yes 5.7 5/7 D25 = 0.7 – 4.9 

1Ranked from 1-9 with 9 representing the highest rank (https://www.swinehealth.org/swine-
disease-matrix/).  
2Demonstrated survival in various feed ingredients and severity when known[6]. 
3Data from [7] and [8], [9]. D value is the time at certain temperature to reduce 90% the virus 
concentration.  
 

During active outbreaks of African Swine Fever in Eastern Europe, various samples of complete 

feed on farms were found to test PCR positive for the virus [10]. Similarly, in the recent ASFV 

outbreak in China, feed mills near active outbreaks were been found to be positive for this virus, 

which poses a risk for disease transmission [11]. 

Although, the U.S. pork industry is currently focusing on the risk of foreign virus transmission, 

pathogenic bacteria transmission via complete feed and feed ingredients is also a hazard to the 

health of pigs (https://www.swinehealth.org/swine-bacterial-disease-matrix/). While the focus of 

this document is on foreign viruses, multiple steps described for virus mitigation strategies may also 

be useful for bacterial pathogen risk mitigation. 

Risk mitigation and preventive controls 

A risk-based preventive control plan for viruses in feed, including foreign animal viruses, should 

include Process Preventive Controls, Supply Chain Preventive Controls, Sanitation Preventive 

Controls, and Sanitary Transportation Preventive Controls 

2.1 Process Preventive Controls 

Process preventive controls include procedures, practices, and processes during ingredient 

manufacturing (thermal processing, acidification, irradiation, and refrigeration) to ensure 

https://www.swinehealth.org/swine-bacterial-disease-matrix/
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inactivation and control of pathogens, including viral pathogens. Process controls must include, as 

appropriate to the nature of the control and its role in the facility: 

i. Process parameters known to control, reduce, and/or inactivate pathogens. There are 

several heating processes (dry and wet) used in the feed industry that may serve as 

process parameters including, but not limited to, pelleting, extruding, cooking, 

roasting, toasting, and long-term conditioning. For example, grains can be processed 

or treated by both dry or wet mechanical, thermal, or thermo-mechanical methods 

[12]. In addition, a combination of factors such as temperature, moisture, and holding 

time are important in processes like drying, pelleting, extruding, and other thermal 

processes [13][14]. Examples of feed ingredient treatment processes can be found in 

Appendix 1. 

ii. The maximum or minimum value of the process parameter (e.g. temperature, pH, 

radiation energy, moisture), also known as the critical limit, represent the extent that 

a process needs to reach to significantly control, reduce, or inactivate the virus. 

Examples of critical values can be found during spray-drying of porcine plasma 

where the inlet air temperature reaches about 204±5°C and achieves an air outlet 

temperature of 79±1.9°C, and a final moisture content of 7.3±0.7% [15]. Rendering 

provides another example where the minimum product temperature needs to reach 

115°C to ensure adequate inactivation of pathogens [16].  

iii. Records of data showing that values within the critical limits have been achieved 

must be maintained to show that the process control is working as intended, and 

must provide the capability of detecting any failure immediately after its occurrence.  

For each viral pathogen and process preventive control, the critical values for the process 

parameters should be identified and then shown to be achieved within the facility to verify the 

ingredient or finished product is free of the active virus. The activity performed to identify the 

critical values is called validation, while the activities performed to ensure that the values are 

consistently achieved are called verification.  
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2.1.1 Validation and verification activities 

Any process preventive control identified in the facility requires that the effect of the control 

measure, or combination of control measures, be scientifically validated to ensure that it controls, 

reduces, or inactivates the virus in the feed ingredient to an acceptable level [14]. The validation 

activity must include two steps: 

i. Theoretical validation: Theoretical validation encompasses activities focused on 

collecting and evaluating scientific and technical information about the effect of the 

control measure on the virus inactivation. The level of inactivation required by the 

control measure to ensure that the virus is completely inactivated depends on the 

initial virus concentration in the feed ingredient. For example, an ingredient that is 

contaminated with PEDV with a concentration of 103 viral particles/g, will need at 

least 3 log reduction (103 or 99.9%) or more to assure the ingredient is free of the 

virus (or at least below the detection level). When evaluating the effect of a process 

preventive control measure on virus inactivation, log reduction is used (1 log equal 

90% reduction or 101, 2 log represents a 99% reduction or 102, and 3 log reduction 

equals to 99.9% or 103). To calculate the virus inactivation achieved during thermal 

processing, the concentration of the virus must be measured before and after the 

control measure as a function of temperature and time [16]. Inactivation potential of 

a process preventive control is determined through an inoculation study designed to 

apply different inactivation processes to create an inactivation curve. Figure 1 

provides an example of an inactivation curve at certain temperature over time. More 

information can be found in Appendix 2.  

ii.  
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Figure 1: Example of a virus inactivation curve at a specific temperature.  

 

An adequate inactivation level based on available studies on viral contamination of feed 

ingredients would be between a 3 and 5 log reduction (103 to 105or 99.9% to 99.999%) 

[17]. However, this would depend on the initial concentration of virus found in the raw 

material or diet. Currently, there are no known studies that have estimated the 

concentration of pathogens, including PEDV, in feed ingredients and complete feed in the 

feed and pork industry. 

iii. In-plant validation: In-plant validation encompasses activities focused on collecting 

data on processing parameters (e.g. temperature, pH, moisture) and recording it in 

the facility to demonstrate that the process at the facility can reproduce the same 

conditions found in the theoretical validation. The FSMA requires facilities to collect 

and record process parameter data for a minimum of 90 days [18]. For example, a 

feed manufacturer will gather time and temperature data during pelleting for 90 

production days and use these data as the basis of the in-plant validation [19]. The 

importance of in-plant validation was highlighted in the study conducted by Maier 
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and Gardecki (1992). These researchers investigated 88 feed mills in the U.S.A. and 

found that only 23%of the feed mills had a properly functioning steam system for 

pelleting that could achieve the correct temperatures. The study also described the 

importance of equipment maintenance and immediate corrective actions as soon as 

a problem was identified [20].  

Verification activities are performed by monitoring the application of methods, procedures, tests, 

and other evaluations to determine whether a control measure, or combination of them, are 

operating as intended [14] [21]. Examples of verification activities may include: 

i. Calibration of monitoring and verification instruments (e.g. pH meter, 

thermocouples)  

ii. Finished product testing for the virus (or appropriate indicator organism or 

surrogate) 

iii. Monitoring of process parameters (e.g. temperature, pH) 

iv. Review of the verification and/or monitoring records 

These validation and verification activities are needed for each process preventive control 

implemented within the facility. For example, they may be needed not only in production of raw 

ingredients like soybeans, but also in production of ready-to-use products like pelleted animal feed 

[22]. Table 2 provides an example of how a supplier or manufacturer can document a process 

preventive control within a facility. 

Table 2. Example of a risk mitigation or process preventive control plan 

(1) 
Process 

preventive 
control 

(2) 
Identify potential 

viruses and provide 
justification 

(3) 
Validation 

(4) 
Verification 

Rendering 
PEDV  
 

Theoretical: Scientific study or 
technical report shows the time-
temperature combination achieved in 
rendering can inactivate PEDV. 

Monitoring of time-
temperature 
combination during 
rendering.  
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Ingredients can be 
contaminated with 
the virus 

 
In-plant: 90 days of processing records 
showing time-temperature combination 
of the rendering equipment meets the 
values identified in the scientific study 
for viral inactivation.   

 
Calibration of 
thermocouples within 
the rendering 
equipment. 
 
Monitoring of the 
moisture of the 
finished product.  

Source: Adapted from FSMA (2018) 

2.2. Supply Chain Preventive Controls 

Supply-chain preventive controls are implemented to control the risk of viral contamination in 

feed ingredients destined for receiving facilities. They are applied at the origin facility or supplier 

in a foreign country, or domestically, and not at the receiving facility or buyer in the U.S. Supply-

chain preventive controls are used to either avoid viral contamination of the raw material or 

ingredient, or to verify the hazard was controlled (e.g. inactivation of the virus) during processing 

at the supplier [17] [22] [23]. Supply chain preventive controls include controls for raw materials 

that do not undergo any process preventive controls, and controls to verify appropriate sanitation 

preventive controls at origin facilities and suppliers, to ensure that viral recontamination does not 

occur following process preventive controls at origin facilities and suppliers. Examples of supply 

chain preventive controls may include [22] [23]:  

i. Conducting on-site third-party audits or review  

ii. Sample raw materials or other ingredients for virus contamination or indicator 

organism  

iii. Review the origin facility’s or supplier’s Good Manufacturing Practices (GMPs), 

Good Agricultural Practices (GAPs), and Good Warehousing Practices (GWP) 

iv. Review the biosecurity measures (SOP’s) of origin facilities and suppliers 

v. Review the origin facility and supplier traceability and recall procedures 

vi. Perform additional activities depending on the origin facility, supplier, and raw 

material inherent risk  
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More examples of supply chain preventive controls can be found in Appendix 3. Table 3 provides 

an example of the supply chain preventive controls in soybeans. 

Table 3. Example of a Supply Chain Preventive Control Plan 

(1)  
Raw material 

(2)  
Supply Chain 

Preventive Control 

(3)  
Who performs the 
preventive control? 

(4)  
Verification frequency 

Soybeans 

GMP audit 
Buyer or third-party 
certified auditor* 

Initially before using the 
ingredient and annually 
thereafter 

GAP audit 
Buyer or third-party 
certified auditor* 

Initially before using the 
ingredient and annually 
thereafter 

Testing for fecal 
contamination** 

Supplier Sampling plan for generic E. coli  

* Third-party or private schemes may include ISO series, Safe Quality Food (SQF), Safe Feed/Safe Food and 

Global Food Safety Initiative (GFSI). USDA has a “Foreign Animal Disease Preparedness and Response Plan 

(FAD PReP) Standard Operating Procedures (SOPs)” that can be used in combination.  

** Fecal contamination of the irrigation water or raw material may be an indirect measure for potential virus 

contamination. Additional tests for virus contamination may be carried out especially in endemic 

countries/geographic areas or with recent history of outbreaks. The Fresh Produce Rule of FSMA has more 

information on designing a sampling plan for generic E. coli.  

 

2.3 Sanitation Preventive Controls  

Sanitation preventive controls are procedures, practices, and processes (mainly cleaning and 

disinfection) to ensure a facility is maintained in a sanitary condition to minimize or prevent cross-

contamination of viruses. Avoiding viral re-contamination or cross-contamination is critical after 

achieving process preventive control in a facility. Equipment and personnel can cross-contaminate 

and re-contaminate the finished product due to poor sanitation protocols, movement of personnel 

from raw material to finished product areas, and wear contaminated clothing or boots [24]. Several 

studies have shown that cross-contamination can occur from contaminated boots tracking and 
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spreading PEDV virus throughout a feed mill (virus was detected on concrete floor surfaces) [25]. 

Cross-contamination can also occur at feed mills due to the use of contaminated trucks or 

equipment.   

All operations in the facility including processing, packaging, and holding of feed (including 

operations directed to receiving, inspecting, transporting, and segregating) must be conducted in 

accordance with adequate sanitation principles [26]. The U.S. FDA recommends developing and 

implementing written sanitation procedures to ensure that the area and equipment are cleaned and 

sanitized in a manner that reduces the risk of contamination and re-contamination. Written 

sanitation procedures must be established, implemented, and monitored including the frequency 

with which they are to be performed to ensure cleanliness of facilities and prevent cross-

contamination [27]. Examples of sanitation preventive controls are: 

i. Physical cleaning 

ii. Removal of feedstuff residues and dust 

iii. Employee hygiene and livestock ownership 

iv. Effective pest management  

These sanitation controls have been developed based primarily on eliminating Salmonella spp. or 

other bacterial pathogens with little to no information documenting the elimination of viral 

contamination from feed production facilities [28][29]. It is recommended that such studies be 

conducted in the near future. 

2.4 Sanitary Transportation Preventive Controls 

Transportation occurs throughout the supply chain for feed ingredients and finished feeds, and 

must follow rigorous procedures to ensure the safety of the product by preventing viral 

contamination or re-contamination. Guidelines for safe transport of food products to avoid viral re-

contamination include [30]:   

i. Regular sanitation of all transport vehicles and containers 

ii. Maintaining cleaning records of transport vehicles and containers 
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iii. Proper disposal of wastewater potentially contaminated with the virus  

iv. Use of sanitized packaging and pallet materials  

v. Use of proper loading practices and patterns that minimize crossing ‘dirty’ and ‘clean’ 

areas  

vi. Minimize transport of mixed loads that may increase the risk for cross-contamination  

vii. Adequate pest control (insects, birds, rodents) and prohibit access to pets (cats and 

dogs) in transportation units or storage facilities 

viii. Adequate product holding to avoid unattended product, delayed holding, shipping 

of product while in quarantine, and poor rotation and throughput 

 

Table 4 provides examples of transportation of feed ingredients and relative risk situations for virus 

cross-contamination. 

Table 4. Transportation Risk Scenarios 

Transportation type Condition 
Regular sanitation of transportation vehicles (truck, rail car, 
etc.) 

Lower risk 

Use of new or sanitized product containers (bags, bulk sacks, 
etc.) 

Lower risk 

Use of sealed product containers prior to shipping in 
impermeable packaging material 

Lower risk 

Shipment has multiple warehousing and delivery routes prior 
to receiving facility 

Higher risk 
Needs validation that cross-
contamination will not occur 

Shipment mixes batches from different suppliers (e.g. raw and 
ready to use ingredients) 

Higher risk 
Needs validation that cross-
contamination will not occur 

The ingredient is ready to use and is shipped in an unsealed 
container (e.g. finished feed shipped in bulk, soybean meal 
shipped in bulk) 

Higher risk 
Ingredient may be re-
contaminated  

Buyers should review written transportation procedures to ensure adequate sanitary transportation 

conditions and records of monitoring or verification of sanitary transportation activities.  
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3. PORCINE EPIDEMIC DIARRHEA VIRUS (PEDV) AS THE PILOT CASE 

Porcine Epidemic Diarrhea Virus (PEDV) was used in this project as the model virus due to the 

severe economic burden it caused for U.S. pork producers, potential evidence of feed transmission, 

and availability of data regarding inactivation and survival in feed ingredients. The virus belongs 

to the Coronaviridae family in the genus Aphacoronavirus. It has an enveloped, single-stranded, 

positive-sense RNA genome of ≈28 kb. It does not demonstrate cross-immunity with other porcine 

enteric coronaviruses such as the virus responsible for transmissible gastroenteritis (TGE) [31][32]. 

This disease appeared in the U.S. in 2013, and spread across over 25 states resulting  in more than 

6,500 confirmed cases in one epidemic year [33][13]. The virus causes an acute, highly contagious 

severe diarrhea and vomiting in pigs, with a high mortality rate in suckling pigs. The prevention 

and management controls have focused on strict biosecurity measures and early detection. There is 

no specific treatment for the disease. The PEDV is not zoonotic (does not present a human health 

risk) nor transmissible to other animal species. Thus, it is not a food safety risk for humans, or a risk 

to any species other than swine [34][32][13][35]. 

Transmission of PEDV occurs mainly via the fecal-oral route. Other sources of contamination have 

been observed such as sow’s milk, aerosol droplets from infected pigs, contaminated feed, feed mills, 

and transport vehicles [31][33][36][37][32][36]. Viral infectious dose is age-dependent with a 

significantly lower minimum infectious dose (MID) for neonatal pigs compared to weaned pigs. 

Thomas et al. (2015) found that the MID in 5-day-old pigs was between 0.056 TCID50 whereas the 

MID in 3-week-old pigs was 56 TCID50 under study conditions. This suggests that the MID for 

neonatal pigs was at least 1000-fold less than in weaned pigs [38]. In another study, PEDV in feed 

containing 56 TCID50/g was the minimum infective dose in 10-day-old pigs [39].  

Results from studies evaluating PEDV thermal resistance in feed matrices is summarized in Table 

5. When evaluating the effect of a process control measure on virus inactivation, log reduction is 

used (1 log equals to 90% reduction or 101, 2 log equals to 99% or 102, and 3 log reduction equals to 
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99.9% or 103). This information is important to show adequate scientific validation of the control 

measure against PEDV.  

 

The PEDV can survive for variable periods of time in different matrices depending on the 

temperature, pH, and relative humidity. Table 6 shows that the survivability of PEDV ranges from 

few days to up to 28 days depending on the matrix and storage conditions. The survivability of 

PEDV has been shown to be similar to ASFV in some ingredients such as conventional and organic 

soybean meal, soy oil cake, and choline stored at room temperature (20°C) [6]. Therefore, a guide 

developed for decreasing PEDV transmission via animal feed and ingredients can be used as a model 

for other viruses. Table 7 shows the effect of acidification on PEDV survival. The addition of 

inorganic acids and other additives may reduce the survival of the virus in different feed 

ingredients.  

 

 

 

Table 5: Inactivation of PEDV after Thermal Processing 

Matrix 
Process 
Conditions  

Detection 
Method 

Initial 
Concentration 

Viral Reduction Reference 

Porcine 
Plasma 

Lab-scale 
spray-drying  
Inlet air T: 
166°C 
Outlet T: 80°C 
Drying time: <1 
s 

RT-PCR 
Sequencing 
 
Bioassay 

104.2 
TCID50/mL 
 

4.2 log viral 
reduction after 
spray-drying and 
storage for 7 d at 
4°C  

Gerber et 
al., 2014 
[40] 

Porcine 
Plasma 

Lab-scale 
spray-drying 
Inlet air T: 
200°C 
Outlet T: 80°C 
Drying time: <1 
s 

Microtiter assay 
procedure in 
VERO cell 
monolayers 

104.2 
TCID50/mL 
105.1 TCID50/g 
 

4.2 log viral 
reduction after 
spray-drying and 
heating in water 
bath  

Pujols and 
Segalés, 
2014 [41] 
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Post-Drying 
(water bath): 
70°C for 30 s 
80°C for 60 s 

Eagle’s 
Minimum 
Essential 
Media 

Water bath 
50°C for 5 to 
180 min  
And, 
50-80°C for 30 
min  

Plaque test 
105.5 pfu/mL 
 

5.5 log viral 
inactivation 60°C 
for 30 min  
0.4 log viral 
reduction 50°C for 
30 min 

Hofmann & 
Wyler, 
1989 [42] 

Complete 
Feed 

Water bath 
120 to 145°C 

Virus isolation 
in VERO cell 
monolayers  

6.8 × 105 

TCID50 mL 

D-value (time to 
reduce 1 log) 
145°C=2.7 min 
D-value 120°C=7.9 
min  

Verma and 
Goyal, 2013 
[43] 

Feed with 
23.8% of 
moisture 

Oven 
incubation 120-
145°C  

Microtiter assay 
procedure in 
VERO cell 
monolayers 

6.8 x 103 
TCID50/mL 

3.0 log viral 
reduction after 30 
min in each 
temperature (from 
120 to 145°C) 

Trudeau et 
al., 2016 
[13] 

*Verma and Goyal (unpublished data). 

 

Table 6: PEDV Survivability During Storage Conditions. 

Matrix Survivability, days/weeks Conditions Source 
Eagle's Minimum 
Essential Media 

PEDV lost infectivity when heated 37°C at pH 9.0 
Hofmann and 
Wyler, 1989 [42] 

Slurry 28 days 4°C OIE, 2014 [32]  
Dry Feed 
Contaminated with 
Feces 

7 days  25°C OIE, 2014 [32]  

Wet Feed 14 days  25°C  OIE, 2014 [32]  

Fresh Feces 7 days 
40 to 70°C in a range of 
30% to 70% of 
humidity 

Goyal, 2014 [44] 

Complete Feed 28 days 22°C  Goyal, 2014 [44] 

Recycled water 
(truck washes) 

RNA of PEDV detected more than 7 
weeks, and infectious in bioassay for 
1 week 

25°C Goyal, 2014 [44] 

 

Table 7: Effect of Acidification on PEDV Survivability 

Matrix Survivability  Conditions Source 



  Page 18 of 43 

Pens/Barns 
surfaces 

N/A 

Virkon (potassium 
peroxymonosulfate)  

Jung & Saif, 2015 [45] 

Bleach (Sodium 
hypochlorite 5.25%)  

Phenolic compounds 
2% sodium hydroxide  

Formaldehyde and 
glutaldehyde 

Sodium carbonate (4% 
anhydrous or 10% 
crystalline, with 0.1% 
detergent) 

Ionic and non-ionic 
detergents 

1% strong iodophors in 
phosphoric acid  

Lipid solvents such as 
chloroform 

Feed treated 
with aqueous 
formaldehyde 
solution 37% 
and propionic 
acid (Sal Curb®) 

Ct= 35.79, showing a 
reduction of PEDV, 
because the Ct value 
for a negative control 
was 40.0., and the 
positive control had a 
Ct value of 25.15 

Aqueous formaldehyde 
solution 37% and propionic 
acid 

Dee et al., 2014 [46] 

Pig Feed and 
Spray-dried 
Porcine Plasma 

EO and BA resulted in 
a reduction of 
quantifiable RNA on d 
21 and 42 at a greater 
rate in feed than in the 
SDPP matrix (p<0.001) 

0.5% Benzoic acid (BA) 
and/or 0.02% of an essential 
oil (EO) 

Gebhardt et al., 2018 
[47] 

Pig feed 
3 log viral reduction 
after 21 days at 25°C 

0.2% of KEM-GEST® (blend 
of organic and inorganic 
acids), salt and sugar  
Additives containing 
phosphoric acid were the 
most effective at reducing 
virus concentration 

Trudeau et al., 2016 
[13] 



  Page 19 of 43 

Eagle’s 
Minimum 
Essential 
Media and Vero 
cells 

Stable 
Stable in a pH range of 6.5-
7.5 at 37°C and pH 5.0-9.0 at 
4°C 

Hofmann & Wyler, 
1999 [42] 

 

There are some steps in the ingredient manufacturing that can be used as process preventive 

controls for PEDV (Table 8).  For example, technical validation studies exist for storage, spray-

drying, pelleting, and rendering processes that show substantial PEDV inactivation. Suppliers or 

manufacturers that use these processes must collect in-plant validation data to show that they can 

apply and maintain the processing conditions suitable for PEDV inactivation, as well as have 

adequate verification and monitoring activities (See Table 1). For the other processes, the industry 

should conduct a technical scientific validation study to show that the conditions used are suitable 

for PEDV inactivation.  

Table 8: Ingredient Manufacturing Steps Used as Process Preventive Controls for PEDV 
Type of Process Range Scientific Validation of Viral Inactivation 

Pelleting* 
68-95°C for 9-240 s and 14-18% 
final moisture (Industry source) 

2 log viral reduction in feed at 54°C or higher 
temperature  
Cochrane et al., 2017 [48] 

Extrusion 
80-200°C for 5-10 s and 20-30% 
final moisture (Industry source) 

The time and temperature conditions are 
likely to reduce virus concentration. A 
validation study is needed to quantify the 
virus reduction. 

Expansion 
90-150°C for 1-4 s and 10-80 bar 
(Source: Expander Andritz) 

The time and temperature conditions are 
likely to reduce virus concentration. A 
validation study is needed to quantify the 
virus reduction. 

Desolventizing 
and Toasting 

Up to 120°C release temperature 
for 10-20 minutes (Gurbuz, 2017) 
[12]  

The time and temperature conditions are 
likely to reduce virus concentration. A 
validation study is needed to quantify the 
virus reduction. 

Storage Ambient temperature storage 

3-5 log viral reduction in feed at 20°C for 2 
weeks  
Pujols and Segalés, 2014 [41]; Verma & Goyal, 
2013 [43] 

Spray drying 
Inlet air T: 150 -200°C, outlet air 
T: 80°C for 20-90 s (Industry 
source) 

4.2 log viral reduction at 80°C  
Gerber et al., 2014 [40] 
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Rendering 115–145°C for 40-90 min  
3.7 to 21.9 log viral reduction  
Sampedro et al., 2015 [16] 

Steam Flaking 
15°C incoming temperature at 14% 
moisture increasing to 100°C 
(CPM Roskamp champion, 1999) 

The time and temperature conditions are 
likely to reduce virus concentration. A 
validation study is needed to quantify the 
virus reduction. 

Irradiation 
Gamma rays, X-rays and electron 
beams are the permitted by FDA.  
15 kGy per side (betaGRO, 2014) 

3 and 5 log reduction after 50 and 86.25 kGy, 
respectively  
Trudeau et al.,2016 [13] 

*Pelleting may serve as a risk mitigation procedure, but it is not validated as a risk preventive control. 
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4. DECISION TREE FOR ASSISTING IN SELECTION OF LOW-RISK FEED INGREDIENTS 

Decision trees are common decision-making tools used by regulatory bodies and industry for 

conducting a rapid assessment of a specific situation or risk by ranking the different combinations 

of foods/feeds and hazards. A decision tree incorporating viral contamination as a hazard is typically 

not recognized in current FSMA food safety planning and sanitary transportation decision making, 

but was developed as a method to select low risk feed ingredients. Each node of the decision tree 

denotes a type of ingredient, each branch within the node represents different ways those feed 

ingredients may reach animal producers, and each leaf node (terminal node) represents the relative 

risk that this type of feed ingredient poses to animal health from viral contamination (Figure 2). 

The decision tree is generic enough that it can be used for any viral contamination situation 

whether from imported or domestically produced feed ingredients. 
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Figure 2. Generic decision tree to identify lower risk feed ingredients 
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4.1 How should the decision tree be used? 

The decision tree includes an initial decision point regarding whether the supplier complies with 

FSMA or not. Compliance with FSMA provides assurance that the supplier is registered with FDA, 

has an animal food safety plan in place (Current Good Manufacturing Practice and Hazard Analysis 

and Risk-Based Preventive Controls for Food for Animals), and follows sanitary transportation 

practices (Sanitary Transportation of Human and Animal Food Rule). The FSMA compliance may 

also be met through Foreign Supplier Verification. In the context of the decision tree, in order to 

identify feed ingredients at low risk of viral contamination, the buyer should choose a feed 

ingredient from a supplier in compliance with FSMA to ensure that the supplier has basic process, 

supply chain, sanitation preventive controls, and sanitary transportation practices in place.  

Following selection of supplier status, the decision tree user then selects the type of ingredient to 

be assessed. In a multi-component ingredient or feed mixture, the user should select the most 

conservative (higher risk) feed ingredient in the mixture. For example, in a mixture plant-based 

and animal-based ingredients, the combination should be assessed by the animal-based ingredient 

node. 

For vitamins and amino acids, the processing conditions of these products inherently contain 

process preventive controls that make viral contamination and survival unlikely. Therefore, when 

this type of ingredient is sourced from a supplier that is in compliance with FSMA (i.e. following 

the preventive process, supply chain, sanitation, and sanitary transportation control procedures), it 

should represent a low risk of viral transmission via feed. However, it is necessary to mention that 

the risk of post-processing contamination can occur if the sanitation and sanitary transportation 

(part of FSMA regulation) preventive controls are not followed or they fail. For example, if we 

consider a situation where fecal contamination (within certain limits) is monitored in a ready-to–

use ingredient as a potential source for viruses, the presence of virus in the final product is certainly 

foreseeable to be a post-processing contamination (failure in the application of sanitation or sanitary 



  Page 25 of 43 

transport preventive controls) failure and not a failure in the processing stage involving the process 

of vitamin and amino acid production. 

Although many manufactured minerals are may be considered to be similar to vitamins and amino 

acids, many minerals are mined from the earth. In this case, the presence of animals near the mining 

location should be assessed. The presence of animals near mining operations increases the 

likelihood of viral contamination of the mineral through fecal contamination of soil and/or 

irrigation water in the area. 

If no animals are present in a 10 km zone surrounding the mining location, the mineral sourced 

from a supplier in FSMA compliance should present a low risk of viral transmission via feed. The 

10 km zone was selected based on USDA-APHIS recommendations for an outbreak scenario where 

the smallest infected zone (3 km ) and buffer zone (7 km beyond the infected zone) yield a 

recommended 10 km control zone (Figure 3 [49]).  

Figure 3. Disease control area and zone boundaries in an outbreak situation 

 
Source: USDA-APHIS [49] 

If animals are present within the 10 km control zone surrounding the mine, then the presence of 

animal disease in the area should be assessed. If viral disease is not present in the area, then the 

mineral sourced from a supplier in FSMA compliance should present a low risk of viral transmission 
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via feed. However, if disease is present in the area, then additional precautions need to be taken. In 

the case of viral pathogens, the mineral ingredient would need to undergo a process preventive 

control that is scientifically validated to inactivate the virus of concern. If the origin of the mineral 

is not known, scientific validation of viral inactivation should also be considered. In both of these 

cases, when viral inactivation is scientifically validated, the mineral sourced from a supplier in 

FSMA compliance would present a medium risk of viral transmission via feed. If scientific 

validation of viral reduction or inactivation is not available, then mineral sourced from an area 

where animal disease is present or from an unknown origin would present a high risk of viral 

transmission via feed. Under these circumstances, alternate suppliers should be considered. 

When ingredients are sourced from areas where animals are present, especially in areas with animal 

disease presence, emphasis should be placed on the scientific validation of process preventive 

controls to reduce or inactivate the potential viral pathogen. This requires that a technical study be 

conducted to demonstrate that the processing conditions (e.g. combination of temperature and 

time) is capable of substantially inactivating the virus (e.g. a 3 log reduction), showing that the 

process conditions can be replicated at the manufacturing plant, and that FSMA compliance 

controls are in place to prevent re-contamination.  

Disease presence can be determined by evaluating current outbreaks or endemic areas for 

reportable diseases to the World Organization for Animal Health (OIE). In addition, sources such 

as the Minnesota Board of Animal Health and Swine Health Information Center (SHIC) may be 

referenced to understand the presence of non-reportable diseases to OIE, which may be reportable 

diseases to USDA. 

Plant-based feed ingredients are those that are derived from plants ranging from being minimally 

processed to highly purified plant-based compounds. These types of feed ingredients may be 

similarly assessed based on the presence of animals followed by the presence of a disease.  
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Animal-based feed ingredients present a higher risk profile for viruses due to their animal origin. 

The key risk factor in animal-based products is the presence of virus and demonstrated scientific 

validation of viral inactivation. In addition, if animal-based products originate from an area with a 

reportable disease outbreak, importation and use of these ingredients may be banned through 

domestic and international trade regulations. Any animal-based product that has not undergone 

scientific validation for virus inactivation should be considered at high risk for viral transmission 

and alternate suppliers should be identified. 

Finally, biosecurity measures at the feed mills and animal production units receiving the feed 

should be applied. An updated biosecurity manual and “Options” for Handling Imported Feed 

Ingredients are both available from the American Feed Industry Association (AFIA). Furthermore, 

and a check-list from Kansas State University (Appendix 4) is available to help maintain biosecurity 

at feed mills and animal production sites to prevent viral re-contamination or cross-contamination 

before providing feed to pigs on farms. These documents provide suggested actions that can be 

taken by facilities or buyers that are in line with FSMA rules.  

 

5. CONCLUSION 

This report is intended to provide suggested guidelines and a decision tree to minimize the potential 

transmission of animal viruses in feed ingredients imported into the U.S. The decision tree was 

based upon current FSMA animal feed regulations requiring preventive controls for foreseeable 

hazards and a case study with PEDV. The case study examples showed that the virus can be 

inactivated by several manufacturing processes, and when combined with supply chain sanitation 

preventive controls and sanitary transportation practices, risk of viral transmission can be reduced. 

Therefore, the decision tree may be used as a method for helping buyers import feed and feed 

ingredients with a negligible risk to pig farms. 
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APPENDICES 

Appendix 1 – Examples of processing methods that may serve as preventive controls: 

Pelleting 

Pelleting is a common thermal and mechanical treatment process used in feed mills. During 

the pelleting process, single ingredients, or combinations of ingredients, are conditioned 

with steam and pressed through openings in a pelleting die under considerable pressure 

followed by cutting of the pressed feed forms to the preferred length.  Conditioning usually 

increases the temperature of the feed matrix to about 70°C- 90°C before flowing into the 

pelleting die. [12] 

Extrusion 

Thermoplastic extrusion is considered a high-temperature, short-time process in the food 

industry. It is a process that is used in the production of a wide variety of food and feed 

products with little or no modification of the basic equipment and appropriate process 

control. Operational parameters that are used as important process preventive controls are: 

temperature, pressure, die diameter, and shear force. Shear force is influenced by the 

internal design of the extruder, and by its length and the screw geometry and rotation speed. 

Extrusion results in conditions where feed and food are exposed to high temperatures (up to 

200°C) for 1 to 2 minutes with sudden increases to reach the optimal feed and food 

temperature during the last 15 to 20 seconds. [12] [50] 

Expansion 

Extrusion and expansion methods are based on similar principles. Fundamentally, expanders 

are similar to extruders but vary in the method of forming the final product and force of 

treatment. [12] 

Desolventizer toaster 

A desolventizer toaster (D-T) for soybean treatment has two sections, one for desolventizing 

and one for toasting and drying. Desolventizing is carried out by steam injection or indirect 

heating and results in a combination of solvent removal and meal toasting. Meal toasting is 
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continued on the lower trays of the D-T where meal moisture is reduced by indirect steam 

heating. After desolventizing, the soybean meal has a temperature of 100°C, and the 

moisture content is dependent on the amount of residual solvent in the spent flakes, the 

initial moisture content, and the heating surface in this section. Retention time of the 

soybean meal in the desolventizing section is about 5 minutes. After thermal exposure, 

mechanical pressure between two rollers can be used to form flakes, followed by subsequent 

cooling. This process can be used to treat several types of raw materials, but is most 

commonly used in edible oil production, where it is used to extract the solvent from the 

meal after oil extraction. [12] [51] 

Spray drying 

Spray-drying consists of the evaporation of water as a function of the difference in the water 

activity (aw) of the wet particles and the humidity of the inlet air. The particle temperature 

is increased as it passes for 2 to 5 seconds through the dryer from an inlet air temperature 

(170 to 310°C) to dryer outlet temperature of about80 to 84°C. Total transit time of 

processing in spray driers are usually between 20 to 90 seconds. [16]  

Rendering 

The rendering process transforms raw materials from the food animal supply chain into a 

range of animal by-products used across many industries, including animal feed. Rendering 

processes prevent serious challenges to public, animal, and environmental health that could 

result from the mismanagement of the potentially infective raw materials. The exit 

temperature of the rendered material from the thermal processor ranges from 115 to 143 °C, 

and the minimum time spent by the materials in the cooker stage is 30 minutes, with a 

possible range from 40 to 90 minutes. [16] 

Steam flaking 

Steam flaking is the procedure in which the grain is exposed to steam under conditions of 

atmospheric or high pressure followed by rolling into thin sheets. Grain reaches about 100°C 
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and the retention time varies from 30 to 60 minutes during flaking, depending upon type of 

ingredient and equipment. [12] 

Acidification 

Acidification is a process used to reduce the pH of feed, which may result in improved 

nutrient digestibility and inactivate some pathogens (e.g. Salmonella sp. and Coliforms) that 

can cause disease in pigs. Emerging evidence indicates that acidification may be helpful in 

inactivating some viruses in feed ingredients.[52] 

Irradiation 

Irradiation is a process in which food or feed are exposed to ionizing radiation. The main 

use of this technology is in the food industry, to extend the shelf-life of products (mainly 

ground meat, chicken, fruits and vegetables, and spices), control insect infestation in stored 

products, and kill (or reduce the number of) pathogens that might be present in food 

products. [16] 

  



  Page 38 of 43 

Appendix 2 – Theoretical Validation Process for Viral Inactivation 

To determine the inactivation of a virus in a thermally-treated product, the D-value (time at a 

certain temperature to reduce 90% or 1 log the initial concentration of the virus) and z-value 

(temperature rise to reduce 90% or 1 log the D-value) of the virus must be known. It is important 

to note that D-values are temperature and matrix specific [11] [9]. If no studies have been conducted 

to determine the effect of the process control on the virus inactivation, a pathogen challenge or 

inoculation study must be conducted to prove the effectiveness of the process control. In this type 

of study, the feed ingredient or matrix is inoculated with a known concentration of a virus, control 

measures (e.g. different combinations of temperature and time) are applied, and the final 

concentration of active virus is measured. The difference in virus concentration is the reduction 

obtained with the control measure, and is usually expressed as a percentage of reduction or log 

reduction (D and z values can also be calculated from this). Surrogate viruses (alternative virus 

strains that are not virulent) may be used instead of the targeted virus. The important characteristic 

of the surrogate virus is that it must be equally or more resistant to the process control that the 

targeted virus itself. Depending on the virus in question, different surrogate viruses can be used. 

Figure 4 provides a list of surrogate viruses. Other common surrogate viruses of importance to swine 

may be found at the SHIC Disease Matrix (https://www.swinehealth.org/swine-disease-matrix/). 

Figure 4. List of surrogate viruses 

 
Source: Dee et al. (2018) [6]  

https://www.swinehealth.org/swine-disease-matrix/
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Appendix 3 - Examples of supply chain preventive controls: 

Current Good Manufacturing Practice (cGMP) 

During the manufacturing of animal feed and feed ingredients, manufacturers are required 

by GMP regulations to develop a quality approach to manufacturing that enables 

minimization or elimination of contamination and errors. The cGMP approach includes 

record keeping, personnel qualifications, sanitation, cleanliness, equipment verification, and 

process validation. The cGMP requirements are very general and open-ended to provide 

manufacturers flexibility in how the requirements are implemented in their production 

processes and system. Compliance with cGMP has been required in animal feed and feed 

ingredient production under FSMA since September 2017. [24] 

Animal Food Safety Plan (HARPC)  

Most animal food facilities must implement a written food safety plan that identifies hazards 

and defines preventive controls; supply chain programs; recall plans; and monitoring, 

corrective actions, verification, and validation to control the hazards. The requirement for 

the written food safety plan, also known as a Hazard Analysis Risk-based Preventive Control 

(HARPC) plan has been required for most animal-derived food manufacturers since 

September 2018. It includes aspects of but is more complete than Hazard Analysis Critical 

Control Points (HACCP). [22] 

Good Agricultural Practice (GAP) 

The GAPs are a set of principles, regulations, and technical recommendations applicable to 

production, processing, and food transport, addressing human health care and environment 

protection. These procedures follow the same principles as GMP, but are focused on farm 

production. [53] 

Good Warehousing Practices (GWP) 

The GWP defines storage and transportation of finished food practices and 

recommendations that will protect food against physical, chemical, and microbial 

contamination, as well as against deterioration of the food and the container [26]. 
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Biosecurity Programs 

Biosecurity programs can be a part of cGMP whether in the facility or on a farm.  Biosecurity 

measures are essential to prevent contamination of pathogens that can be a threat for animal 

health and production.  

Third-party Supplier Audits 

Third-party audits require that an independent organization reviews the manufacturing 

process of a product or facility to determine if the final product is produced according to 

accepted standards of food safety and quality. These audits are made by reviewing written 

plans and by conducting inspections of the facility. The accredited third-party certification 

regulation of FSMA provides for accreditation of third-party certification bodies to conduct 

food safety audits and to certify that eligible foreign entities (including registered foreign 

food facilities), and food produced by such entities, to ensure meeting of applicable FDA 

requirements. [17] 

Traceability & Recall Procedures 

Traceability and recall procedures are an integral part of the FSMA Animal Food Preventive 

Control rule and must be included in the written food safety plan. Traceability is used to 

identify the origin of a product in the event of contamination to control further public 

health consequences. For example, in case of an outbreak caused by FADs, verifying the 

origin of problem will allow localization of response to the facilities and farms where 

contaminated feed was delivered. This traceability may be potentially accomplished by 

many methods including blockchain technology. 

Laboratory Analysis of Ingredients & Finished Product 

Laboratory analysis of ingredients and finished products may be used as part of a verification 

plan, where each facility implements controls and analysis to demonstrate the lack of 

contamination of their products.  
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Appendix 4 - Example of Check List for Biosecurity in Feed Mills (Source: Kansas State University) 
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