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Look-Angle-Constrained Control of Arrival Time
with Exact Knowledge of Time-to-Go

I. Introduction
The capability to control the time of arrival at a goal position as desired endows a single vehicle or a coalition of

many of them with the strategic advantage to perform time-critical missions. Arrival time coordination can be used as

an element to solve multi-agent, multi-depot routing and task planning problems in cooperative unmanned aerial robots.

The tactic known as Salvo which either designates or synchronises the impact times across multiple missiles to enhance

their collective survivability as well as attack effectiveness strongly depends on control of arrival time. In principle,

control of arrival time is essentially adjustment of the arc length of the vehicle’s flight path through manipulation of the

curvature, provided that most vehicles flying in the atmosphere often prefer not to change their speeds excessively.

On the other hand, the capability to take measurements of the target with onboard sensors provides a higher degree of

autonomy to the vehicle and hence allows a more intelligent behaviour. Modern autonomous vehicles acquire information

about the designated destination or the surrounding environment with imaging sensors, in particular. An onboard sensor

that collects emission or reflection from the target is usually not likely to be omni-directional yet possesses only a finite

field-of-regard. The requirement to ensure continuous acquisition of target-originated signals necessitates a measure to

keep the information source inside the sensor’s field-of-view which spans over a solid angle of limited range. That is, a

box constraint is imposed on the look angle.

Respecting the look angle box constraint significantly complicates the design of a manoeuvre policy when it is

coupled with the necessity to control the arrival time. The demand to satisfy the desired flight time while obeying the

look angle constraint drives an extensive amount of studies in the recent decade, particularly in the domain of missile

guidance [1–14]. The approaches have been diversified by the choice of various control methodologies, controlled

variables, and especially, the way of quantifying the time-to-go. The guidance methods proposed in [5–7, 9] are based

on parametric shaping of range with respect to a function of look angle, parametrisation of range as a polynomial of

time, nonlinear tracking of desired lead angle, and nonlinear regulation of the range and lead angle tracking errors,

respectively. The time-to-go information in these methods are provided as their respective exact forms. However, their

structures are not similar to the well-known classical guidance laws. On the other hand, the methods proposed in
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[1, 10] are based on the proportional navigation, as it is preferable to exploit the widely-used legacy method to ensure

operational reliability, particularly near the end of flight. However, the design and analysis in [1, 10] incorporate an

approximate estimate for the time-to-go of the pure proportional navigation guidance law (PPNG) which arbitrarily

assumes small lead angle. To complement the theoretical and numerical issues arising from the inaccurate time-to-go,

another guidance method was proposed in [12] by using the exact time-to-go of PPNG derived in [15], but this method

requires switching between policies. In summary, a method based on the PPNG with its exact time-to-go for arrival time

control under look angle constraint is still absent despite a lot of previous efforts.

This study aims to develop a novel guidance synthesis framework for arrival time control under look angle box

constraint with an elaborated formulation taking into consideration the exact knowledge of time-to-go for the baseline

policy. To promote the generality of our development, the design framework is first developed considering the PPNG

with a family of range-varying functions as the baseline policy. Then, a biased proportional navigation guidance law

(BPNG) is derived by specifying the navigation ratio of the baseline PPNG to be a constant, the case for which a

closed-form expression of the exact time-to-go is available. The proposed BPNG turns out to be a novel guidance law

extending the earlier BPNGs in [10, 11] that are based on the approximate solution of the time-to-go for PPNG.

The following sections are organised to discuss the details of the new guidance method that leverages exact knowledge

of the time-to-go for a baseline guidance law, namely, the pure proportional navigation guidance law. Section II presents

the basic kinematic relations and formal description of the problem. The theory of the proposed guidance method is

developed in Sec. III where a new BPNG for control of arrival time under look angle restriction is derived as a special

case of the generalised theory. Section IV presents numerical examples to illustrate the new BPNG with particular

emphasis on the comparison with the existing guidance laws making use of approximate time-to-go expressions. The

design lessons learnt are briefly discussed in Sec. V.

II. Problem Formulation
This section mathematically describes the problem considered in this study. The engagement kinematic equations

are summarised, and the constraints that should be satisfied by the closed-loop trajectory are detailed.

Consider a planar engagement for which geometry can be represented in polar coordinates as shown in Fig. 1. The

figure depicts the situation where the vehicle 𝑀 flying at a speed of 𝑉 and exhibiting a lateral acceleration of 𝑎 moves

toward the target 𝑇 . The angular variables are defined to be positive counter-clockwise. The variables 𝑟, _, 𝛾, and 𝜎

denote range, line-of-sight angle, flight path angle, and lead angle, respectively. It is clear from the definition that

𝜎 = 𝛾 − _.

The present study takes several assumptions for the sake of simplicity in further development. First, the target is

assumed to be effectively a stationary point. Second, the vehicle is assumed to be lag-free in lateral acceleration and

flying at a constant speed. Third, the look angle is supposed to be equivalent to the lead angle which is the angular
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Fig. 1 Schematic Diagram of Planar Engagement with Definition of Variables

difference between the line-of-sight and the vehicle velocity. Fourth, the upper bound on the magnitude of look angle,

which will be denoted from this point on by 𝜎lim, is less than 90 deg, implying that range 𝑟 decreases monotonically

with respect to time 𝑡. With the assumptions stated above, the equations for the relative motion can be summarised as

¤𝑟 = −𝑉 cos𝜎 (1)

¤_ = −𝑉 sin𝜎
𝑟

(2)

¤𝛾 =
𝑎

𝑉
(3)

¤𝜎 =
𝑎

𝑉
+ 𝑉 sin𝜎

𝑟
(4)

where the overdot notation stands for the differentiation with respect to time.

The free variable that is considered to be the input to the engagement kinematics described in Eqs. (1) through (4) is

the lateral acceleration 𝑎. Let 𝑡 𝑓𝑑 represents the desired arrival time given as a positive constant greater than or equal to
𝑟0
𝑉

where 𝑟0 is the initial range. This study deals with the problem of finding a feedback control law, i.e., policy, that

relates 𝑎 with other variables to satisfy the following requirements:

Requirement (1) Arrival at the desired time: 𝑟 → 0 as 𝑡 → 𝑡 𝑓𝑑

Requirement (2) Boundedness of look angle: |𝜎 | ≤ 𝜎lim, ∀𝑡 ∈
[
𝑡0, 𝑡 𝑓𝑑

]
III. Guidance Synthesis

This section presents a novel guidance method that enables precise adjustment of arrival time as well as maintaining

the goal position in the field-of-view spanning a symmetric interval around the line-of-sight. The augmentation approach

that introduces an additional input term besides a given separate baseline input guaranteeing miss distance nullification

is adopted to facilitate the design process so that the designer can focus only on satisfying the constraints imposed on

arrival time and look angle with the additional input. In Sec. III.A, a design framework in which the PPNG with a family
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of range-varying functions for the navigation ratio is taken as the baseline guidance law is proposed, and relevant design

equations are presented considering the general expression for the exact time-to-go. The proposed method realises

adjustment of arrival time through the design pursuing finite-horizon convergence of the predicted arrival time error.

Then, a BPNG is newly proposed in Sec. III.B as a particular case of the proposed framework by setting the navigation

ratio to be a constant.

A. General Framework: Range-Varying Navigation Ratio

1. Trajectory and Time-to-Go Solutions for Baseline Guidance Law

This study considers the PPNG as the baseline guidance law. The design process begins with investigating the

trajectory solutions resulting from the baseline guidance law. Trajectory predictions are necessary at each instance to

measure how close the predicted final state is from the desired final state.

The lateral acceleration commanded by the PPNG can be written as

𝑎𝑏𝑎𝑠𝑒 = 𝑁 (𝑟)𝑉 ¤_ = −𝑁 (𝑟)𝑉2

𝑟
sin𝜎 (5)

where 𝑁 (𝑟) > 1 is a range-dependent navigation ratio. Because the range decreases monotonically under the assumption

that the look angle is always an acute angle, the differential relation of the look angle with respect to the range can be

obtained by dividing Eq. (4) with Eq. (1) as

𝑑𝜎

𝑑𝑟
=

¤𝜎
¤𝑟 = −

𝑎
𝑉
+ 𝑉

𝑟
sin𝜎

𝑉 cos𝜎
(6)

Substituting 𝑎 = 𝑎𝑏𝑎𝑠𝑒 in Eq. (6) yields the range-derivative of the look angle under the baseline guidance law as

𝑑𝜎

𝑑𝑟
=
𝑁 (𝑟) − 1

𝑟
tan𝜎 (7)

Note that Eq. (7) is a separable differential equation which can be readily solved by integration. By rearranging Eq. (7)

about each variable and then by integrating from the current time to a future time, we have

∫ �̃�

𝜎

cot𝜎𝑑𝜎 =

∫ 𝑟

𝑟

𝑁 (𝑟) − 1
𝑟

𝑑𝑟 (8)

where 𝑟 and �̃� are the range and look angle at the future time, respectively. Therefore, the look angle solution for the

baseline guidance law can be obtained from Eq. (8) as

sin �̃� = sin𝜎 exp
{∫ 𝑟

𝑟

𝑁 (𝑥) − 1
𝑥

𝑑𝑥

}
(9)
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Equation (9) indicates that the predicted look angle trajectory for the loop closed with the baseline guidance law is a

function only of the range. One may notice from Eq. (1) that the differential relation between the range and the time

under the same baseline policy can also be viewed as a separable differential equation since �̃� = �̃� (𝑟). Rearranging Eq.

(1) and integrating the result from the current time to the final time gives

∫ 𝑡 𝑓

𝑡

𝑑𝑡 = − 1
𝑉

∫ 𝑟 𝑓 =0

𝑟

sec �̃� (𝑠) 𝑑𝑠 (10)

Let 𝑡𝑔𝑜 , 𝑡 𝑓 − 𝑡 represents the time-to-go. Substitution of Eq. (9) into Eq. (10) results in an integral form expression for

the time-to-go of the baseline guidance law.

𝑡𝑔𝑜𝑏𝑎𝑠𝑒 =
1
𝑉

∫ 𝑟

0
sec �̃� (𝑠) 𝑑𝑠 = 1

𝑉

∫ 𝑟

0

1√︃
1 − sin2 �̃� (𝑠)

𝑑𝑠

=
1
𝑉

∫ 𝑟

0

1√︂
1 − sin2 𝜎 exp

{
2
∫ 𝑠

𝑟

𝑁 (𝑥)−1
𝑥

𝑑𝑥

} 𝑑𝑠 (11)

It can be noticed from Eq. (11) that the time-to-go is a function of both current range 𝑟 and current look angle 𝜎,

i.e., 𝑡𝑔𝑜𝑏𝑎𝑠𝑒 = 𝑡𝑔𝑜𝑏𝑎𝑠𝑒 (𝑟, 𝜎). For brevity of further writing, let 𝑓 (𝑟, 𝜎, 𝑠) , 1√︂
1−sin2 𝜎 exp

{
2
∫ 𝑠

𝑟

𝑁 (𝑥)−1
𝑥

𝑑𝑥

} refers to the

integrand function.

2. Definition of Error and Derivation of Dynamics

The arrival time control problem can be formulated into a terminal control of the relevant error variable. This study

considers the arrival time error, or equivalently, the time-to-go error, to represent the design objective, which is defined

with respect to the arrival time predicted at each instance with the baseline guidance law as

𝑒𝑡 = 𝑡 𝑓𝑏𝑎𝑠𝑒 − 𝑡 𝑓𝑑 = 𝑡𝑔𝑜𝑏𝑎𝑠𝑒 − 𝑡𝑔𝑜𝑑
(12)

where 𝑡𝑔𝑜𝑑
, 𝑡 𝑓𝑑 − 𝑡.

The baseline guidance law is responsible for delivering the vehicle to the target, but the arrival time depends only

on the initial heading error when no other corrective action than the baseline is exerted. Hence, an additional input is

necessary to enable adjustment of the arrival time. This study adopts the command augmentation approach introducing

a bias command apart from the baseline command to use as the actuation to the arrival time error dynamics, that is, the

lateral acceleration is given by

𝑎 = 𝑎𝑏𝑎𝑠𝑒 + 𝑎𝑏𝑖𝑎𝑠 = −𝑁 (𝑟)𝑉
𝑟

sin𝜎 + 𝑎𝑏𝑖𝑎𝑠 (13)

The form above is generally known as the BPNG.
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The time-derivative of the time-to-go solution will be necessary to design a controller that leverages feedback over

the tracking error in time-to-go. To compute the time-derivative of the time-to-go solution, its partial derivatives with

respect to the range and the look angle are needed. First, the partial derivatives of the integrand function with respect to

the variables 𝑟, 𝑠, and 𝜎 can also be obtained as follows:

𝜕

𝜕𝑟
𝑓 (𝑟, 𝜎, 𝑠) = − sin2 𝜎

𝑁 (𝑟) − 1
𝑟

𝑓 3 (𝑟, 𝜎, 𝑠) exp
{
2
∫ 𝑠

𝑟

𝑁 (𝑥) − 1
𝑥

𝑑𝑥

}
(14)

𝜕

𝜕𝑠
𝑓 (𝑟, 𝜎, 𝑠) = sin2 𝜎

𝑁 (𝑠) − 1
𝑠

𝑓 3 (𝑟, 𝜎, 𝑠) exp
{
2
∫ 𝑠

𝑟

𝑁 (𝑥) − 1
𝑥

𝑑𝑥

}
(15)

𝜕

𝜕𝜎
𝑓 (𝑟, 𝜎, 𝑠) = sin𝜎 cos𝜎 𝑓 3 (𝑟, 𝜎, 𝑠) exp

{
2
∫ 𝑠

𝑟

𝑁 (𝑥) − 1
𝑥

𝑑𝑥

}
(16)

Equations (14)-(15) show that the partial derivatives of 𝑓 are related to each other as

− cot𝜎
𝑟

𝑁 (𝑟) − 1
𝜕

𝜕𝑟
𝑓 (𝑟, 𝜎, 𝑠) = cot𝜎

𝑠

𝑁 (𝑠) − 1
𝜕

𝜕𝑠
𝑓 (𝑟, 𝜎, 𝑠) = 𝜕

𝜕𝜎
𝑓 (𝑟, 𝜎, 𝑠) (17)

Now, the partial derivatives of the integral form in Eq. (11) can be obtained by using the Leibniz integral rule as follows:

𝜕𝑡𝑔𝑜𝑏𝑎𝑠𝑒

𝜕𝑟
=

1
𝑉

sec𝜎 + 1
𝑉

∫ 𝑟

0

𝜕

𝜕𝑟
𝑓 (𝑟, 𝜎, 𝑠) 𝑑𝑠 (18)

𝜕𝑡𝑔𝑜𝑏𝑎𝑠𝑒

𝜕𝜎
=

1
𝑉

∫ 𝑟

0

𝜕

𝜕𝜎
𝑓 (𝑟, 𝜎, 𝑠) 𝑑𝑠 (19)

Finally, the dynamics of the error in the predicted arrival time can be derived by differentiating Eq. (12) with respect

to time and using Eqs. (1), (4), (13), (17)-(19) as follows:

¤𝑒𝑡 = ¤𝑡𝑔𝑜𝑏𝑎𝑠𝑒 + 1 = ¤𝑟
𝜕𝑡𝑔𝑜𝑏𝑎𝑠𝑒

𝜕𝑟
+ ¤𝜎

𝜕𝑡𝑔𝑜𝑏𝑎𝑠𝑒

𝜕𝜎
+ 1

= − cos𝜎
(
sec𝜎 +

∫ 𝑟

0

𝜕

𝜕𝑟
𝑓 (𝑟, 𝜎, 𝑠) 𝑑𝑠

)
+
(
𝑎𝑏𝑖𝑎𝑠

𝑉2 − 𝑁 (𝑟) − 1
𝑟

sin𝜎
) ∫ 𝑟

0

𝜕

𝜕𝜎
𝑓 (𝑟, 𝜎, 𝑠) 𝑑𝑠 + 1

= 𝑏 (𝑟, 𝜎) 𝑎𝑏𝑖𝑎𝑠

(20)

where

𝑏 (𝑟, 𝜎) , 1
𝑉2

∫ 𝑟

0

𝜕

𝜕𝜎
𝑓 (𝑟, 𝜎, 𝑠) 𝑑𝑠 (21)

One may notice from Eq. (20) that the arrival time error dynamics is exactly linear with respect to the bias command

𝑎𝑏𝑖𝑎𝑠 . Note from Eq. (16) that 𝑏 (𝑟, 0) = 0, sign (𝑏 (𝑟, 𝜎)) = sign (𝜎), and |𝑏 (𝑟, 𝜎) | = |𝑏 (𝑟,−𝜎) | for every 𝑟 ≥ 0.

Also, the BPNG defined Eq. (13) renders the dynamics of the look angle as

¤𝜎 =
𝑎𝑏𝑖𝑎𝑠

𝑉
− 𝑁 (𝑟) − 1

𝑟
𝑉 sin𝜎 (22)
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In summary, the differential equations for the arrival time error and the look angle in Eqs. (20) and (22), respectively,

together describe the system dynamics that lays foundation for the design and analysis of a bias command 𝑎𝑏𝑖𝑎𝑠 .

3. Design and Analysis of Guidance Laws

The trajectory resulting from the guidance law should verify the following conditions to meet the requirements

aforementioned in Sec. II:

Condition (1) 𝑒𝑡 → 0 as 𝑡 → 𝑡 𝑓𝑑

Condition (2)
𝑑

𝑑𝑡

(
1
2
|𝜎 |2

)
= 𝜎 ¤𝜎 = 𝜎

(
𝑎𝑏𝑖𝑎𝑠

𝑉
− 𝑁 (𝑟) − 1

𝑟
𝑉 sin𝜎

)
< 0 at 𝜎 = ±𝜎lim

If Condition (2) is satisfied by the closed-loop system, the magnitude of look angle will not exceed the given limit.

To achieve the goals, this study proposes a linear feedback policy for the bias command as

𝑎𝑏𝑖𝑎𝑠 = −𝑘 (·) 𝜙 (𝜎) sign (𝜎) 𝑒𝑡 (23)

where 𝑘 (·) is the function representing the variable feedback gain and 𝜙 (𝜎) is the activation function, with the nonzero

sign function defined by

sign (𝑥) ,


1 if 𝑥 ≥ 0

−1 if 𝑥 < 0
(24)

The designer-defined gain shaping functions satisfy the following conditions.

𝑘 (·) > 0 (25)

0 ≤ 𝜙 (𝜎) = 𝜙 (−𝜎) ≤ 1,∀𝜎 ∈ [−𝜎lim, 𝜎lim] (26)

𝜙 (±𝜎lim) = 0, 𝜙 (0) = 1 (27)

The properties of the proposed BPNG in view of the design requirements should be discussed. To this end, the

closed-loop systems dynamics is obtained by substituting Eq. (23) into Eqs. (20) and (22) as

¤𝑒𝑡 = − |𝑏 (𝑟, 𝜎) | 𝑘 (·) 𝜙 (𝜎) 𝑒𝑡 (28)

¤𝜎 = − 𝑘 (·) 𝜙 (𝜎) sign (𝜎) 𝑒𝑡
𝑉

− 𝑁 (𝑟) − 1
𝑟

𝑉 sin𝜎 (29)

Note from Eq. (28) that ¤𝑒𝑡 vanishes at 𝜎 = 0 regardless of the value of 𝑒𝑡 for the given linear-in-error bias command

since the gain 𝑘 is strictly positive by definition. Nonetheless, if 𝜎 = 0 while 𝑒𝑡 ≠ 0, we have ¤𝜎 ≠ 0 from Eq. (29),

hence, the closed-loop trajectory will not stay identically on the line 𝜎 (𝑡) ≡ 0, and consequentially, ¤𝑒𝑡 will be nonzero

as soon as 𝜎 becomes nonzero.
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Consider the Lyapunov function V = 1
2 𝑒𝑡

2 for the analysis of arrival time error convergence. It is clear from Eq.

(28) that the time-derivative of the Lyapunov function satisfies

¤V = −2 |𝑏 (𝑟, 𝜎) | 𝑘 (·) 𝜙 (𝜎) V ≤ 0 (30)

The gain function 𝑘 attains a positive value as defined in Eq. (25). Thus, Eq. (30) shows that V monotonically decreases

toward zero as long as 𝜎 ≠ 0,±𝜎lim. It should be emphasised that the negative semi-definiteness of V alone does not

automatically guarantee satisfaction of Condition (1). A proper gain function is necessary to produce enough rate of

convergence in the time response of 𝑒𝑡 since its convergence to zero should take place well ahead of the desired arrival

time to really achieve the given requirement. A simple choice for the gain function which is well-defined except at the

point 𝑟 = 0 is

𝑘 (𝑡) = 𝐾𝑉2

𝑡𝑔𝑜𝑏𝑎𝑠𝑒
(31)

where 𝐾 is a positive constant. The designer can shape the response characteristics through tuning of 𝐾 . This particular

example function is to enforce growth in the feedback gain as 𝑟 decreases to 0. Note that the proposed design for the

bias command avoids leveraging inversion of the control effectiveness function in the error dynamics, i.e., 𝑏 (𝑟, 𝜎), in

order to specify the closed-loop error dynamics by a desired form. Although the method of feedback linearisation may

facilitate the stability analysis and provide more explicit understanding of the error response, this deliberate decision to

leave 𝑏 (𝑟, 𝜎) in the resulting closed-loop dynamics is to avoid any singularity in the bias command near 𝜎 = 0 due to

𝑏−1 (𝑟, 𝜎) becoming unbounded. More rigorous and complete analysis of the settling time in the convergence of 𝑒𝑡

without incurring any potential singularity in the bias command remains an open issue.

The look angle is always confined within the permissible region as long as the initial look angle is less than or

equal to the limit value in its magnitude, since the activation function nullifies the bias command at either sides of the

boundary. Considering the property in Eq. (27) and the fact that 𝑁 (𝑟) > 1 by definition, the time-derivative of 1
2 |𝜎 |2

evaluated at 𝜎 = ±𝜎lim turns out to satisfy Condition (2), that is,

𝑑

𝑑𝑡

(
1
2
|𝜎 |2

)����
𝜎=±𝜎lim

= −𝑁 (𝑟) − 1
𝑟

𝑉𝜎lim sin𝜎lim < 0 (32)

Thus, if |𝜎0 | ≤ 𝜎lim, then the proposed guidance law guarantees that |𝜎 | < 𝜎lim, ∀𝑡 ≥ 𝑡0.

B. Special Case: Constant Navigation Ratio

Specifying the baseline policy in the generalised synthesis framework by the PPNG with a constant navigation

ratio yields a new BPNG that can meet the constraints described in Sec. II. The PPNG has many valuable properties

supporting the strong preference given to it in design practices including stability in the homing phase and simplicity in
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implementation. Yet, in the present context, the PPNG with a constant navigation ratio poses itself as a favourable choice

for the baseline policy in that closed-form expressions are available for the exact solutions of the closed-loop trajectory

and time-to-go. In particular, a closed-form expression for the time-to-go enables easy evaluation of the arrival time

error that enters into the command equation.

Suppose that 𝑁 (𝑟) = 𝑁 > 1 is now a constant. The expression for the time-to-go of PPNG can be rewritten in this

case as

𝑡𝑔𝑜𝑏𝑎𝑠𝑒 =
1
𝑉

∫ 𝑟

0

1√︃
1 − sin2 𝜎

(
𝑠
𝑟

)2(𝑁−1)
𝑑𝑠 =

𝑟

𝑉

|sin𝜎 |−
1

𝑁−1

2 (𝑁 − 1) 𝐵
(
sin2 𝜎;

1
2 (𝑁 − 1) ,

1
2

)
(33)

where 𝐵 (𝑥; 𝑎, 𝑏) ,
∫ 𝑥

0 𝑡𝑎−1 (1 − 𝑡)𝑏−1 𝑑𝑡 is the incomplete beta function. Also, a simple formula for the control

effectiveness function 𝑏 (𝑟, 𝜎) can be derived by simplifying the integral expression. By applying the relation of Eq.

(17) in Eq. (21) and then by integrating by parts, we obtain

𝑏 (𝑟, 𝜎) = cot𝜎
(𝑁 − 1)𝑉2

∫ 𝑟

0
𝑠
𝜕

𝜕𝑠
𝑓 (𝑟, 𝜎, 𝑠) 𝑑𝑠 = cot𝜎

(𝑁 − 1)𝑉2

{
𝑟 𝑓 (𝑟, 𝜎, 𝑟) −

∫ 𝑟

0
𝑓 (𝑟, 𝜎, 𝑠) 𝑑𝑠

}
=

cot𝜎
(
𝑟 sec𝜎 −𝑉𝑡𝑔𝑜𝑏𝑎𝑠𝑒

)
(𝑁 − 1)𝑉2

(34)

IV. Numerical Simulation
Numerical simulation is performed to demonstrate response characteristics and performance benefits of the proposed

guidance law. The simulation aims to show the effect of using an exact solution for the time-to-go through comparison

with an existing method developed based on approximate solution for the time-to-go in [10]. The bias command

presented in the previous study can be written as

𝑎𝑏𝑖𝑎𝑠 = −𝐶𝑉
2 (2𝑁 − 1)

𝑡𝑔𝑜𝑏𝑎𝑠𝑒𝑟 sin2 𝜎
𝜙 (𝜎) 𝑒𝑡 with 𝑡𝑔𝑜𝑏𝑎𝑠𝑒 =

𝑟

𝑉

{
1 + sin2 𝜎

2 (2𝑁 − 1)

}
(35)

where 𝐶 is a constant gain. For implementing both the proposed method and the existing method, the navigation ratio

entering into the baseline PPNG command is considered to be a constant. A fixed-step solver with the time-step of

10−4s is used for numerical integration. Also, a command limiter is employed to restrict the magnitude of acceleration

command below 100m/s2. The simplest point mass kinematics is used as the simulation model, and all signals fed into

the guidance law are not corrupted by any source of imperfection such as noise or transport delay. Simulation parameters

used are summarised in Table 1. The initial condition, the design parameters 𝐶, 𝑁 , and the gain shaping function 𝜙 (𝜎)

are chosen to be the same as the combination considered in [10] to clearly show the benefit of the proposed method

while being consistent with the previous work. Interested readers may refer to [10] for more detailed discussions about

the choice of the tunable elements of the method.
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Parameter Unit Value
𝐾 - 0.03
𝐶 - 8
𝑁 - 3

𝜙 (𝜎) - cos
(
𝜋
2

(
𝜎
𝜎lim

)5
)

𝜎lim deg 50
𝑡 𝑓𝑑 s 40(

𝑋𝑀0 , 𝑌𝑀0

)
m (0, 0)

𝑉 m/s 300
𝛾0 deg 30(

𝑋𝑇0 , 𝑌𝑇0

)
m (10 000, 0)

Table 1 Simulation Parameters: Design Parameters and Initial Condition

Figure 2 shows the simulation results and Fig. 3 provides a magnified view over the final second. The vehicle keeps

closing to the target and eventually arrives at the goal point after the desired flight time (See Figs. 2a and 2c). The look

angle does not violate the box constraint during the entire flight as shown in Fig. 2b. Overall performance of both

guidance laws are similar in that the two guidance laws leverage regulation of the arrival time error in order to satisfy

the desired arrival time constraint. Also, both methods produce smooth acceleration commands, preventing abrupt and

irregular responses. However, the proposed guidance law shows more effective and desirable behaviour in comparison

to the existing guidance law. The acceleration response of the existing method becomes highly unstable in the vicinity of

the target, which may result in significant degradation of the performance in practice. In contrast, the vehicle employing

the proposed method exhibits zero terminal acceleration as shown in Fig. 2f since the baseline PPNG governs the

overall response after the error is nullified. The arrival time error is kept small in the terminal phase as shown in Fig.

2d, nonetheless, even the error of a small magnitude can trigger the onset of instability in the acceleration response of

the existing method. The highly oscillatory behaviour is also obvious in the bias command, the arrival time error, and

the look angle for the existing method in Fig. 3 showing a more detailed look over the final second. The instability is

thought to be a consequence of the singularity in the command that renders the command highly sensitive near zero look

angle. Specifically, the inaccuracy in the time-to-go estimate used in the guidance command gives rise to the mismatch

between the true error dynamics and the nominal error dynamics considered in the design process based on feedback

linearisation. As a result, the term 𝑒𝑡 in the numerator becomes small but non-zero at the desired final time while the

term 𝑟𝑡𝑔𝑜𝑏𝑎𝑠𝑒 sin2 𝜎 in the denominator approaches faster to zero. Also, the proposed method shows faster rate of error

convergence as well as less control effort as shown in Figs. 2d and 2e. The results indicate that the design based on the

exact time-to-go information can improve the response characteristics as well as the performance in terms of achieved

accuracy.
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Fig. 2 Simulation Results: Comparison with An Existing Guidance Law Based on Approximate Time-to-Go
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Fig. 3 Simulation Results: Magnified View over the Final Second

V. Conclusion
In this study, a new biased proportional navigation guidance law was proposed as a solution to the arrival time

control problem in the presence of the look angle inequality constraint. The main innovation in the proposed guidance

law lies in the application of the exact expression for the time-to-go of baseline pure proportional navigation guidance

law that enables accurate definition of the actual arrival time error. The results of analysis and numerical simulation

point to a useful design lesson. If the linear-in-error feedback policy utilises a variable gain containing the reciprocal

of time-to-go with the intention to force the hard final error constraint, it is better to utilise the exact solution for the

time-to-go entering into the command to avoid command being unbounded near the desired final time. In conclusion,

this study indicated the importance and the benefits of having an exact expression for time-to-go in the problem of arrival

time control. The proposed method can readily be extended to a new distributed guidance method for simultaneous

arrival of multiple vehicles through the application of a consensus protocol operating over the times-to-go.
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