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Abstract. A tetrahedral complex all of whose tetrahedra meet at a common vertex is called a
vertex star. Vertex stars are a natural generalization of planar triangulations, and understanding
splines on vertex stars is a crucial step to analyzing trivariate splines. It is particularly difficult to
compute the dimension of splines on vertex stars in which the vertex is completely surrounded by
tetrahedra – we call these closed vertex stars. A formula due to Alfeld, Neamtu, and Schumaker
gives the dimension of Cr splines on closed vertex stars of degree at least 3r + 2. We show that this
formula is a lower bound on the dimension of Cr splines of degree at least (3r + 2)/2. Our proof
uses apolarity and the so-called Waldschmidt constant of the set of points dual to the interior faces
of the vertex star. We also use an argument of Whiteley to show that the only splines of degree at
most (3r + 1)/2 on a generic closed vertex star are global polynomials.

1. Introduction

A multivariate spline is a piecewise polynomial function on a partition ∆ of some domain Ω ⊂ Rn
which is continuously differentiable to order r for some integer r ≥ 0. Multivariate splines play an
important role in many areas such as finite elements, computer-aided design, and data fitting [12, 22].
In these applications it is important to construct a basis, often with prescribed properties, for splines
of bounded total degree. A more basic task which aids in the construction of a basis is simply to
compute the dimension of the space of multivariate splines of bounded degree on a fixed partition.
We write Srd(∆) for the vector space of piecewise polynomial functions of degree at most d on the
partition ∆ which are continuously differentiable of order r.

A formula for the dimension of S1
d(∆), where ∆ is a planar triangulation, was first proposed

by Strang [37] and proved for d ≥ 2 by Billera for generic vertex positions [5]. Subsequently the
problem of computing the dimension of planar splines on triangulations has received considerable
attention using a wide variety of techniques, see [2, 3, 5, 6, 21, 32, 33, 35, 39, 40]. Hong shows
in [20] that the dimension of Srd(∆), for ∆ a planar triangulation and d ≥ 3r + 2, is given by a
quadratic polynomial in d whose coefficients are determined from simple data of the triangulation.
An important feature of planar splines is that the formula which gives the dimension of the spline
space Srd(∆) for d ≥ 3r + 2 is a lower bound for any degree d ≥ 0 [34].

In this paper we focus on splines over the union of tetrahedra all of which meet at a common
vertex. We call such a configuration a star of a vertex (this is sometimes called a cell in the
approximation theory literature [22, 36]). If ∆ is the star of a vertex, every spline can be written
as a sum of homogeneous splines; a homogeneous spline of degree d is one which restricts to a
homogeneous polynomial of degree d on each tetrahedron. We denote by Hrd(∆) the vector space of
homogeneous splines of degree d in Srd(∆). Understanding homogeneous splines on vertex stars is
crucial to computing the dimension of trivariate splines on tetrahedral complexes (see [4]) – whose
behavior even in large degree is a major open problem in numerical analysis. We apply our present
results on vertex stars to tetrahedral splines of large degree in a forthcoming paper.

In [1], Alfeld, Neamtu, and Schumaker derive formulas for the dimension of the space of homo-
geneous splines on vertex stars of degree d ≥ 3r + 2. A crucial difference from the planar case
is that, for splines on tetrahedral complexes, one of the dimension formulas proved in [1] is not
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necessarily a lower bound on the dimension of the homogeneous spline space when d < 3r + 2. To
explain this we differentiate between two types of vertex stars. If the common vertex at which all
tetrahedra meet is completely surrounded by tetrahedra (so that it is the unique interior vertex),
then we call the vertex star a closed vertex star. Otherwise we call the vertex star an open vertex
star. It is precisely in the case of a closed vertex star when the formula of [1] may fail to be a lower
bound on the dimension of the space of homogeneous splines in degrees less than 3r + 2. This is
easy to see for d ≤ r, when the formula of [1] is exactly twice the dimension of the homogeneous
spline space (which consists only of trivial splines for d ≤ r i.e., splines whose polynomial pieces
are all equal to the same polynomial function, we refer to these splines also as global polynomials
on the given partition). For an explicit and less trivial example, the reader is invited to take a look
at Section 6.1, where we consider the dimension of homogeneous splines on a generic bipyramid.
According to Table 1, the generic dimension of the homogeneous spline space of smoothness r = 4
and degree d = 5 is 21 (the only splines are global polynomials), while the formula of [1] (recorded

in the column labeled LB�(∆, d, r)) yields 27.
The crux of our first result, Theorem 4.7, is that the formula in [1] gives a lower bound on

the dimension of the homogeneous spline space Hrd(∆) for a closed vertex star ∆ with at least six
boundary vertices when d ≥ (3r+2)/2 and the vertex coordinates of ∆ are general enough. If ∆ has
only four (respectively five) boundary vertices, then we show that the formula in [1] is a lower bound
when d > 2r (respectively, d > (5r+2)/3). We give some additional details to state this result more
precisely, but the majority of the details we will leave to Section 4. To a closed (respectively, open)

vertex star we associate the formula LB�(∆, d, r) (respectively, LB�(∆, d, r)); these are defined
in Section 4 in Equations (10) (for the closed vertex star) and (11) (for the open vertex star).
These formulas coincide with those in [1] under the assumption that the affine spans of triangles
surrounding any edge of ∆ are all distinct (see Remark 4.6). Thus for a general enough choice of

vertex coordinates, it follows from [1, Theorem 3] that dimHrd(∆) = LB�(∆, d, r) for d ≥ 3r+2 if ∆

is a closed vertex star and that dimHrd(∆) = LB�(∆, d, r) for d ≥ 3r+2 if ∆ is an open vertex star.

It is straightforward to show that LB�(∆, d, r) ≤ dimHrd(∆) for all d ≥ 0 if ∆ is an open vertex star.
On the other hand, if ∆ is a closed vertex star it is quite delicate to determine the degrees d for which

LB�(∆, d, r) ≤ Hrd(∆); see [36] where a lower bound is established for homogeneous C2 splines on

vertex stars. In Theorem 4.7 we establish that LB�(∆, d, r) ≤ dimHrd(∆) for d ≥ (3r + 2)/2 if ∆
has at least six boundary vertices (with the same adjustments as above for four or five boundary
vertices).

For closed tetrahedral vertex stars, the failure of LB�(∆, d, r) to be a lower bound for dimHrd(∆)
in low degree is elucidated by homological techniques of Billera [5] as refined by Schenck and
Stillman [33]. More precisely, it follows from these techniques (in particular the Billera-Schenck-
Stillman chain complex) that

(1) LB�(∆, d, r)−
(
d+ 2

2

)
+ dim J(γ)d ≤ dimHrd(∆)

for every d ≥ 0, where J(γ) is an ideal generated by powers of linear forms attached to the interior
vertex γ (see Proposition 4.4). Emsalem and Iarrabino showed that the dimension of an ideal
generated by powers of linear forms can be computed from the Hilbert function of a so-called ideal of
fat points in Pn [14]. An ideal of fat points supported at points P1, . . . , Pk in Pn is an ideal consisting
of all polynomials which vanish to some fixed order at P1, . . . , Pk (the order of vanishing can be
different for each point). In our case, the study of J(γ) leads to the consideration of ideals of fat
points in P2. The Hilbert function of an ideal of fat points in P2 is quite mysterious and is the subject
of much research. See, for instance, the well-celebrated Segre-Harbourne-Gimigliano-Hirschowitz
conjecture [8] about the expected Hilbert function of an ideal of fat points supported at general
points in P2; in spite of many partial results it still is an open problem in algebraic geometry [30,
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Section 5]. Fortunately, we need relatively little information about the Hilbert function of this ideal
of fat points to establish Theorem 4.7 – a lower bound on the so-called Waldschmidt constant [7, 38]

is enough to establish dim J(γ)d =
(
d+2

2

)
if d ≥ (3r+2)/2. Evidently the inequality (1) then implies

LB�(∆, d, r) ≤ dimHrd(∆) for all d ≥ (3r + 2)/2 (with appropriate adjustment for four or five
boundary vertices).

Our second result concerns homogeneous splines of small degree. It follows from work of White-
ley [39] and Alfeld, Schumaker, and Whiteley [4] that the only homogeneous splines on a generic
tetrahedral vertex star of degree at most (3r + 1)/2 are global polynomials (see [4, Remark 71]).
Thus, if ∆ is a generic vertex star with at least six interior vertices and d ≤ (3r+ 1)/2, the inequal-

ity (1) cannot improve on the trivial lower bound of
(
d+2

2

)
≤ dimHrd(∆). We prove in Theorem 5.1

that if ∆ is a generic closed vertex star with four (respectively, five) interior edges, that the only
homogeneous splines of degree at most 2r (respectively (5r+2)/3) are global polynomials. It follows
that if ∆ is any generic vertex star with four (respectively, five) boundary vertices, the inequality (1)

cannot improve on the trivial lower bound of
(
d+2

2

)
≤ dimHrd(∆) in degrees d ≤ 2r (respectively

d ≤ (5r + 2)/3). This has a satisfying completeness: the formulas of [1] may not be a lower bound
on dimHrd(∆) for closed vertex stars in small degrees; however for most vertex positions there will
only be trivial splines in these small degrees anyway! Even if vertex positions are not generic, it
may be possible to find lower bounds whose performance is better than (1) in low degree – see
Section 6.2.

The paper is organized as follows. In Section 2 we set up notation and briefly describe the
homological machinery from [5, 33]. In Section 3 we use apolarity and the Waldschmidt constant

to show that dim J(γ)d =
(
d+2

2

)
if d ≥ (3r + 2)/2 and ∆ has at least six boundary vertices (we

prove corresponding statements when ∆ has four or five boundary vertices). In Section 4 we prove
Theorem 4.7, and in Section 5 we prove Theorem 5.1. Section 6 is devoted to illustrating our bounds
in some examples and Section 7 contains concluding remarks.

2. Background and Homological Methods

In this section we review the necessary results from [5] and [33]. We denote by ∆ a simplicial
complex embedded in Rn (see [42] for basics on simplicial complexes). If n = 2 we will refer to ∆
as a triangulation, and as a tetrahedral complex if n = 3. We denote by ∆◦i the set of interior faces
of ∆ of dimension i, and by f◦i the number of such faces for i = 0, 1, . . . , n. If β ∈ ∆i we call β an
i-face. By an abuse of notation, we will identify ∆ with its underlying space

⋃{
β : β ∈ ∆

}
⊂ Rn.

Recall that a simplicial complex ∆ is said to be pure if all maximal simplices have the same
dimension. A pure n-dimensional simplicial complex ∆ is hereditary if, whenever two maximal
simplices ι, ι′ ∈ ∆n intersect in a vertex γ ∈ ∆0, then there is a sequence ι = ι1, ι2, . . . , ιk = ι′ of
n-dimensional simplices satisfying that γ ∈ ιi for i = 1, . . . , k and ιi+1∩ιi ∈ ∆n−1 for i = 1, . . . , k−1.

If ∆ is a pure n-dimensional simplicial complex all of whose n-dimensional simplices share a
common vertex γ then we call ∆ the star of a vertex or a vertex star. Without loss of generality, we
assume that γ is at the origin. If γ is an interior vertex of ∆ then we call ∆ a closed vertex star; if γ
is on the boundary of ∆ then we call ∆ an open vertex star. The link of a pure n-dimensional vertex
star in which all n-dimensional simplices share the vertex γ is the subcomplex of ∆ consisting of all
simplices of ∆ which do not contain γ (it is a subcomplex of ∆ of dimension n−1). Throughout this
article, whenever we refer to a simplicial complex ∆, we will mean a pure, hereditary, 3-dimensional
vertex star whose link is simply connected. We call these tetrahedral vertex stars, simplicial vertex
stars, or simply vertex stars.

We write S = R[x, y, z] for the polynomial ring in three variables, Sd for the vector space of
homogeneous polynomials of degree d, and S≤d for the vector space of polynomials of total degree
at most d. For a given integer r ≥ 0, we denote by Cr(∆) the set of all functions F : ∆→ R which
are continuously differentiable of order r.
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Definition 2.1. Let ∆ ⊂ R3 be a tetrahedral vertex star. The space Sr(∆) of splines on ∆ is the
set of piecewise polynomial functions on ∆ that are continuously differentiable up to order r on ∆
i.e.,

Sr(∆) = {F ∈ Cr(∆): F |ι ∈ S for all ι ∈ ∆3} .
If we consider polynomials of degree at most d, the space will be denoted by Srd(∆), namely

Srd(∆) = {F ∈ Cr(∆): F |ι ∈ S≤d for all ι ∈ ∆3} .

Similarly, the space Hrd(∆) of splines whose polynomial pieces are of degree exactly d is defined as

Hrd(∆) = {F ∈ Cr(∆): F |ι ∈ Sd for all ι ∈ ∆3} .

The space Sr(∆) is itself a ring under pointwise multiplication, and the polynomial ring S embeds
naturally into Sr(∆), it can be seen as the set of trivial splines or global polynomials on ∆ i.e., the
splines F ∈ Sr(∆) such that there exists an f ∈ S so that F |ι = f for all ι ∈ ∆3. In this way
Sr(∆) is both an S-module and an S-algebra. We will be concerned exclusively with the structure
of Sr(∆) as an R-vector space; however we may at times refer to the S-module structure of Sr(∆).
In particular, if ∆ is the star of a vertex, then it is known that

(2) Sr(∆) ∼=
⊕
i≥0

Hri (∆) and Srd(∆) ∼=
d⊕
i=0

Hri (∆) ,

where the isomorphism is as R-vector spaces. If F ∈ Hrd(∆) and G ∈ Sj , notice that FG ∈ Hrd+j(∆).

This means that Srd(∆) has the structure of a graded S-module.

Remark 2.2. If ∆ has more than one interior vertex, there is a coning construction under which
the isomorphisms (2) will still be valid. As we focus on the case of vertex stars, we will not need
this.

Definition 2.3. Suppose ∆ ⊂ R3 is a tetrahedral vertex star. If σ ∈ ∆2, let `σ be a choice of linear
form vanishing on σ. We define J(σ) =

〈
`r+1
σ

〉
, the ideal generated by `r+1

σ . For any face β ∈ ∆i

where i = 0, 1 we define

J(β) :=
∑
σ⊇β

J(σ) =
〈
`r+1
σ : β ⊆ σ

〉
.

If β ∈ ∆3 we define J(β) = 0.

Proposition 2.4. [6, Proposition 1.2] If ∆ is hereditary then F ∈ Sr(∆) if and only if

F |ι − F |ι′ ∈ J(σ) for every ι, ι′ ∈ ∆3 satisfying ι ∩ ι′ = σ ∈ ∆2 .

We define a chain complex introduced by Billera [5] and refined by Schenck and Stillman [33],
referring the reader to [19] for undefined terms from algebraic topology. We denote the simplicial
chain complex of ∆ relative to its boundary ∂∆ with coefficients in S by R:

R : 0 −→ Sf3
∂3−→ Sf

◦
2

∂2−→ Sf
◦
1

∂1−→ Sf
◦
0 −→ 0 .

The ideals J(β) fit together to make a sub-chain complex of R (the differential is the restriction of
the differential of R):

J : 0 −→
⊕
σ∈∆◦2

J(σ)
∂2−→

⊕
τ∈∆◦1

J(τ)
∂1−→

⊕
γ∈∆◦0

J(γ) −→ 0 .

The Billera-Schenck-Stillman chain complex is the quotient of R by J , namely

R/J : 0 −→
⊕
ι∈∆3

S
∂3−→

⊕
σ∈∆◦2

S

J(σ)

∂2−→
⊕
τ∈∆◦1

S

J(τ)

∂1−→
⊕
γ∈∆◦0

S

J(γ)
−→ 0 .
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These three chain complexes fit into the evident short exact sequence of chain complexes

0 −→ J −→ R −→ R/J −→ 0 .

As is standard notation,Ri,Ji, and (R/J )i refer to the modules in the chain complex at homological
position i. For instance, R0 = Sf

◦
0 ,R1 = Sf

◦
1 , and so on. We summarize some well-known properties

of R/J (see [28, 33]).

Proposition 2.5. If ∆ ⊂ R3 is a tetrahedral vertex star whose link is simply connected, then
Sr(∆) ∼= H3(R/J ) ∼= S⊕H2(J ) , Hi(R/J ) ∼= Hi−1(J ) for i = 1, 2, and H0(R/J ) = 0 .

The inclusion of S into Sr(∆) as globally polynomial corresponds (via the isomorphism in Propo-
sition 2.5) to the copy of S in S⊕H2(J ), while the map⊕

σ∈∆◦2

J(σ)
∂2−→

⊕
τ∈∆◦1

J(β)

encodes the so-called smoothing cofactors. By Proposition 2.5, the Billera-Schenck-Stillman chain
complex R/J and the chain complex J contain essentially the same information.

We now put everything together to write the dimension of Hrd(∆) in terms of the Billera-Schenck-
Stillman chain complex. If C : 0→ Cn → · · · → C0 → 0 is a chain complex of graded S-modules, we
write χ(C, d) for the graded Euler-Poincaré characteristic of C. That is,

χ(C, d) =

n∑
i=0

(−1)n−i dim(Ci)d .

Proposition 2.6. If ∆ is a tetrahedral vertex star then

(3) dimHrd(∆) = χ(R/J , d) + dimH2(R/J )d = dim Sd + χ(J , d) + dimH1(J )d .

In particular,

dimHrd(∆) ≥ χ(R/J , d) = dim Sd + χ(J , d) .

Proof. The equality between the expressions involving χ(R/J , d) and those involving χ(J , d) follows
immediately from Proposition 2.5. We prove the statements which involve J , using the fact that
χ(J , d) =

∑2
i=0(−1)2−i dimHi(J )d . If ∆ is a closed vertex star with interior vertex γ, then J has

the form

J : 0→
⊕
σ∈∆◦2

J(σ)
∂2−→

⊕
τ∈∆◦1

J(τ)
∂1−→ J(γ)→ 0 ,

the map ∂1 is surjective from the definition of J(γ), hence H0(J ) = 0. Thus

dimH2(J )d − dimH1(J )d = χ(J , d) .

The result follows since dimHrd(∆) = dim Sd + dimH2(J )d by Proposition 2.5 .
If ∆ is an open vertex star, then J has the form

J : 0→
⊕
σ∈∆◦2

J(σ)
∂2−→

⊕
τ∈∆◦1

J(τ)
∂1−→ 0→ 0 ,

so there is not even a vector space in homological index 0, thus H0(J ) = 0 as well and the formula
follows from the above argument immediately. �

Finally, we clarify what we mean by a generic vertex star; this is fairly standard in the literature
on splines [1, 4, 5, 39, 40]. The main point is that it will suffice to prove the lower bound in
Theorem 4.7 when ∆ is a generic tetrahedral vertex star.
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Definition 2.7. Suppose ∆ ⊂ R3 is a star of the vertex γ. We call ∆ generic with respect to a
fixed r, d if, for all sufficiently small perturbations of the vertices γ′ 6= γ ∈ ∆0, the resulting vertex
star ∆′ satisfies dimHrd

(
∆′
)

= dimHrd(∆). If r and d are understood from context, we simply say
∆ is generic.

Lemma 2.8. Suppose ∆ ⊂ R3 is a star of the vertex γ, and fix non-negative integers r and d.
Then almost all sufficiently small perturbations of the vertices γ′ 6= γ ∈ ∆0 result in a vertex star
∆′ which is generic with respect to r and d. Moreover dimHrd(∆) ≥ dimHrd

(
∆′
)

.

Proof. This follows immediately from examining rank conditions on any of the equivalent ways of
defining splines as the kernel of a linear transformation. �

3. Duality: fat points and powers of linear forms

In this section we review a duality between ideals generated by powers of linear forms and ideals
of polynomials which vanish to certain orders on sets of points in projective space, called fat point
ideals. We reduce the presentation to our case i.e., ideals in the polynomial ring of three variables
and the corresponding fat points ideals in P2. We use this duality, along with combinatorial bounds
from [11], to prove Corollary 3.17, the main result of this section. Corollary 3.17 provides explicit
lower bounds for the degree in which J(γ)d = Sd, where γ is the interior vertex of a closed vertex
star.

We write [a : b : c] for a point in projective 2-space over R, which we denote by P2. We let
R := R[X,Y, Z] be the polynomial ring in three variables. If P = [a : b : c] ∈ P2 we write ℘P for the
ideal of homogeneous polynomials in R which vanish at P ; i.e. ℘P = 〈bX − aY, cX − aZ, cY − bZ〉 .
It is straightforward to see that ℘mP consists of all polynomials whose homogeneous components
vanish to order m at P .

Definition 3.1. Let X = {P1, . . . , Pk} be a collection of points in P2 and mmm = {m1, . . . ,mk} a
collection of positive integers attached to P1, . . . , Pk , respectively. The ideal of fat points associated
to X and mmm is

I = ImmmX :=
k⋂
i=1

℘mii .

If there is a positive integer s so that mi = s for i = 1, . . . , k then we write I
(s)
X instead of ImmmX . If

mi = 1 for i = 1, . . . , k we simply write IX .

Remark 3.2. It is straightforward to see that ImmmX is the set of polynomials whose homogeneous
components vanish to order mi at the point Pi, for i = 1, . . . , k . Since ℘mii is graded for each σ ∈ Ω,
ImmmX is also a graded ideal.

Remark 3.3. The ideal I
(s)
X in Definition 3.1 is called the sth symbolic power of IX .

Now consider simultaneously the polynomial rings S = R[x, y, z] and R = R[X,Y, Z] , and let R act

on S as polynomial differential operators. Namely, if h ∈ R and f ∈ S then h◦f = h

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
◦f .

We call this the apolarity action of R on S. The apolarity action induces a perfect pairing Rd×Sd → R
by (h, f)→ h ◦ f .

Example 3.4. Let F = X2 + Y 2 + Z2 ∈ R . If f ∈ S, then F ◦ f = ∂2f
∂x2

+ ∂2f
∂y2

+ ∂2f
∂z2

.

If I ⊂ R is an ideal of R, then the inverse system I⊥ of I is defined as

I⊥ :=
{
f ∈ S : h ◦ f = 0 for all h ∈ I

}
.

If I is graded, then I⊥ is a graded vector space (it is generally not an ideal) with graded structure
I⊥ ∼=

⊕
d≥0 I

⊥
d , where I⊥d is the vector space of all homogeneous polynomials of degree d in I⊥.
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Example 3.5. Let P = [0 : 0 : 1] ∈ P2, with ℘P =
〈
X,Y

〉
. Then ℘P

⊥ = span
{

1, z, z2, z3, . . .
}

.

More generally, if P = [a : b : c] then ℘P
⊥ = span

{
1, ax+ by + cz, (ax+ by + cz)2, . . .

}
.

For a graded ideal I ⊂ R, the apolarity action induces an isomorphism of vector spaces (R/I)d ∼=
I⊥d (this follows since the apolarity action induces a perfect pairing Rd × Sd → R). Thus one can

deduce dim I⊥d from dim Id, and vice-versa. The following result of Emsalem and Iarrobino [14]
describes the inverse system of a fat point ideal.

We first introduce some notation which suits our context. If σ is a two-simplex in R3 whose affine
span contains the origin, let `σ = ax+by+cz be a choice of linear form vanishing on σ (well-defined
up to constant multiple). The coefficients of `σ define the point Pσ = [a : b : c] ∈ P2 (notice this
point does not depend on the multiple of `σ chosen), which in turn defines the ideal ℘σ = ℘Pσ ⊆ R .

Theorem 3.6 (Emsalem and Iarrabino [14]). Let Ω be a collection of two-simplices in R3 each of
whose affine span contains the origin and let mσ be a positive integer attached to each σ ∈ Ω. Put
X = {Pσ}σ∈Ω . If d ≥ max

{
mσ + 1

}
, let d−mmm = {d−mσ}σ∈Ω and I = Id−mmmX . Then

〈
`mσ+1
σ : σ ∈ Ω

〉
d

=

0 for d ≤ max{mσ}(
I⊥
)
d
∼=
(
R

I

)
d

for d ≥ max{mσ + 1} .

Theorem 3.6 has an especially nice formulation in the case of uniform powers. We state this for
the ideal J(γ) of the interior vertex γ of a closed vertex star, as this is the case of interest to us.

Corollary 3.7. Suppose ∆ ⊂ R3 is a vertex star with unique interior vertex γ, so the ideal associated
to γ is J(γ) =

〈
`r+1
σ : σ ∈ ∆◦2

〉
. Put X = {Pσ}σ∈∆◦2

and let IX =
⋂{

℘σ : σ ∈ ∆◦2
}
⊂ R . Then

dim J(γ)d =


0 if d ≤ r

dim

(
S

I
(d−r)
X

)
d

if d ≥ r + 1 .

The proof of Theorem 3.6 can be found in [14], see also [15] for an introduction to inverse system
of fat points and [16] for the first connection of this circle of ideas to splines.

Example 3.8. Let ∆ be the regular octahedron with central vertex γ at the origin and vertices
at (±1, 0, 0), (0,±1, 0) and (0, 0,±1). Then there are 12 interior two-dimensional faces which we
denoted as σ1, . . . , σ12; we number them so that they lie in the planes defined by the linear forms
`σi = x, for i = 1, . . . , 4, `σi = y for i = 5, . . . 8, and `σi = z for i = 9, . . . , 12. The dual points are
Pσ1 = [1 : 0 : 0], Pσ5 = [0 : 1 : 0], and Pσ9 = [0 : 0 : 1], see the graph on the left of Figure 1. These
points define the ideals ℘σ1 = 〈Y,Z〉, ℘σ5 = 〈X,Z〉 and ℘σ9 = 〈X,Y 〉. For a positive integer r, and
d ≥ r + 1 let I =

⋂{
℘d−rσ : σ ∈ ∆◦2

}
. Theorem 3.6 says that

dim J(γ)d = dim
〈
`r+1
σ : σ ∈ ∆◦2

〉
d

= dim(R/I)d .

For example, if r = 1 and d = 3 then I = 〈X,Y 〉2 ∩ 〈X,Z〉2 ∩ 〈Y, Z〉2 and dim(R/I)3 = 9. On the
other hand, J(γ) =

〈
x2, y2, z2

〉
and dim J(γ)3 = 9 .

Example 3.9. Let now ∆′ be a generic octahedron with central vertex γ at the origin. Then the
12 two-dimensional faces σi ∈ ∆′2 lie on 12 different planes through the origin of R3 defined by the
linear forms `i = aix + biy + ciz . These linear forms define 12 points [ai : bi : ci] in P2 . Notice
that each of the edges τj ∈ ∆′◦1 lies in the intersection of four of these planes, in P2 that means that
the four dual points to the linear forms vanishing at those four planes lie on a line – thus there is
a dotted line in Figure 1 for every interior edge of ∆′. The dual diagram in P2 is illustrated on the
right in Figure 1.
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b

b b b b

b

bb b

b

b

b b

b

b

Figure 1. Dual graph of a regular octahedron ∆ (on the left) and a generic octa-
hedron ∆′ (on the right).

3.1. The Waldschmidt constant. Given a graded ideal I ⊂ R, we put α(I) := min
{
d : Id 6= 0

}
.

For instance, if X is a set of points in P2, then α
(
IX
)

is the minimum degree of a homogeneous
polynomial which vanishes on X . An asymptotic invariant attached to the ideal IX which has been
studied in many different contexts is the Waldschmidt constant, defined as

α̂(IX ) = inf
s>0

{
α
(
I

(s)
X
)

s

}
.

It is known that the Waldschmidt constant is actually a limit (this follows from subadditivity of

the sequence α
(
I

(s)
X
)

- see [7, Lemma 2.3.1]); so α̂(IX ) = lim
s→∞

α
(
I
(s)
X

)
s .

Remark 3.10. The limit lims→∞ α
(
I

(s)
X
)
/s was first introduced by Waldschmidt [38] in complex

analysis. In commutative algebra, the Waldschmidt constant gives bounds related to the contain-
ment problem; in other words for what pairs of integers (r, s) we have the containment I(s) ⊂ Ir for
an ideal I in a polynomial ring (see [7]).

Proposition 3.11. For a closed vertex star ∆ ⊂ R3, let Ω ⊂ ∆◦2 be a finite subset of two-faces such
that dim span

{
`σ
}
σ∈Ω

= 3 . Put J(γ) =
〈
`r+1
σ : σ ∈ Ω

〉
, X = {Pσ}σ∈Ω , and IX =

⋂{
℘σ : σ ∈ Ω

}
.

Then J(γ)d = Sd for d >
α̂(IX )r

α̂(IX )− 1
.

Proof. By Corollary 3.7, J(γ)d = Sd if and only if d < α(I
(d−r)
X ) . We may assume d > r (otherwise

J(γ)d = 0) . Dividing both sides by d− r gives J(γ)d = Sd if and only if

d

d− r
<
α(I

(d−r)
X )

d− r
.

Since the right hand side is larger than α̂(IX ), we see that

if
d

d− r
< α̂(IX ) then J(γ)d = Sd .

Solving for d yields the proposition, provided that α̂(IX ) > 1 . This latter inequality follows from

a result of Chudnovsky that α̂(IX ) ≥ α(IX )+1
2 (see [18, Proposition 3.1]). Thus if α(IX ) ≥ 2 then

α̂(IX ) ≥ 3
2 > 1, so α̂(IX ) = 1 if (and only if) α(IX ) = 1, that is X = {Pσ}σ∈Ω is contained in a

line. But this would imply that the span of the corresponding linear forms {`σ}σ∈Ω is at most two
dimensional, contrary to assumption. �
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3.2. A reduction procedure for fat points. Following the notation introduced at the beginning
of Section 3, let Ω denote a collection of faces in ∆◦2 of a vertex star ∆. The dual points defined
by the linear forms vanishing on these faces define the dual points X = {Pσ}σ∈Ω ⊆ P2 . Consider a
collection mmm of non-negative integers {mσ}σ∈Ω, and the fat points ideal ImmmX =

⋂{
℘mσσ : σ ∈ Ω

}
.

We describe the procedure introduced by Cooper, Harbourne, and Teitler in [11] to give bounds
on dim(ImmmX )d . The procedure uses a number of lines each of which pass through a subset of the
points of X . In our case these lines come from the edges of ∆: if τ ∈ ∆◦1, then the pencil of linear
forms vanishing on τ becomes a line in the dual space which we denote by Lτ . In particular, the
set of points {Pσ : σ ∈ ∆◦2 and τ ⊂ σ} all lie on Lτ . Now suppose we are given a sequence of
non-negative integers mmm, a collection of points {Pσ}σ∈Ω, and the sequence of lines L1, . . . , Ln (not
necessarily different) from the collection {Lτ}τ∈∆◦1

. We define the reduction vector ddd = (d1, . . . , dn)
associated to L1, . . . , Ln inductively as follows.

(1) Starting with L1, we define d1 as the number of points lying on L1, counted with multiplicity.
Namely, if L1 = Lτ for some τ ∈ ∆◦1, then d1 =

∑
σ∈Ωτ

mσ .
(2) Reduce by 1 the multiplicities of all the points lying on L1 and consider the sequence of

points {Pσ}σ∈Ω now with multiplicities mσ for σ 63 τ , and mσ − 1 for σ 3 τ .
(3) Repeat (1) for Li for i = 2, . . . , n and the sequence of points with reduced multiplicities

obtained in (2) at step i− 1 .

A reduction vector ddd = (d1, . . . , dn) is said to be a full reduction vector for the fat points ideal
ImmmX =

⋂{
℘mσσ : σ ∈ Ω

}
if
∑n

i=1 di =
∑

σ∈Ωmσ .

Example 3.12. Let ∆ be the regular octahedron from Example 3.8. Taking mσ = 2 for every
σ ∈ ∆◦2, and the ideal of fat points I = ℘2

σ1 ∩ ℘
2
σ5 ∩ ℘

2
σ9 . The set of lines in this case is

{
Lτ : τ ∈

∆◦1
}

= {X,Y, Z} . If we take L1 = Y , two of the points lie on L1, each of them with multiplicity

2, so d1 = 4 . Notice that 〈I, Y 〉 = 〈X2Z2, Y 〉 . See Figure 2, where we produce a reduction vector
following starting from the dual graph of ∆ in P2 .

b 2

b
2

b
2

L1

L2 L3

b 2

b
1

b
1

b 1

b
0

b
1

b 0

b
0

b
0

Figure 2. The graph of the regular octahedron ∆ is composed of three points, we
consider each of them to have multiplicity 2. The interior edges of ∆ lie in three
different lines, each of them correspond to a line in P2 as illustrated in the first
graph on the left. Taking the sequence L1, L2, L3, the reduction consists of the three
steps (from left to right). Notice that the multiplicities are reduced to zero, and the
reduction vector is ddd = (4, 3, 2) .

Example 3.13. Let ∆′ be the generic octahedron from Example 3.9. Let us take mσ = 4 for
every σ ∈ ∆′◦2, and the ideal of fat points given by I =

⋂12
i=1 ℘

4
σi . To construct a reduction vector

associated to the ideal I, we can take any sequence of lines in {Lτ : τ ∈ ∆◦1}, in particular we
can take a sequence so that all multiplicities reduce to zero. For instance, following the notation
in Figure 3, by taking the sequence of lines L1, L6, L4, L5, L3, L2 the multiplicity at each point is
reduced to 2. If we continue the reduction following the sequence of lines in the same order one
more time, we get ddd = (16, 16, 14, 14, 12, 12, 8, 8, 6, 6, 4, 4, 2, 2), and all the multiplicities are reduced
to zero.

In the following theorem (and throughout this document) we define
(
a
b

)
= 0 whenever a < b .
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b 4 b 4 4

b 4

b 4 4b b4

b 4

L5L4

L3L2

b 4

b 4 bL1

b 4

L6

b 4

b 3 b 3 3

b 4

b 4 4b b4

b 4

L5L4

L3L2

b 4

b 3 bL1

b 4

L6

b 4

b 3 b 3 3

b 4

b 3 3b b3

b 4

L5L4

L3L2

b 4

b 3 bL1

b 4

L6

b 3

b 3 b 3 3

b 4

b 3 3b b2

b 3

L5L4

L3L2

b 3

b 2 bL1

b 4

b 3

b 3 b 2 3

b 3

b 3 2b b2

b 3

L5L4

L3L2

b 3

b 2 bL1

b 3

L6

b 3

Figure 3. The graph of a generic octahedron ∆′ is composed by 12 points, we
consider each of them to have multiplicity 4. The interior edges of ∆′ lie on 6
different lines, each of them correspond to a line in P2 as illustrated in the first
graph on the left. Taking the sequence L1, L6, L4, L5, the reduction consists of the
four steps (from left to right). The reduction vector for this sequence of lines is
ddd = (16, 16, 14, 14) .

Theorem 3.14. [11, Corollary 2.1.5] Let ImmmX =
⋂{

℘mσσ : σ ∈ Ω
}

be a fat points ideal and ddd =
(d1, . . . , dn) a full reduction vector from the sequence of lines L1, . . . , Ln . Then

max
{
h′0, . . . , h

′
n

}
≤ dim

(
ImmmX
)
d
≤
(
d− n+ 2

2

)
+
n−1∑
i=0

(
d− i− di+1 + 1

1

)
,

where h′n =
(
d−n+2

2

)
and h′i =

(
d−i+2

2

)
−

∑
i+1≤j≤n

dj, for all 0 ≤ i < n .

If the reduction vector does not contain zeros (it is positive), the following corollary to Theo-
rem 3.14 provides a bound on the initial degree of the ideal of fat points ImmmX . (Crucially, for reading
the following theorem, the indexing of the reduction vector was reversed between the preprint [10]
and its publication [11]).

Corollary 3.15. [10, Theorem 4.2.2] If ImmmX =
⋂{

℘mσσ : σ ∈ Ω
}

is an ideal of fat points in P2 which
has a positive full reduction vector ddd = (d1, . . . , dn), then

n+ min
{
d1 − n, d2 − n+ 1, . . . , dn − 1, 0

}
≤ α

(
ImmmX
)
≤ n .

Proposition 3.16. Suppose ∆ is a closed vertex star with interior vertex γ and the two-faces of
∆ all span distinct planes. Let X = {Pσ}σ∈∆◦2

be the set of points dual to the collection of forms

{`σ}σ∈∆◦2
. Then α̂(IX ) ≥ min

{
f◦1 /2, 3

}
.

Proof. Since the two-faces of ∆ all span distinct planes, the set X = {Pσ}σ∈∆◦2
of points dual to the

forms {`σ} are all distinct. Choose any ordering of the interior one-faces of ∆: so ∆◦1 =
{
τ1, . . . , τf◦1

}
.
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Let ni = nτi be the number of faces σ ∈ ∆◦2 which contain τi (notice ni ≥ 3). Dually this gives lines
L1, . . . , Lf◦1 in P2 so that line Li contains ni many points of X . Moreover, exactly two interior one-
faces are contained in every interior two-face of ∆ . Hence each point Pσ ∈ X is at the intersection
of exactly two lines from the set

{
L1, . . . , Lf◦1

}
. See Example 3.13 for an illustration of these

properties.

We define a full reduction vector ddd =
(
d1, . . . , dsf◦1

)
of length sf◦1 for I

(2s)
X (where each point

Pσ has multiplicity 2s) as follows. This reduction vector is obtained with the sequence of lines(
L1, L2, . . . , Lf◦1

)
repeated s times (in order). Since every point Pσ is on exactly two of the lines

from
{
L1, · · · , Lf◦1

}
, every time the sequence (L1, . . . , Lf◦1 ) is completed the multiplicity of every

point is reduced by two (this is why the entire reduction vector has length sf◦1 ). On the (k + 1)st
repetition of the sequence {L1, . . . , Lf◦1 }, the entry dkf◦1 +i (corresponding to the (k + 1)st time the
line Li is repeated), satisfies

(4) dkf◦1 +i ≥ (2(s− k)− 1)ni for 0 ≤ k ≤ s− 1, 1 ≤ i ≤ f◦1 .
This also shows that the reduction vector is positive, so we may apply Corollary 3.15. See Exam-
ple 3.13, where the case s = 2 is worked out for the generic centrally triangulated octahedron.

By Corollary 3.15, we have that α
(
I

(2s)
X
)
≥ n + min

{
d1 − n, d2 − n + 1, . . . , dn − 1, 0

}
, where

n = sf◦1 . As in the previous paragraph, we consider the reduction vector indexed in the form dkf◦1 +i,
where 0 ≤ k ≤ s− 1 and 1 ≤ i ≤ f◦1 . Now

sf◦1 + dkf◦1 +i − (sf◦1 − kf◦1 − i+ 1) = dkf◦1 +i + kf◦1 + i− 1
≥ (2(s− k)− 1)ni + kf◦1 + i− 1 by (4)
≥ 6(s− k)− 3 + kf◦1 since ni ≥ 3, i ≥ 1
= 6s− 3 + k(f◦1 − 6).

So α
(
I(2s)

)
≥ min

{
6s− 3, (s− 1)f◦1 + 3

}
(the minimum depends on whether f◦1 ≥ 6 or f◦1 < 6) and

α̂(IX ) = lim
s→∞

α(I(2s))

2s
≥ lim

s→∞

min{6s− 3, (s− 1)f◦1 + 3}
2s

= min
{

3, f◦1 /2
}
,

proving the proposition. �

Corollary 3.17. Suppose ∆ is a closed vertex star with interior vertex γ so that the span of every
two-dimensional face is distinct. Then dim J(γ)d =

(
d+2

2

)
for d > 2r if f◦1 = 4, if f◦1 = 5 the equality

holds for d > 5r/3, and if f◦1 ≥ 6 then it holds for d > 3r/2 .

Proof. Let X = {Pσ}σ∈∆◦2
. By assumption, all the points of X are distinct and Proposition 3.16

applies. It follows readily from Proposition 3.11 that if α̂(IX) ≥M , where M > 1, then dim J(γ)d =(
d+2

2

)
for d > Mr

M−1 . Since f◦1 ≥ 4, the result is immediate from Proposition 3.16. �

4. Lower bound for splines on vertex stars

In this section we prove that the formula of [1] is a lower bound on the dimension of the homo-
geneous spline space on vertex stars for degrees at least (3r + 2)/2, with some adjustment for four
or five interior vertices according to Corollary 3.17. We will use Equation (3) from Proposition 2.6,
so we first explain how to compute χ

(
J , d

)
when ∆ is the star of a vertex. If ∆ is a closed vertex

star with interior vertex γ then the Euler characteristic of J has the form

(5) χ(J , d) =
∑
σ∈∆◦2

dim J(σ)d −
∑
τ∈∆◦1

dim J(τ)d + dim J(γ)d .

If ∆ is an open vertex star, then the Euler characteristic of J has the form

(6) χ
(
J , d

)
=
∑
σ∈∆◦2

dim J(σ)d −
∑
τ∈∆◦1

dim J(τ)d .
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We use the following notation in the formulas for dim J(τ)d and Theorem 4.7.

Notation 4.1. For a given r ≥ 0 and τ ∈ ∆1,

� we define tτ = min{nτ , r + 2} , where nτ = #{σ ∈ ∆2 : τ ⊂ σ} is the number of two-
dimensional faces having τ as an edge;

� and the constants

qτ =

⌊
tτ (r + 1)

tτ − 1

⌋
, aτ = tτ (r + 1)− (tτ − 1)qτ , and bτ = tτ − 1− aτ .

Notice that tτ (r + 1) = qτ (tτ − 1) + aτ ; i.e., qτ and aτ are, respectively, the quotient and
remainder obtained when dividing tτ (r + 1) by tτ − 1 ;

� if ∆ is the star of the vertex γ and f◦1 is the number of interior edges in ∆, we define

Dγ =

 2r if f◦1 = 4
b(5r + 2)/3c if f◦1 = 5
b(3r + 1)/2c if f◦1 ≥ 6 .

For the following proposition, recall that we use the convention
(
a
b

)
= 0 when a < b .

Proposition 4.2. Suppose ∆ ⊂ R3 is the star of a vertex γ, r ≥ 0 is an integer, σ ∈ ∆2 , and
τ ∈ ∆1 . Following Notation 4.1, we have

dim Sd =

(
d+ 2

2

)
; dim J(σ)d =

(
d+ 1− r

2

)
;

dim J(τ)d ≥tτ
(
d+ 1− r

2

)
− aτ

(
d+ 1− qτ

2

)
− bτ

(
d+ 2− qτ

2

)
;(7)

dim J(γ)d ≤
(
d+ 2

2

)
, with equality for d > Dγ ; and(8)

(9) dimH1(J )d = 0 for d� 0 .

If nτ is replaced by the maximum number of two-faces σ containing τ so that `σ is distinct (i.e. if
we set nτ to be the number of distinct planes surrounding the edge τ), then the inequality (7) is an
equality. In particular, if ∆ is generic with respect to r and d then (7) is an equality.

Remark 4.3. The formula we give for dim J(τ)d is equivalent to those derived by Schenck [32] and
Geramita and Schenck [16], although it is expressed slightly differently.

Proof. The computations for dim Sd and dim J(σ)d are straightforward. The computation of dim J(τ)d
follows from [34] as indicated by Schenck in [32]. It also follows readily from apolarity (particu-
larly 3.6) as shown by Geramita and Schenck in [16]. The inequality (8) follows since J(γ) ⊂ Sd,

so dim J(γ)d ≤ dim Sd =
(
d+2

2

)
. The equality in (8) for d > Dγ follows from Corollary 3.17.

Equation (9) follows from [33, Lemma 3.2] or [28, Lemma 3.1]. �

If ∆ is a closed vertex star we define
(10)

LB�(∆, d, r) := 2

(
d+ 2

2

)
+

f◦2 − ∑
τ∈∆◦1

tτ

(d+ 1− r
2

)
+
∑
τ∈∆◦1

(
aτ

(
d+ 1− qτ

2

)
+ bτ

(
d+ 2− qτ

2

))
.



A LOWER BOUND FOR SPLINES ON TETRAHEDRAL VERTEX STARS 13

We write LB�(d) instead of LB�(∆, d, r) if ∆, r are understood. If ∆ is an open vertex star we
define
(11)

LB�(∆, d, r) :=

(
d+ 2

2

)
+

f◦2 − ∑
τ∈∆◦1

tτ

(d+ 1− r
2

)
+
∑
τ∈∆◦1

(
aτ

(
d+ 1− qτ

2

)
+ bτ

(
d+ 2− qτ

2

))
.

Again we write LB�(d) if ∆, r are understood.

Proposition 4.4. Suppose ∆ is a generic vertex star. If ∆ is an open vertex star, then

LB�(∆, d, r) = χ(R/J , d) =

(
d+ 2

2

)
+ χ

(
J , d

)
for every integer d ≥ 0 . If ∆ is a closed vertex star with interior vertex γ then

LB�(∆, d, r) =

(
d+ 2

2

)
− dim J(γ)d + χ(R/J , d) = 2

(
d+ 2

2

)
− dim J(γ)d + χ(J , d) .

If d > Dγ then

LB�(∆, d, r) = χ(R/J , d) =

(
d+ 2

2

)
+ χ(J , d) .

Proof. These follow readily from (5), (6), and Proposition 4.2. �

Remark 4.5. If ∆ is an open star it is well-known that LB�(∆, d, r) ≤ dimHrd(∆) (this follows
from Proposition 4.4 and (9)) with equality if d ≥ 3r + 2 and vertices are positioned generically.
See [1, Theorem 3] and [34]; this essentially reduces to the planar case.

Remark 4.6. We discuss how to show that the the formulas LB�(∆, d, r) and LB�(∆, d, r) are
the formulas appearing in Equations 15 and 16 of [1], as claimed in the introduction. We do this

for LB�(∆, d, r); the computation for LB�(∆, d, r) is similar. If r ∈ R is any real number, put

[r]+ := max{0, r} . Let σ =
∑

τ∈∆1

∑d−r
j=1[r + j + 1 − nτ j]+ . Then we can re-write LB�(∆, d, r)

as LB�(∆, d, r) = 2
(
d+2

2

)
+ f◦2

(
d+1−r

2

)
− f◦1

((
d+2

2

)
−
(
r+2

2

))
+ σ . Using the relation f◦2 = 3f◦1 − 6

allows us to write LB�(∆, d, r) completely in terms of f◦1 :

LB�(∆, d, r) = (d− r)(d− 2r)f◦1 − 2d2 + 6dr − 3r2 + 3r + 2 + σ.

If each edge is surrounded by two-faces which span distinct planes, then this is exactly the expression
that appears in Equation 15 of [1]. Otherwise Equation 15 of [1] will be slightly larger. In general,
Equations 15 and 16 of [1] coincide with the graded Euler characteristic χ

(
R/J , d

)
for d ≥ 3r+ 2 .

Theorem 4.7 (Lower bound for splines on vertex stars). Let r ≥ 0, ∆ a closed vertex star with
interior vertex γ, and f◦1 the number of interior edges in ∆ . Following Notation 4.1, if d > Dγ

then dimHrd(∆) ≥ max
{(

d+2
2

)
,LB�(∆, d, r)

}
and

dimSrd(∆) ≥
(
Dγ + 3

3

)
+

d∑
i=Dγ+1

max

{(
i+ 2

2

)
,LB�(∆, i, r)

}
,

where LB�(∆, d, r) is given by the formula in (10).

Proof. We assume that ∆ is a generic closed vertex star. By Proposition 2.6,

dimHrd(∆) = dim Sd + χ(J , d) + dimH1(J )d.

If d > Dγ then by Proposition 4.4,

dimHrd(∆) = LB�(∆, d, r) + dimH1(J )d .
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Thus if d > Dγ , dimHrd(∆) ≥ max

{(
d+2

2

)
,LB�(∆, d, r)

}
. If ∆ is not generic, the conclusion

follows by Lemma 2.8.

The second statement follows since dimSrd(∆) =
∑d

i=0 dimHrd(∆) and we may always take
(
i+2

2

)
as a lower bound for dimHri (∆) . �

Remark 4.8. While it is proved in [1] that, for d ≥ 3r+ 2, LB�(∆, d, r) = dimHrd(∆) for an open

vertex star and LB�(∆, d, r) = Hrd(∆) for a closed vertex star, the same is certainly not true for the

entire spline space. The reader can see in the statement of Theorem 4.7 that if
(
p+2

2

)
< dimHrp(∆) for

some p ≤ Dγ or if max
{(

p+2
2

)
,LB�(∆, p, r)

}
< dimHrp(∆) for some Dγ ≤ p < 3r+2, then the lower

bound given for dimSrd(∆) will be strictly less than dimSrd(∆) in degrees d ≥ p . Thus we cannot
expect the lower bound for dimSrd(∆) in Theorem 4.7 to give the exact dimension of the spline
space in large degrees, and indeed it does not. For instance, there are special vertex positions of a
centrally triangulated octahedron possessing seven linearly independent C1 homogeneous quadratic
splines, instead of the predicted six. This unexpected extra homogeneous quadratic spline appears
when the three lines joining non-adjacent vertices of the octahedron all intersect in a point. This
phenomenon is the three-dimensional version of the well-known planar example due to Morgan and
Scott (this example was known in the 1970s [25] but does not appear in print until later - see for
instance [26]). The error in predicting H1

2(∆) for this special configuration will propagate into all
degrees d ≥ 2 for dimS1

d(∆); thus the lower bound on dimS1
d(∆) provided by Theorem 4.7 will

always be off by one.
While there often exist special positions of the vertices of ∆ where dimHrd(∆) jumps, as indicated

in the previous paragraph, our computations (see Tables 1 and 2) lead us to wonder if the lower
bound of Theorem 4.7 for dimHrd(∆) predicts the exact dimension for all degrees if ∆ is generic. In
this case the lower bound for dimSrd(∆) would predict the correct generic dimension in all degrees.
We discuss this further in Section 7.

5. Low degree splines on generic closed vertex stars

This section is devoted to the proof of the following result.

Theorem 5.1 (Low degree splines on generic closed vertex stars). If ∆ is a generic closed vertex

star with interior vertex γ then dimHrd(∆) =
(
d+2

2

)
for d ≤ Dγ, with Dγ as in Notation 4.1.

We postpone the proof of Theorem 5.1 to introduce an auxiliary construction. If ∆ is a closed
tetrahedral vertex star we construct the graph of ∆, denoted G∆, as follows: the vertices are the
interior edges, i.e. V = ∆◦1, and the edges correspond to the interior faces of dimension two, i.e.
E = ∆◦2 .

Remark 5.2. Suppose ∆ is a closed vertex star with interior vertex γ, placed at the origin. Scaling
the vertices of ∆ towards or away from the interior vertex does not affect G∆, so we assume all
boundary vertices of ∆ lie on a unit sphere centered at the origin. Then ∆ is a central triangulation
of the simplicial polytope formed by taking the convex hull of the vertices of ∆, and G∆ is the graph
of this simplicial polytope [42, Chapter 3].

The following characterization of graphs of three dimensional polytopes is due to Steinitz (see [42,
Chapter 4]). A graph is called d-connected if it remains connected after removing any set of (d− 1)
vertices and their incident edges.

Theorem 5.3 (Steinitz). A graph G∆ is the edge graph of a 3-polytope ∆ if and only if it is simple,
planar, and 3-connected.
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Lemma 5.4. Suppose ∆ is a closed tetrahedral star. If f◦1 = 4 then G∆ is the complete graph on 4
vertices, so ∆ is the Alfeld (or Clough-Tocher) split of a tetrahedron. If f◦1 = 5 then G∆ must be the
graph shown on the left in Figure 4, and ∆ is the barycentric subdivision of a triangular bipyramid.

b

4

b3

b

2

b

1

b5

b4

b3 b 2

b 1

b5

Figure 4. Simple 3-connected planar graphs with five vertices

Proof. If f◦1 = 4 the result is clear, so we assume f◦1 = 5. Euler’s formula combined with the fact
that each vertex must have degree at least 3 gives two possible degree sequences of simple planar
3-connected graphs: (3, 3, 4, 4, 4) or (3, 3, 3, 3, 4) . There is precisely one graph realizing each of these
degree sequences - those pictured in Figure 4. Clearly only the one on the left is simplicial. �

Proof of Theorem 5.1. The case d ≤ (3r+ 1)/2: As observed by Alfeld, Schumaker, and Whiteley
in [4, Remark 71], this case follows from the projection techniques of Alfeld, Schumaker, and
Whiteley [4] coupled with so-called vertex-splitting techniques due to Whiteley in [39].

The case f◦1 = 4 and d ≤ 2r: By Lemma 5.4, ∆ must be the Alfeld split of a tetrahedron. It

follows from a result of Schenck [29] that dimHrd(∆) =
(
d+2

2

)
for d ≤ 2r.

The case f◦1 = 5 and d ≤ (5r + 2)/3: The following argument is a bit technical, and we direct
the reader to [24] for unfamiliar terminology in the proof of this case. Lemma 5.4 shows that there
is only one possibility for G∆ (the graph on the left hand side in Figure 4). The corresponding
closed tetrahedral star is a barycentric subdivision of a triangular bipyramid. Thus we show that,
for generic vertex positions, the barycentric subdivision of a triangular bipyramid has no non-trivial
splines in degree d ≤ (5r + 2)/3.

The non-trivial Cr splines on ∆ are represented as the kernel of the map⊕
σ∈∆◦2

J(σ)
∂2−→

⊕
τ∈∆◦1

J(τ).

The graph G∆ of the centrally triangulated triangular bipyramid is shown on the right in Figure 4.
Orient the edge {i, j} where i < j by i → j. With this choice of orientation, we can represent a
tuple G = (gτ `

r+1
τ )τ∈∆◦1

∈ ker ∂2 by the equations

−g12`
r+1
12 − g13`

r+1
13 − g14`

r+1
14 − g15`

r+1
15 = 0(12)

g12`
r+1
12 − g23`

r+1
23 − g25`

r+1
25 = 0(13)

g13`
r+1
13 + g23`

r+1
23 − g34`

r+1
34 − g35`

r+1
35 = 0(14)

g14`
r+1
14 + g34`

r+1
34 − g45`

r+1
45 = 0(15)

g15`
r+1
15 + g25`

r+1
15 + g35`

r+1
35 + g45`

r+1
45 = 0(16)

The polynomials gij are the smoothing cofactors of the associated spline. SupposeG = (gτ `
r+1
τ )τ∈∆◦1

∈
ker ∂2 is non-zero. We will show that deg(G) > (5r + 2)/3.

Notice first that each gij appears in one of the equations (12), (13), (14), or (15). Hence if G 6= 0
its constituents must satisfy one of the equations (12), (13), (14), or (15) non-trivially. Suppose
that G only satisfies (16) trivially (i.e. g15 = g25 = g35 = g45 = 0). Then G must still satisfy the
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previous equations. Suppose one of g12 or g23 is non-zero; then by (13) g12`
r+1
12 − g23`

r+1
23 = 0 hence

both g12 and g23 are non-zero. Clearly in this case g12 is a multiple of `r+1
23 and g23 is a multiple of

`r+1
12 , hence G has degree at least 2(r+1) > (5r+2)/3. Likewise if one of g14 or g34 is non-zero then

both must be and G has degree at least 2(r + 1) by (15). If g12 = g23 = g14 = g34 = 0 in addition
to g15 = g25 = g35 = g45 = 0, then we can argue by (12) or (14) that G will have degree at least
2(r + 1) in the same way.

Now suppose that g14 = g34 = g45 = 0. Then the spline G restricts to a spline on the Alfeld split
of a tetrahedron. As before, if G is non-trivial it must have degree at least 2r + 1 > (5r + 2)/3
by [29].

So we may assume that G satisfies both (15) and (16) non-trivially. Furthermore we can assume
that g14, g34, g45 are all non-zero and at least two of g15, g25, and g35 are non-zero (otherwise we
could repeat the argument above, yielding that G has degree at least 2(r + 1)). Notice that g45

gives a non-zero element of the intersection

I = 〈`r+1
34 , `r+1

14 〉 : `r+1
45 ∩ 〈`

r+1
15 , `r+1

25 , `r+1
35 〉 : `r+1

45 ,

where : represents a colon ideal. That is, if J is an ideal and f a polynomial, J : f is the ideal of
all polynomials g so that fg ∈ J .

We claim that this intersection is empty in degrees d ≤ (5r+2)/3, which will complete the proof.
To prove this claim, we make a change of variables so that γ4 points along the positive z-axis, γ5

points along the positive x-axis, γ3 points along the positive y-axis, and γ1 points along the ray
(t, t, t) where t < 0. Under this change of coordinates, the ideal I becomes

I = 〈xr+1, (x− y)r+1〉 : yr+1 ∩ 〈(y − z)r+1, `r+1
25 , zr+1〉 : yr+1,

where `25 is a linear form in the variables y and z. Put

I1 = 〈xr+1, (x− y)r+1〉 : yr+1 and I2 = 〈(y − z)r+1, `r+1
25 , zr+1〉 : yr+1.

In the rest of the proof we will show that the initial ideals in(I1) and in(I2) with respect to lexico-
graphic order do not intersect in degrees d ≤ (5r + 2)/3 , which will also imply that (I1 ∩ I2)d = ∅ .

Put J1 = 〈xr+1, yr+1〉 : (x + y)r+1 ; I1 can be obtained from J1 by the change of coordinates
x → x , y → −x + y . In [13, Lemma 7.18] it is shown that the initial ideal in(J1) with respect
to lexicographic order consists of the dim(J1)d lexicographically largest monomials in the variables
x and y. In other words, in(J1) in lexicographic order is a so-called lex segment ideal (see [24,
Chapter 2]).

We claim that in(I1) is also a lex segment ideal. To prove this claim we consider the effect of the
change of coordinates x→ x, y → −x+ y on in(J1) in degree d. Under this change of coordinates,
the vector space in(J1)d becomes

xd, xd−1(−x+ y), xd−2(−x+ y)2, . . . , xd−a(−x+ y)a,

where a + 1 = dim(I1)d. Clearly the vector space spanned by these monomials is the same as the
vector space spanned by xd, xd−1y, xd−2y2, . . . , xd−aya. It follows that in(J1) ⊂ in(I1). Since I1 and
J1 have the same Hilbert function, we must in fact have in(J1) = in(I1), so in(I1) is also a lex
segment ideal.

Finally, we use some information about the Hilbert functions of I1 and I2. The degrees of syzygies
of ideals in two variables generated by powers of linear forms are described explicitly in [32] (uniform
powers) and [16] (non-uniform powers). From this analysis it follows that α(I2) = b(r+ 1)/3c (that
is, the minimal generators of I2 are in degrees at least b(r + 1)/3c). Put K = b(r + 1)/3c and
N = 〈y, z〉K . Clearly I2 ⊂ N . We show that α(in(I2) ∩N) > (5r + 2)/3.
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It turns out that I1 is a complete intersection generated in degrees b(r+ 1)/2c, d(r+ 1)/2e. This
implies that the Hilbert function of I1 has the following form (for a proof see [13, Corollary 7.17]):

dim(I1)d =

 0 if 0 ≤ d ≤ b(r + 1)/2c
2d+ 1− r if b(r + 1)/2c ≤ d < r
d+ 1 if d ≥ r .

Coupled with the fact that in(I1) is a lex segment ideal, we obtain that a monomial xaybzc ∈ in(I2)
if and only if 2(a + b) + 1 − r ≥ b + 1, or 2a + b ≥ r. Similarly, xaybzc ∈ N if and only if
b+ c ≥ b(r + 1)/3c.

Hence to find the least degree of a monomial in in(I1) ∩N , we solve the integer linear program:
minimize a+b+c subject to 2a+b ≥ r and b+c ≥ b(r+1)/3c . Over the rationals, it is straightforward
to check that this is minimal when c = 0, b = b(r + 1)/3c, and a = 1

2(r − b(r + 1)/3c) with a value

of a+ b+ c = 1
2

⌊
4r+1

3

⌋
. Thus g45 must have degree greater than 1

2

⌊
4r+1

3

⌋
, and so g45`

r+1
45 must have

degree greater than r+ 1 + 1
2b

4r+1
3 c . To prove the statement of the Proposition, it suffices to show

that 5r+2
3 < r+1+ 1

2

⌊
4r+1

3

⌋
, which is equivalent to 4r+1

3 −1 <
⌊

4r+1
3

⌋
. The last inequality is clearly

true. �

6. Examples

In this section we illustrate our bounds in several examples. Accompanying code can be found
under the research tab at the first author’s website: https://midipasq.github.io/. For the
convenience of the reader we recall the notations and formulas of Section 4.

� For τ ∈ ∆◦1 , nτ = #{σ ∈ ∆2 : τ ⊂ σ} and tτ = min{nτ , r + 2} ,

� For τ ∈ ∆◦1, qτ =

⌊
tτ (r+1)
tτ−1

⌋
, aτ = tτ (r + 1)− (tτ − 1)qτ , and bτ = tτ − 1− aτ .

� If ∆ is the star of the vertex γ , then Dγ = 2r if f◦1 = 4, Dγ = b(5r + 2)/3c if f◦1 = 5, and
otherwise Dγ = b(3r + 1)/2c.

Our focus will be on closed vertex stars, so we recall the definition of LB�(∆, d, r).

LB�(∆, d, r) := 2

(
d+ 2

2

)
+

f◦2 − ∑
τ∈∆◦1

tτ

(d+ 1− r
2

)
+
∑
τ∈∆◦1

(
aτ

(
d+ 1− qτ

2

)
+ bτ

(
d+ 2− qτ

2

))
.

6.1. Generic bipyramid. Let ∆ be the vertex star with interior vertex γ in Figure 5, where the
vertex coordinates are chosen generically. The number of interior two-dimensional faces is f◦2 = 15,
and the number of interior edges is f◦1 = 7. Each of the five edges in the base of the bipyramid have
four two-dimensional interior faces attached to them, i.e., if we denote them by τ ∈ ∆◦0 then nτ = 4.
The latter implies tτ = r+ 2 if r = 0, 1, 2, and tτ = 4 for every r ≥ 3. Similarly, for the edges τ ′ and
τ ′′ connecting γ to the top and the bottom of ∆, we have nτ ′ = nτ ′′ = 5. Thus, tτ ′ = tτ ′′ = r + 2
for r = 0, 1, 2, and tτ ′ = tτ ′′ = 5 for every r ≥ 3 .

By Theorem 4.7, dimHrd(∆) ≥ max
{(

d+2
2

)
,LB�(∆, d, r)

}
for d > Dγ , where Dγ = b(3r + 1)/2c

and

LB�(∆, d, r) = 2

(
d+ 2

2

)
+
(
15− 5tτ − 2tτ ′

)(d+ 1− r
2

)
+ 5aτ

(
d+ 1− qτ

2

)
+ 5bτ

(
d+ 2− qτ

2

)
+ 2aτ ′

(
d+ 1− qτ ′

2

)
+ 2bτ ′

(
d+ 2− qτ ′

2

)
.

https://midipasq.github.io/
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b

τ

τ ′′

τ ′

b
γ

bb

b

b

b

b b

b

b bγ6

b
γ

bb

b

b γ1

b
γ2

b
γ3

b
γ4

bγ0

b
γ5

Figure 5. Generic (left) and non-generic (right) bipyramids over a pentagon.

For instance, if r ≤ 2, then qτ = qτ ′ = qτ ′′ = r + 2, and therefore aτ = aτ ′ = aτ ′′ = 0 and
bτ = bτ ′ = bτ ′′ = r + 1. Thus,

LB�(∆, d, r) = 2

(
d+ 2

2

)
+
(
15− 7(r + 2)

)(d+ 1− r
2

)
+ 7(r + 1)

(
d− r

2

)
= 5d2 − 15dr + 11r2 + 3r + 2 , if d ≥ r,

and for d ≥ Dγ , the lower bound on the dimension of the spline space is given by

dimSrd(∆) ≥
(
Dγ + 3

3

)
+

d∑
k=Dγ+1

max

{(
k + 2

2

)
,LB�(∆, k, r)

}
.

If r = 2, for example, we have Dγ = 3, and for d ≥ 3 we get

dimS2
d(∆) ≥ 20 +

d∑
k=4

LB�(∆, k, 2) =
5

3
d3 − 25

2
d2 +

227

6
d− 26 .

We list some numerical values of LB�(∆, d, r) in Table 1 for 1 ≤ r ≤ 4 and various d. Table 1 also

compares the values of LB�(∆, d, r) to the actual value of dimHrd(∆) for generic vertex positions,
listed under the gendim column. The value d = Dγ appears in bold for each r. These computations
were performed using the AlgebraicSplines package in Macaulay2 [17].

6.2. Non-generic bipyramid. It is possible to modify our arguments to produce better bounds in
non-generic situations. We illustrate with special vertex positions for the example of the bipyramid
over a pentagon – see the configuration on the right in Figure 5. Label the vertices as indicated on
the right in Figure 5. We assume that γ2, γ3, γ4, γ5, and γ6 all lie in the xy-plane (such configurations
are studied in [9]). Assume further that γ, γ0, γ1, and γi are not coplanar for i = 2, . . . , 6 and γ, γi,
and γj are not collinear for any 2 ≤ i < j ≤ 6. We write ∆ for this non-generic vertex star.

The collection X =
{
℘σ : σ ∈ ∆◦0

}
of points dual to

{
σ : σ ∈ ∆◦0

}
consists of 11 points. The five

two-faces with vertices γ, γi, γi+1 for i = 2, 3, 4, 5, 6 (indices taken cyclically in this set) all span the
same plane, so all correspond to the same dual point. Our assumptions for the rest of the vertices
ensure that the remaining ten two-faces all span distinct planes, hence give rise to distinct dual
points. Write L0, L1 for the linear forms defining the lines dual to the edges with vertices γ, γ0 and
γ, γ1 in ∆. Write Li for the linear form defining the line dual to the edge with vertices γ, γi for
i = 2, . . . , 6. The set X decomposes as a union of 5 points which lie on L0, 5 points which lie on L1,
and the isolated point v = [0 : 0 : 1] . Since the dual points do not lie on any conic, it follows from
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Chudnovsky’s bound that α̂(IX ) ≥ α(IX )+1
2 = 2 . Then Proposition 3.11 implies dim J(γ)d =

(
d+2

2

)
for d > 2r.

Remark 6.1. A more careful analysis shows that in fact α̂(IX ) = 13
5 and dim J(γ)d =

(
d+2

2

)
for

d > 13
8 r . However we will see this more careful analysis is unnecessary.

Denote by LB�
1 (∆, d, r) the expression which results if we replace nτ by the number of distinct

planes surrounding the edge τ (and thus replace tτ by the minimum of r + 2 and the number of

distinct planes surrounding τ) in LB�(∆, d, r). It is shown in [1] that dimHrd(∆) = LB�
1 (∆, d, r)

for d ≥ 3r + 2.
From the calculation above, LB�

1 (∆, d, r) = χ(R/J , d) for d > 2r, so in particular LB�
1 (∆, d, r) ≤

dimHrd(∆) for d > 2r . Now put f(d, r) =
(
d+2

2

)
+
(
d+1−r

2

)
. Since the plane z = 0 cuts straight

through ∆, the spline F which evaluates to zr+1 on every upper tetrahedron and 0 on every lower
tetrahedron is in Hrr+1(∆). It follows that f(d, r) ≤ Hrd(∆) for any d ≥ 0. Mimicking Theorem 4.7,

we can take f(d, r) as a lower bound on dimHrd(∆) when d ≤ 2r and max
{
f(d, r),LB�

1 (∆, d, r)
}

as the lower bound on dimHrd(∆) when d > 2r . In Table 1 values of f(d, r) and LB�
1 (∆, d, r) are

listed for 1 ≤ r ≤ 4 and various d. These are compared to the actual dimension of Hrd(∆), the
values of which are in the column labeled symdim. (Again, these values were computed using the
AlgebraicSplines package in Macaulay2.)

Is it possible to improve the lower bound of max
{
f(d, r),LB1(∆, d, r)

}
by computing dim J(γ)d

exactly when d ≤ 2r? We show the answer is no. First of all, an application of the upper bound
from [27, Theorem 4.1] (using the vertex ordering in Figure 5) shows that dimHrd(∆) = f(d, r)

for d ≤
⌊

3r+1
2

⌋
= Dγ . This gives a range of degrees Dγ < d ≤ 2r where it might be possible to

improve the lower bound by using χ
(
R/J , d

)
instead of f(d, r). Since χ

(
R/J , d

)
≤ LB�

1 (∆, d, r),

if we show that LB�
1 (∆, d, r) ≤ f(d, r) for this range of values, then we have shown that we cannot

improve the lower bound by using χ(R/J , d) for values of d which are smaller than 2r.
In what follows we assume r = 4k − 1 and k ≥ 1 to simplify calculations. We compute that

LB�
1 (∆, d, 4k − 1) = 2

(
d+ 2

2

)
− 10

(
d+ 2− 4k

2

)
+ 10

(
d+ 2− 6k

2

)
+ 2

(
d+ 2− 5k

2

)
.

For d ≥ 6k − 2,

LB�
1 (∆, d, 4k − 1) = 5d2 − 15(4k − 1)d+ 200k2 − 90k + 10 .

Also f(d, 4k − 1) = d2 − (4k − 3)d+ 8k2 − 6k + 2, for d ≥ 4k − 2 .

We can check that the polynomial LB�
1 (∆, d, 4k−1)−f(d, 4k−1) attains a minimum of−4k2−1 at

d = 7k−3/2. Furthermore the roots of LB�
1 (∆, d, 4k−1)−f(d, 4k−1) are d = 7k−3/2±

√
16k2 + 4 .

Thus LB�
1 (∆, d, 4k − 1) < f(d, 4k − 1) for 6k − 2 ≤ d ≤ 11k − 3/2 . Notice this is long past the

value of d = 8k− 2 where dim J(γ)d =
(
d+2

2

)
and thus LB�(d) = χ(R/J , d)! So we cannot improve

our lower bound by more careful computations of dim J(γ)d in degrees d < 2r . Similar arguments
can be made for r = 4k, 4k + 1, 4k + 2 .

6.3. Non-simplicial vertex star. For simplicity of exposition we have only considered the case
where ∆ is a simplicial vertex star. However, Theorems 4.7 and 5.1 both hold verbatim if ∆ is
instead a polytopal vertex star. A polytopal vertex star is a collection of polytopes whose intersection
contains a vertex γ and satisfies that the intersection of each pair of polytopes is a face of both. The
main difference between splines on polytopal as opposed to simplicial vertex stars is that dimH1(J )d
may not vanish in large degree (see [23]), however this is both non-generic behavior and only makes

dimHrd(∆) larger. Thus this behavior has no impact on whether LB�(∆, d, r) is a lower bound on
Hrd(∆) .
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r d
(
d+2

2

)
LB�(∆, d, r) gendim

(
d+2

2

)
+
(
d+1−r

2

)
LB�

1 (∆, d, r) symdim

1 2 6 6 6 7 6 7

1 3 10 16 16 13 16 16

1 4 15 36 36 21 36 36

1 5 66 66 31 66 66

1 6 106 106 43 106 106

1 7 156 156 57 156 156

1 8 216 216 73 216 216

1 9 286 286 91 286 286

2 3 10 7 10 11 12 11

2 4 15 12 15 18 17 18

2 5 21 27 27 27 32 32

2 6 28 52 52 38 57 57

2 7 87 87 51 92 92

2 8 132 132 66 137 137

2 9 187 187 83 192 192

2 10 252 252 102 257 257

2 11 327 327 123 332 332

3 4 15 15 15 16 20 16

3 5 21 15 21 24 20 24

3 6 28 25 28 34 30 34

3 7 36 45 45 46 50 51

3 8 45 75 75 60 80 80

3 9 115 115 76 120 120

3 10 165 165 94 170 170

3 11 225 225 114 230 230

3 12 295 295 136 300 300

4 5 21 27 21 22 32 22

4 6 28 22 28 31 32 31

4 7 36 27 36 42 37 42

4 8 45 42 45 55 52 56

4 9 55 67 67 70 77 78

4 10 66 102 102 87 112 112

4 11 147 147 106 157 157

4 12 202 202 127 212 212

4 13 267 267 150 277 277

Table 1. Bounds for generic and non-generic bipyramids in Sections 6.1 and 6.2
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We briefly remark on the details that need to be checked to ensure that Theorems 4.7 and 5.1 carry
over to polytopal vertex stars. First, Theorem 4.7 hinges on Proposition 3.16 and Corollary 3.17.
These easily carry over to polytopal vertex stars, as the simplicial nature of ∆ plays no role in the
proofs. Now suppose ∆ is a polytopal vertex star and ∆′ is a triangulation of it which is also a
simplicial vertex star (to justify the existence of such a triangulation takes a couple sentences, but

it is not difficult). Then Hr(∆) includes into Hr(∆′) . By Theorem 5.1 dimHrd(∆′) =
(
d+2

2

)
for

d ≤ Dγ , hence dimHrd(∆) =
(
d+2

2

)
for d ≤ Dγ as well.

We give a simple illustration. Let ∆ be the barycentric subdivision of a cube (G∆ is shown in
Figure 6). Then f◦2 = 12, f◦1 = 8, and nτ = 3 for every interior edge (and so tτ = 3 if r ≥ 1). We

b

b b

b

b b

b b

Figure 6. Graph of the barycentric subdivision of a cube in Section 6.3.

have

LB�(∆, d, r) = 2

(
d+ 2

2

)
− 12

(
d+ 1− r

2

)
+ 8

(
aτ

(
d+ 1− qτ

2

)
+ bτ

(
d+ 2− qτ

2

))
,

where qτ = b3(r + 1)/2c, aτ is the remainder when 3(r + 1) is divided by two, and bτ = 2− aτ . If
r = 2k − 1 then

LB�(∆, d, 2k − 1) = 2

(
d+ 2

2

)
− 12

(
d+ 2− 2k

2

)
+ 16

(
d+ 2− 3k

2

)
,

and if r = 2k (k > 0) then

LB�(∆, d, 2k) = 2

(
d+ 2

2

)
− 12

(
d+ 1− 2k

2

)
+ 8

((
d− 3k

2

)
+

(
d+ 1− 3k

2

))
.

In Table 2 we list the values of LB�(∆, d, r) for 1 ≤ r ≤ 3 and various d. The actual values of
dimHrd(∆) appear in the gendim column. The numbers Dγ for each value of r appear in bold (they
are the same as in Table 1).

7. Concluding Remarks

In this paper we have shown that the formula of Alfeld, Neamtu, and Schumaker in [1] for
homogeneous splines on closed tetrahedral vertex stars is a lower bound for dimHrd(∆) when d > Dγ ,
and Dγ is as in Notation 4.1. Using arguments due to Whiteley [39] we have also shown that, for
generic vertex positions, Hrd(∆) consists of global polynomials when d ≤ Dγ .

Our arguments suggest that, as in the planar case, the main obstruction to computing the dimen-
sion of the spline space on a vertex star is the nontrivial homology module of the Billera-Schenck-
Stillman chain complex. The contributions of this homology module are largely mysterious. For
instance, we see from Table 1 that there are likely interesting contributions of this homology module
to Hrd(∆) for r = 3, d = 7 and r = 4, d = 8, 9, where ∆ is the non-generic bipyramid in Section 6.2.
These contributions are ‘unexpected’ in the sense that we could not predict these jumps from either
of the lower bounds in Section 6.2. We did not find any example of a generic closed vertex star
which had similar behavior. This leads us to the following question.
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r d
(
d+2

2

)
LB�(∆, d, r) gendim

1 2 6 0 6

1 3 10 0 10

1 4 15 6 15

1 5 21 18 21

1 6 28 36 36

1 7 60 60

1 8 90 90

1 9 126 126

2 3 10 8 10

2 4 15 2 15

2 5 21 2 21

2 6 28 8 28

2 7 36 20 36

2 8 45 38 45

r d
(
d+2

2

)
LB�(∆, d, r) gendim

2 9 55 62 62

2 10 92 92

2 11 128 128

3 5 21 6 21

3 6 28 0 28

3 7 36 0 36

3 8 45 6 45

3 9 55 18 55

3 10 66 36 66

3 11 78 60 78

3 12 91 90 91

3 13 105 126 126

3 14 168 168

3 15 216 216

Table 2. Bounds for the generic cube in Section 6.3

Question 7.1. If ∆ is a generic closed vertex star and d > Dγ, is it true that

dimHrd(∆) = max

{(
d+ 2

2

)
,LB�(∆, d, r)

}
?

Surprisingly, it seems more difficult to pose the analog of Question 7.1 for open vertex stars.
In many ways, homogeneous splines on open tetrahedral vertex stars are indistinguishable from
splines on planar triangulations, so we attempt to formulate Question 7.1 when ∆ is a planar

triangulation. In this case LB�(̂∆, d, r) ≤ dimSrd(∆), where ∆̂ is the open vertex star obtained by

coning over ∆, and LB�(̂∆, d, r) is simply Schumaker’s lower bound from [34]. One would like to
ask the straightforward analog of Question 7.1: If ∆ is a generic triangulation, does dimSrd(∆) =

max
{(

d+2
2

)
,LB�(̂∆, d, r)

}
? Unfortunately there are a few sub-configurations of ∆ which can force

this equality to fail. We point out two of these, and would be curious to know if there are more.
First, suppose there is an interior edge in ∆ both of whose vertices are on the boundary of ∆;

we call such an edge a chord of ∆. A chord clearly gives rise to an extra spline of degree r+ 1 even
for generic vertex positions. Another configuration which gives rise to splines of low degree is the
following: suppose σ1 and σ2 are adjacent triangles of ∆ with vertices {γ1, γ2, γ} and {γ1, γ2, γ

′},
respectively. We call σ1, σ2 a boundary pair if the edges {γ1, γ} and {γ1, γ

′} are both boundary
edges of ∆ or the edges {γ2, γ} and {γ2, γ

′} are both boundary edges of ∆. If σ1, σ2 is a boundary
pair then there is a spline on ∆ supported only on σ1 and σ2 of degree b3(r + 1)/2c .

Question 7.2. If ∆ is a generic triangulation without a chord or a boundary pair, does

dimSrd(∆) = max

{(
d+ 2

2

)
,LB�(∆, d, r)

}
for every d ≥ 0? If not, can the failure of equality be linked to a sub-configuration of ∆ like the
chord or the boundary pair?

These questions are related to Schenck’s ‘2r + 1’ conjecture [31], which states that dimSrd(∆)
is given by Schumaker’s lower bound (equivalently the graded Euler characteristic of R/J ) for
d ≥ 2r + 2. Recently Yuan and Stillman [41] found a counterexample to this conjecture, however



A LOWER BOUND FOR SPLINES ON TETRAHEDRAL VERTEX STARS 23

they point out that the conjecture is still open for generic triangulations. If Schenck’s conjecture

is true for generic triangulations, then it implies that LB�(̂∆, d, r) ≥
(
d+2

2

)
for d ≥ 2r + 2 . On

the other hand, if Question 7.2 has a positive answer, then (modulo accounting for chords and
boundary pairs) Schenck’s conjecture for generic triangulations can be rephrased as: If d ≥ 2r+ 2 ,

then LB�(∆, d, r) ≥
(
d+2

2

)
. Checking this inequality simply amounts to estimating the roots of a

quadratic polynomial.
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